
(19) United States
US 2002O199034A1

(12) Patent Application Publication (10) Pub. No.: US 2002/0199034 A1
Beckett et al. (43) Pub. Date: Dec. 26, 2002

(54) SYSTEM AND METHOD FOR VISUAL
APPLICATION DEVELOPMENT WITHOUT
PROGRAMMING

(76) Inventors: Stephen Beckett, Canton, GA (US);
Santino Lamberti, Marietta, GA (US);
Todd Palmer, Kennesaw, GA (US);
Becky Beckett, Canton, GA (US);
Henry Yoder, Woodstock, GA (US);
Ray Donnelly, Acworth, GA (US);
Danny McDougald, Acworth, GA
(US); Donald House, Acworth, GA
(US)

Correspondence Address:
THOMAS, KAYDEN, HORSTEMEYER &
RISLEY, LLP
100 GALLERIA PARKWAY, NW
STE 1750
ATLANTA, GA 30339-5948 (US)

(21) Appl. No.: 10/224,734

(22) Filed: Aug. 20, 2002

objects

Connection editor initialization

a read and display all driver

O All targets disabled

USERNPU

Related U.S. Application Data

(63) Continuation of application No. 09/410,993, filed on
Oct. 1, 1999.

(60) Provisional application No. 60/102,649, filed on Oct.
1, 1998.

Publication Classification

(51) Int. Cl. ... G06F 9/00
(52) U.S. Cl. .. 709/328

(57) ABSTRACT

A method and System for creating distributed applications
without programming is disclosed. A Connection Editor
interacts with an interface manager attached to each program
in the Visual development System. The interface manager
allows connections to be made using the Connection Editor
between the compatible properties of disparate programs by
a visual process. Upon-connection, the interface manager
automates data flow between disparate properties without
requiring any additional programming. Furthermore, the
interface manager allows for dynamic properties to be
exposed based on the run-time discovery of data.

40

42

program
added
to application

Query
Interface
Manager

info in

interogate
Interface
Manager and
display
connection
points as child
nodes. Store
connection
point
information.

Click on Source
connection
(Highlights)

highlighted
node, loop
through all
target nodes
and enabled

Click on enabled
target connection

426 428

Based on stored Doue click

Get interface 428
Manager for
source and target
connections. Call
interface Manager
connection
function
(Setinput)

º BoV-J (JELNI TVOOT

US 2002/0199034 A1

$G NJEÐVNWW NWOGININA žG WELSAS ?NIIVNEGO

Patent Application Publication Dec. 26, 2002 Sheet 1 of 28

Patent Application Publication Dec. 26, 2002 Sheet 2 of 28

Control 3D
Displayed Text
Font MS Sans Set
Maximum len O
Name Edil
Read Only

| Ele yew Lee :
b Source

Driver Objects
2: () CTiServer exe

, () Meridiarms
+: () PerformanceServer er
4 (). ScheduleServer exe

- form Controls
k DsgrFrn

, 's a
9 Logic Components

4 Target
24
{- Form controls

3. Dsgnfrin
+ add 1

Logic components

FIG. 2

US 2002/0199034 A1

Patent Application Publication Dec. 26, 2002 Sheet 3 of 28 US 2002/0199034 A1

New Former DESIGNMODE.
301

302

303

Patent Application Publication Dec. 26, 2002 Sheet 4 of 28 US 2002/0199034 A1

l de-efSWer exe

() () MeridianMS
: GE (). Performanceserver.exe

* (E) () Schegla?éServer exe
'; Porff Controls

Y- DsgnFrn

W. DsgnFrn

29 Logic Components

FIG. 4A

Patent Application Publication Dec. 26, 2002 Sheet 5 of 28 US 2002/0199034 A1

410

IProperty Manager = interface
E" (A2B6EFE1-22CE-11D2-A2D3-0060081AEBOC}')
function Get Component : TComponent;
function Get Property (PropNatue: String) : Variant;

function Get Properties: TPropertyDefs;
function Get Property Count: Integer;
function Get PropertyName (index: Integer) : String;

function Get PropertyDef (index: Integer) : TPropertyDef; overload;
function Get PropertyDef (name: String): TPropertyDef; overload;

function GetInput Property Def (PropDef: TPropertyDef): TProperty Def;
function GetOutput PropertyDef (PropDef: TPropertyDef; OutputIndex: Integer

) : TProperty Def;

function GetInput PropMan (index: Integer) ; IPropertyManager; overload;
function GetInput PropMan (PropName: String) : I Property Manager; overload;

function GetOutput Connection Count (Proplindex: Integer) : Integer; overload;
function GetOutput PropMan (PropIndex: Integer; OutputIndex: Integer

: I PropertyManager; overload;

function GetOutput ConnectionCount (PropName: String) : Integer; overload;
function GetOutput PropMan (PropName: String; OutputIndex: Integer

: I Property Manager; overload;

function Settinput (PropName: String; PropMan: IProperty Manager;
SourcePropMame: String) ; Boolean; overload;

function SetInput (PropName, SourceName, Source PropName: String) : Boolean;
overload;
procedure ClearInput (PropName: String);
procedure SetInputs;

function AddOutput (PropName: String; Target: TObject; TargetName: String
) : Boolean;

function Removeoutput (PropName: String; Target: TObject;
TargetName: String) : Boolean;

function AddEvent (PropName: String; Method; TMethod) : Boolean;
procedure RemoveEvent (PropNatue : String; Method: TMethod);

procedure Connect (PropName: String);
procedure Disconnect (PropName: String);
procedure ConnectInputs;
procedure DisconnectInputs;

{ Component Initialization / Finalization Procedures }
procedure cct initialize (PrismVO:TComponent);
procedure cctFinalize;

end;

FIG. 4B

Patent Application Publication Dec. 26, 2002 Sheet 6 of 28 US 2002/0199034 A1

Connection Editor initialization

o read and display all driver
objects

O All targets disabled

420

USER INPUT

42

422 425 427

program Click on Source Click on enabled
added connection target connection
to application (Highlights)

423
426 428

Query Based on stored Double click
interface info in
Manager highlighted

node, loop
424 through all 428

Get Interface
Manager for
source and target
connections. Call
interface Manager

target nodes
and enabled Interogate

interface
Manager and
display
Connection
points as child
nodes. Store
Connection
point
information.

Connection
function
(Setinput)

FIG. 4C

Patent Application Publication Dec. 26, 2002 Sheet 7 of 28 US 2002/0199034 A1

30

Application Main Memory

Connection Editor

LOCal Interface
Component Manager Local Interface

432 433 Driver Manager
434 435

External
Program

436

FIG. 4D

Patent Application Publication Dec. 26, 2002 Sheet 8 of 28 US 2002/0199034 A1

view Designer - - -

Background. Eile view I
es Source
+ Driver Objects Driver Objects

Forn Controls E. . . Form Controls
8 Dsgnfrn

9 Logic Cornponents D Logic Components

Patent Application Publication Dec. 26, 2002 Sheet 9 of 28 US 2002/0199034 A1

513

New Former DESGN MODE in

: Background
Control 3-DL
ge Text iss si : Driver Objects Driver Objects

Forth COftrols E. Form Controls
Dsgnfirm Dsgnfrin

(Ha Ecit
Logic COTOnefits

Maximum len. O.
i Name

Patent Application Publication Dec. 26, 2002 Sheet 10 of 28 US 2002/0199034 A1

:

E & Driver Objects E Driver Objects
+ () CTIServer.exe () CTIServer.exe
(t {) MeridianMS () MeridianMS
4) PerforTanceSewer exe {} Perfor TaleSeryer exe
{} ScheculeServer.exe . .) g terface DeftioS

E Form Controls it) TPerfDriver
E. DsgnFrn E! O PerfDriver 1 TPerfDriver
Ela Editt & Computerflame

Signal & Signal
X () ScheduleServer exe

E. Fort Cotrols
Disg|Frn

a Eci?t
Logic Components

Patent Application Publication Dec. 26, 2002. Sheet 11 of 28

Driver Objects
: EF) () CTIServer.exe

(). MeridianMS
i E} {) PerformanceServer.exe

EF) () ScheduleServer.exe
E. Form Controls

32 Logic\Components

The text fisplayed in keedbox

sas

E. DsqFrrn
a Ecit

6) Signal --"
& -----

& Driver Objects
{) CTISerwer.exe
() MeridianMS

E {) PerformanceServer.exe
s Interface Definitions
EE) TPerfriwer
d Perfriwer TPerfriver
-8) Complaterflame

---T: r () Signal
{) ScheduleServer exe

E. FOT Cotrols
E. as . Dsignfirm
tral Edit1

39 Logic Components
finistriker www.w-w-s.

|Computer Name

FIG. 5D

US 2002/0199034 A1

537

539

.

Patent Application Publication Dec. 26, 2002 Sheet 12 of 28 US 2002/0199034 A1

tion Editol

EG- Source
g Driver Objects
{) CTIServer.exe

ew Trees H. ,

ects t Driwar Ob
E. ForT COtrols

{) MeridianMS DsgiFrn ,
: {} PerformaceServer.exe a Edit1 i.
: (E) () ScheduleServer.exe 39 Logic Components

ForT Cotrols
3) Logic Components

aga"

Patent Application Publication Dec. 26, 2002 Sheet 13 of 28 US 2002/0199034 A1

SS Prism gery Builder
Il File:View Edit HQuery type. ?ignore Dups viautogroup. I

- - - - - - -w . . .

Table. idbo Dager cibo Dagent
Field Type singlrt Snailrt

True
--

Patent Application Publication Dec. 26, 2002. Sheet 14 of 28 US 2002/0199034 A1

8 Driver Objects - G Driver objects
+ () CTIServer exe Fort Controls
{) MeridianMS DsgnFrn

E. {) PerforTanceServer.exe a Ecift
{) ScheduleServer exe E 39 Logic Components
ForT COftrols

39 Logic Components
sc Cuery

() QueryFailure
() QueryStatus
() QuerySuccess

Queryl JDS

Patent Application Publication Dec. 26, 2002 Sheet 15 of 28 US 2002/0199034 A1

Connection E dio
File view Iree A. S. .

& Driver Objects 3. Driver Objects
{) CTIServer.exe Form Controls
{) MeridianMS - a. Edit1

--- {} Perfor ThaceSerwer.exe patent
Et () ScheculeServer.exe E39 Logic Components -

E. ForT (CO?trols ; DataSet1 u1
E a Ecitt . . RecNo

O Signal
Q Walue ---

GE patent
- 39 Logic Components
ES; DataSet 1

E. el Query1
(2) QueryFailure .
(QueryStatus A.

'... () Query Success
--O Query.JDS ''

quely

Patent Application Publication Dec. 26, 2002 Sheet 16 of 28 US 2002/0199034 A1

710

utput Fielg Aggregates output Columns, -
its se---------/-ire -&33 a t - - -
was r -

. Key (input) Fields: /

8.

Patent Application Publication Dec. 26, 2002 Sheet 17 of 28 US 2002/0199034 A1

nection Editor

HIE view. Tree
& Driver Objects

Fort Cotrols

(E) () MeridianMS a Ecitt
{) PerformanceServer.exe E. patent
{) ScheduleServer.exe E. : Logic Components
Forrin Controls E DataSet 1

E. a. Edit1 & RecNo
C. Signal- 9 Signal

• C) value ------ Q LDS
patent ------El of Query1

Ed & Logic Components s2. -o ACC
'' SX Signal

721

722

() QueryFailure ^'
() QueryStatus/
() QuerySuccess

Queryl DS'

Patent Application Publication Dec. 26, 2002. Sheet 18 of 28

- rg - ests

Lee's
3- Source
8 Driver Objects

(). CTIServer exe
(i) () MercianMS
(-i () PerformanceServer.exe
(E) () ScheduleServer exe

E. Form Controls
-E) ListBoxt ---

(3) Associatedlinteger
(). List

Selectedlindex
(). SelectedList
(). Selected String
& Signal
(...) SignalNext

(4) Patent 2
E. 9 Logic Components

G. : DataSet 1
(3) RecNo
(6) Signal

UDS
E3 Sq, Query

() Queryfailure
() QueryStatus ..?
() QuerySuccess-a
Q Queryl JDS

& Driver Objects
. Form Controls
E. S. ListBox

List
& Selected String

Signal
SignalNext

E. Patent 2
G. 39 Logic Components

- S. DataSet 1
d RecNo

US 2002/0199034 A1

Begin putting a set of data into a list box from a query,
connect Query to DataSet

FIG. 8

Patent Application Publication Dec. 26, 2002 Sheet 19 of 28 US 2002/0199034 A1

i. ex: ra-- a 'i. . - - first vis mns input/Output Fields Aggregates output Col in
PersonnelDSet

- ParentlDSet SystemlDSet
- ?'. SubSystemIDSet

8, ".
E. FirstNameSet

ActiveSet
: PasswordSet

TakesCallsSet
. . . LoginCountSet

- - -

a out
OThomas wn----- www.wrwrity inv wrvmt my war war-ww.rwar awv v murawworm-- www.war . . . Ynt 35,055 350551s 35005515 .

35005518 3505515 1. - - - - - - ------ - - - - - - - - - ;3500551935.005515 1 i - - - - - - ': - - ----

Select a dynamically exposed column from the DataSet
to expose as a set.

FIG. 9

Patent Application Publication Dec. 26, 2002 Sheet 20 of 28

Driver Objects
Ei () CTIServer exe
Et () MeridianMS
(+) () PerformanceServer exe
(+) () ScheduleServer exe

E} Form Cotrols
E. ListBox1

() Associatedlrteger
G. List
() Selectedtncex

SelectedList
6) Selected String
() Signal
() Sigalext

t Patent 2
39 Logic Components
- SiDataset

C) LastNameSet
() RecNo
(e) Signal
() UDS

q Query1
& QueryFailure
() QueryStatus
() QuerySuccess
C) Queryl JDS

Set (LastNameSet) is dynamically exposed as an output by the DataSet.

FIG. 10

3: Driver Objects
Form Controls
e ListBox1

{) List
g Selected String
& Signal
& SignalNext
Patent 2

E. 9 Logic Components
E DataSet 1

& RecNo
s Signal

US 2002/0199034 A1

Patent Application Publication Dec. 26, 2002 Sheet 21 of 28

g Connection Editor
3." .. -

HFle view Iree
EX- Source
B 8 Driver Objects

() () CTIServer exe
{) MeridianMS

B) () PerformanceServer exe
{) ScheduleServer exe

it Forrn Controls
1- El ListBox1

& Associatedlinteger
() List
() Selectedlndex
() SelectedList
e Selected String
& Signal
() SignalNext
Patent 2

El 3 Logic Components
E. S. DataSet 1

O LastNameSet 2'
& RecNo .
(3) signal
() UDS

E. c. Query1
() QueryFailure
0 QueryStatus
9 QuerySuccess,
Q Queryl JDS
O Signal

s
a

Connect the set to the ListBox List input

Driver Objects
E form Controls

- a ListBox1
K) List

'G) Selected String
M ; , 3 signal

- - © SignalNext
^ - Patent_2

A -l 39 Logic Components
F. S. DataSet 1

V (3) RecNo
9 Spal

- Q UD.
vs. (Query1 E. al y

FIG. 11

US 2002/0199034 A1

Patent Application Publication Dec. 26, 2002 Sheet 22 of 28 US 2002/0199034 A1

patent 2
is Watson

Thompson
'Wolf

LOWe
Samson
Simpson
Hendesign
Montgomery
Baxter Hughes

i. Mack
Manor
Hill
Cummons

; Peeler
*Picke
Carson

E. Fortune
; Franco -Lang

Michatid
Dunne
Willy

- Prince
Sharn

When the query executes, the list box is populated with the LastName set

FIG. 12

Patent Application Publication Dec. 26, 2002 Sheet 23 of 28 US 2002/0199034 A1

g connection Editor

I Fle view Lee E.
EX- Source

g Driver Objects g Driver Objects
{) CTIServer exe Form Controls
{) MeridianMS CE Buttont
() PerformanceServer exe El DataGrid1

Et () ScheduleServer exe a Edit
Form Controls a Edit2

Button (3) A Label1
() Signal A Label2

it i DataGrid1 GE A Label3
(+) at Edit + Patent 2

a Edit2 E 3) Logic Components
EF A Label1 - G. R. DataPool1
A Label2
A Label3

Patent 2
E. : Logic Components

() SignalAccumulate
() SignalSend

UDS

Adding a DataPool component.

FIG. 13

Patent Application Publication Dec. 26, 2002 Sheet 24 of 28 US 2002/0199034 A1

DataPool Editor X
i: .

Default - - -

to Default. No

3.x-

ancel Ch
t : -

. ic
: --

Defining fields in the data to combine.

FIG. 14

Patent Application Publication Dec. 26, 2002 Sheet 25 of 28

as Conne
xxx xx Eley

Be Source
Driver Objects

Et () CTIServer exe
{) MeridianMSI

it () PerformanceServer exe
() () ScheduleServer exe

Form Controls
OK. Button1

e) Signal
it i DataGrid1

a Edit1
EE a? Edit2
A Label1

(+) A Label2
3- A Label3

Patent 2
3 D Logic Components

Ed DataPoor & SignalAccumulate
() SignalSend
() UDS

: Data Pool.

Datapool dynamically exposes input data.

FIG. 15

it Driver Objects
E. Forrin Controls

Bu?ton1

(i) Eli DataGrid1
a) Ect1
a Ecit2

?: A Labelt
A Label2

EF A Label3
Paterit 2

9 Logic Cornponents
(-) DataPool1

& First Name
{) Last Name
{ SignalAccumulate
(). SignalSend

US 2002/0199034 A1

Patent Application Publication Dec. 26, 2002 Sheet 26 of 28

x - Xaw -- Msgym w n

- Ele. View Iree His
Driver Objects
{) CTIServer exe
(e) MeridianMS
() PerformanceServer exe
{) ScheduleServer exe
Forrn Controls

Button
& Signal
DataGr

(-) a Edit1
G) Signal

A Labell
EE A Label2
A Label3

Patent 2
Ed 39 Logic Components

DataPool1
() SignalAccumulate
() SignalSend

El Driver Objects
Form controls

Butt01
f DataGric
a? Edit
a Edit2

(+) A Label1
El A Label2
EF A Label3
El Patent 2

E. 9 Logic Components
w E. DataPool

" - 3 First Name
-----ang) Last Name

() Signal.Accumulate
SignalSeric

m gral of UDSAccumulator w

US 2002/0199034 A1

Connecting data input components (edit boxes) to the DataPool

FIG. 16

Patent Application Publication Dec. 26, 2002 Sheet 27 of 28 US 2002/0199034 A1

User adding data

... i - a
rtr w Add Ne

Patent Application Publication Dec. 26, 2002 Sheet 28 of 28 US 2002/0199034 A1

Data gets moved into the data set which is displayed visually by the
DataGrid component.

First Name Last Names
it, Bob - - - . Agent i

US 2002/0199034 A1

SYSTEMAND METHOD FOR VISUAL
APPLICATION DEVELOPMENT WITHOUT

PROGRAMMING

0001) This application claims the benefit of U.S. Provi
sional Application No. 60/102,649, filed Oct. 1, 1998 and is
herein incorporated by reference.

BACKGROUND OF THE INVENTION

0002) 1. Field of the Invention
0003. The present invention relates generally to the field
of computers and, more specifically, to a method and System
of Visually developing distributed applications without pro
gramming.
0004 2. Description of the Related Art
0005 Computers as in FIG. 1 are comprised of digital
processors that execute instructions to perform tasks. A
collection of instructions, or machine code, is referred to as
a computer program. Programs can be manifested in a
variety of forms, Such as but not limited to Standalone
Executables, Libraries, Dynamic Link Libraries, Drivers,
Components, Objects, and Distributed Objects.
0006 Programs are created from instructions of a pro
gramming language that are accumulated into the program's
Source code. The Source code controls presentation, inter
faces, and logic. A programmer authorS Source-code and
compiles it into processor machine code utilizing a compiler
compatible with both the Source code's language and target
processor.

0007 Some programs have an interface that allows other
external programs to interact with the program during run
time execution. The interface to Executables, Libraries, and
Drivers is typically called an Application Programming
Interface or API, while the interface to Components,
Objects, and Distributed Objects is simply called an inter
face. Despite Some functional differences, each provides a
mechanism for a programmer to interact with a program.
0008 Regardless of the program, its interface will be
comprised of one or more of the following primitives: (1)
Parameter or Property of a fundamental data type, or (2)
Function or Method, which further has an optional list of
fundamental data types.
0009. Applications are constructed from one or more
programs. ProgrammerS write Source code leveraging inter
faces that enable disparate programs to interact with each
other and provide greater utility.
0.010 The process of writing source-code, compiling the
Source code into machine code, and debugging programs is
incredibly costly and difficult. There are very few program
merS relative to the general population, and very few highly
skilled programmerS relative to all programmers. Further
more, there is little consistency between interfaces of dis
parate programs causing programmers to face long learning
curves when implementing third-party programs in their
applications.
0.011) To eliminate many of the problems associated with
programming, there has been long Standing goal in the field
of software development to achieve the same level of
“componentized” development as in the field of electronic
circuit design. In 1968, Doug McIlroy presented a paper on

Dec. 26, 2002

Mass Produced Software Components. The following is a
quote from this paper: “Follow the lead of hardware design
It is not right that every new development should start from
Scratch. There should be catalogs of Software modules, as
there are catalogs of VLSI devices: when we build a new
System, we should be ordering components from these
catalogs and combining them, rather than reinventing the
wheel every time.”
0012 To assure interoperability between devices, elec
tronic circuit design industry Standards emerged in the form
of “Logic Families' such as TTL or CMOS. A logic family
defines Strict operating parameterS Such as temperature,
frequency, Voltage-SWing, power, or propagation time.

0013 These rules assure devices in the same logic family
will work together when connected into a functional design.
Standardization of logic families was facilitated in large part
because of the limited number of market participants. Unlike
in Software, a high barrier of entry into the world of
electronic device manufacture exists because the expense
and expertise to create electronic devices is well beyond
what any individual or Small company can afford. The result
is a few large and well-established companies dominate the
market.

0014 Electronic circuits, analogous to Software applica
tions, are constructed by connecting existing devices
together in an order that provides a useful utility. The cost,
efforts, and skill required to construct a circuit in this manner
is many orders of magnitude less than that of constructing
the actual devices, such as an Intel Pentium ProcessorTM. By
isolating the most complex job, Such as the construction of
a processor, into the domain of a very few highly skilled
individuals, the industry is assured the rapid, high-quality
construction of products that reuse the efforts of the most
skilled engineers.

0015 Unfortunately, there is a very low barrier to entry
into the domain of creating computer programs, So no
industry Standardized logic family that would assure dispar
ate programs could inter-operate without the need for pro
grammerS has been established. Thus, application develop
ment remains a slow inefficient proceSS dominated by
human error and competing Standards.
0016. Attempts have been made to solve these problems
with the introduction of visually developed executable com
puters programs; however, many have failed to achieve the
level of Success as experienced in the electronic paradigm.
Highly graphical development environments Such as
Microsoft's Visual-C++TM or Borland's DelphiTM have
facilitated the creation of programs and applications, but at
their heart remain programming environments requiring
programmers to create and compile Source code to do any
but the most basic operations.
0017 Visual connection paradigms have been developed
to automate data flow between the properties of component
frameworks that have metadata and Support Run-Time
Type-Information (RTTI) and dynamic invocation, such as
COM, or CORBA. A visual development environment may
include an interface having a component inspector, compo
nent manager, component library, and one or more visual
editors. A user can construct a program by Selecting one or
more components from the library, which displays compo
nents in a tabbed palette. Using a visual editor of the System,

US 2002/0199034 A1

the user may drill-down into the internals of a component,
for modifying its logic. Once the functionality of a compo
nent is completed, the user may proceed to connect together
various components via the component "ports', which allow
access to properties of the component. Components of the
System may be nested within other components to an arbi
trary level.

0.018. Other visual approaches focus on creating named
relations between classes in a dynamic object-oriented pro
gramming environment via mappers. The mapping objects
dynamically bind to the class interfaces of the classes being
related. These connections between classes are defined
within a Visual environment. The relationships can be pro
grammatically attached by name to object instances during
program execution. Because these relationships are Stored in
a resource and are dynamically bound by name to the
objects, they can be created and modified without requiring
the Source code of the objects being associated to be
changed. This eliminates hard coded dependencies between
objects that impede reuse of the objects in other contexts.
This type of program requires meta-data, full dynamic
binding and probing Support in the objects being connected
with the invention.

0019. By operating in a completely generic fashion, these
approaches are limited Strictly to modern component frame
Works, and further are limited to the Static metadata, Such as
Run-Time Type Information (RTTI), of components that
cannot alter their behavior based on the run-time discovery
of data; this relegates their usefulness to nothing but simple
user interfaces. Most importantly, these Solutions present
numerous user Steps to expose connections points between
disparate programs and, though graphical and automated,
are unable to acceSS and operate dynamic data without
programmer intervention.

SUMMARY OF THE INVENTION

0020. The Visual Development System of the present
invention offers a common Rapid Application Development
environment with the addition of a Visual Data-Flow Model,
the Connection Editor. The Connection Editor interacts with
the interface manager of all programs in the System to render
the real-time Status of connections between disparate pro
gram interfaces. Applications are constructed by connecting
the properties of desired programs using the Connection
Editor graphically without any Source code programming.
The Connection Editor utilizes the interface manager of each
program to interrogate available connection points, make
and remove connections between programs, and persistently
Store connection information. During application run-time,
programs use their interface manager to initiate and auto
mate data flow between interface properties as required.
Changes in any interface property during run-time operation
are propagated to all other connected interface properties.
Therefore, the present invention permits busineSS logic, data
translations, expressions, and other algorithms to be visually
modeled using the interface manager and its dynamic prop
erties as well as the Connection Editor. Examples of appli
cations that can be built by the present invention include Call
Center Agent Performance Management, Schedule Adher
ence, and etc.

Dec. 26, 2002

BRIEF DESCRIPTION OF THE DRAWINGS

0021 FIG. 1 shows a general-purpose computer and its
operating environment in which the present invention is
shown.

0022 FIG. 2 shows the Graphical User Interface of the
preferred embodiment.
0023 FIG. 3 shows the interface of the preferred
embodiment that allows for the graphical construction of a
user interface of an application.
0024 FIG. 4A shows the interface of the preferred
embodiment for creating connections between programs.
0025 FIG. 4B shows the Interface Manager 410 of the
preferred embodiment implemented as a Common Object
Model (COM) interface.
0026
2O3.

0027 FIG. 4D shows a diagram of Application Memory
430.

0028 FIG. 5A shows the application development inter
faces of the preferred embodiment prior to any development
actions.

0029 FIG. 5B shows the creation of an Edit Box Com
ponent for editing Visual properties.

0030 FIG.5C shows an isolated view of the Connection
Editor 203 with both expanded Source Tree 401 and Target
Tree 402 views.

0031 FIG. 5D shows the Connection Editor 203 after a
connection has been made between two disparate programs.
0032 FIG. 6A shows a Logic Component, Query 1601,
created in the Connection Editor 203.

FIG. 4C shows a flow-chart of Connection Editor

0033 FIG. 6B shows the Graphical Query Builder 610
interface.

0034 FIG. 6C shows the Connection Editor's 203 rep
resentation of a program interface after the creation of the
query in the Graphical Query Builder 610.
0035 FIG. 7A. shows the Connection Editor 203 after a
Data Set Component DataSet 1 703 has been created.
0.036 FIG. 7B. shows the DataSet 1's 703 UDS Editor
710 allowing selectively exposing of columns in the Con
nection Editor 203.

0037 FIG. 7C shows Connection Editor 203 after using
UDS Editor 710.

DETAILED DESCRIPTION

0038. The present invention will now be described more
fully with reference to the accompanying drawings, in which
a preferred embodiment of the invention is shown. This
invention may, however, be embodied in many different
forms and should not be construed as limited to the embodi
ment set forth herein.

0039 U.S. Provisional Application No. 60/102,649 is
hereby incorporated by reference.
0040. The present invention solves the problem of
required programmer intervention by eliminating the need

US 2002/0199034 A1

entirely by graphically connecting disparate program inter
faces while at the same time allowing dynamic properties to
be exposed based on the run-time discovery of data. A
Significant aspect of the invention is the Support for dynamic
properties that are created in response to the run-time
discovery of data. Systems of the prior art have been limited
to the construction of user interfaces due to the fact that the
interfaces of Visual controls are Static. The ability to respond
to and manipulate dynamic data discovered at run-time
allows this invention to construct truly powerful applications
that have previously only been possible with programming.
0041. For the purposes of this document, the term “pro
gramming” refers to the act of authoring Source code and
compiling it into machine code. The present invention
allows for the construction of applications with a completely
Visual process that requires no modification or compilation
of Source code. This document refers to that as non-pro
grammatic development, or development that does not
require programming.

0042 FIG. 2 shows the Graphical User Interface of the
preferred embodiment including the main Prism Client 200,
Application Designer Tool-Bar 201, Design Form 202, and
Connection Editor 203. Design Form 202 is where the
graphical user interface of new applications is constructed
by receiving visual controls from the Application Designer
Tool-Bar 201. The Connection Editor 203 shows the status
of connections between programs and allows end-users to
create connections between programs.
0043 FIG. 3 shows the interface of the preferred
embodiment that allows for the graphical construction of a
user interface of an application. The user Selects a visual
control from the Control Palette 302 of the Tool-Bar 300 and
drags this to the Design Form 202. Visual properties of a
highlighted control can then be manipulated using the Prop
erty Inspector 303 of the Application Designer Tool-Bar
2O1.

0044) In the preferred embodiment, the Design Form 304
is implemented as a form class, TForm, of the Visual
Component Library (VCL) object framework from Bor
land. All the programs available in the preferred embodi
ment are created as components, which means descending
from the TComponent class of the VCL. VCL components
have two features utilized by the preferred embodiment.
First, components can be added to the memory image of
other components, Such as when a visual control is placed on
the design form. Second, VCL components Support a form
of object persistence referred to as Streaming. Streaming is
the act of writing to a buffer, Such as a memory image, disk
file, or database blob field, the identity of an object's class
and the all data associated with the object instance, including
other components that have been previously added to its
memory image, being Streamed. To recreate the object
instance, the buffer is streamed into memory. The VCL
object framework then instantiates a new object of the class
identified in the buffer, and assigns all the Stored data into the
newly created object. In this manner, the object is recreated
exactly as it was when it was Streamed out. One that is
skilled in the art would see that this is simply one way to
achieve the persistence of an application comprised of
numerous associated programs.
0.045. During the design process, absolutely no program
ming or manipulation of Source code is needed. To configure

Dec. 26, 2002

data-flow between Visual controls and non-visual programs,
the user selects the Connection Editor Launch Button 305 on
the Tool-Bar Menu-Bar 301.

0046 FIG. 4A shows an expanded view of the Connec
tion Editor 203, launched as described in the previous
paragraph, for creating connections between programs. The
Connection Editor 203 has a Source Program Tree 401 and
a Target Program Tree 402. Programs that have been added
to the System are rendered in these trees and grouped into
nodes based on the type of programs. Programs internal to
the memory of the Connection Editor 203 are grouped as
either Form Controls 404 that appear visually on the Design
Form 304 or as Logic Components 405 that are non-visual
components that perform a processing action. Software
Drivers used to communicate with programs external to the
memory of the Connection Editor 203 are grouped under the
Driver Objects node 406.

0047. In the preferred embodiment, the Connection Edi
tor 203 traverses the list of components that were added to
the Design Form 304 component during application devel
opment. For each component, the Connection Editor 203
checks the object meta-data to determine its classification
(i.e. Visual Component, Driver Object, non-Visual Logic
Component, etc.). Upon gaining this information, the Con
nection Editor 203 can add the object reference node to both
the Source Tree 401 and Target Tree 402. Components can
be both sources of data flow and targets of data flow
depending on needs of the application.

0048. The Connection Editor 203 needs the ability to
interact with the numerous disparate components without
having detailed knowledge of each component. Further
more, each component must be able to interact with any
other component in order to carry out connections, a topic
that will be described in detail below. This is accomplished
by requiring that each component implement a Standard
interface mechanism.

0049. An important aspect of the present invention is the
manner in which disparate programs can expose a Standard
interaction mechanism allowing interaction with programs
by only knowing the details of the Standard mechanism and
without requiring knowledge of a programs internal imple
mentation. This feature is discussed in detail below.

0050. When many disparate programs, each with unique
implementations, need to be accessible by other programs in
a dynamic run-time environment, a common technique is
utilized to define a Standard interface. If a program has
design-time recognition of the interface, it can be con
Structed to exercise the interface without the presence of any
machine code implementing the work necessary behind the
interface. At run-time, programs that implement the Standard
interface can then be dynamically connected to the program
that calls the standard interface. This allows for a high
degree of modularity Since there could be many programs
Supporting a Standard interface yet with unique implemen
tations that gives the program using the interface the ability
to take advantage of many unique implementations to a
single problem. The Connection Editor 203 has a common
mechanism to interact with all programs, allow for the
interrogation of the interfaces of disparate programs, permit
the establishment of connections between disparate pro
grams, and automate the data flow between the interfaces of

US 2002/0199034 A1

disparate programs when connections have been established.
This process is accomplished in the present invention with
an Interface Manager 410.
0051 FIG. 4B shows the Interface Manager 410 of the
preferred embodiment, implemented as a Common Object
Model (COM) interface. COM is the Microsoft specification
for how abstract virtual object interfaces are arranged in the
memory of an operating System of a computer.
0.052 In the preferred embodiment, the programs that are
used to construct applications are derived from Borland's
Visual Component Library (VCL) object framework. In the
case of external programs Such as remote Servers,
executables or libraries, a Software driver that is created as
a VCL component is utilized handling the external link
while Still providing the common VCL internal presence.
0053) The Interface Manager 410 exists as a COM Inter
face that a VCL component implements. The functionality of
the Interface Manager is then provided by an internal
aggregated object that each VCL component creates in the
components private memory Space.

0.054 The Interface Manager 410 is defined in the source
code of the invention in the program unit named Property
Manager and is named the IPropertyManager. (See Appen
dix A) The aggregated object class that implements the
IPropertyManager for components is named TPropertyMan
ager. Various other helper classes exist to manage properties
and perform other internal utilities.
0055 Automating data flow utilizes the VCL's Run Time
Type Information and utility routines allowing disparate
components to dynamically read and write the properties of
each other based on the connection information Stored in the
Tproperty Manager. Tproperty Manager is manipulated by
the Connection Editor utilizing the respective property
Manager that each component implements.
0056. As depicted in Appendix A, the RTTI routines are
encapsulated in the Source code of the invention in the
Pascal unit named PropSyS. Dynamic properties are imple
mented by creating a binary image of the property data
structures at run-time that are compatible with the VCL's
RTTI Sub-system. Furthermore, the TProperty Def class pro
vides methods to handle the reading and writing of dynamic
property and its data Storage.
0057 For a component to be utilized in the Connected
Editor 203, it must implement the Interface Manager 410,
and must also implement internal code that Services the
interface and deals with the internal operations on the
component that the Interface Manager 410 requires. One
ordinarily skilled in the art will recognize that this is but one
of numerous Standard interface technologies that exist, oth
ers including but not limited to APIs, pure virtual C++
classes, CORBA interfaces, DCOM interface, etc.

0.058 FIG. 4C shows a flow-chart of Connection Editor
203 operation in the preferred embodiment. On Connection
Editor Initialization 420, all driver objects from application
main memory 434 (See FIG. 4D) are added to the Source
Tree 401 and Target Tree 402 Views.
0059 When a component is added to the Connection
Editor 203, the Connection Editor 203 queries 423 the
Interface Manager COM Interface 410. Every VCL compo
nent supports the QueryInterface(InterfaceID, InterfaceRef

Dec. 26, 2002

erence) where the InterfaceID is the unique identifier of the
interface and InterfaceReference is the location where the
interface is returned. If InterfaceReference returns a nil (0)
result, then that component has not implemented the Inter
face Manager COM Interface 410 and is not available to the
Connection Editor 203. Otherwise, the component name is
added to both the Source Tree View 401 and Target Tree
View 402.

0060 Once the Interface is queried, the InterfaceRefer
ence.GetProperties is called to return a data structure con
taining the list interface properties. Each available property
has a record in the properties list that defines its name and
type. Each property capable of OUTPUT has its name added
underneath the Source Tree View 401. Each property
capable of INPUT has its name added underneath the Target
Tree View 402. Each node also retains type information to
provide on the fly filtering of compatible target properties as
different Source nodes are highlighted. The Connection
Editor 203 then awaits User Input 421. When a component
is added to the application, either through visual design or by
creating non-visual components, the control flows to 422.
The Interface Manager 410 is then queried 423 and the
component is interrogated and added 424 as previously
described.

0061. When a source connection is highlighted 425, the
stored type information isverified, and the Target Tree View
402 is rendered showing interface properties compatible
with the highlighted Source property. When a target property
is selected 427 and then double clicked 428, the Interface
Manager 410 is queried for both the source and target
components 429, and the following code Snip is executed:

0062 TargetInterfaceReference.Set
Input.(TargetPropertyName,

0063 SourceInterfaceReference,
tyName).

0064. The above method adds the TargetInterfaceRefer
ence and Target Interface Property Name to the connection
output list for the given Source Property Name in the Source
Interface Manager. It also adds the SourceInterfaceRefer
ence and Source Interface Property Name to the Input data
structure for the given Target Property Name in the Target
Interface Manager.

SourceProper

0065 Thus, Interface Manager 410 only requires a ref
erence to another components interface manager and the
name of the connected interface property as the minimum
information to establish a connection between interface
properties. With this information, the information managers
of each component can automate data flow between the
components without programming. One ordinarily skilled in
the art would know that this is just one of numerous ways
that a connection editor-or any program capable of que
rying data from class meta-data, internal-storage, or external
Storage-could query available connection points from a
program.

0066 FIG. 4D shows a diagram of Application Memory
430. The Connection Editor Program 203 is located in the
application memory along with a local component 432
which implements an interface manager 433. An external
program 436 is connected to a local driver 434 through a
private interface 437. The private interface 437 could be, but
is not limited to, APIs, network messages, operating System

US 2002/0199034 A1

message, Remote Procedure Calls, or a distributed object
interface. The local driver 434 also implements an interface
manager 435. The Connection Editor 203 has local access to
the local component 432 through interface manager 433.
Furthermore, despite the remote nature of the External
program 436, the Application Memory 430 has access to the
External Program's 436 functionality by way of the local
driver 434. The Connection Editor 203 can thus expose
access to the external program 436 by interacting with the
local drivers 434 interface manager 435.
0067. An important concept of the invention is the ability
to create a Software driver which implements the Interface
Manager 410 in the Connection Editor 203 memory space
while implementing the necessary code to link with the
program of the non-compatible framework or external
memory Space.

0068 AS stated above, the programs that are used to
construct applications are derived from Borland's Visual
Component Library (VCL) object framework. There are
Scenarios when programs that are desired for inclusion in the
invention are not derived from the VCL object framework or
are in external memory Spaces, Such as but not limited to,
remote Servers, executables, and dynamic link libraries.

0069. These non-VCL or external programs are easily
exposed in the invention through the creation of a VCL
based software-driver. The driver will implement the Inter
face Manager 410 as any program compatible with the
invention must do, and will provide a virtualized access to
the desired program. For example, the driver could be
constructed to link to a Win32 DLL. The API of the DLL
would then be encapsulated by the interface of the driver.
The Interface Manager 410 of the driver would then expose
this encapsulated API. In the Connection Editor 203, the
DLL would appear as an available program due to the
presence of the VCL based driver, but the end-user would be
completely shielded from implementation details.

0070 Another more complex example is the construction
of a driver to provide access to DCOM Servers. DCOM
Servers are typically remote to the client and utilize Remote
Procedure Calls to handle network communication.

0071. In the preferred embodiment, a common frame
work is constructed to facilitate the construction of drivers
for remote servers. To the Connection Editor 203, the driver
is as a Standard VCL component that implements an Inter
face Manager 410. The interface of the server is exposed in
a similar manner as in the DLL example above with the
driver providing a passthrough mechanism to the Server and
back. (See Appendix B)
0.072 The framework is implemented in the Pascal units,
“Base|Driver and BaseInterface. The BaseInterface unit
further demonstrates the preferred embodiment's implemen
tation of Method Interface Objects for the case of remote
SCWCS.

0073. The end result of connecting to external programs
is that both the external and the local programs are indis
tinguishable to the end-user in the user interface of the
Connection Editor 203. Not only does the Connection Editor
203 shield the end-user from details of the internal imple
mentation of programs-a common goal of "Object Ori
ented Programming” but it also shields the end-user from

Dec. 26, 2002

details of program location, communication protocols, and
numerous other issues that are the domain of the skilled
programmer.

0074 FIG. 5A shows the key application development
interfaces of the preferred embodiment prior to any devel
opment actions, the Application Designer Tool-Bar 201, the
Design Form 202, and the Connection Editor 203. The
“DsgnFrm' node 504 is highlighted in the Connection
Editor 203 that causes the “DsgnFrm” properties to be
rendered and editable in the Application Designer Tool
Bar's 201 Property Editor 303. An icon of an Edit Box
Design Component 503 is highlighted. When the user places
the mouse pointer over the Design Form 202 and presses the
left-mouse button, an Edit Box component will be created on
the Design Form 202 and added to the Connection Editor
2O3.

0075 FIG. 5B shows the key application development
interfaces of the preferred embodiment, the Application
Designer Tool-Bar 201, Design Form 304, and Connection
Editor 203, after the action of pressing the left-mouse button
over the Design Form 202 described above. An Edit Box
Component 513, named by default to “Edit1,” is created on
the Design Form 202. The Connection Editor 203 has added
the Edit Box Component Interface 514 to its tree views
under the “Edit 1' name and exposed the Edit Box Compo
nent Interface Properties 515 names “Signal” and “Value.”
The Application Designer Tool-Bar 201 Property Editor 516
now shows the “Edit 1' component available for editing
Visual properties.
0076 FIG.5C shows an isolated view of the Connection
Editor 203 from FIG. 5B. The Edit1 Component node 523
is expanded on the Source Tree View revealing Interface
Property “Value”524. The root of the Source Tree View 401
is highlighted, and thus as indicated in FIG. 4D, all interface
properties on the Target Tree View 402 are disabled as
indicated by being grayed out. In FIG. 5D, selecting Inter
face Property Value 523 enables the compatible interface
properties on the Target Tree View 402. In this case, the
Interface Property “ComputerName'525 is enabled. By
double clicking on this property, a connection will be made.
0.077 FIG. 5D also shows an isolated view of the Con
nection Editor 2035C after a connection 541 has been made.
From the Source Tree View 401, the Interface Property
“Value'534 now has a Connection Line 541 to the Target
Tree View 402 Interface Property “ComputerName'540.
This indicates that these two properties from two disparate
programs are connected and data from the Interface Property
“Value'524 will automatically propagate to the Interface
Property “ComputerName”525.
0078 APIs, remote procedure calls, and object methods
are more complex than individual properties. In these cases,
it can be necessary to populate a parameter list and then
Signal the appropriate action to be taken which utilizes the
entire parameter list. In the preferred embodiment, method
interfaces are Supported through the creation of a Method
Interface Object (MIO). AMIO is a program, constructed as
a VCL component that implements the Interface Manager
and encapsulates a particular method of a DLL, remote
Server, or other program. The parameters of the method are
then exposed as individual properties of the MIO which
appear separately in the Connection Editor 203.
007.9 FIG. 5D displays an example MIO and shows a
Target Tree View 402 where a Driver Object “Performanc

US 2002/0199034 A1

eServer.exe’536 node has been expanded to reveal an Inter
face Definitions node 537 that has also been expanded to
reveal a Method Interface Definition “TIPerf)river'538.
The Method Interface Definition allows the user to inspect
the method interface to decide if it is needed and whether it
should be created by only a click of the mouse. If created,
a Method Interface Object will appear as a child node of the
parent component. The Method Interface Object (MIO)
allows for procedures and functions with parameter lists to
be exposed from a program interface by the use of a
component dynamically created by the user when required.
The MIO implements the Interface Manager interface 410
and thus can display the method parameters as interface
properties on the Connection Editor 203 Tree Views 401 and
402.

0080) As demonstrated in FIG. 5D, the MIO “PerfDer
vier TIPerf)river 1539 has been created and reveals Inter
face Property “ComputerName'525, that is an input prop
erty to the method being handled. Interface Property
“Signal'542, when set, communicates to the MIO to invoke
the method. AS demonstrated, exposing the properties of
program interfaces allows for applications to be constructed
utilizing a visual Connection Editor 203 without program
ming. However, to create real world applications, the devel
oper must be able to interact with data that is typically
dynamic and discovered at run-time.

0081. The “Interface Manager' of the present invention
has the ability to create and manage Dynamic Properties.
Dynamic Properties are interface properties that are not
asSociated with a Static element of a programs interface.
Thus, they can be created in response to a run-time condi
tion, Such as the discovery of data or user input. This allows
a program to alter its behavior on the fly without program
ming, yet still retain the same visual development paradigm
using the Connection Editor 203 as previously described.
Since the purpose of the vast majority of computer appli
cations is to proceSS data, without Dynamic Properties,
Visual application development would be capable of little
more than Simple user interfaces.

0082 SQL, or Structured Query Language, is a standard
ized mechanism to allow for the manipulation (insert, delete,
retrieve) of Sets of data in row and column format in
Relational Database Management Systems (RDBMS). The
SQL language is text based and is interpreted by the
RDBMS to set aside the result set requested. Each RDBMS
defines an API for the programmatic Submission and
retrieval of that information from the database application.
Further programs exists to define a common interface to the
Submission and retrieval of SQL statements and SQL result
sets such as Open Database Connectivity (ODBC), Access
Data Objects (ADO), and the Borland Database Engine
(BDE). The State of the art database programming uses one
of these common interface programs to Submit a text based
SQL Statement that then returns a binary result Set. Using
programming, one can then loop through each record in the
result Set to interpret or display the data by moving or
copying the data into visual display components.

0.083. One example of the preferred embodiment's use of
Dynamic Properties is in the handling of parameterized SQL
queries and the analysis of result sets from databases. FIG.
6A shows the Connection Editor 203 with a Logic Compo
nent, Query 1601, added. The Query 1601 component has

Dec. 26, 2002

implemented the Interface Manager 410 as the requirement
to interact with the Connection Editor 203 as previously
discussed. The Query 1601 component allows the execution
of a SQL Statement against a database Server to retrieve data.
Dynamic Properties areused to allow the developer to
Specify parameters of the query Statement that will appear as
part of the Query 1s 601 interface properties allowing for full
access in the Connection Editor 203.

0084 FIG. 6B shows the Graphical Query Builder inter
face 610 of the preferred embodiment. In this example, the
Query Type 611 is a “Select” statement from the Table
612"dbo. Dagent.” Two columns, “acd'613 and “abn
calls'614, are selected. The “acd” column 613 is parameter
ized by including a “Where” Clause 615 and instead of a
literal value, a colon is placed in front of a variable name:
“=: Acd'616. This process creates a query of “abncalls”614
from table “Dagent'612 where “acd' equals a value from a
connection to be determined at runtime. The equivalent SQL
Statement is as follows:

0085 SELECT t1.acd, t1...abncalls
0.086 FROM dbo. Dagent t1
0087 WHERE (t1.acd=:Acd)

0088 FIG. 6C shows the Connection Editor's 203 rep
resentation of the Query 1 Source 621 interface and Query 1
Target 622 interface after the creation of the above query in
the Graphical Query Builder 610. On the Query 1 Target 622
interface, the “Acd” Interface Property 623 is now available
for accepting input connections. This allows the user devel
oping the application to use the same connection process
described above to set this value from a source of the user's
choice. The result set is available as the Query 1 Source 621
Interface Property QueryUDS 624.
0089. The SQL Query Component process is one
example of how the Interface Manager 410, with its dynamic
property capabilities, and the Connection Editor 203 can be
used to provide the manipulation of data discovered at
run-time and/or dynamically Supplied by the application
developer without the requirement of programming.
0090. In the preferred embodiment, a Universal Data Set
(UDS) represents a buffer that can represent structured data,
records which contain multiple columns or fields of primi
tive data types, Such as but not limited to results Sets from
database queries, CTI data Streams, network messages, etc.
The Query1 Source 621 Interface Property QueryUDS 624
contains the result Set from the query from the previous
example. The current State of the art is to use programming
to Send the UDS to a program, Such as a Graph Component
that would visually present the entire data Set.
0091. One example of the preferred embodiment's use of
Dynamic Properties is in the handling of Structured data
buffers in the form of a UDS to allow for analysis of
individual columns. FIG. 7A. shows the Connection Editor
203 after a Data Set Component DataSet 1 703 has been
created. The DataSet 1 703 has Interface Property UDS 705
for the input of a structured data buffer. Interface Property
QueryUDS 624 is connected to the UDS 705. This connec
tion propagates the Structured data buffer to the DataSet 1
703 component for run-time analysis.
0092 FIG. 7B. shows the DataSet 1's 703 UDS Editor
710 of the preferred embodiment that allows for the selec

US 2002/0199034 A1

tively exposing of columns in the Connection Editor 203.
The Sample Data Grid 713 shows the contents of the
Interface Property UDS 705 that will be identified by one
ordinarily skilled in the art to be the result set returned from
the Query 1601 from the previous example. To expose
individual columns, the Output Fields 711 and Key (Input)
Fields 714 interfaces show the columns with the ability for
the user the check which shall appear on Connection Editor
203. A check has been placed on “abncalls”712 column in
the Output Fields 711 interface.
0093 FIG. 7C shows Connection Editor 203 after using
UDS Editor 710 as indicated above. The DataSet 1 721
Interface Properties have been modified to include Interface
Property “abncalls”722, the column that was previously
selected. The “abncalls”722 Interface Property can now be
utilized as any other interface property in the Connection
Editor 720 to propagate the data into any compatible inter
face property of any component in the System.
0094. The Data Set Component is a further example of
how the Interface Manager 410, with its dynamic property
capabilities, and the Connection Editor 203 embodiment can
be used to provide the manipulation of data discovered at
run-time and/or dynamically Supplied by the application
developer without the requirement of programming.
0.095 Upon completion, the developed application can be
saved using the Application Designer Tool-Bar 201. Com
ponent Streaming is utilized to Stream all local programs,
Visual Controls, External Program Drivers, and non-visual
Logic Components, to a binary file. Because each program
contains an internal implementation of the Interface Man
ager 410, the information about connections is also
Streamed. When applications are loaded for execution, the
Interface Managers for each program utilize the Saved
connection data to re-establish connections between all
program interfaces.
0096. Thus, in the present invention, an application can
be constructed from existing programs that have imple
mented the requisite Interface Manager technology. The user
experiences unprecedented ease of use that makes building
distributed-binary applications accessible by those without
programming skills. However, the burden of making pro
grams compatible with the Visual Development System
remains on Skilled programmers who must Successfully
complete the Interface Manager implementation before the
program is available in the Visual Development System.
0097 While the invention has been described in conjunc
tion with Specific embodiments, it is evident that many
alternatives, modifications, permutations and variations will
become apparent to those skilled in the art in light of the
foregoing description. Accordingly, it is intended that the
present invention embrace all Such alternatives, modifica
tions and variations as fall within the Scope of the appended
claims.

0.098 Source code emboding the present invention can be
found in Appendices Athrough F, and is hereby incorporated
by reference.
We claim:

1. A method in a computer System for automating data
flow in a visual development configuration between dispar
ate program interfaces without Source code programming,
comprising the Steps of:

Dec. 26, 2002

including an interface manager in each of a plurality of
disparate computer programs,

implementing a connection editor to interact with Said
interface managers of Said plurality of disparate com
puter programs, and

utilizing Said connection editor to connect Selected Said
interface managers of Said plurality of disparate com
puter programs to establish a plurality of real-time
connections between Said plurality of disparate com
puter programs creating automated data flow between
Said computer programs.

2. The method of claim 1 wherein Said interface manager
Supports dynamic connection points to allow for the run
time discovery of data.

3. The method of claim 2, wherein the data corresponding
to the dynamic connection points is received from a data
base.

4. The method of claim 2, wherein the data corresponding
to the dynamic connection points is user defined input.

5. The method of claim 2, wherein the data corresponding
to the dynamic connection points comprises fields in a
protocol.

6. The method of claim 2, further comprising the step of:
creating a data Structure for each of the dynamic connec

tion points, wherein the data Structure includes Simu
lation information of a Static connection point interface
property.

7. The method of claim 1, further comprising the step of:
implementing the interface manager as a common object

model (COM) interface.
8. The method of claim 1, further comprising the steps of:
implementing a Source program tree within the connec

tion editor, wherein the disparate computer programs
are grouped by type, and

implementing a target program tree within the connection
editor, wherein the disparate computer programs are
grouped by type.

9. The method of claim 8, further comprising the step of:
classifying object meta-data corresponding to each the

disparate computer program in the Source program tree;
and

classifying object meta-data corresponding to each the
disparate computer program in the target program tree.

10. The method of claim 9, wherein the classifications
comprise Visual Component, Driver Object, and non-Visual
Logic Component.

11. A System for automating data flow in a Visual devel
opment configuration between disparate program interfaces
without Source code programming, comprising:

an interface manager in each of a plurality of disparate
computer programs, and

a connection editor to interact with Said interface man
agers of Said plurality of disparate computer programs,
Said connection editor utilized to connect Selected Said
interface managers of Said plurality of disparate com
puter programs to establish a plurality of real-time
connections between Said plurality of disparate com
puter programs creating automated data flow between
Said computer programs.

US 2002/0199034 A1

12. The System of claim 11, further comprising:

a computer to execute the automating of data flow in a
Visual development configuration between disparate
program interfaces without Source code programming.

13. The system of claim 11, wherein said interface man
ager Supports dynamic connection points to allow for the
run-time discovery of data.

14. The system of claim 13, wherein said data correspond
ing to Said dynamic connection points is received from a
database.

15. The system of claim 13, wherein said data correspond
ing to Said dynamic connection points is user defined input.

16. The system of claim 13, wherein said data correspond
ing to Said dynamic connection points comprises fields in a
protocol.

17. The system of claim 13, further comprising:

logic configured to create a data Structure for each of Said
dynamic connection points, wherein Said data Structure
includes Simulation information of a Static connection
point interface property.

18. The system of claim 11, further comprising:

logic configured to implement Said interface manager as
a common object model (COM) interface.

19. The system of claim 11, further comprising:

a Source program tree configured in Said connection
editor, wherein Said disparate computer programs are
grouped by type; and

a target program tree configured in Said connection editor,
wherein Said disparate computer programs are grouped
by type.

Dec. 26, 2002

20. The system of claim 19, further comprising:
logic configured to classify object meta-data correspond

ing to each said disparate computer program in Said
Source program tree, and

logic configured to classify object meta-data correspond
ing to each said disparate computer program in Said
target program tree.

21. The system of claim 20, wherein said classifications
comprise Visual Component, Driver Object, and non-Visual
Logic Component.

22. A computer configured for automating data flow in a
Visual development configuration between disparate pro
gram interfaces without Source code programming, Said
computer comprising:

a plurality of disparate computer programs,
an interface manager configured in each of a plurality Said

disparate computer programs, and
a connection editor Stored in Said computer configured to

interact with Said interface manager of Said plurality of
disparate computer programs, Said connection editor
utilized to create visual connections of Selected Said
interface managers of Said plurality of disparate com
puter programs, wherein Said connections between Said
plurality of disparate computer programs enable auto
mated data flow between Said computer programs in
real time.

23. The computer system of claim 22, wherein said
plurality of disparate computer programs are Stored inter
nally on Said computer.

24. The computer System of claim 22, wherein Said
plurality of disparate computer programs are Stored inter
nally on and externally to Said computer.

k k k k k

