w0 20227221927 A1 |0 000 K00 00 0

(12) INTERNATIONAL APPLICATION PUBLISHED

UNDER THE PATENT COOPERATION TREATY (PCT)

19) World Intellectual Propert 3
e Organization = U 01 R O 0
International Bureau / (10) International Publication Number
(43) International Publication Date _ WO 2022/221927 Al
27 October 2022 (27.10.2022) WIPO I PCT
(51) International Patent Classification: (72) Inventor: ESCOTT, Eban Peter; C/-Michael Buck IP, PO
GO6F 9/455 (2018.01) GO6F 8/40 (2018.01) Box 78, Red Hill, 4059 (AU).
GOGF 835 (2018.01) GOGN 3/00 (2006.01) (74) Agent: MICHAEL BUCK IP; PO Box 78, Red Hill,
(21) International Application Number: Queensland 4059 (AU).
PCT/AU2022/050373

(22) International Filing Date:
22 April 2022 (22.04.2022)

(25) Filing Language: English
(26) Publication Language: English
(30) Priority Data:

2021901195 22 April 2021 (22.04.2021) AU

(71) Applicant: E & K ESCOTT HOLDINGS PTY LTD
[AU/AU]; C/- Michael Buck IP, PO Box 78, Red Hill,
Queensland 4059 (AU).

(81) Designated States (unless otherwise indicated, for every
kind of national protection available). AE, AG, AL, AM,
AO, AT, AU, AZ, BA, BB, BG, BH, BN, BR, BW, BY, BZ,
CA, CH, CL, CN, CO, CR, CU, CZ,DE, DJ, DK, DM, DO,
DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, GT, HN,
HR, HU, ID, IL, IN, IR, IS, IT, JM, JO, JP, KE, KG, KH,
KN, KP, KR, KW, KZ, LA, LC,LK, LR, LS, LU, LY, MA,
MD, ME, MG, MK, MN, MW, MX, MY, MZ, NA, NG, NI,
NO, NZ, OM, PA, PE, PG, PH, PL, PT, QA, RO, RS, RU,
RW, SA, SC, SD, SE, SG, SK, SL, ST, SV, SY, TH, TJ, TM,
TN, TR, TT, TZ, UA, UG, US, UZ, VC, VN, WS, ZA, ZM,
ZW.

(54) Title: A METHOD FOR IMPROVED CODE GENERATION BY ARTIFICIALLY INTELLIGENT AGENTS

~

Source Code
Repository

ot on
I

415)
Environment a2

Target Appin
Requirements

A29

()

Artificial Intelligence
Agent (“Bot”)

00

Sensors

405 401~ |

Sensors

diff Identifier

Y

Search Manager

425

Templates (Code
Transformations)

Target
Application

Actuators

409 Code Generator

FIG. 4

(57) Abstract: A computer-implemented method for producing code generation templates. The method includes receiving a series of
commits, each of the commits in the series of commits including a version of a reference application, each version of the reference
application having a corresponding meta-model and model and identifying differences between time separated commits to thereby
obtain one or more identified differences therebetween. The method searches to find transformations for transforming a previous version
of the reference application to a current version of the reference application, adds the transformations to a current template, applies
the current template, including the transformations, to a recent commit to thereby produce a current evaluation target application, and
stores the current template for later use upon the current evaluation target application passing a comparison evaluation with a version
of the reference application of the recent commit.

[Continued on next page]

WO 20227221927 A [IN U0} 00 000000 S 00O

(84) Designated States (unless otherwise indicated, for every
kind of regional protection available): ARIPO (BW, GH,
GM, KE, LR, LS, MW, MZ, NA, RW, SD, SL, ST, SZ, TZ,
UG, ZM, ZW), Eurasian (AM, AZ, BY, KG, KZ, RU, TJ,
TM), European (AL, AT, BE, BG, CH, CY, CZ, DE, DK,
EE, ES, FL, FR, GB, GR, HR, HU, IE, IS, IT, LT, LU, LV,
MC, MK, MT, NL, NO, PL, PT, RO, RS, SE, SI, SK, SM,
TR), OAPI (BF, BJ, CF, CG, CI, CM, GA, GN, GQ, GW,
KM, ML, MR, NE, SN, TD, TG).

Published:
— with international search report (Art. 21(3))

10

15

20

25

30

WO 2022/221927

A METHOD FOR IMPROVED CODE GENERATION BY
ARTIFICIALLY INTELLIGENT AGENTS

TECHNICAL FIELD

The present disclosure relates to computer-implemented systems, methods,
and apparatus for generating code for a specific functionality for example by

use of an artificially intelligent (Al) agent or “bot”.

BACKGROUND

Any references to methods, apparatus or documents of the prior art are not to
be taken as constituting any evidence or admission that they formed, or form
part of the common general knowledge.

Software written for applications such as mobile applications, web-based
systems, embedded systems, and enterprise applications, use software
patterns to solve problems and deliver a solution. Traditionally, programming
languages like Java, C++, Python and the like are used to write source code for
a target application by a software developer. Writing these applications is a time
intensive task and carries a high risk of error. The source code is ultimately
compiled to executable code which can be read and acted upon by one or more
microprocessors of a computer. Under control of the application the
microprocessors process data from sensors such as keyboards, touch screen,
mouse, camera and possibly industrial sensors such as temperature and
pressure transducers and the like. The microprocessors act upon the received
data from the sensors and operate various actuators in accordance with the
application. The various actuators may include one or more display screens or
almost any other kind of machine controllable actuator, such as solenoids or

disk drive or solid-state drive storage controllers for example.

Human software engineers or “developers” can accomplish these tasks though

much of what they do may be considered infrastructure in that it involves

PCT/AU2022/050373

10

15

20

25

30

WO 2022/221927

reusing prebuilt code. More recently, it has been known for software to be
designed and built using computer implemented modelling environments
whereby some of the source code for a target application can be automatically

generated.

Model-based applications can be used to represent a software system either
graphically, textually or with a hybrid approach. The models can be used to
generate large portions of the software system, which leads to many tangible

benefits.

Computer software can be created, updated and read using model-based
representations. Unlike traditional source code, the model is a high-level
representation of the source code and code generators, i.e. suitably
programmed computers, can be used to write code from the model, instead of
the code being written by a human. The models allow the modeller to express
the requirements that the resultant target software application is required to
meet. Graphical models, presented by way of a graphical user interface on a
display screen of a computer, usually allow shapes to be rendered, moved and
connected, with other elements to represent the software. Textual models like
Domain-Specific Languages (DSLs) can look like natural language and are
ideal for some problem scenarios. A hybrid approach uses both graphical and
textual notations. A table or spreadsheet could be considered a hybrid
approach and used as a model of the software application and a way for the
modeller to express the intent of their software.

Model-Driven Engineering (MDE) is an advanced approach to software
engineering that uses models in the software development life cycle. As an
example, Figure 1 is a diagram showing a meta-model 10, model 12, XML
representation of the model 14, templates 9, code library 7, code generator 16
and output application code or “Target Code” 18 which produces output 20, for
example a display on a computer monitor. In the meta-model 10 entities 17
and associations 15 between entities 17 are defined. In the model layer a model
12 is stored that, in this example, includes two instances of an entity of the

meta-model being Alpha 19 and Bravo 21. The two instances Alpha 19 and

PCT/AU2022/050373

10

15

20

25

30

WO 2022/221927

Bravo 21 are related by a relationship 13 that is an instance of one of the
associations 15 defined in the meta-model 10. The model 12 can be
represented in a number of ways, for example it can be represented graphically
as shown in Figure 1 or textually. The XML document 14 captures all of the
instances of elements and associations of the model. The XML document 14
can be applied to a software application known as a code generator 16. The
output from the code generator 16 comprises a target software application 18
for execution by a computer to generate an output 20. Consequently, it will be
understood that modification of the model 12 and in some circumstances also
of the meta-model 10 will result in modification of the target software application
18. Conversely, for a given target software application it is possible to define a

corresponding model and also a corresponding meta-model.

It will therefore be realised that a model, such as model 12 of Figure 1, is a
high-level representation of software application 18. The model 12 can undergo
model-to-model (M2M) and model-to-text (M2T) transformations that results in
some - not necessarily all - of the source code of the target application 18 being
automatically generated. Some examples of well-known modelling
environments include the Unified Modelling Language (UML), Business
Process Modelling Notation (BPMN), and Business Process Execution
Language (BPEL).

The meta-model defines what can be found in the model. For example, if the
meta-model has an entity such as a class called “BirdClass”, then the modeller
can add as many instances of “BirdClass” to the model as required and label

those instances accordingly, e.g. “Seagull’, “Hawk”, “Bluebird” etc.

A well-known example of a model driven engineering layer hierarchy is the
Meta-Object Facility (MOF) illustrated in Figure 2 in which four layers are
defined as follows; real world 2, model 4, meta-model 6 and meta-meta-model
8.

Figure 3 illustrates a scenario that arises in the field of MDE software

development. In this scenario a person with a need to have a software

PCT/AU2022/050373

10

15

20

25

30

WO 2022/221927

application (“target software”) created, such as Enterprise Owner 29, engages
a software Developer 30 to produce Enterprise Software, 31, depicted as
versions 31.1,...,.31.n, that automates business processes 33, which arise in
the running of the Enterprise Owner’s business. The Enterprise Owner 29 and
the Developer 31 have conversations and exchange emails and possibly meet
face to face so that the Developer 31 forms an understanding of the
requirements that are to be implemented in the Enterprise Software 31 in order
to automate the business processes 33. The Developer 31 then devises an
initial meta-model 35 and a corresponding initial model 37 based on the

requirements from the Enterprise Owner 29 for the Enterprise Software 31.

Part of the work of the Developer 30 is to create templates 39 that are consistent
with the meta-model 35 and model 37 and which are tailored to the Enterprise
Owner’s requirements. Once the initial meta-model 35, model 37 and templates
39 have been created they are then applied to the code generator 41 which
produces an initial version V1 31.1 of the Enterprise Software. The Enterprise
Software V1 31.1 is made available to the Enterprise Owner 29 for testing to
see if it meets the Enterprise Owner’s requirements. The Enterprise Owner 29
provides feedback to the Developer 30 and in response the Developer 30 will
typically revise the templates 39. In some situations it may be that the
Enterprise Owner 29 will introduce new requirements which involve
incorporation of additional entities into the software specification that have not
been previously discussed. In that case the Developer will typically also update
the Meta-Model 35 and correspondingly the Model 37 to take into account
feedback from the Enterprise Owner 29. One part of the cycle that is time

consuming is the writing and updating of the templates 39.

The developer 30 may use a version management tool to store successive
iterations or “commits” of models, meta-models, templates and versions of the
Enterprise Software during the progressive development of the Enterprise

Software.

Manually writing templates is time intensive and prone to human error. This

creates a barrier to entry for enterprises seeking to use MDE. Some attempts

PCT/AU2022/050373

10

15

20

25

30

WO 2022/221927

have been made in the past to automate the updating of the templates. For
example, in recent years artificial neural network (ANN) based artificial
intelligence (Al) agents have been trained to generate code using Machine
Learning (ML) based approaches such as that of DeepCoder,
https://www.microsoft.com/en-us/research/publication/deepcoder-learning-

write-programs/

There are a number of difficulties in using ML approaches. For example, to train
a ML algorithm a large data set is required. To find large datasets, researchers
have used open-source code repositories and the like that are available online.
But these datasets have a large variation in consistency and quality making it
difficult for the machine to learn. Furthermore, the code repositories usually do
not have the original requirements stored alongside them so it is difficult to know
the intention of the code base. Finally, ML approaches require a way to test its
output as the algorithm learns. The open-source code repositories rarely have
adequate tests making finding large datasets difficult. These approaches aim
to solve the problem of coding with limited reference to the expressly stated
models of the application owner. Consequently, they do not scale very well to

larger applications.

Further, these approaches do not have explicability from the start. Decisions
taken by the coding system are based in the state of the neuronal network as a
whole and cannot be broken out. Deep learning explainability is a research area
in its infancy.

There is a need for a method for improving code generation by artificially
intelligent agents which overcomes or at least ameliorates one or more

disadvantages of the prior art.

PCT/AU2022/050373

10

15

20

25

30

WO 2022/221927

SUMMARY OF THE INVENTION

A computer-implemented method for producing code generation templates
comprising:
receiving a series of commits (C=C,,...,C,), each of the commits
Ci,...,C, of the series of commits including a version of a reference application
RA;,...,RAn, each version of the reference application RA;,...,RAn having a
corresponding meta-model and model, commit Cy, comprising an initial model
and meta model of a first version of the reference application RA;;
for i=1 to n, identifying differences between C; and C..; to thereby obtain
one or more identified differences therebetween;
searching to find one or more transformations for transforming a
previous version of the reference application to a current version of the
reference application,
adding the one or more transformations to a current template T;
applying the current template T;, including the one or more
transformations, to the last commit C,.; to thereby produce a current evaluation
target application ETA; (~=1,...,n); and
storing the current template T; for later use upon the current
evaluation target application ETA; passing a comparison evaluation with
a version of the reference application of C..;,

whereby a series of templates are ultimately stored.

The templates may be generated by an artificially intelligent agent (“Bot”) in
accordance with the above method so that the bot learns new versions of the
reference application in an incremental fashion based on changes in
consecutive versions of the reference application, which may include updates
to model and meta-models corresponding to the versions of the reference

application.

PCT/AU2022/050373

10

15

20

25

30

WO 2022/221927

According to another aspect of the present invention there is provided an
artificially intelligent agent (“the bot”) hosted on a computer platform providing
a computing environment for the bot, the bot comprising:

one or more sensors configured to read incrementally updated versions
of a reference application stored in the computing environment;

one or more actuators configured to write files to the computing
environment; and

a mapping arrangement responsive to the one or more sensors and
coupled to the one or more actuators for control thereof,

the mapping arrangement including,

a difference Identifier subassembly configured to identify one or
more differences in code of a current version of the reference application
relative to an immediately earlier version of the reference application to
thereby produce one or more identified differences,

a search manager subassembly responsive to the difference
identifier for receiving the one or more identified differences and
configured to determine transformations transforming the immediately
earlier version of the reference application into the latest version of the
reference application wherein the search manager encodes the
transformations in a template;

a code generation subassembly arranged to process the template
with reference to a model corresponding to the immediately earlier
version of the reference application to thereby generate an evaluation
target application; and

a comparison subassembly arranged to compare the evaluation
target application to the latest version of the reference application;

wherein upon output from the comparison subassembly indicating that the
evaluation target application passes comparison requirements, the template is

retained for subsequent use by the code generator subassembly.

A computer-implemented method for producing code generation templates

comprising:

PCT/AU2022/050373

10

15

20

25

30

WO 2022/221927

receiving a series of commits, each of the commits in the series
of commits including a version of a reference application, each version of the
reference application having a corresponding meta-model and model;
identifying differences between time separated commits to thereby
obtain one or more identified differences therebetween;
searching to find one or more transformations for transforming a
previous version of the reference application to a current version of the
reference application,
adding the one or more transformations to a current template,
applying the current template, including the one or more transformations,
to a recent commit to thereby produce a current evaluation target application;
and
storing the current template for later use upon the current
evaluation target application passing a comparison evaluation with a
version of the reference application of the recent commit,

whereby a series of templates are ultimately stored.

In an embodiment the series of commits comprises commits Ci=Co,...,C,,
wherein each of the commits C;,...,C, of the series of commits includes a
version of a reference application RA;,...,RAx.

In an embodiment each version of the reference application commit Co,
comprises an initial model and initial meta model of a first version of the

reference application RA;.

In an embodiment the method includes checking if a new commit of the series

of commits has been received in a source code repository.

In an embodiment the method may include updating a current template with

folder and file structure information based on the new commit.

In an embodiment, for each identified difference of the one or more identified

differences, the computer implemented method includes the steps:

PCT/AU2022/050373

10

15

20

25

30

WO 2022/221927

searching to find a transformation in respect of the
identified difference,
adding the transformation to a current template, and
applying the current template, including the transformations for
each of the identified differences, to a recent commit to thereby produce a
current evaluation target application,
whereby a series of templates are ultimately stored containing

incremental transformations.

In an embodiment the method includes making a number of candidate
templates and selecting a best one by making a target application from each
candidate template and then evaluating the target application based on how
many lines of code in the target application match lines of code in the reference
application wherein the candidate template that generated the target application

that has the best match is deemed the template.

In an embodiment the method includes evaluating the current Evaluation Target
Application relative to the current reference application of the current commit

by checking if the Evaluation Target Application compiles.

In an embodiment evaluating the current Evaluation Target Application
comprises determining if the number of lines of code in the current Evaluation
Target Application match the number of lines in the current Reference
Application.

In an embodiment evaluating the current Evaluation Target Application
comprises determining if characters comprising the current Evaluation Target

Application match characters comprising the current Reference Application.

In an embodiment evaluating the current Evaluation Target Application is
syntactically correct with respect to the programming language in which it has
been generated. For example if it is correct with respect to Python, Java, C#

etc.

PCT/AU2022/050373

10

15

20

25

30

WO 2022/221927

10

In an embodiment, if evaluating the current Evaluation Target Application
results in a “fail’ then the method includes identifying differences between the

current Evaluation Target Application and the current Reference Application.

In an embodiment transforms for the differences that are identified are

separately searched for and included in the current template.

In an embodiment the transforms for the differences that are identified are

separately and consecutively searched for and included in the current template.

According to a further aspect of the present invention, there is provided a
computer-implemented method for code generation, the method comprising:

receiving requirements in the form of a model for a desired subsequent
target application;

obtaining one or more templates previously generated according to the
previously described method; and

applying the one or more templates and the requirements to a code
generator to thereby produce code for implementing the desired subsequent

target application.

According to another aspect of the present invention, there is provided a
computer-implemented method for producing code generation templates
comprising:

receiving a series of commits (Ci=Co,...,C,), each of the commits
Ci,...,C, of the series of commits including a version of a reference application
RA;,...,RAn, each version of the reference application RA;,...,RAxn having a
corresponding meta-model and model, commit Cg, comprising an initial model
and meta model of a first version of the reference application RA;;

for i=1 to n, identifying differences between C; and C;.; to thereby obtain
one or more identified differences therebetween;

searching to find one or more templates T, for generating a target

application that compares to a current version of the reference application,

PCT/AU2022/050373

10

15

20

25

30

WO 2022/221927

11

applying the one or more templates T;, to the last commit
C..; to thereby produce a current evaluation target application ETA; (=1,...,n);
and
storing the current template T; for later use upon the current
evaluation target application ETA; passing a comparison evaluation with
a version of the reference application of C..;,

whereby a series of templates are ultimately stored.

According to another aspect, there is provided a computer-implemented
method for producing code generation templates comprising:
receiving a series of commits (C=Cy,...,C,), each of the commits
Ci,...,C, of the series of commits including a version of a reference application
RA;,...,RAn, each version of the reference application RA;,...,RAxn having a
corresponding meta-model and model, commit Cy, comprising an initial model
and meta model of a first version of the reference application RA;;
for i=1 to n, identifying differences between C; and C;.; to thereby obtain
one or more identified differences therebetween;
searching to find one or more transformations for a template that
when applied to C;.; transforms a previous version of the reference application
to a current version of the reference application,
adding the one or more transformations to a current template T;;
applying the current template T;, including the one or more
transformations, to the last commit C.; to thereby produce a current evaluation
target application ETA; (=1,...,n); and
storing the current template T; for later use upon the current
evaluation target application ETA; passing a comparison evaluation with
a version of the reference application of C,.;,

whereby a series of templates are ultimately stored.

BRIEF DESCRIPTION OF THE DRAWINGS

Preferred features, embodiments and variations of the invention may be
discerned from the following Detailed Description which provides sufficient

PCT/AU2022/050373

10

15

20

25

30

WO 2022/221927

PCT/AU2022/050373

12

information for those skilled in the art to perform the invention. The Detailed

Description is not to be regarded as limiting the scope of the preceding

Summary of the Invention in any way. The Detailed Description will make

reference to a number of drawings as follows:

Figure 1

Figure 2

Figure 3

Figure 4

Figure 5

Figure 5a

Figure 5b

Figure 6

Figure 7

Figure 8

Figure 9

is a diagram illustrating model driven engineering (MDE) software
development.

is a diagram illustrating the levels of a Meta-Object Facility of the
Unified Modelling Language (UML) used in MDE.

is a diagram illustrating a prior art, human developer-based
approach to developing enterprise software using MDE to meet
requirements of a person such as an enterprise owner.

is a block diagram of an artificially intelligent (Al) agent or “Bot”
hosted on a computing platform, according to one embodiment of
the present invention and shown interacting with a computational
environment of the computing platform.

is a flowchart of a method according to an embodiment of the
present invention.

is a flowchart of a method according to another embodiment of
the present invention.

is a flowchart of a searching method according to an embodiment
of the present invention.

is a timeline showing a series of “commits”, i.e. source code
submitted by a human developer to a code repository along a
timeline whilst perfecting a computer application, or “Reference
Application” used by the Bot to learn code transformations that
are encoded in a series of templates.

is a portion of code of a reference application for which a
corresponding transformation is to be learned by the Bot.

is a template encoding the transformation for generating the code
of Figure 7 with reference to a model.

is a further portion of code of a reference application for which a

further corresponding transformation is to be learned by the Bot.

10

15

20

25

30

WO 2022/221927

13

Figure 10 is a further template encoding the transformation for generating
the code of Figure 9.

DETAILED DESCRIPTION OF PREFERRED EMBODIMENTS

Referring now to Figure 4, there is depicted a block diagram of an artificially
intelligent agent or “Bot” 400 according to an embodiment of the present
invention. It will be realised that the methods that are described herein are not
necessarily limited to using a bot with the exact architecture of Figure 4 and that
embodiments of the invention may be implemented in other ways, for example

on a standalone computer or in a virtual computing environment.

The functional subassemblies making up Bot 400 will initially be described and
then subsequently a method of operation will be discussed with reference to

the flowchart of Figure 5 and timeline of Figure 6.

Bot 400 is hosted on a computer platform which provides a computational
environment 412 for the bot. Bot 400 includes Sensors 401, 417 for receiving
data from the computational environment 412 and actuators 403 for effecting
changes in the computational environment 412. For example, actuators 403
may effect change by sending commands for storage devices to write files,
create directories and send messages, for example to a human via Human
Machine Interfaces (HMI) of the Environment 412 and/or to other

computers/Bots via data network communication devices.

The Environment 412 includes a Source Code Repository 415 for a developer
to store versions of a computer application or “commits”, for example in similar
fashion to the versions of Enterprise Software 31.1,...,31.n that have previously
been discussed in relation to Figure 3. The Source Code Repository 415 may
comprise a git repository (available from https://git-scm.com, retrieved
23/03/2021) which is a free and open-source distributed version control system.
Other version control source code management systems are also available and
may also be used. Each commit that a developer submits to the Source Code

Repository 415 will typically also include a current model and meta-model

PCT/AU2022/050373

10

15

20

25

30

WO 2022/221927

14

corresponding to the current reference application. As will be discussed the
sequence of commits stored in Source Code Repository 415 are used by the
bot 400 to generate templates that encode transformations for transforming a
reference application of a last commit C..;, to a reference application of a current

commit C..

Bot 400 includes a mapping assembly 405 which incorporates a number of
subassemblies as follows:

diff Identifier subassembly 407 is configured to identify differences in
consecutive commits Ci1,...,C, that appear over time in the Source Code
Repository 415 of the Environment 412. The diff Identifier subassembly 407 is
configured to identify that changes have occurred and, in some embodiments,
where the changes have occurred in consecutive commits Cq,...,C, and/or the
number of changes. For example, where Source Code Repository 415
comprises the git repository as previously discussed then the diff Identifier
subassembly 407 applies a “git diff' command to two consecutive commits C..
1, Ci in order to identify differences between them. The git diff command is
documented at https://git-scm.com/docs/qit-diff (retrieved 23/03/2021). It will
be realised that the git repository and “git difff command are simply one
example of a mechanism for identifying differences between consecutive
commits. The diff Identifier subassembly 407 is also responsive to output from
Comparison subassembly (“Cf.”) 423 and is arranged to compare an Evaluation
Target Application 421, which will be discussed below, to a current reference

application of a current commit C; in order to identify differences therebetween.

Search manager subassembly 409 is configured to search for a
transformation from the previous commit C;.; to the current commit C;. In some
embodiments, Search manager subassembly 409 searches for a
transformation for each of the differences that have been identified by the diff
ldentifier subassembly 407 to transform the previous commit C..;to the current
commit C; In some other embodiments, Search manager subassembly 409

searches for one or more transformations for a template that when applied to

PCT/AU2022/050373

10

15

20

25

30

WO 2022/221927

15

the previous commit C;.; transforms the previous commit C,;to the current

commit C;

Search manager subassembly 409 is arranged to store the transformations as
templates in Templates storage assembly 419 of Code Generator
subassembly 413. The Templates storage assembly 419 is shown within the
Code Generator 413 in the present embodiment but it will be realised that it
could be located elsewhere provided the Code Generator subassembly 413 is
able to access the templates. The templates T1,...,Tn encode transformations
for the code generator to ultimately be able to create a target application 425
based on requirements 427 expressed in a model 429 and meta-model 431.

For example, the model 429 and meta-model 431 may correspond to the initial
model 37 and meta-model 35 of Figure 3 which express requirements for
enterprise software 31 to automate enterprise processes 33. Consequently, as
the Bot 400 acquires more templates over time by searching for transformations
with reference to the reference application versions of the commits that the
developer submits to the Source Code Repository it effectively incrementally
learns how to write a target application 425 for a given set of requirements 427
based on the reference application from which it originally learnt.

Code Generator subassembly 413 is configured to apply a template from
Templates storage assembly 419 (and thus a transformation encoded in the
template) to a previous commit in order to generate an evaluation target
application 421. The Evaluation Target Application 421 may be stored, for
example, in a branch of the Source Code Repository 415 in order that the diff
Identifier 407 can apply a git diff command to compare the Evaluation Target

Application 421 to the current reference application of the current commit.

Comparison subassembly 423 is configured to compare the evaluation target
application ETA: 421 to the current reference application RAi according to a
number of comparison criteria. The comparison subassembly 423 generates an
output in the form of a pass or fail value depending on whether or not the

evaluation target application passes the comparison criteria with reference to

PCT/AU2022/050373

10

15

20

25

30

WO 2022/221927

16

the reference application to the diff ldentifier subassembly 407. The diff
Identifier subassembly 407 is arranged so that where the output from the
Comparison subassembly 423 is a “fail” value then the diff Identifier
subassembly 407 compares the evaluation Target Application to the current
reference application of the current commit in Source Code Repository 415 to
identify areas of the current reference application that differ from the Evaluation
Target application. The areas that differ can then be the subject of further
searching for an improved transform to upgrade the current template.
Alternatively, if the Comparison subassembly 423 returns a “fail” value, the
Search manager subassembly 409 may conduct a new search for
transformations for a new (or updated) template that when applied to the
previous commit G,.; transforms the previous commit C;.;to the current commit
C.

Operation of Bot 400 — Learning Mode

An example of the Bot 400 operating to generate the templates T1,...,Tn that
are stored in Templates storage assembly 419 will now be described with
reference to the flowchart of Figure 5 and timeline of Figure 6. Mapping
assembly 405 of the Bot 400 is programmed to implement the various functional
subassemblies that have been described, e.g. items 407, 409, 413 and 423 and
to proceed through the various steps of the flowcharts of Figures 5, 5a and 5b
that will be described.

Figure 6 graphically illustrates the development of a reference application 601
by a human developer over time and through a number of iterations (reference
applications 601.1 to 601.n) from a first Commit 1 at time t1 to a final Commit »n
at time tn. The reference application 601.1 at Commit 1 is produced by the
human developer corresponding to an initial Meta-Model(t0) and Model(t0) in
similar fashion to Enterprise Software V1 31.1 of Figure 3. Here, “Model(t0)"
and “Meta-Model(t0) means the initial model and meta-model, i.e. at time zero,
and thus effectively Model(t0) and Meta-Model(t0) comprise Commit O of the
development, as they express the requirements of the first iteration of the

reference application 601.1.

PCT/AU2022/050373

10

15

20

25

30

WO 2022/221927

17

At box 501 Last Commit is set to CO which comprises the initial Model(t0) and
Meta-Model(t0).

At box 502 of Figure 5, Bot 400 checks via sensors 417 if a New Commit has
been deposited into Source Code Repository 415. If a new commit has not
been deposited then control proceeds to box 503 which checks if any external
process termination signal has been received. Assuming that no such signal
has been received then control returns to box 502 to check again for a new
commit. Upon a new commit, e.g., Commit 1 (C1), being detected in Source
Code Repository 415, control proceeds to box 505.

At box 505 the diff Identifier 407 initialises a Current Template T1 and updates
Current template T1 with folder and file structure information based on the new
Commit. For example, if the reference application 601.1 includes two files
alpha.java and bravo.java in a directory srclcom\projectientities of the
Environment 412, then, as an example, at box 505 the diff Identifier
subassembly 407 may include folder and file structure information in template
T1 specifying that entity and attribute files, for example entity.eg/ and
attribute.egl are to be written to a corresponding location with reference to a
templates root directory, e.g., templates\com\project\entities.

At box 507 the diff Identifier subassembly 407 identifies differences between
New Commit and Last Commit. On the first iteration all of the code 602 in the
Reference application 601.1 will be new and the corresponding Model(t1) and
Meta-Model(t1) will be unchanged from the initial Model(t0) and Meta-
Model(t0). For example, the reference application 601.1 may be a java object
file as set out in Figure 7, which sets out methods for getting and setting
attributes for “yellow”, “green” and “blue” objects, which are defined in Model(t0)
and are instances of a class specified in Meta-Model(t0). For the example
Reference Application 601.1 of Figure 7, the diff Identifier subassembly 407
identifies a difference being eighteen new lines of code (numbered at left hand

side of Figure 7) and including three instances of a class.

PCT/AU2022/050373

10

15

20

25

30

WO 2022/221927

18

At boxes 509 to 513 in Figure 5, or box 514 in Figure 5a, the Search Manager
409 searches for a transformation that will, when run for the same three
instances of the class, generate the same code as that of the reference
application. After searching for an optimal transformation by trying different
code combinations, for example using a hill climbing search strategy, Bot 400
settles on the transformation of Figure 8 which is encoded into template T1.
Template T1, and any other templates described herein, may comprise a single
template or a plurality of templates.

In order to find the template that matches the target application to the reference
application, for example to find the template shown in Fig 8 to the reference
application in Fig 7, different heuristics can be used to search the state space,
that is, the space of possible templates, including templates that are

unworkable.

For example, if each line in Fig 7 is represented as a color (lines 1-6 as yellow
(*Y”), lines as 7-12 green (“G”), lines 13-18 as blue (“B”)) then
YYYYYYGGGGGGBBBBBB is the solution that is to be searched for. By taking
the 6 lines from any color and copying them into the template, it is possible to
replace the color name with the value of the attribute name variable as shown
in Fig 8, execute the templates, and then compare the target application to
determine which color guesses were correct. It is possible to evaluate the node
based on how many matched colors (lines of code matched between the target
and the reference).

For a computer-implemented search, such as that of the bot, to apply a search
heuristic to find the correct color combination YYYYYYGGGGGGBBBBBB, it
checks many others first. The simplest approach is to try random color
combinations until a match is found. But there are ways to make the heuristic
better than random. For instance, to start the search for this example, there are
18 lines with 3 colors. The first level of the search tree could guess something
like:

YGBYGBYGBYGBYGBYGB

YYGGBBYYGGBBYYGGBB

PCT/AU2022/050373

10

15

20

25

30

WO 2022/221927

19

YYYGGGBBBYYYGGGBBB
YYYYGGGGBBBBYYYYGG, and so on.

Each of these color combinations (nodes in the search tree) creates a template,
execute the template, and then compare the target application to the reference
application to see which node is the closest to the solution. This node is then

chosen and another set of child nodes are created and evaluated.

This approach can be applied to other scenarios as well. For example, the code
found in Fig 9 achieves the same functionality as Fig 8 but the developer has
written the code differently. The solution color combination for this scenario
would be YYYGGGBBBYYYGGGBBB. So, the search heuristic can be applied
again to find the correct template shown in Fig 10.

The Inventors have found that simple random approaches work for
implementing the search through to more advanced approaches that take
advantage of typical practices that developers commonly use to organize their

code.

Template T1 contains code for Code Generator subassembly 413 to generate
an evaluation target application 421 at box 515, using current Template T1 and
Model(t0) and Meta-Model(t0) of the last Commit as input.

The Search Manager subassembly 409 is preferably configured to operate
using heuristics to assist it to identify typical human developer coding patterns
in the Reference Application 601.1. In the example Reference Application code
snippet of Figure 7 the optimal template of Figure 8 comprises a single forloop
which encapsulates consecutive get and set methods to get and set attributes
for each object in the Model because the human developer has consecutively

coded get and set methods for each of the attributes “yellow”, “green” and

“blue”.

Alternatively, in the example Reference Application code snippet of Figure 9,

the corresponding optimal template of Figure 10 is comprised of two

PCT/AU2022/050373

10

15

20

25

30

WO 2022/221927

20

consecutive for loops being a first for loop to get attributes and a second for
loop to set for attributes. The first for loop in the template of Figure 10 is
contains instructions based on lines 1 to 9 of the Reference Application code
snippet of Figure 9 and the second forloop in the template of Figure 10 contains
code based on lines 10 to 18 of Figure 9.

As previously discussed, the examples of Figures 7 and 8 and Figures 9 and
10 illustrate that it is preferable to program bot 400 to configure Search Manager
subassembly 409 to hunt for repeating patterns of code in the Reference
Application to arrive at an optimal template. As developers commonly use
patterns and architectures to create software applications the search heuristic
can be programmed to use these to find an optimal solution within a reasonable
amount of time. As opposed to an exhaustive or random search that would

result in unreasonable running times to be practical.

At box 517 Bot 400 operates Comparison (Cf.) subassembly 423 to compare
the current evaluation Target Application 421 to the current reference
application of the current commit Ci. The Comparison subassembly 423 is

configured to make comparisons using a number of metrics such as:

1. Does the Evaluation Target Application 421 compile?

2. Do the number of lines in the current Evaluation Target Application

match the number of lines in the current reference application?

3. Do the characters in the current Evaluation Target Application match the

characters in the current reference application?

4. Is the coding of the current Evaluation Target Application 421
syntactically correct with respect to the programming language in which

it has been generated?

Alternatively, if at box 519 the output from the Comparison subassembly 421 is
a “fail’ then, at box 521 the diff Identifier assembly 407 identifies differences
between the current Evaluation Target Application 421 and the current

Reference Application, e.g. Reference Application 601.1. The differences that

PCT/AU2022/050373

10

15

20

25

30

WO 2022/221927

21

are identified at box 521 are then searched for by Search Manager
subassembly 409 according to boxes 509 t0 513 in Figure 5 or box 514 in Figure
5a. It will be noted that the Search Manager subassembly 409 is configured to
consecutively search for a transform in respect of each identified difference
separately in the example illustrated in Figure 5. However, in the illustrated
example shown in Figure 5a, the Search Manager subassembly 409 is
configured to search for a transformation in respect of the entire reference
application to create a template that is not based on an earlier template. With
the second approach, the Inventor has found that learning the entire reference
application results in a template that is more easily read and understood by a
developer, which can be important to the process when a developer is required

to intervene and manually edit the code.

Regardless of the approach used from either Figure 5 or Figure 5a, eventually,
at box 519, the output from the Comparison subassembly 421 is a “pass”. The
‘pass” output indicates that transforms for all of the differences between the
current Evaluation Target Reference and the current Reference Application
have been found and meet the comparison criteria. Control then proceeds to
box 523 where the next “Last Commit” is set to the previous “New Commit”, and
then box 525, where the “Current Template” is updated to be the “Next
Template”, prior to a new iteration of the previously described cycle

commencing again at box 502.

In overview, in the next iteration at box 502, upon a new commit, e.g. Commit
2 (C2) being deposited by the human developer in Source Code Repository
415, the diff Identifier subassembly 407 identifies differences in the new
iteration of the Reference Application 601.2 relative to the last iteration 601.1.
Those differences are graphically illustrated as additional code snippets 603
and 605 in Figure 6.

Then, the Search Manager subassembly 409 searches for a transformation to
update the template to learn and incorporate additional transformations for the

most recently identified differences from the new commit.

PCT/AU2022/050373

10

15

20

25

30

WO 2022/221927

22

In one example, through the loop of boxes 509 to 513, the Search Manager
subassembly 409 firstly searches for a transformation for code snippet 603,
being the first difference, and then code snippet 605, being the second
difference. At box 511 the Search Manager subassembly 409 on respective
first and second iterations of the Forloop writes the transforms for the first code
difference 603 and then the second code difference 605 into the Current
Template (T2).

At box 515 the Code Generator subassembly 413 uses the Model(t1) and Meta-
Model(t1) of the Last Commit, which is currently C1, and the Current Template
(T2) to generate Evaluation Target Application 421. The Current Template is
finalized, if it passes the test condition at box 519 implemented by Comparison
subassembly 423, or is further improved, if it fails the comparison tests at box
519, by passing through box 521 and boxes 509 to 515 in Figure 5.

At the end of each cycle, i.e., upon reaching box 523, a new Template is added
to the templates storage area 419 that is accessible to the Code Generator 413.
Consequently, over time Bot 400 acquires templates T1,...,Tn which encode
transformations for progressively transforming an initial model and meta model
into a final target application. Accordingly, once the entire process is finished
the bot 400 has learned or been “trained” how to generate a Target Application
425 from Target Application Requirements 427 specified in Model 429 and
Meta-Model 431.

Alternatively, after identifying each additional code snippet, through box 514 in
Figure 5a, the Search Manager subassembly 409 searches for a transformation
or transformations for the entirety of the Reference Application 601.2 and writes
the transforms for the Reference Application 601.2 into the Current Template

(T2) or templates.

As an example, at box 514a of Figure 5b, the Search Manager subassembly
409 first sorts the reference application (or reference files within the reference
application) into sets of files to prepare for searching. The reference files of the

reference application are sorted based on commonality. For example, two files

PCT/AU2022/050373

10

15

20

25

30

WO 2022/221927

23

that are instances of an element (such as a class or enum) will be sorted into

the same set.

Next, at box 514b, the Search Manager subassembly 409 initialises a solution
for each of the reference files in each set and associates a solution with a

reference file.

The Search Manager subassembly 409, at box 514c, then initiates a search to
find a solution for each reference file. In searching for a solution, the Search
Manager subassembly 409 traverses a search tree comprising a number of
nodes which each represent a guess (or possible solution in the form of a
transform) for lines of code from the reference file. This can be implemented
using different searching techniques, such as a hill climber, A*, exhaustive, and
other hybrid approaches. In some embodiments, the Search Manager
subassembly 409 searches for patterns within the reference file. A pattern is a
repeated or regular form that is found in the code. A pattern can take a number
of forms. For example, a pattern may be a protected region of the reference file
that the bot is not required to learn. Alternatively, the repeating pattern may be

represented as a repeating pattern across a number of lines.

Once a solution has been found for each reference file, the Search Manager
subassembly 409, at box 514d, attempts to resolve any discrepancies between
solutions in a set. A discrepancy occurs when the bot is learning from multiple
examples and it is not clear what the developers intention is. In such cases, the
bot will ask the developer for some help and the developer will respond with an
answer to help guide the bot.

Once any discrepancies are resolved, the Search Manager subassembly 409
computes a merged solution from the solutions associated with each reference

file at box 514e and updates the current template with the merged solution.

Next, similar to the example illustrated in Figure 5 and described above, at box
515 the Code Generator subassembly 413 then uses the Model(t1) and Meta-
Model(t1) of the Last Commit, which is currently C1, and the Current Template

PCT/AU2022/050373

10

15

20

25

30

WO 2022/221927

24

(T2) to generate Evaluation Target Application 421. The Current Template is
finalized, if it passes the test condition at box 519 implemented by Comparison
subassembly 423, or is further improved, if it fails the comparison tests at box
519, by passing through box 521 and boxes 514 and 515.

At the end of each cycle, i.e., upon reaching box 523, a new Template is added
to the templates storage area 419 that is accessible to the Code Generator 413.
Consequently, over time Bot 400 acquires templates T1,...,Tn which encode
transformations for progressively transforming an initial model and meta model
into a final target application. Accordingly, once the entire process is finished
the bot 400 has learned or been “trained” how to generate a Target Application
425 from Target Application Requirements 427 specified in Model 429 and
Meta-Model 431.

As with the previous example, at the end of each cycle, i.e., upon reaching box
523, a new Template is added to the templates storage area 419 that is
accessible to the Code Generator 413. Consequently, over time Bot 400
acquires templates T1,...,Tn which encode transformations for progressively
transforming an initial model and meta model into a final target application.
Accordingly, once the entire process is finished the bot 400 has learned or been
‘trained” how to generate a Target Application 425 from Target Application
Requirements 427 specified in Model 429 and Meta-Model 431.

The use of the trained Bot 400 will now be described with reference to Figure
11. In Figure 11 Bot 400 receives requirements 427 for a desired Target
Application that is wanted to automate processes such as business processes
33 of Figure 3. For example, the desired Target Application may be inventory
control software for a warehousing operation of an enterprise. The Target
Application may correspond to the final version of the Enterprise Application
31.n that has been previously discussed with reference to Figure 3. The
requirements 427 are specified by means of a Meta-Model 429 and Model 431
which may respond to the initial metal-model 35 and model 37 of the example
of Figure 3. The trained Bot 400 has been previously trained with iterations of

a reference application for automating an inventory control system.

PCT/AU2022/050373

10

15

20

25

30

WO 2022/221927

25

Trained Bot 400 initially applies template T1 to Model 429 and Meta-Model 431
to generate a Target Application V1. It then applies template T2 to the Target
Application V1 and corresponding model and meta-model for Target Application
V1 to generate Target Application V2. The process continues for all of the
Templates up to Template Tn, being the final template, which results in the final
Target Application 425, with its corresponding Meta-Model 433 and Model 435
being generated.

The final Target Application 425 can then be fine tuned by a human developer
to arrive at the desired Target Application. By using the final Target Application
425 to produce the desired Target Application the human developer is saved
much boilerplate work relating to coding commonly recurring patterns in

software and consequently the development time is greatly reduced.

Embodiments of the invention described herein utilise search and optimization
(or heuristic optimization) methods in Artificial Intelligence as opposed to

machine learning methods.

The terms “transform” and “transformation” are to be understood as describing
coding transformations stored in templates that are applied to a reference
application of the last (most recent) commit before the current commit. These

terms as used herein do not describe model-to-model transformations.

Implementations of the invention can be realized as one or more computer
program products, i.e., one or more modules of computer program instructions
encoded on a computer readable medium for execution by, or to control the
operation of, data processing apparatus. The computer readable medium can
be a machine-readable storage device, a machine-readable storage substrate,
a memory device, a composition of matter affecting a machine-readable
propagated signal, or a combination of one or more of them. The term "data
processing apparatus" encompasses all apparatus, devices, and machines for
processing data, including by way of example a programmable processor, a

computer, or multiple processors or computers. The apparatus can include, in

PCT/AU2022/050373

10

15

20

25

30

WO 2022/221927

26

addition to hardware, code that creates an execution environment for the
computer program in question, e.g., code that constitutes processor firmware,
a protocol stack, a database management system, an operating system, or a

combination of one or more of them.

A computer program (also known as a program, software, software application,
script, or code) can be written in any form of programming language, including
compiled or interpreted languages, and it can be deployed in any form, including
as a stand-alone program or as a module, component, subroutine, or other unit
suitable for use in a computing environment. A computer program does not
necessarily correspond to a file in a file system. A program can be stored in a
portion of a file that holds other programs or data (e.g., one or more scripts
stored in a markup language document), in a single file dedicated to the
program in question, or in multiple coordinated files (e.qg., files that store one or
more modules, sub programs, or portions of code). A computer program can
be deployed to be executed on one computer or on multiple computers that are
located at one site or distributed across multiple sites and interconnected by a

communication network.

The processes and logic flows described in this disclosure can be performed
by one or more programmable processors executing one or more computer
programs to perform functions by operating on input data and generating
output. The processes and logic flows can also be performed by, and apparatus
can also be implemented as, special purpose logic circuitry, e.g., an FPGA (field

programmable gate array) or an ASIC (application specific integrated circuit).

Processors suitable for the execution of a computer program include, by way of
example, both general and special purpose microprocessors, and any one or
more processors of any kind of digital computer. Generally, a processor will
receive instructions and data from a read only memory or a random access
memory or both. The essential elements of a computer are a processor for
performing instructions and one or more memory devices for storing
instructions and data. Generally, a computer will also include, or be operatively

coupled to receive data from or transfer data to, or both, one or more mass

PCT/AU2022/050373

10

15

20

25

30

WO 2022/221927

27

storage devices for storing data, e.g., magnetic, magneto optical disks, or
optical disks. However, a computer need not have such devices. Moreover, a
computer can be embedded in another device, e.g., a mobile telephone, a
personal digital assistant (PDA), a mobile audio player, a Global Positioning
System (GPS) receiver, to name just a few. Computer readable media suitable
for storing computer program instructions and data include all forms of non-
volatile memory, media and memory devices, including by way of example
semiconductor memory devices, e.g., EPROM, EEPROM, and flash memory
devices; magnetic disks, e.g., internal hard disks or removable disks; magneto
optical disks; and CD ROM and DVD-ROM disks. The processor and the
memory can be supplemented by, or incorporated in, special purpose logic

circuitry.

To provide for interaction with a user, implementations of the invention can be
implemented on a computer having a display device, e.g., a CRT (cathode ray
tube) or LCD (liquid crystal display) monitor, for displaying information to the
user and a keyboard and a pointing device, e.g., a mouse or a trackball, by
which the user can provide input to the computer. Other kinds of devices can
be used to provide for interaction with a user as well; for example, feedback
provided to the user can be any form of sensory feedback, e.g., visual feedback,
auditory feedback, or tactile feedback; and input from the user can be received

in any form, including acoustic, speech, or tactile input.

Implementations of the present disclosure can be realized in a computing
system that includes a back-end component, e.g., as a data server, or that
includes a middleware component, e.g., an application server, or that includes
a front end component, e.g., a client computer having a graphical user interface
or a Web browser through which a user can interact with an implementation of
the present disclosure, or any combination of one or more such back end,
middleware, or front end components. The components of the system can be
interconnected by any form or medium of digital data communication, e.g., a
communication network. Examples of communication networks include a local

area network ("LAN") and a wide area network ("WAN"), e.g., the Internet.

PCT/AU2022/050373

10

15

20

25

30

WO 2022/221927

28

The computing system can include clients and servers. A client and server are
generally remote from each other and typically interact through a
communication network. The relationship of client and server arises by virtue of
computer programs running on the respective computers and having a client-

server relationship to each other.

While this disclosure contains many specifics, these should not be construed
as limitations on the scope of the disclosure or of what may be claimed, but
rather as descriptions of features specific to particular implementations of the
disclosure. Certain features that are described in this disclosure in the context
of separate implementations can also be provided in combination in a single
implementation. Conversely, various features that are described in the context
of a single implementation can also be provided in multiple implementations
separately or in any suitable sub-combination. Moreover, although features
may be described above as acting in certain combinations and even initially
claimed as such, one or more features from a claimed combination can in some
cases be excised from the combination, and the claimed combination may be

directed to a sub-combination or variation of a sub-combination.

Similarly, while operations are depicted in the drawings in a particular order,
this should not be understood as requiring that such operations be performed
in the particular order shown or in sequential order, or that all illustrated
operations be performed, to achieve desirable results. In certain circumstances,
multitasking and parallel processing may be advantageous. Moreover, the
separation of various system components in the implementations described
above should not be understood as requiring such separation in all
implementations, and it should be understood that the described program
components and systems can generally be integrated together in a single

software product or packaged into multiple software products.

Thus, particular implementations of the present disclosure have been
described. Other implementations are within the scope of the following claims.
For example, the actions recited in the claims can be performed in a different

order and still achieve desirable results.

PCT/AU2022/050373

10

15

20

WO 2022/221927

29

In compliance with the statute, the invention has been described in language
more or less specific to structural or methodical features. The term “comprises”
and its variations, such as “comprising” and “comprised of” is used throughout
in an inclusive sense and not to the exclusion of any additional features. It is
to be understood that the invention is not limited to specific features shown or
described since the means herein described comprises preferred forms of
putting the invention into effect.

The invention is, therefore, claimed in any of its forms or modifications within
the proper scope of the appended claims appropriately interpreted by those

skilled in the art.

Throughout the specification and claims (if present), unless the context requires
otherwise, the term "substantially" or "about" will be understood to not be limited

to the value for the range qualified by the terms.

Any embodiment of the invention is meant to be illustrative only and is not
meant to be limiting to the invention. Therefore, it should be appreciated that
various other changes and modifications can be made to any embodiment

described without departing from the spirit and scope of the invention.

PCT/AU2022/050373

WO 2022/221927 PCT/AU2022/050373
30

CLAIMS:

1. A computer-implemented method for producing code generation
templates comprising:
receiving a series of commits, each of the commits in the series

of commits including a version of a reference application, each version of the
reference application having a corresponding meta-model and model;

identifying differences between time separated commits to thereby
obtain one or more identified differences therebetween;

searching to find one or more transformations for transforming a
previous version of the reference application to a current version of the
reference application,

adding the one or more transformations to a current template,

applying the current template, including the one or more transformations,
to the recent commit to thereby produce a current evaluation target application;
and

storing the current template for later use upon the current evaluation
target application passing a comparison evaluation with a version of the
reference application of the recent commit,

whereby a series of templates are ultimately stored.

2. The method of claim 1, wherein the series of commits comprises
commits Ci=Cy,...,C,, wherein each of the commits C;,...,C, of the series of

commits includes a version of a reference application RA;,...,RAx,

3. The method of claim 2, wherein each version of the reference application
commit Co, comprises an initial model and initial meta model of a first version

of the reference application RA;.

4. The method of any one of the preceding claims, including checking if a
new commit of the series of commits has been received in a source code

repository.

WO 2022/221927 PCT/AU2022/050373
31

5. The method of claim 4, including updating a current template with folder

and file structure information based on the new commit.

6. The method of any one of the preceding claims, wherein the comparison
evaluation includes checking if the evaluation target application can be

compiled by a compiler.

7. The method of any one of the preceding claims, wherein the comparison
evaluation comprises determining if the number of lines of code in the current
evaluation target application match the number of lines in the current Reference

Application.

8. The method of any one of the preceding claims, wherein the comparison
evaluation comprises determining if characters comprising the current
evaluation target application match characters comprising the current reference

application.

9. The method of any one of the preceding claims, wherein the comparison
evaluation comprises checking if the current evaluation target application is
syntactically correct with respect to the programming language in which it has

been generated.

10. The method of any one of the preceding claims, wherein if the
comparison evaluation results in a “fail” then the method includes identifying
differences between the current evaluation target application and the current

reference application.

11. The method of any one of the preceding claims, wherein for each identified
difference of the one or more identified differences, the computer implemented
method includes the steps:

searching to find the one or more transformations in respect of
the identified difference,

adding the one or more transformations to the current template,

and

WO 2022/221927 PCT/AU2022/050373
32

applying the current template, including the one or more
transformations for each of the identified differences, to a recent commit to

thereby produce a current evaluation target application.

12. The method of any one of the preceding claims, wherein transformations
for the identified differences are separately searched for and included in the

current template.

13. A computer-implemented method for producing code generation
templates comprising:

receiving a series of commits (C=Cy,...,C,), each of the commits
Ci,...,C, of the series of commits including a version of a reference application
RA;,...,RAn, each version of the reference application RA;,...,RAn having a
corresponding meta-model and model, commit Cg, comprising an initial model
and meta model of a first version of the reference application RA;;

for i=1 to n, identifying differences between C; and C..; to thereby obtain
one or more identified differences therebetween;

searching to find one or more transformations for transforming a
previous version of the reference application to a current version of the
reference application,

adding the one or more transformations to a current template T;;

applying the current template T; including the one or more
transformations, to the last commit C;.; to thereby produce a current evaluation
target application ETA; (=1,...,n); and

storing the current template T; for later use upon the current evaluation
target application ETA, passing a comparison evaluation with a version of the
reference application of Ci.;,

whereby a series of templates are ultimately stored.

14. The computer-implemented method of claim 1 or claim 13, wherein the
templates are generated by an artificially intelligent agent (“the bot”) in
accordance with the above method wherein the bot learns new versions of the
reference application in an incremental fashion based on differences in

consecutive versions of the reference application.

WO 2022/221927 PCT/AU2022/050373
33

15. The method of claim 14, wherein the differences in consecutive versions
of the reference application include updates to models and meta-models

corresponding to the versions of the reference application.

16. An artificially intelligent agent (“the bot”) hosted on a computer platform
providing a computing environment for the bot, the bot comprising:

one or more sensors configured to read incrementally updated versions
of a reference application stored in the computing environment;

one or more actuators configured to write files to the computing
environment; and

a mapping arrangement responsive to the one or more sensors and
coupled to the one or more actuators for control thereof,

the mapping arrangement including,

a difference identifier subassembly configured to identify one or
more differences in code of a current version of the reference application
relative to an immediately earlier version of the reference application to
thereby produce one or more identified differences,

a search manager subassembly responsive to the difference
identifier for receiving the one or more identified differences and
configured to determine transformations transforming the immediately
earlier version of the reference application into the latest version of the
reference application wherein the search manager encodes the
transformations in a template;

a code generation subassembly arranged to process the template
with reference to a model corresponding to the immediately earlier
version of the reference application to thereby generate an evaluation
target application; and

a comparison subassembly arranged to compare the evaluation
target application to the latest version of the reference application;

wherein upon output from the comparison subassembly indicating that the
evaluation target application passes comparison requirements, the template is

retained for subsequent use by the code generator subassembly.

WO 2022/221927 PCT/AU2022/050373
34

17. A computer-implemented software application writing method
comprising:

receiving requirements in the form of a model for a desired subsequent
target application;

obtaining one or more templates previously generated according to any
one of claims 1 to 15; and

applying the one or more templates and the requirements to a code
generator to thereby produce code for implementing the desired subsequent

target application.

18. A computer-implemented method for producing code generation
templates comprising:

receiving a series of commits (C=Cy,...,C,), each of the commits
Cy,...,C, of the series of commits including a version of a reference application
RA;,...,RAn, each version of the reference application RA;,...,RAn having a
corresponding meta-model and model, commit Cy, comprising an initial model
and meta model of a first version of the reference application RA;z;

for i=1 to n, identifying differences between C; and C..; to thereby obtain
one or more identified differences therebetween;

searching to find one or more templates T; for generating a target
application that compares to a current version of the reference application,

applying the one or more templates T;, to the last commit C..; to thereby
produce a current evaluation target application ETA; (=1,...,n); and

storing the current template T; for later use upon the current evaluation
target application ETA, passing a comparison evaluation with a version of the
reference application of C..7,

whereby a series of templates are ultimately stored.

PCT/AU2022/050373

WO 2022/221927

/11

0¢

2po2 1ehie|
palngaxe Jo JndinQ

LBUdTY PTIOM OTT®H.

8l apon
106.1e|
Alelq)
_ 9po)d
N —
<—| o1
Jojelauar) apo9)
_soje|dws| <

6

} Old

uolBIooSS Y

Gl

< keydyy, = sweu Ajue>

<|WIX/>

<|wx>

|opOIA BISIN

PCT/AU2022/050373

WO 2022/221927

2/11

¢ '9Old

o (Jefe| ejep,
10 Jakel-oN)
Alleay T~z
Ayjesy
sjuasaldoy
[opoIN
‘W (IsPOAI- LIN)
|SPO T~
[opOIN-EISIN
0] SWJOU0D
loPoIN
] (I2POIN-ZIN)
N loPo-BIBN | 9
|ePOIAFEIBIN-EIBIN
0] SWJojuod
|opOIN-BISIN
(1oheT-cIN)
|ePolA-BISIN-BISIN ™~ 8

J|os)l 0} SWIOUCD
[SPON-EISIN-BISIN

PCT/AU2022/050373

WO 2022/221927

3/11

Jojelauas) spod) s)oyeldwal

ol UN
m;mgﬁom

Jadojanag aslidisiug

7 1aWo)sho Ypm yjel

ZTe 2N

suonsanp
ISPON-EIS Jadojans(
(53

alem)os
mwca_mEm_

xompcwmu
Jawojsny
JBumQ
asldisug
oy e
ee ssao0.d s,9s1dJojU-]

@@ m. @@

171€ v>
aiemyos

om:&m“cm_

1adojprap yum yjel

€ Old

PCT/AU2022/050373

4/11

WO 2022/221927

¥ 'Old
_\\ || /,
> | JojeJausD) 8po) 601 m
O “ i
uohealday c Muv “ (suoljewlosuel / |
1ebie) o _ I) 1 Jefeuep yoleasg !
S m opo)) seje|du]] |
MN.V\ -3 A] IIII." I Ll | -==mmm- UL |
w “ ! “
| | 6l !
i = !
L ob Al o m
1
] VL1 . Jelnuspl Jip I
| g P 10 i
| \l\ |
L0v !
LEY % __ VA ’ » A m
\
-] By e it ~ 28] !
\ NO
> & [Mor v A.-
w
@ oov (Jog,) waby S slosuag
oousbi|[o| [erolY .
6zv _ A)
sjuswialinbay f
u|ddy 106i1e]
— ey
#3710 ﬁav_\,_-_\@ Tov_\,_u
YA JUSWUOJIAUT
gy Alousodeay

8po) 82IN0S

N

PCT/AU2022/050373

WO 2022/221927

5/11

SOA

uonesldde
aouslsey Juslnd

JuaLINo aseduwo)

/
L1G

4 uolieoldde sousisye
JuaLINd yum uosledwod
sassed uaneolddy
1obie] Waunn

7 oN
6lL9

uoneolddy
ERIETEIEN|
Juaun) pue
uoieolddy 19b1e|
Walng usamiaq
saousJapIp Aluep|

/
(¥

uonesl|ddy 1ebie|
Jus.1Ino aonpo.d o)

0} uoneolddy 196.1e] <— Jwwo) Ise7 4o I

pue |\ 0} eejdwe)
Jua.Lno Alddy

g Old

/
5SS oA

/
cLs

#zA%mcm_cz doo gomv

20§

Jwwo)
JSET pUE JlWWo)
MaN Usamjaq
saouUalalIp
Ajjuep]

A

ae|dwa) Jua.Lno

Jo} wlojsuel;
pulj \yolees

e)epdn pue souslaylp

S0S

JWwo) MoN uo
paseq ainjonns
314 pue Jap|o
Uum axejdwa]
Wwaung arepdn

/
43

L] aoualayIp

09

¢Alojisodal aounos

SOA

Ul JILWOD MaN

g POHAUSPIYOES JO4 < ¢,858001d
/ sjeulwIg] /S9A
609
JWWo)) MeN aieldws] xaN €oS
H.”__EEOO 1887 ——p» = oje|dws] I
: 7 uaung
€C5 7
GCs
vom/
(0NN (0NN @1
P 00 = Jwwog jse

PCT/AU2022/050373

WO 2022/221927

6/11

SOA

uonesldde
8ousI8ey Jusin)
0} uoneolddy 196.1e]
JuaLINo aseduwo)

/
L1G

4 uolieoldde sousisye

JUa.uNd Yum uosuedwod

sassed uaneolddy
1obie] Waunn

7 oN
6lL9

uoneolddy
ERIETEIEN|
Juaun) pue
uoieolddy 19b1e|
Walng usamiaq
saousJapIp Aluep|

/
(¥

uonesl|ddy 1ebie|
Jus.1Ino aonpo.d o)

€ Jwwo) IseT 4o NI

pue |\ 0} eejdwe)
Jua.Lno Alddy

eg 'Old

"~ 1
GG

ae|dwa) Juaino
a)epdn pue g|ii
aJijus Joj wiojsuel}

20§

Jwwo)
JSET pUE JlWWo)
MaN Usamjaq
saouUalalIp
Ajjuep]

A

S0S

JWwo) MoN uo
paseq ainjonns
314 pue Jap|o
Uum axejdwa]
Wwaung arepdn

SOA

pulj :yoteos
¢ Kioyisodal s0inos
ur JJuwwo) meN
40)] i
-
——P»
/
145
Jwwo) maN aieldws] xaN g
= JWwo? IseT — P =ojejdws| :
/ usung
1A 7
14"}
vom/
(oI (DI @11
'00 = Jlwwo) Jse]

$,889001d
sreuIwIs]

PCT/AU2022/050373

WO 2022/221927

7/11

uoneolddy 1eb1e|
Wa.nd aonpoud 0}
Jwwoy ise jo ININ
pue |\ 0} sje|dwsy
wauns Alddy

ale|dwa)
auno alepdn

/
GG

EeylLS

pue suolin|os
ebisn

1

1os yoes
Ul suonnjos
usamaq

/| selouedea.osip

oAjoseYy

!

9|l} 90Ul
yoee

/| Joj wuosuely

1o} yolesg

!

3|1} 9oULIB}8l
yoeo

/| 104 uonnjos

e asieniu|

qs "Old

109

/

$9ll} JO
S}2S OjuUI S9|l}
/] 9oUBlajal U0S

Jwwod
}SET puUB JIWIWOY
MBN Ussmiaq
saouaJalIp
Ajuep]

PCT/AU2022/050373

WO 2022/221927

8/11

ujl 4 ¢l 4 zZL 4 1L
(tahog 5| w13 N (emog >l evia | AN (@nog B zvia| N (inog B 1vL
([rus) (c2'€D) (10°22) (00°10)
[FUUDVHIP | e WP wp Wp
oWl
b U WO € Jwwo) Z wwon L ywwo) 0 jwwod
- |
uvy = vy = Zvd p vy r————t5
— — — __H_“ (0V12POIN
————— _1“_I_IH_|_ 1m_ “_H__J_
— I R e— |
— = I =i zog-T—=—}
= T = 9091 == | [(ovepow
— — e09-e—=Hi \ m_H__J_ -ElsiN
— —1 — B | —
_m _”__“_ —— —
| — — — \ C—1
g = —=| 109 |/ (111epo
He— g — —=
] = -—
—= — (1)1epPo
qH = g —=— 1o
{ —=— : (ZV1epoIN e
= m.&m
#1109 (ZVI1epoN
(u1)jlepoy (eV1epo Bl
(un)jlepay (s)I1epon
-BlaN -Bl9IN

9 'Old

PCT/AU2022/050373

WO 2022/221927

L 'Old

1|

hy

@ 8 Old

{
Fe{sl
{
I yowwu-toagngTajae=g lmeu = [zoweu’syngrilie=3%] " sSTYUl
¥ {[goweu-syngrazge=gasu butazsl)[ysweu-s3ngiazze=s]zes prosa o114and

{
{{goweur23ngTIzde=3] UInial
} (rigsureucsgngrazze=3]3eb butaszg o11gnd

[2} {(e2angevez-o ur e3zngrizze} I0I %}

enig = enIg- sty
} (enTg HUTIZS)SnTgass pToa oT1Tgnd
{
{sanTg uiInaex
} (Jentg3eb Butazs o1TInd
{
lussab = ussab sTYs
} {(useabp HButzig)useanies pToa oITnd
{
fusexb uiniex
} (Juesinizsb DHuTalzs o1Tgnd
{
IMOTT8A = MOTTSA STUS
} (moTT®A BUTIlg)mOTISALSS pToa oTTgnd
{
imoT184k uinjex

} (JmoT1ex3ebh burazs or1Tqnd

AN M < W~ O

PCT/AU2022/050373

WO 2022/221927

6 'Old

0

leniq = enig sIY3 :

y {on1g ButazgienTdiss proa oTTgnd’

.

fuesab = usaib-sTysz :

} {ueaxf Butizs)usexnies proa orTgnd

o

- . imolred = mo7T=4 STYD :

= 0L '©Old :

°© ¥ {moT7ed butazgimoiisiiss pica oITgnd

{
{ fang uIngaz

{{yowvuroyngTiile=¢ |mau = [geweu aangriijze=3] sTyl: } ()sntgash Butias orTand

¥ {l{gsweurs3zngrizne=% jmeu butTiIzs]){zsweureyngrizgye=¢l3as proa oIignd {
{3} {sanjesy o ur s3ngTIzgze)} I0T %] fusezb uinae:z

(%4 ¥ {jussrnisb HButazs osTTgnd

{{gPweurs3yngTIzge=3] uIngsl {

} {)lgsweu-sangrazze=zl3sh butazg or1gnd imoTTeA uIngeI

{3} (=an3es3-o ur 230QTI33R} I0F %1 y {)moTTsrash butiag sTTAnd

O d N O O W™~
R B e B e B e ER o B e B e R

AN M w0

PCT/AU2022/050373

WO 2022/221927

11/11

\ —
—
—
—
gey —
——
—
/ ——
ddy —
1eb1e] A _H___M__
=
| I
| — |
—=
—3
—=
N
apo
ddy 108ie] /] ISPON
0} Buipuodsaliod sev
[SPON
|[opow
-BJo|N
pue |spow-ela\ ~
gey

Ly AMSIE
A\
Jojelauac) apoDd
N\N []
1 7L \mrv
sole|dwsa] 1
10
@ ™ oor
ey |
™~ [SPO sjuswalinbay
s, JaumQ aslidisiug o)
|9PON Buipuodseulod |spow
\\ -BIoIN pue [spow-elo|\
6CY
sjuswalinbay
sz

INTERNATIONAL SEARCH REPORT International application No.
PCT/AU2022/050373

A. CLASSIFICATION OF SUBJECT MATTER
GO6F 9/455 (2018.01) GO6F 8/35(2018.01) GO6F 8/40(2018.01) GO6N 3/00(2006.01)

According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols)

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

Electronic data base consulted during the international search (name of data base and, where practicable, search terms used)

EPOQUE PATENW: [PC/CPC - GO6F8/35, GO6F8/40, GO6F9/455, GO6N3/006; Keywords - agent, application, build, change, code, commit,
compare, compile, create, current, difference, find, generate, identify, intelligent, meta meta, meta model, model, previous, revision, search,
target, template, template, variance, version, virtual & similar terms.

Google Patents & Scholar: Keywords - GO6F8/35, GO6F8/355, GO6F8/40, GO6N3/006, bot, changes, code, commit, difference, generation, map,

meta, model, template, transform, version, "code generation", "intelligent agent”
Applicant & Inventor Name Searches: Performed in Espacenet, Google & [P Australia's internal databases.

C. DOCUMENTS CONSIDERED TO BE RELEVANT

Category* | Citation of document, with indication, where appropriate, of the relevant passages Relevant to
claim No.

Documents are listed in the continuation of Box C

Further documents are listed in the continuation of Box C See patent family annex
* Special categories of cited documents:

"A" document defining the general state of the art which is not "T" later document published after the international filing date or priority date and not
considered to be of particular relevance in conflict with the application but cited to understand the principle or thcory

"D" document cited by the applicant in the international application underlying the invention

"E" earlier application or patent but published on or after the "X" document of particular relevance; the claimed invention cannot be considered
intcrnational filing date novel or cannot be considered to involve an inventive step when the document is

taken alone

"L" document which may throw doubts on priority claim(s) or "Y" document of particular relevance; the claimed invention cannot be considered to
which is cited to establish the publication date of another involve an inventive step when the document is combined with one or more other
citation or other special reason (as specified) such documents, such combination being obvious to a person skilled in the art

"O" document referring to an oral disclosure, use, exhibition or other .
means "&" document member of the same patent family

"P" document published prior to the international filing date but
later than the priority date claimed

Date of the actual completion of the international search Date of mailing of the international search report

5 July 2022 05 July 2022

Form PCT/ISA/210 (fifth sheet) (July 2019)

Name and mailing address of the ISA/AU

AUSTRALIAN PATENT OFFICE
PO BOX 200, WODEN ACT 2606, AUSTRALIA
Email address: pct@ipaustralia.gov.au

Authorised officer

Ravi McCosker

AUSTRALIAN PATENT OFFICE
(ISO 9001 Quality Certified Service)
Telephone No. +61262832933

Form PCT/ISA/210 (fifth sheet) (July 2019)

INTERNATIONAL SEARCH REPORT International application No.

C (Continuation). DOCUMENTS CONSIDERED TO BE RELEVANT PCT/AU2022/050373

Category*

Citation of document, with indication, where appropriate, of the relevant passages

Relevant to claim No.

US 20150149979 A1 (AMAZON TECHNOLOGIES INC) 28 May 2015

X Entire document, especially: Para. 23-24, 29, 32-33 ,36, 44, 46, 49-50. 1-15, 17-18
Y Entire document, especially: Para. 23-24, 29, 31, 44, 46, 50. 16
US 20200160187 Al (E & K ESCOTT HOLDINGS PTY LTD) 21 May 2020
Y Entire document, especially: Para. 1, 4, 14, 22, 28 16
A
US 20100287528 A1 (LOCHMANN) 11 November 2010
A
US 20200401382 A1 (THE ULTIMATE SOFTWARE GROUP INC) 24 December
2020
A
US 20180074804 A1 (SMARTSHIFT TECHNOLOGIES INC) 15 March 2018
A
US 20210073110 A1 (SAUCE LABS INC) 11 March 2021
A
US 2020/0257613 A1 (FUJITSU LIMITED) 13 August 2020
A Entire document
GASCUENA, J.M. et al. "Model-driven engineering techniques for the development of
multi-agent systems”, Engineering Applications of Artificial Intelligence 25, No. |
(2012): pp 159-173.
A Entire document

Form PCT/ISA/210 (fifth sheet) (July 2019)

INTERNATIONAL SEARCH REPORT

Information on patent family members

International application No.

PCT/AU2022/050373

This Annex lists known patent family members relating to the patent documents cited in the above-mentioned international search
report. The Australian Patent Office is in no way liable for these particulars which are merely given for the purpose of information.

Patent Document/s Cited in Search Report Patent Family Member/s
Publication Number Publication Date Publication Number Publication Date
US 20150149979 Al 28 May 2015 US 2015149979 A1l 28 May 2015
US 9946517 B2 17 Apr 2018
US 8949772 B1 03 Feb 2015
US 20200160187 Al 21 May 2020 US 2020160187 Al 21 May 2020
AU 2018280354 Al 01 Aug 2019
AU 2018280354 B2 19 Sep 2019
EP 3635570 Al 15 Apr 2020
WO 2018223196 Al 13 Dec 2018
US 20100287528 Al 11 November 2010 US 2010287528 Al 11 Nov 2010
US 8448132 B2 21 May 2013
EP 2249249 Al 10 Nov 2010
EP 2249249 B1 15 Feb 2012
US 20200401382 Al 24 December 2020 US 2020401382 Al 24 Dec 2020
US 2019266076 Al 29 Aug 2019
US 10769056 B2 08 Sep 2020
US 20180074804 Al 15 March 2018 US 2018074804 A1l 15 Mar 2018
US 10481884 B2 19 Nov 2019
US 2017090892 Al 30 Mar 2017
US 9811325 B2 07 Nov 2017
US 20210073110 A1l 11 March 2021 US 2021073110 A1 11 Mar 2021
US 11042472 B2 22 Jun 2021
US 2020/0257613 Al 13 August 2020 US 2020257613 Al 13 Aug 2020
US 10761962 B1 01 Sep 2020
JP 2020129372 A 27 Aug 2020

End of Annex

Due to data integration issues this family listing may not include 10 digit Australian applications filed since May 2001.

Form PCT/ISA/210 (Family Annex)(July 2019)

	Page 1 - front-page
	Page 2 - front-page
	Page 3 - description
	Page 4 - description
	Page 5 - description
	Page 6 - description
	Page 7 - description
	Page 8 - description
	Page 9 - description
	Page 10 - description
	Page 11 - description
	Page 12 - description
	Page 13 - description
	Page 14 - description
	Page 15 - description
	Page 16 - description
	Page 17 - description
	Page 18 - description
	Page 19 - description
	Page 20 - description
	Page 21 - description
	Page 22 - description
	Page 23 - description
	Page 24 - description
	Page 25 - description
	Page 26 - description
	Page 27 - description
	Page 28 - description
	Page 29 - description
	Page 30 - description
	Page 31 - description
	Page 32 - claims
	Page 33 - claims
	Page 34 - claims
	Page 35 - claims
	Page 36 - claims
	Page 37 - drawings
	Page 38 - drawings
	Page 39 - drawings
	Page 40 - drawings
	Page 41 - drawings
	Page 42 - drawings
	Page 43 - drawings
	Page 44 - drawings
	Page 45 - drawings
	Page 46 - drawings
	Page 47 - drawings
	Page 48 - wo-search-report
	Page 49 - wo-search-report
	Page 50 - wo-search-report
	Page 51 - wo-search-report

