

(19) 日本国特許庁(JP)

(12) 公表特許公報(A)

(11) 特許出願公表番号

特表2005-504120
(P2005-504120A)

(43) 公表日 平成17年2月10日(2005.2.10)

(51) Int. Cl. 7

CO7C 217/58
A61K 31/138
A61K 31/275
A61K 31/44
A61P 19/02

F 1

CO7C 217/58
A61K 31/138
A61K 31/275
A61K 31/44
A61P 19/02

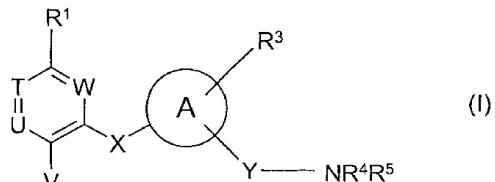
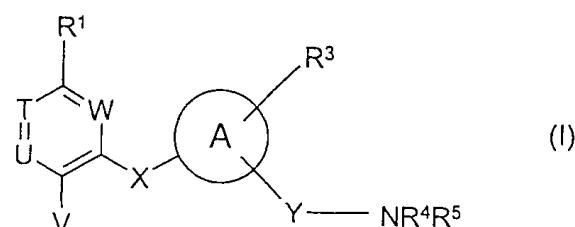
テーマコード(参考)

4C055
4C086
4C206
4H006

審査請求 未請求 予備審査請求 有 (全 163 頁) 最終頁に続く

(21) 出願番号 特願2003-532440 (P2003-532440)
(86) (22) 出願日 平成14年10月2日 (2002.10.2)
(85) 翻訳文提出日 平成16年4月2日 (2004.4.2)
(86) 國際出願番号 PCT/SE2002/001803
(87) 國際公開番号 WO2003/029185
(87) 國際公開日 平成15年4月10日 (2003.4.10)
(31) 優先権主張番号 0103325-7
(32) 優先日 平成13年10月4日 (2001.10.4)
(33) 優先権主張国 スウェーデン(SE)

(71) 出願人 391008951
アストラゼネカ・アクチエボラード
A S T R A Z E N E C A A K T I E B O
L A G
スウェーデン国エスエー-151 85セ
ーデルティエ
(74) 代理人 100091731
弁理士 高木 千嘉
(74) 代理人 100127926
弁理士 結田 純次
(74) 代理人 100105290
弁理士 三輪 昭次

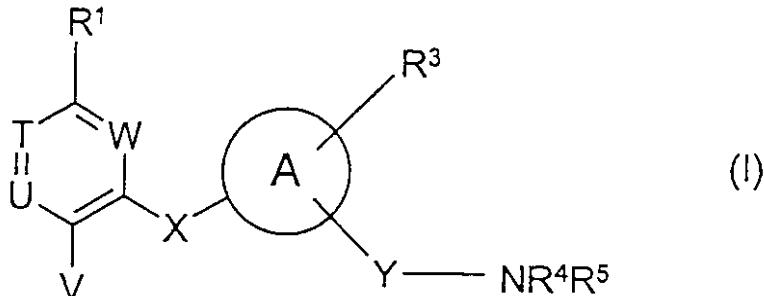


最終頁に続く

(54) 【発明の名称】新規な化合物

(57) 【要約】

式(I)

【化1】


(ここで、A、R¹、R³、R⁴、R⁵、T、U、V、W、XおよびYは、詳細な説明で定義されたとおりである)の化合物、およびそれらの製薬上許容することができる塩；それらの製造方法、それらを含む組成物および治療におけるそれらの使用についてのものである。この化合物は、一酸化窒素合成酵素の阻害剤であり、そして特に炎症性疾患、疼痛、CNS疾患の治療または予防に有用である。

【特許請求の範囲】

【請求項 1】

式 (I)

【化 1】

10

[ここで、Aはフェニル環を示すか、またはAはC₈～₁₀の芳香族または部分芳香族二環式環系を示し；

R¹は、C₁～₆のアルキル、C₁～₆のアルコキシ、ハロゲン、ヒドロキシ、シアノ、トリフルオロメチル、またはNR⁶R⁷を示し；

R³は、水素、C₁～₆のアルキル、C₂～₆のアルケニル、C₃～₆のシクロアルキル、C₁～₆のアルキルチオ、C₁～₆のアルコキシ、ハロゲン、ヒドロキシ、シアノ、トリフルオロメチル、またはNR⁸R⁹を示し；該アルコキシ基は、場合によって、さらにヒドロキシまたは一つまたはそれより多くのフッ素原子により置換され；

または、R³は、フェニルまたはO、SおよびNから独立して選択される1～3のヘテロ原子を含む5もしくは6員の芳香族複素環式環を示し；該フェニルまたは芳香族複素環式環は、場合によって、ハロゲン、C₁～₄のアルキル、C₁～₄のアルコキシ、ヒドロキシ、シアノもしくはNR⁸R⁹から独立して選択される置換基により置換され；該アルキルまたはアルコキシ基は、場合によって、さらに一つまたはそれより多くのフッ素原子により置換され；

R⁴およびR⁵は、独立して、水素またはC₁～₆のアルキルを示し；該アルキル基は、場合によって、OH、C₁～₆のアルコキシ、NR¹⁰R¹¹またはフェニルにより置換され；該フェニル基は、場合により、さらにC₁～₆のアルキル、C₁～₆のアルコキシ、ハロゲン、ヒドロキシ、シアノまたはNR¹²R¹³により置換され；

R⁶、R⁷、R⁸、R⁹、R¹⁰、R¹¹、R¹²およびR¹³は、独立して水素またはC₁～₆のアルキルを示し；該アルキル基は、場合によって、OHまたはC₁～₆のアルコキシにより置換され；

または、NR⁴R⁵、NR⁶R⁷およびNR⁸R⁹基は独立して、場合により、OまたはNから選択されるさらに一つのヘテロ原子を組み入れた4～7員の飽和アザ環式環を示し；該環は、場合によって、OH、C₁～₃のヒドロキシアルキルまたはC₁～₃のアルコキシにより置換され；

Vはシアノまたはニトロを示し；

XはOまたはS(O)_nを示し；

n整数0、1または2を示し；

YはC₁～₆のアルキルを示し；

T、UおよびWのいずれか一つはNを示し、そして他の二つは独立してCR²を示し；または、T、UおよびWの各々は、CR²を示し；そして、各R²基は、独立して水素、C₁～₃のアルキル、C₁～₃のアルコキシまたはハロゲンを示し；

ただし、Aがフェニルを示す時には、Vはニトロを示し、YはCH₂を示し、XはSを示し、T、UおよびSのそれぞれはCR²を示し、そしてY-NR⁴R⁵基はXに対してフェニル環のオルト位に結合し、この場合、R⁴およびR⁵は両方ともCH₃ではない。]の化合物、またはその製薬上許容しうる塩。

20

30

40

50

【請求項 2】

A は、フェニルを示す、請求項 1 の式 (I) の化合物。

【請求項 3】

Y は、 CH_2 を示す、請求項 1 または請求項 2 の式 (I) の化合物。

【請求項 4】

R^4 および R^5 は、独立して、水素またはメチルを示す、請求項 1 ~ 3 の式 (I) の化合物。

【請求項 5】

3 - (5 - メトキシ - 2 - ニトロフェノキシ) ベンゼンメタンアミン ;
 3 - (5 - メチル - 2 - ニトロフェノキシ) ベンゼンメタンアミン ;
 3 - (5 - クロロ - 2 - ニトロフェノキシ) ベンゼンメタンアミン ;
 3 - (5 - フルオロ - 2 - ニトロフェノキシ) ベンゼンメタンアミン ;
 3 - (5 - メチルアミノ - 2 - ニトロフェノキシ) ベンゼンメタンアミン ;
 3 - (5 - メチル - 2 - ニトロフェニルチオ) ベンゼンメタンアミン ;
 2 - [3 - (アミノメチル) フェノキシ] - 4 - クロロベンゾニトリル ;
 4 - クロロ - 2 - [3 - ヒドロキシ - 5 - [(メチルアミノ) メチル] フェノキシ] ベンゾニトリル ;
 4 - クロロ - 2 - [3 - メトキシ - 5 - [(メチルアミノ) メチル] フェノキシ] ベンゾニトリル ;
 4 - クロロ - 2 - (3 - メチルアミノメチル - フェノキシ) ベンゾニトリル ;
 4 - クロロ - 2 - (4 - メトキシ - 3 - メチルアミノメチル - フェノキシ) ベンゾニトリル ;
 4 - クロロ - 2 - (2 - メトキシ - 3 - メチルアミノメチル - フェノキシ) ベンゾニトリル ;
 4 - クロロ - 2 - (2 - メトキシ - 4 - メチルアミノメチル - フェノキシ) ベンゾニトリル ;
 4 - クロロ - 2 - (3 - メトキシ - 4 - メチルアミノメチル - フェノキシ) ベンゾニトリル ;
 2 - (4 - ブロモ - 3 - メチルアミノメチル - フェノキシ) - 4 - トリフルオロメチル -
 ベンゾニトリル ;
 2 - (2 - メチルアミノメチル - ビフェニル - 4 - イルオキシ) - 4 - トリフルオロメチル -
 ベンゾニトリル ;
 4 - クロロ - 2 - [2 - ヒドロキシ - 3 - (メチルアミノメチル) フェノキシ] ベンゾニトリル ;
 4 - クロロ - 2 - [2 - エトキシ - 3 - (メチルアミノメチル) フェノキシ] ベンゾニトリル ;
 4 - クロロ - 2 - [2 - (2 - フルオロエトキシ) - 3 - (メチルアミノメチル) フェノキシ] ベンゾニトリル ;
 4 - クロロ - 2 - [3 - メチルアミノメチル - 2 - (2,2,2 - トリフルオロエトキシ) フェノキシ] - ベンゾニトリル ;
 4 - クロロ - 2 - (3 - メチルアミノメチル - 2 - プロポキシフェノキシ) ベンゾニトリル ;
 4 - クロロ - 2 - [2 - (2 - ヒドロキシエトキシ) - 3 - (メチルアミノメチル) フェノキシ] - ベンゾニトリル ;
 4 - クロロ - 2 - [2 - エトキシ - 4 - (メチルアミノメチル) フェノキシ] ベンゾニトリル ;
 4 - クロロ - 2 - [4 - (メチルアミノメチル) ナフタレン - 1 - イルオキシ] ベンゾニトリル ;
 4 - クロロ - 2 - [3 - (ジメチルアミノメチル) フェノキシ] ベンゾニトリル ;
 4 - クロロ - 2 - {3 - [(2 - (ヒドロキシエチル) アミノ) メチル] フェノキシ} ベンゾニトリル ;

10

20

30

40

50

4 - クロロ - 2 - { 3 - [(2 - メトキシエチルアミノ) メチル] フェノキシ } ベンゾニトリル；

4 - クロロ - 2 - [3 - (プロピルアミノメチル) フェノキシ] ベンゾニトリル；

4 - クロロ - 2 - { 3 - [(2 - ジメチルアミノエチルアミノ) メチル] フェノキシ } ベンゾニトリル；

4 - クロロ - 2 - { 3 - [(3 - ヒドロキシプロピルアミノ) メチル] フェノキシ } ベンゾニトリル；

4 - クロロ - 2 - [3 - (ピロリジン - 1 - イルメチル) フェノキシ] ベンゾニトリル；

4 - クロロ - 5 - フルオロ - 2 - (2 - メトキシ - 3 - メチルアミノメチルフェノキシ) ベンゾニトリル；

4 - ブロモ - 2 - (2 - メトキシ - 3 - メチルアミノメチル - フェノキシ) - ベンゾニトリル；

2 - (2 - メトキシ - 3 - メチルアミノメチル - フェノキシ) - 6 - トリフルオロメチル - ニコチノニトリル；

4 - メトキシ - 2 - (2 - メトキシ - 3 - メチルアミノメチル - フェノキシ) - ベンゾニトリル；

3 - フルオロ - 2 - (2 - メトキシ - 3 - (メチルアミノメチル) フェノキシ) - 4 - メチル - ベンゾニトリル；

2 - (2 - メトキシ - 3 - メチルアミノメチル - フェノキシ) - 6 - メチル - ニコチノニトリル；

6 - エチル - 2 - (2 - メトキシ - 3 - メチルアミノメチル - フェノキシ) - ニコチノニトリル；

4 - メチル - 2 - (3 - メチルアミノメチル - フェノキシ) - ベンゾニトリル；

6 - メチル - 2 - (3 - メチルアミノメチル - フェノキシ) - ニコチノニトリル；

4 - クロロ - 2 - (5 - メチルアミノ - 5 , 6 , 7 , 8 - テトラヒドロナフタレン - 1 - イルオキシ) ベンゾニトリル；

4 - クロロ - 2 - (1 - メチルアミノインダン - 4 - イルオキシ) ベンゾニトリル；

[2 - メトキシ - 3 - (5 - メチル - 2 - ニトロフェノキシ) ベンジル] メチルアミン；

4 - クロロ - 2 - (3 - ジメチルアミノメチル - 2 - エチルフェノキシ) ベンゾニトリル；

2 - (3 - アミノメチル - 2 - エチル - フェノキシ) - 4 - クロロ - ベンゾニトリル；

4 - クロロ - 2 - (2 - エチル - 3 - メチルアミノメチル - フェノキシ) - ベンゾニトリル；

4 - クロロ - 2 - (3 - ジメチルアミノメチル - 2 - プロピルフェノキシ) - ベンゾニトリル；

2 - (3 - アミノメチル - 2 - プロピル - フェノキシ) - 4 - クロロ - ベンゾニトリル；

4 - クロロ - 2 - (3 - メチルアミノメチル - 2 - プロピル - フェノキシ) - ベンゾニトリル；

2 - (2 - アリル - 4 - メチルアミノメチル - フェノキシ) - 4 - クロロベンゾニトリル；

4 - クロロ - 2 - (3 - ジメチルアミノメチル - 4 - フルオロフェノキシ) ベンゾニトリル；

4 - クロロ - 2 - (4 - フルオロ - 3 - メチルアミノメチル - フェノキシ) - ベンゾニトリル；

2 - (2 - メトキシ - 3 - メチルアミノメチル - フェノキシ) - 4 - トリフルオロメチル - ベンゾニトリル；

2 - (4 - メチルアミノメチル - 3 - フェニル - フェノキシ) - 4 - トリフルオロメチル - ベンゾニトリル；

4 - クロロ - 2 - (3 - ジメチルアミノメチル - 2 - メチルスルファニル - フェノキシ) - ベンゾニトリル；

10

20

30

40

50

4 - クロロ - 2 - (3 - アミノメチル - 2 - メチルスルファニル - フェノキシ) - ベンゾニトリル；

4 - クロロ - 2 - (2 - メチルスルファニル - 3 - メチルアミノメチル - フェノキシ) - ベンゾニトリル；

4 - クロロ - 2 - (3 - ジメチルアミノメチル - 2 - エチルスルファニル - フェノキシ) - ベンゾニトリル；

4 - クロロ - 2 - (3 - アミノメチル - 2 - エチルスルファニル - フェノキシ) ベンゾニトリル；

4 - クロロ - 2 - (2 - エチルスルファニル - 3 - メチルアミノメチル - フェノキシ) ベンゾニトリル；

である請求項 1 の式 (I) の化合物、またはそれらの製薬上許容することができる塩。

【請求項 6】

医薬として使用するための、請求項 1 ~ 5 のいずれか 1 項に記載の式 (I) の化合物、またはそれらの製薬上許容しうる塩。

【請求項 7】

請求項 1 ~ 5 のいずれか 1 項に記載の式 (I) の化合物、またはそれらの製薬上許容しうる塩を製薬上許容しうるアジュバント、希釈剤または担体と混合して含む医薬組成物。

【請求項 8】

一酸化窒素合成酵素活性阻害が有益であるヒトの疾患または状態の治療または予防用医薬の製造における、請求項 1 ~ 5 のいずれか 1 項記載の式 (I) の化合物、またはそれらの製薬上許容しうる塩の使用。

【請求項 9】

炎症性疾患の治療または予防用医薬の製造における、請求項 1 ~ 5 のいずれか 1 項に定義された式 (I) の化合物、またはそれらの製薬上許容しうる塩の使用。

【請求項 10】

C N S 疾患の治療または予防用医薬の製造における、請求項 1 ~ 5 のいずれか 1 項に定義された式 (I) の化合物、またはそれらの製薬上許容しうる塩の使用。

【請求項 11】

疾患は、リウマチ様関節炎または骨関節炎である請求項 9 記載の使用。

【請求項 12】

疼痛の治療または予防用医薬の製造における、請求項 1 ~ 5 のいずれか 1 項に定義された式 (I) の化合物、またはそれらの製薬上許容しうる塩の使用。

【請求項 13】

疾患は、偏頭痛である請求項 10 記載の使用。

【請求項 14】

一酸化窒素合成酵素活性の阻害が役立つ疾患または状態にある、またはそのリスクがあるヒトに、治療上有効な量の請求項 1 ~ 5 のいずれか 1 項に定義された式 (I) の化合物、またはそれらの製薬上許容しうる塩を投与することを含む、上記疾患または状態の治療またはリスクを軽減する方法。

【請求項 15】

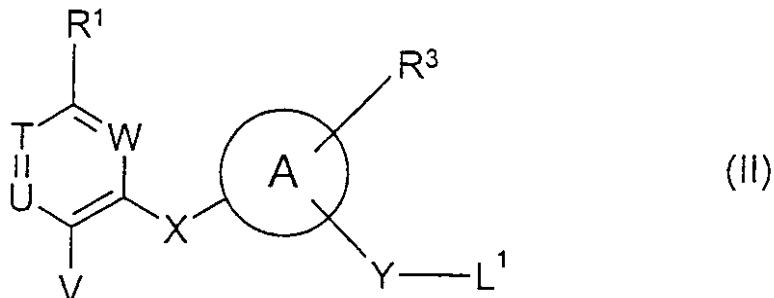
治療上有効な量の請求項 1 ~ 5 のいずれか 1 項に定義された式 (I) の化合物、またはそれらの製薬上許容しうる塩を、炎症性疾患を患っている、またはそのリスクがあるヒトに投与することを含む、上記疾患の治療またはリスクを軽減する方法。

【請求項 16】

治療上有効な量の請求項 1 ~ 5 のいずれか 1 項に定義された式 (I) の化合物、またはそれらの製薬上許容しうる塩を、C N S 疾患を患っている、またはそのリスクがあるヒトに投与することを含む、上記疾患の治療またはリスクを軽減する方法。

【請求項 17】

疾患は、偏頭痛である請求項 16 記載の治療方法。


【請求項 18】

治療上有効な量の請求項 1 ~ 5 のいずれか 1 項に定義された式 (I) の化合物、またはそれらの製薬上許容しうる塩を、疼痛のある、またはそのリスクがあるヒトに投与することを含む、上記状態の治療またはリスクを軽減する方法。

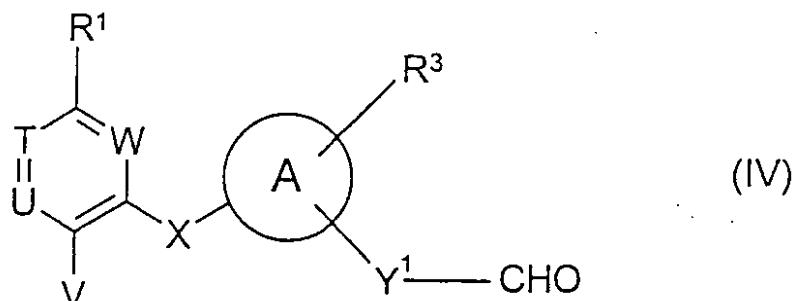
【請求項 19】

(a) 式 (II)

【化 2】

10

(ここで、A、R¹、R³、T、U、V、W、XおよびYは、請求項 1 で定義されたとおりであり、そしてL¹は脱離基である)の化合物を、式 (III)



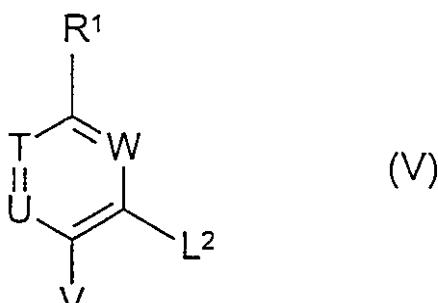
(ここでR⁴およびR⁵は、請求項 1 で定義されたとおりである)の化合物と反応させ；または

20

(b) 式 (IV)

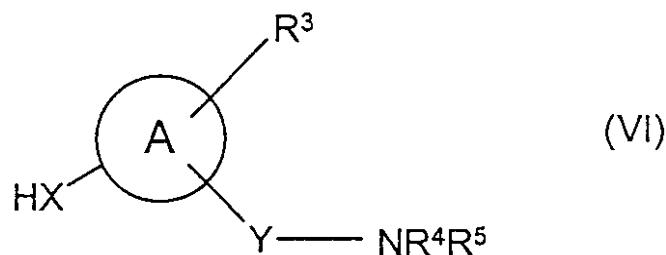
【化 3】

30


(ここで、A、R¹、R³、T、U、V、WおよびXは、請求項 1 で定義されたとおりであり、Y¹-CH₂は、請求項 1 で定義されたYを示す)の化合物を、式 (III)

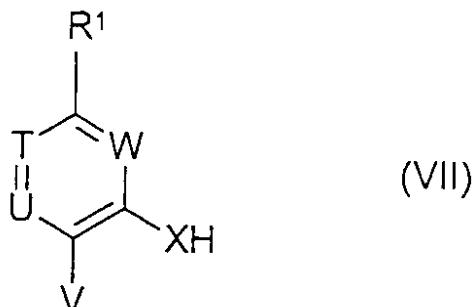
(ここでR⁴およびR⁵は、請求項 1 で定義されたとおりである)の化合物で還元的にアミノ化し；または

(c) 式 (V)


【化 4】

40

(ここで、R¹、T、U、VおよびWは、請求項 1 で定義されたとおりであり、L²は脱離基である)の化合物を、式 (VI)

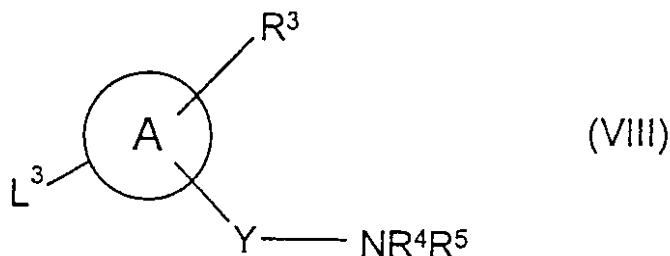

【化5】

(ここで、A、R³、R⁴、R⁵およびYは、請求項1で定義されたとおりであり、XはOまたはSである)の化合物と反応させ；または

(d) 式(VII)

【化6】

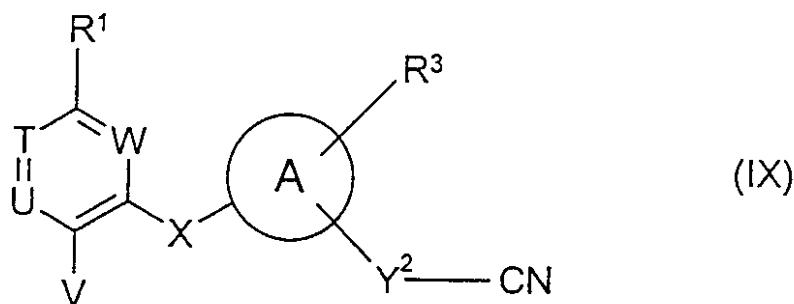
10


20

30

40

(ここで、R¹、T、U、VおよびWは、請求項1で定義されたとおりであり、XはOまたはSである)の化合物を、式(VIII)


【化7】

(ここで、A、R³、R⁴、R⁵およびYは、請求項1で定義されたとおりであり、L³は脱離基である)の化合物と反応させ；または

(e) 式(IX)

【化8】

(ここで、A、R¹、R³、T、U、V、WおよびXは、請求項1で定義されたとおりであり、(-Y²-CH₂-)基は、式(I)で定義されたYを示す)の化合物を還元することにより、式(I)(ここで、R⁴およびR⁵は各々水素を示す)の化合物を製造し；そして、所望または必要に応じ、生じた式(I)の化合物またはそれらの他の塩をそれら

50

の製薬上許容しうる塩に変換し；または式(I)の一つの化合物を式(I)の別の化合物に変換し；そして所望により生じた式(I)の化合物をそれらの光学異性体に変換することを含む、請求項1～5のいずれか1項に定義された式(I)の化合物、またはそれらの製薬上許容しうる塩、それらのエナンチオマーもしくはラセミ体の製造方法。

【発明の詳細な説明】

【技術分野】

【0001】

本発明は、新規フェニルアルキルアミン誘導体、その製造方法、それらを含んでいる組成物、およびその治療における使用に関する。

【背景技術】

10

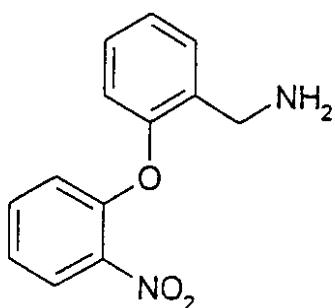
【0002】

一酸化窒素は、哺乳動物細胞において特異的な一酸化窒素合成酵素(NOSs)の作用により、L-アルギニンから生成される。これらの酵素は、二つの異なった型(class)-構成型NOS(cNOS)と誘導型NOS(iNOS)とに分類される。現在、構成型NOSの二つおよび誘導型NOの一つが同定されている。構成型NOSsである内皮細胞型酵素(eNOS)は平滑筋細胞の弛緩ならびに血圧および血流調節と関係しているのに対し、神経型酵素(nNOS)は様々な生物学的機能の調節に関係しているように見られる。誘導型NOSは特に炎症性疾患の発病に関係する。したがって、これらの酵素の調節は多種多様な疾患状態の治療において、かなりの可能性を提示するはずである(J.E.Macdonald, Ann. Rep. Med. Chem., 1996, 31, 221-230)。

20

【発明の開示】

【発明が解決しようとする課題】


【0003】

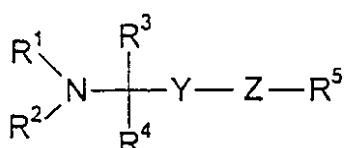
かなりの努力が、一酸化窒素合成酵素の一つまたはそれ以上のアイソフォームの特異的阻害剤として作用する化合物を同定する努力に費やされた。治療におけるそれらの使用もまた広く特許請求された。

【0004】

2-(2-ニトロフェノキシ)ベンゼンメタンアミン

【化1】

30

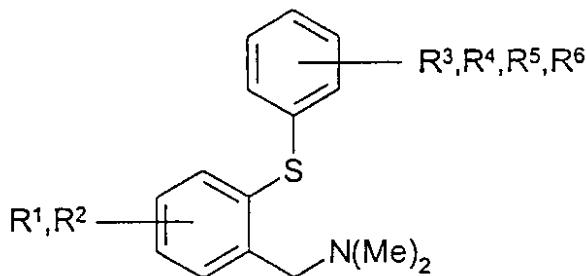

は、ジベンゾ-[b,h]-テトラヒドロ-1,4,6-オキサジアゾニンのN,N'-二置換誘導体の合成における中間体として、Polish J.Chem., 1982, 56, 1139-1144に開示されている。

40

【0005】

WO 94/12163は、一酸化窒素合成酵素の調節因子である一般式の2-ニトロアリール化合物

【化2】


を開示する。

50

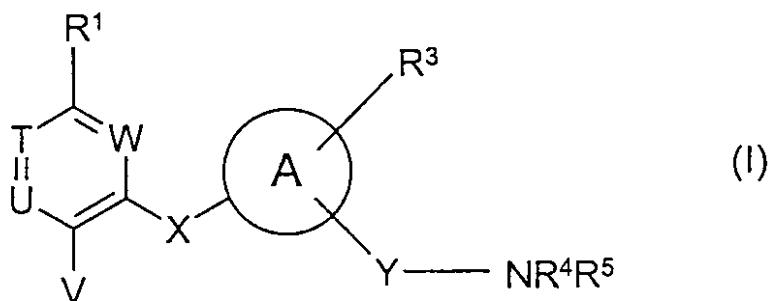
【0006】

WO 97/17325は、一般式の化合物

【化3】

10

を開示する。


これらの化合物は、うつ病の治療に有用なセロトニン再取り込み阻害剤である。

【課題を解決するための手段】

【0007】

本発明によれば、下記一般式(I)の化合物、またはその製薬上許容しうる塩が提供される。

【化4】

20

ここで、Aはフェニル環、またはAはC₈~₁₀の芳香族または部分芳香族二環式環系を示し；

R¹は、C₁~₆のアルキル、C₁~₆のアルコキシ、ハロゲン、ヒドロキシ、シアノ、トリフルオロメチルまたはNR⁶R⁷を示し；

R³は、水素、C₁~₆のアルキル、C₂~₆のアルケニル、C₃~₆のシクロアルキル、C₁~₆のアルキルチオ、C₁~₆のアルコキシ、ハロゲン、ヒドロキシ、シアノ、トリフルオロメチルまたはNR⁸R⁹を示し；前記アルコキシ基は、場合によって、さらにヒドロキシまたは一つまたはそれより多くのフッ素原子で置換されるものであり、

または、R³は、フェニルまたはO、SおよびNから独立して選択される1~3のヘテロ原子を含む5もしくは6員の芳香族複素環式環を示し；前記フェニルまたは芳香族複素環式環は、場合によって、ハロゲン、C₁~₄のアルキル、C₁~₄のアルコキシ、ヒドロキシ、シアノもしくはNR⁸R⁹から独立して選択される置換基により置換されるものであり；前記アルキルまたはアルコキシ基は、場合によって、さらに一つまたはそれより多くのフッ素原子により置換されるものであり；

40

【0008】

R⁴およびR⁵は、独立して、水素またはC₁~₆のアルキルを示し；前記アルキル基は、場合によって、OH、C₁~₆のアルコキシ、NR¹⁰R¹¹またはフェニルにより置換され；前記フェニル基は、場合により、さらにC₁~₆のアルキル、C₁~₆のアルコキシ、ハロゲン、ヒドロキシ、シアノまたはNR¹²R¹³により置換されるものであり；

R⁶、R⁷、R⁸、R⁹、R¹⁰、R¹¹、R¹²およびR¹³は、独立して、水素またはC₁~₆のアルキルを示し；前記アルキル基は、場合によって、OHまたはC₁~₆のアルコキシにより置換されるものであり；

または、NR⁴R⁵、NR⁶R⁷およびNR⁸R⁹基は、独立して、場合により、OまたはNか

50

ら選択されるさらに一つのヘテロ原子を組み入れた4～7員の飽和アザ環式環を示し；前記環は、場合によって、OH、C_{1～3}のヒドロキシアルキルまたはC_{1～3}のアルコキシにより置換されるものであり；

Vはシアノまたはニトロを示し；

XはOまたはS(O)_nを示し；

nは整数0、1または2を示し；

YはC_{1～6}のアルキルを示し；

T、UおよびWのいずれかの一つはNを示し、そして他の二つは独立してCR²を示し；または、T、UおよびWの各々は、CR²を示し；そして、各R²基は、独立してハロゲン、C_{1～3}のアルキル、C_{1～3}のアルコキシまたはハロゲンを示す；

ただし、Aがフェニルを示す時には、Vはニトロを示し、YはCH₂を示し、XはSを示し、T、UおよびWのそれぞれはCR²を示し、そしてY-NR⁴R⁵基はXに対してフェニル環のオルト位に結合し、この場合、R⁴およびR⁵は両方がCH₃ではないものとする。

【0009】

式(I)の化合物は鏡像異性体の形態で存在してもよい。したがって、全てのエナンチオマー、ジアステレオマー、ラセミ体およびその混合物は、本発明の範囲に含まれる。

【0010】

式(I)の化合物およびそれらの製薬上許容しうる塩は、一酸化窒素合成酵素(NOS)阻害剤であるという利点を有する。一般的に、式(I)の化合物およびそれらの製薬上許容しうる塩は、一酸化窒素合成酵素(iNOS)の誘導型アイソフォームの阻害剤であるという利点を有する。ある式(I)の化合物およびそれらの製薬上許容しうる塩は、追加的にまたは別途に一酸化窒素合成酵素(nNOS)の神経型アイソフォームの阻害剤であるという利点を有する。一般的に、式(I)の化合物およびそれらの製薬上許容しうる塩は、内皮型のアイソフォームであるeNOSの阻害と比べて、iNOSおよび/またはnNOSの阻害に優れた選択性を示すという利点を有する。

【0011】

本発明はさらに、式(I)の化合物またはそれらの製薬上許容しうる塩、それらのエナンチオマーまたはラセミ体の製造方法を提供する。

本発明によれば、医薬としての用途のための式(I)の化合物またはそれらの製薬上許容しうる塩が提供される。

【0012】

本発明の別の局面では、一酸化窒素合成酵素活性の阻害が有益である疾患または状態の治療または予防のための医薬の製造において、式(I)の化合物またはそれらの製薬上許容しうる塩の使用が提供される。

本発明の別の局面では、iNOS活性の阻害が有益である疾患または状態の治療または予防のための医薬の製造において、式(I)の化合物またはそれらの製薬上許容しうる塩の使用が提供される。

本発明の別の局面では、nNOS活性の阻害が有益である疾患または状態の治療または予防のための医薬の製造において、式(I)の化合物またはそれらの製薬上許容しうる塩の使用が提供される。

【0013】

本発明の別の局面では、炎症性疾患の疾患の治療または予防のための医薬の製造において、式(I)の化合物またはそれらの製薬上許容しうる塩の使用が提供される。

本発明の別の局面では、CNS疾患の治療または予防のための医薬の製造において、式(I)の化合物またはそれらの製薬上許容しうる塩の使用が提供される。

【0014】

本発明によれば、一酸化窒素合成酵素活性の阻害が有益である疾患または状態の治療方法またはそのリスクの軽減方法が提供され、この方法は前記疾患または状態を患っているまたはそのリスクのあるヒトに治療上有効な量の式(I)の化合物またはそれらの製薬上許

10

20

30

40

50

容しうる塩を投与することが含まれる。

【0015】

また、炎症性疾患を患っているまたはそのリスクのあるヒトにおける、前記疾患の治療方法またはリスクの軽減方法が提供され、その方法は、そのヒトに治療上有効量の式(Ⅰ)の化合物またはそれらの製薬上許容しうる塩を投与することが含まれる。

また、CNS疾患を患っているまたはそのリスクのあるヒトにおける、前記疾患の治療方法またはリスクの軽減方法が提供され、その方法は、そのヒトに治療上有効量の式(Ⅰ)の化合物またはそれらの製薬上許容しうる塩を投与することが含まれる。

【0016】

本発明の化合物はまた第二の薬学的に活性な物質と組合せて、有利に使用されてもよく、特にシクロオキシゲナーゼ阻害薬と組合せて、より詳しくはシクロオキシゲナーゼ(COX-2)の誘導型アイソフォームの選択的な阻害剤と組合せて使用されても良い。したがって、本発明のさらなる局面において、炎症、炎症性疾患および炎症に関連した障害の治療のための医薬の製造において、COX-2阻害薬と組合わせた式(Ⅰ)の化合物またはそれらの製薬上許容しうる塩の使用が提供される。そしてまた、炎症、炎症性疾患および炎症に関連した障害を患っているまたはその危険のあるヒトにおける前記疾患または状態の治療方法またはそのリスクの軽減方法が提供され、その方法は、そのヒトにCOX-2阻害薬と組合わせた治療上有効量の式(Ⅰ)の化合物またはそれらの製薬上許容しうる塩を投与することが含まれる。

【0017】

一つの実施態様において、式(Ⅰ)のXは酸素を示す。

別の実施態様において、式(Ⅰ)のXはS(O)_nを示し、そしてnは0を示す。

一つの実施態様において、式(Ⅰ)のVはシアノを示す。

一つの実施態様において、式(Ⅰ)のAはフェニルを示す。

一つの実施態様において、式(Ⅰ)のR³は水素、C_{1~6}のアルコキシ、ヒドロキシまたは場合によっては置換されたフェニルを示す。

一つの実施態様において、式(Ⅰ)のR⁴およびR⁵は、独立して水素またはメチルを示す。

【0018】

一つの実施態様において、式(Ⅰ)のYは、CH₂を示す。

一つの実施態様において、式(Ⅰ)のT、UおよびWは、各々独立してCHまたはCFを示す。

一つの実施態様において、TはNを示し、そしてUおよびWは、各々独立してCHまたはCFを示す。

一つの実施態様において、WはNを示し、そしてTおよびUは、各々独立してCHまたはCFを示す。

【0019】

一つの実施態様において、Aはフェニルを示し、R¹はC_{1~6}のアルキル、C_{1~6}のアルコキシ、ハロゲン、ヒドロキシ、シアノ、トリフルオロメチルまたはNR⁶R⁷を示し；Xは酸素またはS(O)_nを示し、そしてnは0を示し；Vはシアノを示し；R³は水素、C_{1~6}のアルコキシ、ヒドロキシまたは場合によっては置換されたフェニルを示し；R⁴およびR⁵は、独立して水素またはメチルを示し；YはCH₂を示し；そして式(Ⅰ)のT、UおよびWは、各々独立してCHまたはCFを示し；または、TはNを示し、そしてUおよびWは、各々独立してCHまたはCFを示し；または、WはNを示し、そしてTおよびUは、各々独立してCHまたはCFを示す。

【0020】

一つの実施態様において、Aはフェニル環を示し、R³は水素、C_{1~6}のアルキル、C_{3~6}のシクロアルキル、C_{1~6}のアルキルチオ、C_{1~6}のアルコキシ、ハロゲン、ヒドロキシ、シアノ、トリフルオロメチルまたはNR⁸R⁹を示し；または、R³はフェニルまたは独立してO、SおよびNから選択される1~3のヘテロ原子を含む5もしくは6員の芳香

10

20

30

40

50

族複素環式環を示し；前記フェニルまたは芳香族複素環式環は、場合によって、ハロゲン、C_{1~4}のアルキル、C_{1~4}のアルコキシ、ヒドロキシ、シアノまたはNR⁸R⁹から独立して選択される一つまたはそれより多くの置換基により置換され；前記アルキルまたはアルコキシ基は、場合によって、さらに一つまたはそれより多くのフッ素原子により置換され；R⁴およびR⁵は、独立して水素またはC_{1~6}のアルキルを示し；前記アルキル基は、場合によって、OH、C_{1~6}のアルコキシまたはフェニルによって置換され；前記フェニル基は、場合によって、さらに、C_{1~6}のアルキル、C_{1~6}のアルコキシ、ハロゲン、ヒドロキシ、シアノまたはNR¹²R¹³により置換され；そして、他の全ての基は、上記式(I)において定義したとおりである。

【0021】

10

本発明の特定の化合物は：

3-(5-メトキシ-2-ニトロフェノキシ)ベンゼンメタンアミン；
 3-(5-メチル-2-ニトロフェノキシ)ベンゼンメタンアミン；
 3-(5-クロロ-2-ニトロフェノキシ)ベンゼンメタンアミン；
 3-(5-フルオロ-2-ニトロフェノキシ)ベンゼンメタンアミン；
 3-(5-メチルアミノ-2-ニトロフェノキシ)ベンゼンメタンアミン；
 3-(5-メチル-2-ニトロフェニルチオ)ベンゼンメタンアミン；
 2-[3-(アミノメチル)フェノキシ]-4-クロロベンゾニトリル；
 4-クロロ-2-[3-ヒドロキシ-5-[(メチルアミノ)メチル]フェノキシ]ベンゾニトリル；
 4-クロロ-2-[3-メトキシ-5-[(メチルアミノ)メチル]フェノキシ]ベンゾニトリル；
 4-クロロ-2-(3-メチルアミノメチル-フェノキシ)ベンゾニトリル；
 4-クロロ-2-(4-メトキシ-3-メチルアミノメチル-フェノキシ)ベンゾニトリル；
 4-クロロ-2-(2-メトキシ-3-メチルアミノメチル-フェノキシ)ベンゾニトリル；
 4-クロロ-2-(2-メトキシ-4-メチルアミノメチル-フェノキシ)ベンゾニトリル；
 4-クロロ-2-(3-メトキシ-4-メチルアミノメチル-フェノキシ)ベンゾニトリル；
 2-(4-ブロモ-3-メチルアミノメチル-フェノキシ)-4-トリフルオロメチル-ベンゾニトリル；
 2-(2-メチルアミノメチル-ビフェニル-4-イルオキシ)-4-トリフルオロメチル-ベンゾニトリル；
 4-クロロ-2-[2-ヒドロキシ-3-(メチルアミノメチル)フェノキシ]ベンゾニトリル；
 4-クロロ-2-[2-エトキシ-3-(メチルアミノメチル)フェノキシ]ベンゾニトリル；
 4-クロロ-2-[2-(2-フルオロエトキシ)-3-(メチルアミノメチル)フェノキシ]ベンゾニトリル；
 4-クロロ-2-[3-メチルアミノメチル-2-(2,2,2-トリフルオロエトキシ)フェノキシ]-ベンゾニトリル；
 4-クロロ-2-(3-メチルアミノメチル-2-プロポキシフェノキシ)ベンゾニトリル；
 4-クロロ-2-[2-(2-ヒドロキシエトキシ)-3-(メチルアミノメチル)フェノキシ]-ベンゾニトリル；
 4-クロロ-2-[2-エトキシ-4-(メチルアミノメチル)フェノキシ]ベンゾニトリル；
 4-クロロ-2-[4-(メチルアミノメチル)ナフタレン-1-イルオキシ]ベンゾニトリル；
 4-クロロ-2-[3-(ジメチルアミノメチル)フェノキシ]ベンゾニトリル；
 4-クロロ-2-{3-[(2-(ヒドロキシエチル)アミノ)メチル]フェノキシ}ベンゾニトリル；
 4-クロロ-2-{3-[(2-メトキシエチル)アミノ]メチル}フェノキシ}ベンゾニトリル；
 4-クロロ-2-[3-(プロピルアミノメチル)フェノキシ]ベンゾニトリル；
 4-クロロ-2-{3-[(2-ジメチルアミノエチル)アミノ]メチル}フェノキシ}ベンゾニトリル；
 4-クロロ-2-{3-[(3-ヒドロキシプロピル)アミノ]メチル}フェノキシ}ベンゾニトリル；
 4-クロロ-2-[3-(ピロリジン-1-イルメチル)フェノキシ]ベンゾニトリル；
 4-クロロ-5-フルオロ-2-(2-メトキシ-3-メチルアミノメチルフェノキシ)ベンゾニトリル；

50

4-ブロモ-2-(2-メトキシ-3-メチルアミノメチル-フェノキシ)-ベンゾニトリル；
 2-(2-メトキシ-3-メチルアミノメチル-フェノキシ)-6-トリフルオロメチル-ニコチノニトリル；
 4-メトキシ-2-(2-メトキシ-3-メチルアミノメチル-フェノキシ)-ベンゾニトリル；
 3-フルオロ-2-(2-メトキシ-3-(メチルアミノメチル)フェノキシ)-4-メチル-ベンゾニトリル；
 2-(2-メトキシ-3-メチルアミノメチル-フェノキシ)-6-メチル-ニコチノニトリル；
 6-エチル-2-(2-メトキシ-3-メチルアミノメチル-フェノキシ)-ニコチノニトリル；
 4-メチル-2-(3-メチルアミノメチル-フェノキシ)-ベンゾニトリル；
 6-メチル-2-(3-メチルアミノメチル-フェノキシ)-ニコチノニトリル；
 4-クロロ-2-(5-メチルアミノ-5,6,7,8-テトラヒドロナフタレン-1-イルオキシ)ベンゾニトリル；
 4-クロロ-2-(1-メチルアミノインダン-4-イルオキシ)ベンゾニトリル；
 [2-メトキシ-3-(5-メチル-2-ニトロフェノキシ)ベンジル]メチルアミン；
 4-クロロ-2-(3-ジメチルアミノメチル-2-エチルフェノキシ)ベンゾニトリル；
 2-(3-アミノメチル-2-エチル-フェノキシ)-4-クロロ-ベンゾニトリル；
 4-クロロ-2-(2-エチル-3-メチルアミノメチル-フェノキシ)-ベンゾニトリル；
 4-クロロ-2-(3-ジメチルアミノメチル-2-プロピルフェノキシ)-ベンゾニトリル；
 2-(3-アミノメチル-2-プロピル-フェノキシ)-4-クロロ-ベンゾニトリル；
 4-クロロ-2-(3-メチルアミノメチル-2-プロピル-フェノキシ)-ベンゾニトリル；
 2-(2-アリル-4-メチルアミノメチル-フェノキシ)-4-クロロベンゾニトリル；
 4-クロロ-2-(3-ジメチルアミノメチル-4-フルオロフェノキシ)ベンゾニトリル；
 4-クロロ-2-(4-フルオロ-3-メチルアミノメチル-フェノキシ)-ベンゾニトリル；
 2-(2-メトキシ-3-メチルアミノメチル-フェノキシ)-4-トリフルオロメチル-ベンゾニトリル；
 2-(4-メチルアミノメチル-3-フェニル-フェノキシ)-4-トリフルオロメチル-ベンゾニトリル；
 4-クロロ-2-(3-ジメチルアミノメチル-2-メチルスルファニル-フェノキシ)-ベンゾニトリル；
 4-クロロ-2-(3-アミノメチル-2-メチルスルファニル-フェノキシ)-ベンゾニトリル；
 4-クロロ-2-(2-メチルスルファニル-3-メチルアミノメチル-フェノキシ)-ベンゾニトリル；
 4-クロロ-2-(3-ジメチルアミノメチル-2-エチルスルファニル-フェノキシ)-ベンゾニトリル；
 4-クロロ-2-(3-アミノメチル-2-エチルスルファニル-フェノキシ)ベンゾニトリル；
 4-クロロ-2-(2-エチルスルファニル-3-メチルアミノメチル-フェノキシ)ベンゾニトリル；
 およびそれらの製薬上許容しうる塩を含む。

【0022】

特に明記しない限り、本願明細書において表される用語「C_{1~6}のアルキル」は、1~6の炭素原子を有する直鎖または分枝鎖のアルキル基を意味する。このような基の例として、メチル、エチル、n-プロピル、i-プロピル、n-ブチル、i-ブチルおよびt-ブチルが含まれる。

用語「C_{1~3}のアルキル」および「C_{1~4}のアルキル」は類似的に解釈される。

【0023】

特に明記しない限り、本願明細書において表される用語「C_{1~6}のアルコキシ」は、1~6の炭素原子を有する直鎖または分枝鎖のアルコキシ基を意味する。このような基の例として、メトキシ、エトキシ、n-プロポキシ、i-プロポキシおよびt-ブトキシが含まれる。

用語「C_{1~3}のアルコキシ」、「C_{1~4}のアルコキシ」および「C_{1~6}のアルキルチオ」 50

は類似的に解釈される。

【0024】

特に明記しない限り、本願明細書において表される用語「C_{1~3}のヒドロキシアルキル」は、OHで置換されている1~3の炭素原子を有する直鎖または分枝鎖のアルキル基を意味する。このような基の例として、ヒドロキシメチル、1-ヒドロキシエチル、2-ヒドロキシエチルおよび2-ヒドロキシ-2-メチルエチルが含まれる。

【0025】

特に明記しない限り、本願明細書において表される用語「C_{2~6}のアルケニル」は、2~6の炭素原子を有し、かつ炭素-炭素二重結合を含む直鎖または分枝鎖のアルキル基を意味する。このような基の例として、エテニル、1-プロペニル、2-プロペニルおよびブテニルが含まれる。

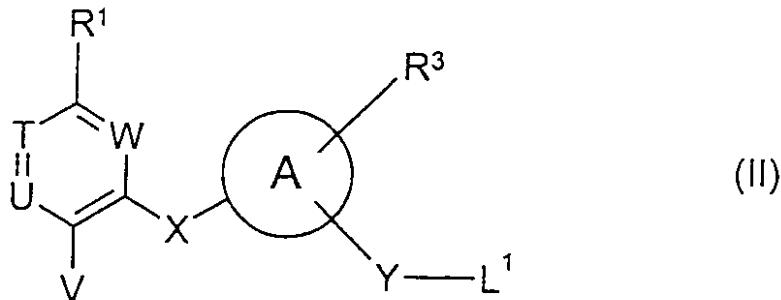
【0026】

特に明記しない限り、本願明細書において表される用語「C_{3~6}のシクロアルキル」は、3~6の炭素原子を有する炭素環式環を意味する。このような基の例として、シクロプロピル、シクロペンチルおよびシクロヘキシルが含まれる。

ハロゲンは、フルオロ、クロロ、ブロモまたはヨードである。

C_{8~10}の芳香族または部分芳香的二環式環系の例として、インダニル、ナフチルおよびテトラヒドロナフチルが含まれる。

O、SまたはNから独立して選択される1~3のヘテロ原子を含む5または6員の芳香族複素環式環の例として、フラン、チオフェン、ピロール、チアゾール、オキサゾール、イミダゾール、ピリジン、ピリミジンおよびピラジンが含まれる。

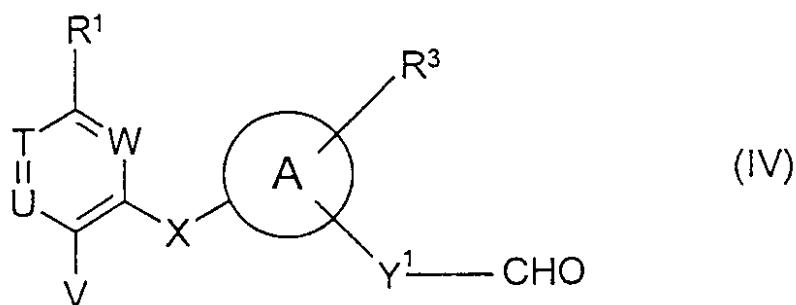

場合によって、さらにOまたはNから選択されるヘテロ原子を一つ含む4~7員の飽和アザ環式環の例として、ピロリジン、ピペリジン、ピペラジン、モルホリンおよびペルヒドロアゼピンが含まれる。

【0027】

本発明によれば、我々はさらに式(I)の化合物の製造方法、またはそれらの製薬上許容しうる塩、それらのエナンチオマーまたはラセミ体の製造方法を提供するものであって、この方法は、

(a) 式(II)

【化5】

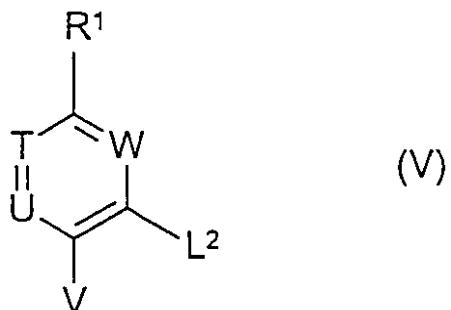

(ここで、A、R¹、R³、T、U、V、W、XおよびYは、式(I)で定義されたとおりであり、L¹は脱離基である)の化合物を、式(III)

H N R⁴ R⁵ (III)

(ここでR⁴およびR⁵は、式(I)で定義されたとおりである)の化合物と反応させ；または

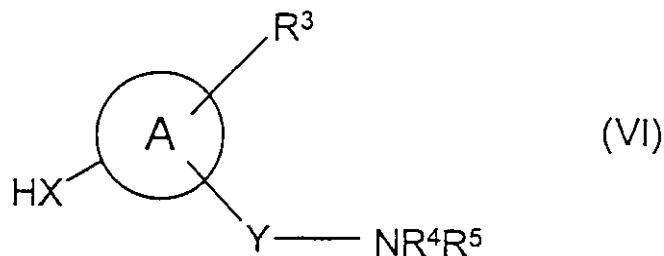
(b) 式(IV)

【化6】



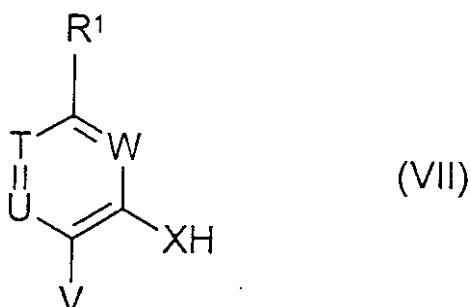
(ここで、A、R¹、R³、T、U、V、WおよびXは式(I)で定義されたとおりであり、Y¹-CH₂は式(I)で定義されたYを示す)の化合物を、式(III)
HNR⁴R⁵ (III)

(ここでR⁴およびR⁵は式(I)で定義されたとおりである)の化合物で還元的にアミノ化し; または


(c) 式(V)

【化7】

(ここで、R¹、T、U、VおよびWは式(I)で定義されたとおりであり、L²は脱離基である)の化合物を、式(VI)


【化8】

(ここで、A、R³、R⁴、R⁵およびYは式(I)で定義されたとおりであり、XはOまたはSである)の化合物と反応させ; または

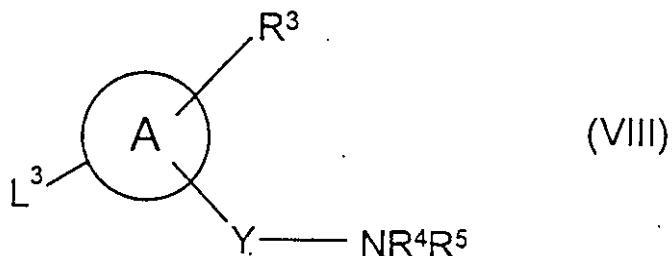
(d) 式(VII)

【化9】

(ここで、R¹、T、U、VおよびWは式(I)で定義されたとおりであり、XはOまたは

10

20

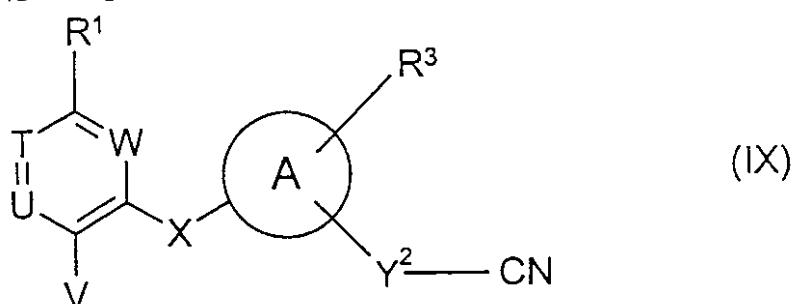

30

40

50

はSである)の化合物を、式(VIII)

【化10】



10

(ここで、A、R³、R⁴、R⁵およびYは式(I)で定義されたとおりであり、L³は脱離基である)の化合物と反応させ；または

(e)式(IX)

【化11】

20

(ここで、A、R¹、R³、T、U、V、WおよびXは式(I)で定義されたとおりであり、(-Y²-CH₂-)基は式(I)で定義されたYを示す)の化合物を還元することにより、式(I)(ここで、R⁴およびR⁵は各々水素を示す)の化合物を製造すること；そして、所望または必要に応じ、生じた式(I)の化合物またはそれらの他の塩をそれらの製薬上許容しうる塩に変換し；または一つの式(I)の化合物を別の式(I)の化合物に変換し；そして所望により生じた式(I)の化合物をそれらの光学異性体に変換することを含む。

30

【0028】

方法(a)において、反応は不活性溶媒中で式(III)のアミンを式(II)の求電子試薬で処理することにより行なわれる。適当な脱離基L¹として、スルホネート、トリフルオロスルホネート、メシレート、トシレートおよびクロライド、プロマイドまたはヨウジドから選択されるハライドが含まれる。該反応は、一般的に、塩基の存在下で行われる。この塩基は過剰のアミン求核試薬でもまたは反応混合物に対する添加物であってもよい。可能な塩基添加物は、金属炭酸塩、特に、例えば炭酸セシウムのようなアルカリ金属炭酸塩、金属酸化物および金属水酸化物、ならびに第3級アミン塩基である。適当な有機溶媒は、例えばアセトニトリル、ジオキサン、N,N-ジメチルホルムアミド、N-メチル-2-ピロリジノン、テトラヒドロフラン、ジメチルスルホオキシド、スルホランおよびC₁~₄のアルコールである。

40

【0029】

方法(b)において、還元的アミノ化反応は、一般的に、当業者に既知の条件下で行われる。例えば、アルデヒド(IV)を不活性溶媒中の還元剤の存在下でアミン(III)で処理する。適当な還元系には、接触的水素化またはボランおよびその誘導体が含まれる。このような試薬の部分的なリストは、“Advanced Organic Chemistry”, J. March (1985) 3rd Edition 799頁に見出すことができる。

【0030】

方法(c)および(d)において、反応は、適当なホスフィンリガンドの存在下で、例えばパラジウム(II)酢酸のような適切なパラジウム供給源を使用するか、またはウルマン

50

カップリング条件下で銅塩を使用して行われる。このようなカップリング反応の適切な条件は、Buchwald et al, J. Amer. Chem. Soc., 1999, 121, 4369-4378の論文に著されている。

別法として、方法(c)において、反応は方法(a)で上記したものと同様の条件下で行われる。

【0031】

方法(e)において、シアノ基の還元は、一般的に当業者に既知の条件下で行われる。これらは、還元剤としての、ジボランの使用または水素および例えはアンモニアのような塩基の存在下でのラネーニッケルの使用を含む。

上記の方法でアミンまたは他の可能性のある反応基の保護が望ましい場合もあることは、当業者には明らかである。適当な保護基およびこのよう基の付加および脱離方法の詳細を、標準的な教科書“Protective Groups in Organic Synthesis”, 3rd Edition (1999) GreeneおよびWutsを参照することで見出しうる。

【0032】

一つの特別な実施態様において、アミン基は、例えはt-ブチルオキシカルバメートのようなカルバメート誘導体として保護される。

本発明は、塩、特に酸付加塩の形態における式(I)の化合物を含む。適当な塩として、有機または無機酸の両方で形成されたものが含まれる。製薬上許容し得ない酸の塩であっても問題となる化合物の製造および精製において有用性を有し得るが、ここで云う酸付加塩は通常は製薬上許容することができるものであるべきである。したがって、好ましい塩には、塩酸、臭化水素酸、硫酸、リン酸、クエン酸、酒石酸、乳酸、ピルビン酸、酢酸、コハク酸、フマル酸、マレイン酸、メタンスルホン酸およびベンゼンスルホン酸から形成されたものが含まれる。

【0033】

式(I)の化合物の塩は、それらの遊離塩基または塩、エナンチオマーまたはラセミ体に一つまたはそれより多くの当量の適当な酸を反応させて形成させることができる。反応は塩が不溶性である溶媒または媒質において、または、塩が可溶の溶媒(例えは水、ジオキサン、エチルアルコール、テトラヒドロフラン、ジエチルエーテルまたは溶媒の混合物中で行いうる。そして、それらは真空中において、または凍結乾燥により除去されうる。反応はまた、メタセシス方法(metathetical process)であってもよく、またはイオン交換樹脂上で実施してもよい。

【0034】

特定の式(II)、(IV)および(IX)の中間体は本発明の別の局面を形成する。

一般に、式(II)、(IV)および(IX)の化合物は、式(I)の化合物の製造のために上記したのと同様の反応を使用して製造されうる。

【0035】

XがS(O)_nを示し、nが1または2である式(I)の化合物は、nが0である対応する式(I)の化合物の酸化により製造されうる。反応は、XがSである式(I)の化合物を不活性溶媒中適当な酸化剤と反応させることにより行われる。反応は、使用される酸化剤、使用される試薬の量および採用される反応条件を正しく選択することにより、対応するスルホオキシド(X=SO)またはスルホン(X=SO₂)が得られるように制御することができる。適当な酸化剤と反応条件は“Advanced Organic Chemistry”, J. March (1985) 3rd Edition 1089-1090頁に述べられている。

【0036】

式(III)、(V)、(VI)、(VII)および(VIII)の化合物は、既知であるか、またはそれ自体知られていて慣用的な方法によって製造してもよい。

中間体化合物は、保護された形態で使用してもよい。保護基およびそれらの脱保護の方法の詳細は、標準的な教科書“Protective Groups in Organic Synthesis”, 3rd Edition (1999) GreeneおよびWutsを参照することで見出しうる。

本発明の化合物およびそれの中間体は、標準的な技術により、反応溶液から必要であれば

10

20

30

40

50

さらに精製して単離してもよい。

【0037】

式(I)の化合物はエナンチオマーの形態で存在してもよい。したがって、すべてのエナンチオマー、ジアステレオマー、ラセミ体およびその混合物は本発明の範囲内に含まれる。さまざまな光学異性体は、慣用的な技術、例えば分別結晶またはHPLCを使用する化合物のラセミ混合物の分離によって単離されうる。

中間体化合物は、また、エナンチオマーの形態で存在してもよく、そして精製されたエナンチオマー、ジアステレオマー、ラセミ体または混合物として使用してもよい。

【0038】

式(I)の化合物およびそれらの製薬上許容しうる塩は、動物における薬理学的活性を有するので有用である。特に、化合物は一酸化窒素合成酵素の阻害剤として活性である。より詳しくは、それらは一酸化窒素合成酵素の誘導型アイソフォームの阻害剤であり、そして、そのようなものとして、例えば抗炎症性薬剤として治療において有用であると予測される。あるいはまたはさらに、それらは、一酸化窒素合成酵素の神経性アイソフォームの阻害剤としての有用性を有しうるもので、そのようなものとして、CNS障害の治療において有用性を有すると予測される。

【0039】

この化合物および製薬上許容しうる塩は、一酸化窒素の合成または過剰合成が一因となる疾患または状態の処置または予防ために示される。一つの局面においては、該化合物はヒトを含む哺乳類の炎症性状態の治療ために示される。他の局面においては、該化合物はヒトを含む哺乳類のCNS障害の治療ために示される。

【0040】

本願明細書で使用する用語「疾患」、「状態」および「障害」のいずれかへの参照は、3つの用語すべてへの参照として解釈される。

特に言及されうる疾患、条件および障害は、

骨関節炎、リウマチ様関節炎、リウマチ様脊椎炎、痛風性の関節炎および他の関節炎状態、炎症を起こした関節；

湿疹、乾癬、皮膚炎または他の炎症性皮膚状態、例えば日焼け；

ブドウ膜炎、緑内障および結膜炎を含む炎症性の眼の状態；

炎症が関与する肺の障害、、例えば喘息、気管支炎、慢性閉塞性肺動脈疾患、ハト愛好家病、農夫肺、急性呼吸切迫症候群；

菌血症、内毒血症(敗血症ショック)、アフタ性潰瘍、歯肉炎、不全麻痺(pyresis)、疼痛、髄膜炎および脳炎；

炎症性腸疾患、クローン病、萎縮性胃炎、バリアロフォーム(varialoforme)胃炎、潰瘍性大腸炎、小児脂肪便症、限局性回腸炎、消化性潰瘍、過敏性大腸症候群、食道炎、感染、例えばヘリコバクターピロリによる、または非ステロイド性抗炎症薬物の治療からの、胃腸管に対する傷害を含む消化管の状態；

および炎症と関連する他の状態である。

【0041】

この化合物は、また、ガンの治療において有用でありうる。

この化合物は、また、急性の痛み、持続的な炎症性の疼痛、神経因性疼痛または中枢起源性の疼痛の治療および緩和において有用でありうる。

特に炎症性腸疾患、リウマチ様関節炎、骨関節炎、慢性閉塞性肺動脈疾患、疼痛および癌の状態に関連するものである。

【0042】

式(I)の化合物および薬学的に受け入れられる塩は、また、前述したそれらに加えて疾患または状態の処置または予防において有用でありうる。例えば、この化合物は動脈硬化症、囊胞性纖維症、敗血症および/または毒素ショックに関連した低血圧の治療において、臓器移植治療における短期免疫抑制に対するアジュバントとして免疫系の機能不全の治療において、糖尿病における膵臓の機能の維持において、糖尿病に関連する血管合併症の治

10

20

30

40

50

療において、およびサイトカイン、例えば、TNF またはインターロイキンとの併用療法において有用でありうる。

【0043】

式(I)の化合物は、例えば、心停止および卒中の場合の低酸素症、虚血、低酸素、低血糖、癲癇および外傷、例えば、脊髄および頭部損傷のような障害における神経変性および/または神経壞死を含む神経変性障害、高圧酸素性痙攣および中毒、初老性痴呆、アルツハイマー病およびADDS-関連痴呆のような痴呆、ジドナム舞踏症、パーキンソン病、トウレット症候群、ハンチントン病、萎縮性側索硬化症、多発性硬化症、筋ジストロフィー、コルサコフ症候群、脳血管障害に関連する痴愚、睡眠障害、統合失調症、鬱病、疼痛、自閉症、季節性気分障害、時差ぼけ、または生理前症候群(PMS)、不安および敗血性ショックと関連した他の症候に有用でありうる。式(I)の化合物は、また、オピエートおよびジアゼピンに対する寛容のような薬物耽溺または寛容性の防止または反転、薬物耽溺の治療、偏頭痛および血管性頭痛の治療、神経原性の炎症、消化管運動障害の治療および分娩誘発において活性を示すと予期されうる。

特に卒中、アルツハイマー病、パーキンソン病、多発性硬化症、統合失調症、偏頭痛、敗血性ショックおよび疼痛の状態；より詳しくは偏頭痛に関連するものである。

【0044】

予防は、特に、問題の疾患または状態の、既往のエピソードに苦しむか、さもなければそのリスクが上昇すると考えられるヒトの処置に特別に関連ある事項と予期されるものである。特定の疾患または状態を発生させるリスクのあるヒトには、一般的にこの疾患または状態の家族歴を有するヒト、またはこの疾患または状態の発生に特に感受性のある遺伝子の試験またはスクリーニングにより同定されるヒトが含まれる。

上述した治療適応症のために、投薬量は、使用化合物、投与方法および所望の処置によってもちろん変化する。しかし、一般的には、化合物が1日1mgから2000mgの間の固体の形態の投薬量で投与される場合に、満足な結果が得られる。

【0045】

式(I)の化合物およびそれらの製薬上許容しうる誘導体は、それら自身で、または、製薬上許容しうるアジュバンド、希釈剤または担体と共に混合物で存在する適当な医薬組成物の形態で使用されうる。投与は、腸内(経口、舌下または直腸を含む)、鼻腔内、吸入、静脈内、局所、または他の非経口経路によってもよいが、これに制限されない。

適当な医薬製剤の選択および製造のための慣用的な方法は、例えば、“*Pharmaceuticals-The Science of Dosage Form Designs*”, M.E.Aulton, Churchill Livingstone, 1988に記載されている。医薬組成物は、式(I)の化合物またはそれらの製薬上許容しうる塩を、好ましくは80%未満、より好ましくは50%未満含む。

【0046】

本発明は、さらに、製薬上許容しうるアジュバンド、希釈剤または担体と一緒にした混合物中の、式(I)の化合物またはそれらの製薬上許容しうる塩を提供する。成分を混合することを含むこのような医薬組成物の製造方法もまた提供される。

式(I)の化合物またはそれらの製薬上許容しうる誘導体は、また、COX阻害剤と組合させて、より詳しくはCOX-2阻害剤と組合させて有利に使用されうる。特に好ましいCOX-2阻害剤は、セレコキシブ(Celecoxib)およびMK-966である。NOS阻害剤およびCOX-2阻害剤は、単一の製剤単位において投与のために同じ医薬組成物中に一緒に処方してもよいし、または各成分が、別個の製剤が同時にまたは連続して投与されてもよいように独立して処方してもよい。

【0047】

本発明は、以下の実施例により例示されるが、これは本発明を決して限定するものではない。

以下の略記号が使用される：

CDI 1,1'-カルボニルジイミダゾール；

DMF N,N-ジメチルホルムアミド；

10

20

30

40

50

DMSO ジメチルスルホキシド；

THF テトラヒドロフラン。

特に明記しない限り、クロマトグラフィーは溶離液としてヘキサン中の酢酸エチルの勾配を使用するシリカゲルカラムで行った。

【0048】

〔製造例1〕

[(3-ヒドロキシフェニル)メチル]カルバミン酸tert-ブチルエステル

3-(アミノメチル)フェノール臭化水素酸塩(20.6mmol、4.2g)をエタノール(80ml)に溶解し、トリエチルアミン(25mmol、3.5ml)、続いてジtert-ブチルジカーボネート(4.8g、22mmol)を加え、そして、反応溶液を4時間攪拌した。溶媒を蒸発することにより除き、水を加え、混合物を酢酸エチルで抽出し、そして硫酸マグネシウム上で乾燥した。溶媒を蒸発させ、残留物を、溶離液として50%の酢酸エチル/イソヘキサンを使用したフラッシュクロマトグラフィーにより精製し、無色の固体(83%、3.8g)として、表題化合物を得た。10

MS (+CI) 124 [M-100+H]⁺

〔実施例1〕

3-(5-メトキシ-2-ニトロフェノキシ)ベンゼンメタンアミン塩酸塩

(2-フルオロ-4-メトキシ)ニトロベンゼン(0.342g) [(3-ヒドロキシフェニル)メチル]カルバミン酸tert-ブチルエステル(0.45g)および無水炭酸カリウム(0.28g)を乾燥DMF(15ml)中で20時間攪拌しながら80で加熱した。反応溶液を冷却し、酢酸エチルと水で分配し、有機層を分離し、水で5回そして塩水で洗浄し、乾燥した(硫酸マグネシウム)。溶媒を蒸発させ、そして残留物を溶離液としてイソヘキサン/エーテル(4:1)を使用したBiotageカラムにより溶出し、粘稠な油状物を得た(生成物のtert-ブチルエステル)。この物質を、ジオキサン(15ml)中の4M塩化水素で2時間攪拌し、乾燥状態に濃縮し、残留物をエーテルで磨碎し、濾過により集め、乾燥した後、クリーム状の固体を得た(80%、0.5g)。20

MS (+CI) 275 [M+H]⁺.

300 MHz ¹H NMR (d₆-DMSO) 8.37 (1H, br. s), 8.17 (1H, d), 7.46 (1H, t), 7.30 (1H, d), 7.23 (1H, d), 7.08 (1H, d of d), 6.98 (1H, d of d), 6.63 (1H, d), 4.03 (2H, br. d), 3.83 (3H, s).30

【0049】

〔実施例2〕

3-(5-メチル-2-ニトロフェノキシ)ベンゼンメタンアミン塩酸塩

3-フルオロ-4-ニトロトルエンから出発し、実施例1の方法を使用して黄色の固体として、表題化合物を製造した。

MS (+CI) 259 [M+H]⁺.

300 MHz ¹H NMR (d₆-DMSO) 8.42 (3H, br. s), 8.02 (1H, d), 7.46 (1H, t) 7.31 (1H, d), 7.22 (2H, m), 7.05 (1H, d of d), 7.0 (1H, d), 4.03 (2H, d), 2.36 (3H, s).

【0050】

〔実施例3〕

3-(5-クロロ-2-ニトロフェノキシ)ベンゼンメタンアミン塩酸塩

2,4-ジクロロニトロベンゼンから出発し、実施例1の方法を使用して黄色の固体として、表題化合物を製造した。

MS (+CI) 279 [M+H]⁺.

400 MHz ¹H NMR (d₆-DMSO) 8.34 (2H, br. s), 8.17 (1H, d), 7.55-7.49 (2H, m), 7.37 (1H, d), 7.30 (1H, s), 7.20-7.11 (2H, m), 4.05 (2H, s).

【0051】

〔実施例4〕

3-(5-フルオロ-2-ニトロフェノキシ)ベンゼンメタンアミン塩酸塩

2,4-ジフルオロニトロベンゼンから出発し、実施例1の方法を使用して黄色の固体として50

、表題化合物を製造した。

MS (+CI) 263 [M+H]⁺.

300 MHz ¹H NMR (d₆-DMSO) 8.36 (2H, br. s), 8.24 (1H, dd), 7.45 (1H, t), 7.38 (1H, d), 7.36-7.24 (2H, m), 7.20 (1H, dd), 7.02 (1H, dd), 4.05 (2H, d).

【0052】

〔実施例5〕

3-(5-メチルアミノ-2-ニトロフェノキシ)ベンゼンメタンアミン塩酸塩

3-(5-フルオロ-2-ニトロフェノキシ)ベンゼンメタンアミンtert-ブチルエステル(塩化水素での最終処理を省略すること以外の実施例4の方法により製造した)(92mg)を室温で、16時間メチルアミン(2M、THF中、2.5mL)で攪拌した。

25%酢酸エチル/ヘキサンで溶出するフラッシュカラムクロマトグラフィーにより精製することで、標題化合物のtert-ブチルエステルを得た。それをジオキサン中の4M塩化水素に溶解し、16時間攪拌した。得られた黄色の固体を濾過し、生成物を得た。

MS (+CI) 274 [M+H]⁺.

300 MHz ¹H NMR (d₆-DMSO) 8.26 (2H, br. s), 8.03 (1H, d), 7.42 (1H, t), 7.22 (1H, d), 7.14 (1H, s), 6.99 (1H, dd), 6.49 (1H, dd), 6.13 (1H, d), 4.02 (2H, q), 2.72 (3H, s).

【0053】

〔実施例6〕

3-(5-メトキシ-2-ニトロフェニルチオ)ベンゼンメタンアミン塩酸塩

a) 3-[(5-メトキシ-2-ニトロフェニル)チオ]安息香酸

(2-フルオロ-4-メトキシ)ニトロベンゼン(0.86g、5mmol)、3-メルカプト安息香酸(0.77g、5mmol)および無水炭酸カリウム(10mmol、1.38g)を乾燥DMF(25mL)中で3時間攪拌しながら80℃で加熱した。反応溶液を低容積に濃縮し、水で希釈し、酢酸エチルで洗浄し、水層を酸性化した。そして、沈殿した生成物を濾過により集め、乾燥し、黄色の固体を得た(1.16g)。

MS(-CI) 304[M-H]⁻

b) 3-[(5-メトキシ-2-ニトロフェニル)チオ]ベンズアミド

ジクロロメタン(30mL)中の3-[(5-メトキシ-2-ニトロフェニル)チオ]安息香酸(0.89g、2.88mmol)を塩化オキサリル(5.8mmol、0.51mL)、続いて乾燥DMF(2滴)で処理し、20時間攪拌した。溶媒および過剰の試薬を蒸発することにより除去し、残留固体を乾燥ジオキサン(50mL)に溶解し、氷で冷却し、アンモニアガスで飽和した。塩化アンモニウムをろ過して除去し、濾液を蒸発した。残留固体をエーテルで磨碎し、薄い黄色の固体(0.72g)を得た。

MS(+CI) 305[M+I]⁺.

c) 3-(5-メトキシ-2-ニトロフェニルチオ)ベンゼンメタンアミン塩酸塩

THF(25mL)中の3-[(5-メトキシ-2-ニトロフェニル)チオ]ベンズアミド(1.97mmol、0.6g)を攪拌しながら、0℃でTHF(10mL、9.86mmol)中の1Mのボランで処理した。透明な溶液を窒素雰囲気下で24時間攪拌しながら、還流下で加熱した。反応溶液を冷却し、5N塩酸(20mL)で処理し、1時間攪拌した。この混合溶液を0℃に冷却し、固体の水酸化カリウムによって塩基性化し、そして酢酸エチルにより抽出した。抽出物を塩水で洗浄し、乾燥した(硫酸マグネシウム)。溶媒を蒸発させ、残留物を溶離液として5%メタノール/ジクロロメタンを用いたシリカカラムで溶出し、黄色の個体を得た(72%、0.414g)。

。

MS (+CI) 291 [M+H]⁺.

300 MHz ¹H NMR (d₆-DMSO) 8.30 (1H, d), 7.63 (1H, d), 7.45-7.56 (3H, m), 6.95 (1H, d of d), 6.16 (1H, d), 3.77 (2H, s), 3.66 (3H, s), 1.98 (2H, br. s).

【0054】

〔実施例7〕

2-[3-(アミノメチル)フェノキシ]-4-クロロベンゾニトリル塩酸塩

10

20

30

40

50

a) 4-クロロ-2-(3-アミノメチル-2-フェノキシ)安息香酸塩酸塩

2,4-ジクロロ安息香酸(191mg)および1,1-ジメチルエチル[(3-ヒドロキシフェニル)メチル]カルバメート(249mg)をメタノール(15ml)に溶解し、メタノール(0.26ml)中の25%ナトリウムメトキシドで処理した。反応溶液を、蒸発させ乾燥し、乾燥ジオキサン(10ml)続いて塩化銅(1)(10mg)およびトリス[2-(2-メトキシエトキシ)エチル]アミン(TDA-1、0.032ml)で処理し、そして8時間攪拌しながら還流下で加熱した。反応を週末にかけてそのまま放置し、乾燥状態に濃縮し、水に溶解し、そして酢酸エチルで洗浄した。水層を希塩酸で酸性化し、そして乾燥した(硫酸マグネシウム)酢酸エチルに抽出した。溶媒を蒸発させ、そして、残った粘稠な油状物をジオキサン(10ml)中の4Mの塩化水素で1時間攪拌した。沈殿した固体を濾過により集め、エーテルで洗浄し、乾燥し、無色の固体として副題化合物(95mg)を得た。

¹H NMR 300 MHz (d₆-DMSO) 13.1 (1H, br. s), 8.37 (3H, br. s), 7.89 (1H, d), 7.44 (1H, t), 7.36 (1H, dd), 7.28 (1H, d), 7.19 (1H, d), 7.00 (2H, m), 4.02 (2H, d).
MS APCI +ve m/z 278([M+H]⁺).

【0055】

b) 2-[3-(アミノメチル)フェノキシ]-4-クロロベンゾニトリル塩酸塩

アセトニトリル(20ml)中の工程(a)からの生成物(542mg)をCDI(235mg)で処理し、2時間攪拌した。溶液を氷中で冷却し、アンモニアガスで飽和し、1時間攪拌した。反応溶液をジクロロメタンで希釈し、水、重炭酸ナトリウム水溶液、そして塩水で洗浄し、そして乾燥させた(硫酸マグネシウム)。溶媒を蒸発させ、1,1-ジメチルエチル{[3-[2-(アミノカルボニル)-5-クロロフェノキシ]フェニル]メチル}カルバメート(490mg)をゴム状物として得た。

ジクロロメタン(10ml)中の上記のアミド(490mg)およびトリエチルアミン(0.37ml)を0~5で攪拌しながらジクロロメタン(10ml)中のトリクロロアセチルクロリド(0.16ml)で滴下処理した。0.5時間後、さらにトリクロロアセチルクロリド(0.8ml)を加え、そして0.25時間攪拌し続けた。反応溶液を重炭酸ナトリウム水溶液、希塩酸、水、そして塩水で洗浄し、そして乾燥した(硫酸マグネシウム)。溶媒を蒸発させ、そして残留物をクロマトグラフィー(シリカゲル、溶離液としてジクロロメタン)により精製し、1,1-ジメチルエチル{[3-(5-クロロ-2-シアノフェノキシ)フェニル]メチル}カルバメート(240mg)を無色の固体として得た。

MS APCI+ve^{m/z} 259/261([M+H]⁺-Boc)

上記のシアノ化合物(240mg)を1時間ジオキサン(10ml)中の4M塩化水素で攪拌し、そして、沈殿した生成物を濾過により集め、エーテルで洗浄し、そして乾燥し、無色の固体として表題化合物(122mg)を得た。

MS APCI +ve m/z 259 ([M+H]⁺).

¹H NMR 300 MHz (d₆-DMSO) 8.41 (3H, br. s), 8.0 (1H, d), 7.55 (1H, t), 7.43 (2H, dd), 7.36 (1H, m), 7.25 (1H, dd), 6.99 (1H, d), 4.07 (2H, br s).

【0056】

[実施例8]

4-クロロ-2-[3-ヒドロキシ-5-[(メチルアミノ)メチル]フェノキシ]ベンゾニトリル

a) 4-クロロ-2-[3-ヒドロキシ-5-(ヒドロキシメチル)フェノキシ]ベンゾニトリル

乾燥DMF(70ml)中の炭酸セシウム(11.62g)の攪拌溶液に5-(ヒドロキシメチル)-1,3-ベンゼンジオール(5g)、続いて4-クロロ-2-フルオロベンゾニトリル(5g)を加えた。そして混合物を攪拌し、3時間120で加熱した。そして冷却された混合物を水(200ml)に注ぎ、そして、2M塩酸水溶液を加え酸性化した。生成物を酢酸エチル(3×150ml)に抽出し、そして、混合した抽出溶液を10%の炭酸カリウム水溶液(100ml)で洗浄した。有機抽出溶液を集め、乾燥し(硫酸マグネシウム)、そして乾燥状態に濃縮した。残留物にジエチルエーテルを加え、そして混合物を濾過した。濾液を乾燥状態に濃縮し、クロマトグラフィー(シリカ、70%のジエチルエーテル/イソヘキサン)により精製し、ジエチルエーテルで磨碎した後、副題化合物(800mg)を得た。

10

20

30

40

50

300 MHz ^1H NMR (d_6 -DMSO) 9.80 (1H, s), 7.95 (1H, d), 7.38 (1H, dd), 6.98 (1H, d), 6.7 (1H, s), 6.52 (1H, s), 6.4 (1H, t), 5.22 (1H, t), 4.43 (2H, d).

【0057】

b) 4-クロロ-2-[3-ヒドロキシ-5-[(メチルアミノ)メチル]フェノキシ]ベンゾニトリル
工程(a)からの生成物 (0.5g) を塩化チオニル (20mL) で処理し、混合物を1.5時間室温で攪拌した。過剰の試薬を減圧下で除去し、そして残った油をメタノール (20mL) に溶解した。溶液を過剰のメチルアミンで処理し、そして1時間室温で攪拌した。溶媒を減圧下で除去し、クロマトグラフィー(シリカ、10%メタノール/ジクロロメタン中の7Mアンモニア)によって精製し、表題化合物 (195mg) を無色の固体として得た。

MS (+CI) 289 [M+H]⁺.

10

300 MHz ^1H NMR (d_6 -DMSO) 7.94 (1H, d), 7.38 (1H, dd), 6.97 (1H, d), 6.67 (1H, m), 6.55 (1H, s), 6.4 (1H, t), 3.56 (2H, s), 2.23 (3H, s).

【0058】

〔実施例9〕

4-クロロ-2-[3-メトキシ-5-[(メチルアミノ)メチル]フェノキシ]ベンゾニトリルオキサレート

a) 4-クロロ-2-(3-ホルミル-5-ヒドロキシフェノキシ)ベンゾニトリル

水素化ナトリウム (502mg、60%、鉱油中) をDMF中の4-クロロ-2-フルオロベンゾニトリル (2.04g) および3,5-ジヒドロキシベンズアルデヒド (1.81g) に滴下し、溶液を16時間80℃で加熱した。冷却された溶液を水で希釈し、そして濃塩酸で酸性化し、酢酸エチルで2回抽出し、抽出溶液を硫酸ナトリウムで乾燥し、蒸発させた。クロマトグラフィーにより精製し、副題化合物を白色の固体 (0.83g) として得た。

20

300 MHz ^1H NMR (CDCl_3) 9.92 (1H, s), 7.63 (1H, d), 7.23-7.22 (2H, m), 7.13 (1H, m), 6.94 (1H, s), 6.88 (1H, t), 5.52 (1H, br. s)

b) 4-クロロ-2-(3-ホルミル-5-メトキシフェノキシ)ベンゾニトリル

DMF (5mL) 中の4-クロロ-2-(3-ホルミル-5-ヒドロキシフェノキシ)ベンゾニトリル (0.75mmol、0.20g) を、水素化ナトリウム (60%、鉱油中、30mg、0.78mmol)、10分後引き続き、ヨウ化メチル (0.1mL) で処理した。16時間後、さらにナトリウム水素化物 (8mg) およびヨウ化メチル (0.1mL) を加えた。3時間後、混合物を水で希釈し、酢酸エチルで抽出し、抽出溶液を水で洗浄し、硫酸ナトリウムで乾燥し、そして蒸発させ、副題化合物を薄い黄色の固体 (213mg) として得た。

30

300 MHz ^1H NMR (CDCl_3) 9.95 (1H, s), 7.63 (1H, d), 7.31-7.26 (1H, m), 7.22-7.15 (2H, m), 6.93-6.91 (2H, m), 3.90 (3H, s).

c) 4-クロロ-2-[3-メトキシ-5-[(メチルアミノ)メチル]フェノキシ]ベンゾニトリルオキサレート

4-クロロ-2-(3-ホルミル-5-メトキシフェノキシ)ベンゾニトリル (210mg) を、16時間40%のメチルアミン水溶液 (2mL) およびメタノール (2mL) 中で攪拌した。溶液を蒸発させ、そしてトルエンと共に沸させた。残留物をエタノールに溶かし、そして水素化ホウ素ナトリウム (39mg) を滴下し、2時間攪拌した。混合物を水で希釈し、酢酸エチルで2回抽出し、混合した抽出溶液を硫酸ナトリウムで乾燥し、蒸発させた。エタノール中のシウウ酸 (58mg) を加え、表題化合物 (187mg) を白色の固体として濾過により集めた。

MS (+CI) 303 [M+H]⁺

40

400 MHz ^1H NMR (d_6 -DMSO) 7.99 (1H, d), 7.45 (1H, d), 7.43 (1H, d), 7.07 (1H, d), 7.01 (1H, br. s), 6.91 (1H, t), 6.85 (1H, br. s), 4.09 (2H, s), 3.81 (3H, s), 2.55 (3H, s).

【0059】

〔実施例10〕

4-クロロ-2-(3-メチルアミノエチル-フェノキシ)-ベンゾニトリルフマレート

a) 4-クロロ-2-(3-ホルミル-フェノキシ)-ベンゾニトリル

4-クロロ-2-フルオロベンゾニトリル (1.00g、6.43mmol)、3-ヒドロキシベンズアルデ

50

ヒド (0.79 g、6.43mmol)、および炭酸セシウム (2.09 g、6.43mmol) を23時間乾燥DMF (5ml) 中で攪拌しながら50℃に加熱した。反応溶液を冷却し、水に注ぎ、そして酢酸エチルで抽出した。酢酸エチル層を分離し、水(3X)、10%炭酸ナトリウム水溶液(2X)、水、塩水で洗浄し、そして硫酸マグネシウムで乾燥した。濾過の後、溶媒を真空下で除去し、4-クロロ-2-(3-ホルミル-フェノキシ)-ベンゾニトリル (1.52 g、91%) を黄色の油状物として得たがこれは固化した。

¹H NMR (300 MHz, CDCl₃) 10.02 (1H, s), 7.78 (1H, d), 7.67-7.56 (3H, m), 7.40 (1H, dd), 7.20 (1H, dd), 6.87 (1H, d).

【0060】

b) 4-クロロ-2-(3-メチルアミノメチル-フェノキシ)-ベンゾニトリルフマレート 10
4-クロロ-2-(3-ホルミル-フェノキシ)-ベンゾニトリル (0.52 g、2.02mmol)、メチルアミン (2M、メタノール中、1.0ml、2.0mmol)、そして、水素化シアノホウ素ナトリウム (0.14 g、2.2mmol) を18時間1%の酢酸/メタノール溶液 (30ml) 中で周囲温度で攪拌した。溶媒を真空下で除去した。残留物を10%炭酸ナトリウム水溶液で処理し、そして酢酸エチルで抽出した。酢酸エチル層を分離し、そして水、塩水で洗浄し、硫酸マグネシウムで乾燥した。濾過の後、フマル酸 (0.23 g、2.0mmol) を濾液に加え、真空下で溶媒を除去した。残留物を一晩酢酸エチルで磨碎し、濾過し、乾燥し、4-クロロ-2-(3-メチルアミノメチル-フェノキシ)-ベンゾニトリルフマレート (454mg、58%) を白色の固体として得た。

MS (APCI+) 273/275 [M+1]⁺.

¹H NMR (300 MHz, d₆-DMSO) 7.97 (1H, d), 7.52 (1H, t), 7.41 (1H, dd), 7.37 (1H, br d), 7.31 (1H, br s), 7.22 (1H, dd), 6.99 (1H, d), 6.47 (2H, s), 4.01 (2H, s), 2.45 (3H, s).

【0061】

〔実施例11〕

4-クロロ-2-(4-メトキシ-3-メチルアミノメチル-フェノキシ)-ベンゾニトリルフマレート
a) 5-ヒドロキシ-2-メトキシベンズアルデヒド

濃硫酸 (110ml) を氷水浴で冷却しながら2,5-ジメトキシベンズアルデヒド (20.17 g、0.121mol) に加えた。得られた赤い懸濁溶液を46時間50℃で攪拌した。反応内容物を氷上に注ぎ、そしてジエチルエーテルで抽出した。エーテル層を1N水酸化ナトリウム (200ml) で抽出した。塩基性の抽出溶液を3N塩酸の添加により酸性化し、そしてジエチルエーテル (2X) で抽出した。エーテル抽出溶液を合体し、そして硫酸マグネシウムで乾燥した。濾過の後、溶媒を真空下で除去し、5-ヒドロキシ-2-メトキシベンズアルデヒド (5.85 g、32%) をオレンジ色の固体として得た。

MS (APCI+) 153 [M+1]⁺.

¹H NMR (300 MHz, CDCl₃) 10.40 (1H, s), 7.37 (1H, d), 7.13 (1H, dd), 6.91 (1H, d), 5.88 (1H, br s), 3.89 (3H, s)

【0062】

b) 4-クロロ-2-(3-ホルミル-4-メトキシ-フェノキシ)-ベンゾニトリル

4-クロロ-2-フルオロベンゾニトリル (0.60 g、3.9mmol)、5-ヒドロキシ-2-メトキシベンズアルデヒド (0.59 g、3.9mmol) および炭酸セシウム (1.26 g、3.9mmol) を乾燥DMF (4ml) 中で17時間攪拌しながら50℃で加熱した。反応溶液を冷却し、水に注ぎ、そして酢酸エチルで抽出した。酢酸エチル層を分離し、水、10%炭酸ナトリウム水溶液(2X)、水(2X)、塩水で洗浄し、そして硫酸マグネシウム上で乾燥した。濾過の後、溶媒を真空下で除去し4-クロロ-2-(3-ホルミル-4-メトキシ-フェノキシ)-ベンゾニトリル (1.01 g、90%) を黄色の固体として得た。

¹H NMR (300 MHz, d₆-DMSO) 10.33 (1H, s), 7.96 (1H, d), 7.61 (1H, dd), 7.47 (1H, d), 7.39 (1H, br s), 7.36 (1H, br s), 6.94 (1H, d), 3.97 (3H, s).

【0063】

c) 4-クロロ-2-(4-メトキシ-3-メチルアミノメチル-フェノキシ)-ベンゾニトリルフマ 50

レート

4-クロロ-2-(3-ホルミル-4-メトキシ-フェノキシ)-ベンゾニトリル(1.00g、3.48mmol)、メチルアミン(2M、メタノール中、5.2ml、10.4mmol)および水素化シアノホウ素ナトリウム(0.24g、3.8mmol)を18時間1%酢酸/メタノール溶液(75ml)中で周囲温度で攪拌した。溶媒を真空下で除去した。残留物を10%炭酸ナトリウム水溶液で処理し、そして酢酸エチルで抽出した。酢酸エチル層を分離し、そして水、塩水で洗浄し、硫酸マグネシウム上で乾燥した。濾過の後、フマル酸(0.40g、3.4mmol)を濾液に加え、真空下で溶媒を除去した。残留物を一晩酢酸エチルで磨碎し、濾過し、そして乾燥し、4-クロロ-2-(3-メチルアミノメチル-フェノキシ)-ベンゾニトリルフマルレート(892mg、61%)を白色の固体として得た。

10

MS (APCI+) 303/305 [M+1]⁺.

¹H NMR (300 MHz, d₆-DMSO) 7.94 (1H, d), 7.37-7.23 (3H, m), 7.15 (1H, d), 6.82 (1H, br s), 6.46 (2H, s), 3.94 (2H, s), 3.86 (3H, s), 2.45 (3H, s).

【0064】

〔実施例12〕

4-クロロ-2-(2-メトキシ-3-メチルアミノメチル-フェノキシ)-ベンゾニトリルフマルレート

a) 3-ヒドロキシ-2-メトキシ-ベンズアルデヒド

乾燥DMF(10ml)中の2,3-ジヒドロキシベンズアルデヒド(1.00g、7.24mmol)、炭酸カリウム(1.00g、7.24mmol)およびヨードメタン(1.34g、0.59ml、9.4mmol)を19時間周囲温度で攪拌した。反応溶液を冷却し、水に注ぎ、そして酢酸エチルで抽出した。酢酸エチル層を1N水酸化ナトリウム水溶液(3X)で抽出した。塩基性の抽出溶液を合体し、3N塩酸の添加により酸性化し、そして酢酸エチルで抽出した。酢酸エチル層を水(4X)、塩水で洗浄し、乾燥した(硫酸マグネシウム)。濾過の後、溶媒を真空下で除去し、3-ヒドロキシ-2-メトキシ-ベンズアルデヒド(0.68g、62%)を黄褐色の固体として得た。

MS (APCI+) 153 [M+1]⁺.

20

¹H NMR (300 MHz, CDCl₃) 10.27 (1H, s), 7.37 (1H, dd), 7.26-7.21 (1H, m), 7.15 (1H, d), 5.80 (1H, s), 3.97 (3H, s).

【0065】

b) 4-クロロ-2-(3-ホルミル-2-メトキシ-フェノキシ)-ベンゾニトリル

30

4-クロロ-2-フルオロベンゾニトリル(0.65g、4.2mmol)、3-ヒドロキシ-2-メトキシベンズアルデヒド(0.64g、4.2mmol)および炭酸セシウム(1.37g、4.2mmol)を乾燥DMF(4ml)中で18時間攪拌しながら50℃で加熱した。反応溶液を冷却し、水に注ぎ、そして酢酸エチルで抽出した。酢酸エチル層を分離し、水(2X)、10%炭酸ナトリウム水溶液(2X)、水および塩水で洗浄し、そして硫酸マグネシウムで乾燥した。濾過の後、溶媒を真空下で除去し、4-クロロ-2-(3-ホルミル-4-メトキシ-フェノキシ)-ベンゾニトリル(1.09g、90%)を黄褐色の固体として得た。

¹H NMR (300 MHz, CDCl₃) 10.41 (1H, s), 7.80 (1H, dd), 7.62 (1H, d), 7.40 (1H, dd), 7.30 (1H, d), 7.15 (1H, dd), 6.69 (1H, d), 4.01 (3H, s).

40

【0066】

c) 4-クロロ-2-(2-メトキシ-3-メチルアミノメチル-フェノキシ)-ベンゾニトリルフマルレート

4-クロロ-2-(3-ホルミル-2-メトキシ-フェノキシ)-ベンゾニトリル(0.52g、1.8mmol)、メチルアミン(2M、メタノール中、2.7ml、5.4mmol)および水素化シアノホウ素ナトリウム(0.13g、2.1mmol)を1%酢酸/メタノール溶液(70ml)中で20時間周囲温度で攪拌した。溶媒を真空下で除去した。残留物を10%炭酸ナトリウム水溶液で処理し、そして酢酸エチルで抽出した。フマル酸(0.21g、1.8mmol)を分離した酢酸エチル層に加え、そして溶媒を真空下で除去した。残留物を一晩酢酸エチルで磨碎し、濾過し、そして乾燥し、4-クロロ-2-(2-メトキシ-3-メチルアミノメチル-フェノキシ)-ベンゾニトリルフマルレート(583mg、77%)を白色の固体として得た。

50

MS (APCI+) 303/305 [M+1]⁺.

¹H NMR (300 MHz, d₆-DMSO) 7.97 (1H, d), 7.45 (1H, dd), 7.36 (1H, dd), 7.27-7.23 (2H, m), 6.78 (1H, d), 6.49 (2H, s), 3.95 (2H, s), 3.79 (3H, s), 2.45 (3H, s).

【0067】

[実施例13]

4-クロロ-2-(2-メトキシ-4-メチルアミノメチル-フェノキシ)-ベンゾニトリルフマレート

a) 4-クロロ-2-(4-ホルミル-2-メトキシ-フェノキシ)-ベンゾニトリル

4-クロロ-2-フルオロベンゾニトリル (0.60 g、3.9mmol)、バニリン (0.59 g、3.9mmol) および炭酸セシウム (1.26 g、3.9mmol) を乾燥DMF (4 ml) 中で22時間攪拌しながら50 10 で加熱した。反応溶液を冷却し、水に注ぎ、そして酢酸エチルで抽出した。酢酸エチル層を分離し、水、10%の炭酸ナトリウム水溶液 (2X)、水 (2X)、塩水で洗浄し、そして硫酸マグネシウムで乾燥した。濾過の後、溶媒を真空下で除去し、4-クロロ-2-(4-ホルミル-2-メトキシ-フェノキシ)-ベンゾニトリル (0.98 g、88%) をオフホワイトの固体として得た。

¹H NMR (300MHz, CDCl₃) 9.99 (1H, s), 7.61-7.51 (3H, m), 7.27 (1H, d), 7.14 (1H, dd), 6.70 (1H, d), 3.88 (3H, s).

【0068】

b) 4-クロロ-2-(2-メトキシ-4-メチルアミノメチル-フェノキシ)-ベンゾニトリルフマレート

4-クロロ-2-(4-ホルミル-2-メトキシ-フェノキシ)-ベンゾニトリル (0.98 g、3.4mmol)、メチルアミン (2 M、メタノール中、5.1ml、10.2mmol) および水素化シアノホウ素ナトリウム (0.24 g、3.8mmol) を1%の酢酸/メタノール溶液 (125ml) 中で20時間周囲温度で攪拌した。溶媒を真空下で除去した。残留物を10%の炭酸ナトリウム水溶液で処理し、そして酢酸エチルで抽出した。フマル酸 (0.41 g、3.5mmol) を分離された酢酸エチル層に加え、真空下で溶媒を除去した。残留物を一晩酢酸エチルで磨碎し、濾過し、そして乾燥し、4-クロロ-2-(2-メトキシ-4-メチルアミノメチル-フェノキシ)-ベンゾニトリルフマレート (80%、1.14 g) を白い固体として得た。

MS (APCI+) 303/305 [M+1]⁺.

¹H NMR (300 MHz, d₆-DMSO) 7.92 (1H, d), 7.37 (1H, br s), 7.31 (1H, dd), 7.26 (1H, d), 7.09 (1H, d), 6.62 (1H, d), 6.49 (2H, s), 3.94 (2H, s), 3.76 (3H, s), 2.45 (3H, s).

【0069】

[実施例14]

4-クロロ-2-(3-メトキシ-4-メチルアミノメチル-フェノキシ)-ベンゾニトリルフマレート

a) 4-クロロ-2-(4-ホルミル-3-メトキシ-フェノキシ)-ベンゾニトリル

4-クロロ-2-フルオロベンゾニトリル (0.60 g、3.9mmol)、4-ヒドロキシ-2-メトキシベンズアルデヒド (0.59 g、3.9mmol) および炭酸セシウム (1.26 g、3.9mmol) を乾燥DMF (4 ml) 中で21時間攪拌しながら50 40 で加熱した。反応溶液を冷却し、水に注ぎ、そして酢酸エチルで抽出した。酢酸エチル層を分離し、水、10%炭酸ナトリウム水溶液 (2X)、水 (2X)、塩水で洗浄し、そして硫酸マグネシウムで乾燥した。濾過の後、溶媒を真空下で除去し、4-クロロ-2-(4-ホルミル-3-メトキシ-フェノキシ)-ベンゾニトリル (0.93 g、83%) をオレンジ色の固体として得た。

¹H NMR (300 MHz, CDCl₃) 10.40 (1H, s), 7.89 (1H, d), 7.64 (1H, d), 7.24 (1H, dd), 7.02 (1H, d), 6.74 (1H, d), 6.63 (1H, dd), 3.93 (3H, s).

【0070】

b) 4-クロロ-2-(3-メトキシ-4-メチルアミノメチル-フェノキシ)-ベンゾニトリルフマレート

4-クロロ-2-(4-ホルミル-3-メトキシ-フェノキシ)-ベンゾニトリル (0.93 g、3.2mmol) 50

)、メチルアミン (2 M、メタノール中、4.8ml、9.6mmol) および水素化シアノホウ素ナトリウム (0.22g、3.6mmol) を1%の酢酸/メタノール溶液 (125ml) 中で20時間周囲温度で攪拌した。溶媒を真空下で除去した。残留物を10%炭酸ナトリウム水溶液で処理し、そして酢酸エチルで抽出した。フマル酸 (3.4mmol、0.40g) を分離した酢酸エチル層に加え、溶媒を真空下で除去した。残留物を一晩酢酸エチルで磨碎し、濾過し、そして乾燥し、4-クロロ-2-(2-メトキシ-メチルアミノメチル-フェノキシ)-ベンゾニトリルフマル酸エステル (782mg、58%) を白い固体として得た。

MS (APCI+) 303/305 [M+1]⁺.

¹H NMR (300 MHz, d₆-DMSO) 7.96 (1H, d), 7.46 (1H, d), 7.39 (1H, dd), 6.99-6.95 (2H, m), 6.76 (1H, dd), 6.47 (2H, s), 3.91 (2H, s), 3.83 (3H, s), 2.44 (3H, s). 10

【0071】

〔実施例15〕

2-(4-ブロモ-3-メチルアミノメチル-フェノキシ)-4-トリフルオロメチル-ベンゾニトリルフマレート

a) 2-(4-ブロモ-3-ホルミル-フェノキシ)-4-トリフルオロメチル-ベンゾニトリル フラスコを2-フルオロ-4-(トリフルオロメチル)ベンゾニトリル (3.78g、2mmol)、2-ブロモ-4-ヒドロキシ-ベンズアルデヒド (4.02g、2mmol)、炭酸セシウム (6.5g、2mmol) およびDMF (40ml) で満たした。混合物を40℃で一晩攪拌した。DMFを蒸発させ、残留物を酢酸エチルと5%炭酸水素ナトリウム水溶液に分配した。有機層を硫酸マグネシウムで乾燥した。蒸発させることにより茶色の油状物を得たが、これは固化し茶色の固体 (7.2g、97%) を得た。 20

¹H NMR (300 MHz, CDCl₃) 10.34 (1H, s), 7.84 (1H, d), 7.74 (1H, d), 7.58 (1H, d), 7.49 (1H, d), 7.25 (1H, m), 7.12 (1H, s).

【0072】

b) 2-(4-ブロモ-3-メチルアミノメチル-フェノキシ)-4-トリフルオロメチル-ベンゾニトリルフマレート

2-(4-ブロモ-3-ホルミル-フェノキシ)-4-トリフルオロメチル-ベンゾニトリル (550mg、1.5mmol) にメタノール中の2Mメチルアミン溶液 (4.5mmol、2.25ml) およびメタノール (25ml) 中の1%酢酸を加えた。水素化ホウ素ナトリウム (104mg、1.1当量) を加えた。反応溶液を室温で一晩攪拌した。メタノールを蒸発させ、そして残留物を酢酸エチルと5%炭酸ナトリウム水溶液に分配した。有機層にフマル酸 (174mg) を加え、溶液を一晩攪拌した。沈殿した白色の固体をろ過し、表題化合物 (200mg、27%) を得た。 30

¹H NMR (300 MHz, d₆-DMSO) 8.18 (1H, d), 7.69 (2H, m), 7.43 (1H, s), 7.29 (1H, s), 7.13 (1H, m), 6.51 (2H, s), 3.88 (2H, d), 2.37 (2H, s).

MS (APCI+): 385.1, 387.09.

【0073】

〔実施例16〕

2-(2-メチルアミノメチル-ビフェニル-4-イルオキシ)-4-トリフルオロメチル-ベンゾニトリルフマレート

a) 2-(2-ホルミル-ビフェニル-4-イルオキシ)-4-トリフルオロメチル-ベンゾニトリル : 40

ジメトキシエタン (15ml) 中の2-(4-ブロモ-3-ホルミル-フェノキシ)-4-トリフルオロメチル-ベンゾニトリル (1.76g、4.76mmol) およびPd(dba)₃ (21.8mg、5モル%) の混合物に水中 (10ml) のフェニルボロン酸溶液 (609mg、5mmol)、トリフェニルホスフィン (12モル%、15mg)、およびの炭酸ナトリウム (5mmol、530mg) を加えた。混合物を3時間還流した。溶媒を蒸発させ、そして水層をジクロロメタンで抽出した。抽出物を硫酸マグネシウムで乾燥し、そしてシリカでろ過した。蒸発させ、茶色の固体 (1.73g、99%) を得た。 40

¹H NMR (300 MHz) (d₆-DMSO) 9.86 (1H, s), 8.23 (1H, d), 7.78 (1H, d), 7.51-7.65 (8H, m).

【0074】

b) 2-(2-メチルアミノメチル-ビフェニル-4-イルオキシ)-4-トリフルオロメチル-ベンゾニトリル
 2-(2-ホルミル-ビフェニル-4-イルオキシ)-4-トリフルオロメチル-ベンゾニトリル (550mg, 1.5mmol) にメタノール中の 2M メチルアミン溶液 (2.25mL, 4.5mmol)、およびメタノール (25mL) 中の 1% 酢酸を加えた。水素化ホウ素ナトリウム (104mg, 1.1当量) を加えた。混合物を室温で一晩攪拌した。メタノールを蒸発させ、そして残留物を酢酸エチルと 5% 炭酸ナトリウム水溶液に分配した。有機層にフマル酸 (174mg) を加え、溶液を一晩攪拌した。沈殿した白色の固体を濾過し、表題化合物 (50%、300mg) を得た。

¹H NMR (300 MHz) (d₆-DMSO) 8.19 (1H, d), 7.71 (1H, d), 7.33-7.48 (8H, m), 7.25 (1H, m), 6.49 (2H, s), 3.78 (2H, s), 2.27 (3H, s).

MS (BPI Smooth/APCI+): 100% 383.5.

【0075】

〔実施例17〕

4-クロロ-2-[2-ヒドロキシ-3-(メチルアミノメチル)フェノキシ]ベンゾニトリルフマレート

a) 4-クロロ-2-(3-ホルミル-ヒドロキシフェノキシ)-ベンゾニトリル

DMSO (25mL) 中の 2,3-ジヒドロキシベンズアルデヒド溶液 (3.03g, 21.9mmol) に水素化ナトリウム (1.97g, 49.2mmol、鉛油中の 60% 懸濁液) を加えた。45分後、4-クロロ-2-フルオロベンゾニトリル (3.41g, 21.9mmol) を加え、そして反応混合物を 24 時間周囲温度で攪拌した。反応混合物を 5% 塩化アンモニウム溶液に注ぎ、そして酢酸エチルで 2 回抽出した。分離された酢酸エチル層を合体し、そして 1N 塩酸 (2X)、水 (2X)、塩水 (1X) で洗浄し、そして硫酸マグネシウム上で乾燥した。濾過の後、溶媒を真空下で除去し黄色の固体 (5.88g) を得、それをヘキサンで磨碎し、4-クロロ-2-(3-ホルミル-2-ヒドロキシフェノキシ)-ベンゾニトリル (4.62g, 77%) を黄色の固体として得た。

MS (APCI+) 274 [M+1]⁺.

¹H-NMR (300 MHz, CDCl₃): 11.11 (1H, s), 9.98 (1H, s), 7.62-7.54 (2H, m), 7.44 (1H, br d), 7.15-7.07 (2H, m), 6.70 (1H, d).

【0076】

b) 4-クロロ-2-[2-ヒドロキシ-3-(メチルアミノメチル)フェノキシ]ベンゾニトリルフマレート

4-クロロ-2-(3-ホルミル-2-ヒドロキシフェノキシ)-ベンゾニトリル (0.30g, 1.10mmol)、メチルアミン (2M、メタノール中、2.5mL, 5.0mmol) および水素化シアノホウ素ナトリウム (0.10g, 1.6mmol) を 1% 酢酸 / メタノール溶液 (35mL) 中で 19 時間の周囲温度で攪拌した。溶媒を真空下で除去した。残留物を飽和炭酸水素ナトリウム溶液で処理し、そして酢酸エチルで抽出した。酢酸エチル層にフマル酸 (0.12g, 1.03mmol) を加え、真空下で溶媒を除去した。残留物を一晩酢酸エチルで磨碎し、濾過により集め、そして乾燥し、4-クロロ-2-[2-ヒドロキシ-3-(メチルアミノメチル)フェノキシ]-ベンゾニトリルフマレート (256mg, 58%) を白い固体として得た。

MS (APCI+) 289/291 [M+1]⁺.

¹H-NMR (300 MHz, d₆-DMSO): 7.88 (1H, d), 7.25 (1H, dd), 7.12 (1H, s), 7.10 (1H, s), 6.81 (1H, br t), 6.62 (1H, br s), 6.47 (2H, s), 4.00 (2H, s), 2.37 (3H, s)

【0077】

〔実施例18〕

4-クロロ-2-[2-エトキシ-3-(メチルアミノメチル)フェノキシ]ベンゾニトリルフマレート

a) 2-エトキシ-3-ヒドロキシベンズアルデヒド

2,3-ジヒドロキシベンズアルデヒド (1.12g, 8.11mmol)、炭酸カリウム (1.12g, 8.11mmol) およびヨードエタン (0.65mL, 1.26g, 8.11mmol) を乾燥 DMF (10mL) 中で 21 時間

周囲温度で攪拌した。反応溶液を水に注ぎ、そしてジエチルエーテルで抽出した。エーテル層を水(2X)で洗浄し、そして1N水酸化ナトリウム溶液(3X)で抽出した。塩基性の抽出溶液を合体し、そして3N塩酸を加えることにより酸性化し、そしてジエチルエーテルで抽出した。エーテル層を水(2X)、塩水(1X)で洗浄し、および硫酸マグネシウム上で乾燥した。濾過の後、溶媒を真空下で除去し、2-エトキシ-3-ヒドロキシベンズアルデヒド(0.74g、55%)をオレンジ色の固体として得た。

MS (APCI+) 166 [M+1]⁺.

¹H-NMR (300 MHz, CDCl₃): 10.26 (1H, s), 7.37 (1H, br dd), 7.24-7.11 (2H, m), 5.78 (1H, s), 4.14 (2H, q), 1.47 (3H, t).

10

【0078】

b) 4-クロロ-2-(2-エトキシ-3-ホルミルフェノキシ)ベンゾニトリル

4-クロロ-2-フルオロベンゾニトリル(0.35g、2.2mmol)、2-エトキシ-3-ヒドロキシベンズアルデヒド(0.37g、2.2mmol)および炭酸セシウム(0.73g、2.2mmol)を乾燥DMF(4mL)中で19時間攪拌しながら50℃で加熱した。反応溶液を冷却し、水に注ぎ、そして酢酸エチルで抽出した。酢酸エチル層を分離し、1N水酸化ナトリウム溶液(2X)、水(2X)、塩水(1X)にり洗浄し、そして硫酸マグネシウム上で乾燥した。濾過の後、溶媒を真空下で除去し、4-クロロ-2-(2-エトキシ-3-ホルミルフェノキシ)ベンゾニトリル(0.55g、82%)を褐色の固体として得た。

¹H-NMR (300 MHz, CDCl₃): 10.42 (1H, s), 7.81 (1H, dd), 7.61 (1H, d), 7.40 (1H, dd), 7.29 (1H, d), 7.14 (1H, dd), 6.68 (1H, d), 4.25 (2H, q), 1.34 (3H, t).

20

【0079】

c) 4-クロロ-2-[2-エトキシ-3-(メチルアミノメチル)フェノキシ]ベンゾニトリルフマレート

4-クロロ-2-(2-エトキシ-3-ホルミルフェノキシ)ベンゾニトリル(0.55g、1.8mmol)、メチルアミン(2M、メタノール中、3.0mL、6.0mmol)および水素化シアノホウ素ナトリウム(2.1mmol、0.13g)を1%酢酸/メタノール溶液(55mL)中で周囲温度で3日間攪拌した。溶媒を真空下で除去した。残留物を10%炭酸ナトリウム溶液で処理し、そして酢酸エチルで抽出した。フマル酸(1.8mmol、0.21g)を分離された酢酸エチル層に加え、溶媒を真空下で除去した。残留物を酢酸エチルで一晩磨碎し、濾過により集め、そして乾燥し、4-クロロ-2-[2-エトキシ-3-(メチルアミノメチル)フェノキシ]ベンゾニトリルフマレート(527mg、67%)を白い固体として得た。

30

MS (APCI+) 317/319 [M+1]⁺.

¹H-NMR (300 MHz, d₆-DMSO): 7.98 (1H, d), 7.48 (1H, br d), 7.36 (1H, dd), 7.32-7.23 (2H, m), 6.74 (1H, s), 6.49 (2H, s), 4.04 (2H, q), 3.98 (2H, s), 2.46 (3H, s), 1.21 (3H, t).

40

【0080】

〔実施例19〕

4-クロロ-2-[2-(2-フルオロエトキシ)-3-(メチルアミノメチル)フェノキシ]ベンゾニトリルフマレート

a) 4-クロロ-2-[2-(2-フルオロエトキシ)-3-ホルミルフェノキシ]ベンゾニトリル

4-クロロ-2-(3-ホルミル-2-ヒドロキシフェノキシ)ベンゾニトリル(0.29g、1.1mmol)、1-ブロモ-2-フルオロエタン(0.20mL、0.34g、2.7mmol)および炭酸セシウム(0.41g、1.3mmol)を乾燥DMF(5mL)中で23時間攪拌しながら50℃で加熱した。反応混合物を冷却し、1N水酸化ナトリウム溶液に注ぎ、そして酢酸エチルで抽出した。酢酸エチル層を分離し1N水酸化ナトリウム溶液(3X)、水(4X)、塩水(1X)で洗浄し、硫酸マグネシウム上で乾燥した。濾過の後、溶媒を真空下で除去し、4-クロロ-2-[2-(2-フルオロエトキシ)-3-ホルミルフェノキシ]ベンゾニトリル(0.35g)を褐色の固体として得た。そして、それをさらに精製することなく使用した。

¹H-NMR (300 MHz, CDCl₃): 10.47 (1H, s), 7.82 (1H, dd), 7.61 (1H, d), 7.40 (1H, dd), 7.31 (1H, br t), 7.16 (1H, dd), 6.71 (1H, d) 4.77-4.72 (1H, m), 4.61-4.56

50

(1H, m), 4.52-4.47 (1H, m), 4.42-4.37 (1H, m).

【0081】

b) 4-クロロ-2-[2-(2-フルオロエトキシ)-3-(メチルアミノメチル)フェノキシ]ベンゾニトリルフマレート

4-クロロ-2-[2-(2-フルオロエトキシ)-3-ホルミルフェノキシ]ベンゾニトリル (0.35g、1.1mmol)、メチルアミン (2M、メタノール中、3.0mL、6.0mmol)、水素化シアノホウ素ナトリウム (90mg、1.4mmol) を1%酢酸/メタノール溶液 (50mL) 中で16時間周囲温度で攪拌した。溶媒を真空中で除去した。残留物を10%炭酸ナトリウム溶液で処理し、そして酢酸エチルで抽出した。酢酸エチル層を分離し、そしてフマル酸 (0.12g、1.0mmol) を加えた。溶媒を真空中で除去した後、残留物を一晩酢酸エチルで磨碎し、濾過により集め、そして乾燥し、4-クロロ-2-[2-(2-フルオロエトキシ)-3-(メチルアミノメチル)フェノキシ]ベンゾニトリルフマレート (194mg、40%) をベージュ色の固体として得た。

MS (APCI+) 335/337 [M+1]⁺.

¹H-NMR (300 MHz, d₆-DMSO): 7.95 (1H, d), 7.42 (1H, dd), 7.35 (1H, dd), 7.28-7.18 (2H, m), 6.76 (1H, d), 6.46 (2H, s), 4.71-4.68 (1H, m), 4.55-4.52 (1H, m), 4.28-4.24 (1H, m), 4.18-4.14 (1H, m), 3.85 (2H, s), 2.37 (3H, s).

【0082】

〔実施例20〕

4-クロロ-2-[3-メチルアミノメチル-2-(2,2,2-トリフルオロエトキシ)フェノキシ]-ベンゾニトリルフマレート

a) 4-クロロ-2-[3-ホルミル-2-(2,2,2-トリフルオロエトキシ)フェノキシ]ベンゾニトリル

乾燥DMSO (10mL) 中の4-クロロ-2-(3-ホルミル-2-ヒドロキシフェノキシ)ベンゾニトリル (0.44g、1.6mmol) 溶液に水素化ナトリウム (2.0mmol、50mg、95%) を加えた。周囲温度で15分攪拌した後、2-ヨード-1,1,1-トリフルオロエタン (0.47mL、1.01g、4.8mmol) を加え、そして混合物を43時間攪拌しながら120度で加熱した。反応混合物を冷却し、1N塩酸に注ぎ、そしてジエチルエーテルで抽出した。エーテル層を分離し、水 (3X)、塩水 (1X) で洗浄し、硫酸マグネシウム上で乾燥した。濾過の後、溶媒を真空中で除去し、黄色のシロップ (0.51g) を得、それをクロマトグラフィーで精製し、4-クロロ-2-[3-ホルミル-2-(2,2,2-トリフルオロエトキシ)フェノキシ]ベンゾニトリル (0.12g、21%) をオフホワイトの固体として得た。

¹H-NMR (300 MHz, CDCl₃): 10.43 (1H, s), 7.84 (1H, dd), 7.65 (1H, d), 7.42-7.35 (2H, m), 7.22 (1H, dd), 6.74 (1H, br d), 4.59 (2H, q).

【0083】

b) 4-クロロ-2-[3-メチルアミノメチル-2-(2,2,2-トリフルオロエトキシ)フェノキシ]-ベンゾニトリルフマレート

4-クロロ-2-[3-ホルミル-2-(2,2,2-トリフルオロエトキシ)フェノキシ]ベンゾニトリル (0.12g、0.33mmol)、メチルアミン (33%、エタノール中、0.4mL、3.2mmol) および水素化シアノホウ素ナトリウム (40mg、0.6mmol) をメタノール (25mL) 中の氷酢酸 (0.5mL) 溶液中で18時間周囲温度で攪拌した。溶媒を真空中で除去した。残留物を10%炭酸ナトリウム溶液で処理し、そして酢酸エチルで抽出した。酢酸エチル層を分離し、そしてフマル酸 (39mg、0.34mmol) を加えた。溶媒を真空中で除去した後、残留物を一晩酢酸エチルで磨碎し、濾過により集め、そして乾燥し、4-クロロ-2-[3-メチルアミノメチル-2-(2,2,2-トリフルオロエトキシ)フェノキシ]-ベンゾニトリルフマレート (76.5mg、47%) を白色の固体として得た。

MS (APCI+) 371/373 [M+1]⁺.

¹H-NMR (300 MHz, d₆-DMSO): 8.00 (1H, d), 7.52-7.31 (4H, m), 6.99 (1H, br s), 6.63 (2H, s), 4.77 (2H, q), 4.22 (2H, s), 2.64 (3H, s).

【0084】

10

20

30

40

50

[実施例 2 1]

4-クロロ-2-(3-メチルアミノメチル-2-プロポキシフェノキシ)ベンゾニトリルフマレート

a) 3-ヒドロキシ-2-プロポキシベンズアルデヒド

乾燥DMF(10mL)中の2,3-ジヒドロキシベンズアルデヒド(1.16g、8.40mmol)、炭酸カリウム(1.16g、8.40mmol)および1-ヨードプロパン(0.82mL、1.43g、8.40mmol)を20時間周囲温度で攪拌した。反応溶液を水に注ぎ、そしてジエチルエーテルで抽出した。ジエチルエーテル層を水(2X)で洗浄し、そして1N水酸化ナトリウム溶液(3X)で抽出した。塩基性の抽出溶液を合体し、そして3N塩酸を加えることによって酸性化し、そしてジエチルエーテルで抽出した。エーテル層を10%炭酸水素ナトリウム(3X)、水(1X)、塩水(1X)で洗浄し、そして硫酸マグネシウム上で乾燥した。濾過の後、溶媒を真空中で除去し、3-ヒドロキシ-2-プロポキシベンズアルデヒド(0.64g、42%)を黄色の固体として得た。

MS (APCI+) 180 [M+1]⁺.

¹H-NMR (300 MHz, CDCl₃): 10.28 (1H, s), 7.38 (1H, dd), 7.23 (1H, dd), 7.14 (1H, br t), 5.78 (1H, s), 4.02 (2H, t), 1.95-1.83 (2H, m), 1.08 (3H, t).

【0085】

b) 4-クロロ-2-(3-ホルミル-2-プロポキシフェノキシ)ベンゾニトリル

4-クロロ-2-フルオロベンゾニトリル(0.35g、2.2mmol)および炭酸セシウム(0.72g、2.2mmol)を乾燥DMF(4mL)中で19時間攪拌しながら50℃で加熱した。反応溶液を冷却し、水に注ぎ、そして酢酸エチルで抽出した。酢酸エチル層を分離し、そして1N水酸化ナトリウム溶液(2X)、水(1X)、塩水(1X)で洗浄し、硫酸マグネシウム上で乾燥した。濾過の後、溶媒を真空中で除去し、4-クロロ-2-(3-ホルミル-2-プロポキシフェノキシ)-ベンゾニトリル(0.69g、98%)を茶色の油状物として得、それをさらに精製することなく使用した。

¹H-NMR (300 MHz, CDCl₃): 10.43 (1H, s), 7.81 (1H, dd), 7.61 (1H, d), 7.40 (1H, dd), 7.29 (1H, d), 7.14 (1H, dd), 6.68 (1H, d), 4.12 (2H, t), 1.80-1.65 (2H, m), 0.93 (3H, t).

【0086】

c) 4-クロロ-2-(3-メチルアミノメチル-2-プロポキシフェノキシ)ベンゾニトリルフマレート

4-クロロ-2-(3-ホルミル-2-プロポキシフェノキシ)ベンゾニトリル(0.68g、2.2mmol)、メチルアミン(2M、メタノール中、3.2mL、6.4mmol)および水素化シアノホウ素ナトリウム(2.4mmol、0.15g)を1%の酢酸/メタノール溶液(70mL)中で20時間周囲温度で攪拌した。溶媒を真空中で除去した。残留物を10%炭酸ナトリウム溶液で処理し、そして酢酸エチルで抽出した。酢酸エチル層を分離し、そしてフマル酸(250mg、2.2mmol)を加えた。溶媒を真空中で除去した後、残留物を一晩酢酸エチルで磨碎し、濾過して集め、そして乾燥し、4-クロロ-2-(3-メチルアミノメチル-2-プロポキシフェノキシ)ベンゾニトリルフマレート(567mg、59%)を白い固体として得た。

MS (APCI+) 331/333 [M+1]⁺.

¹H-NMR (300 MHz, d₆-DMSO): 7.95 (1H, d), 7.45 (1H, br dd), 7.34 (1H, d), 7.26-7.21 (2H, m), 6.71 (1H, s), 6.50 (2H, s), 3.92-3.85 (4H, m), 2.43 (3H, s), 1.68-1.53 (2H, m), 0.84 (3H, t).

【0087】

[実施例 2 2]

4-クロロ-2-[2-(2-ヒドロキシエトキシ)-3-(メチルアミノメチル)フェノキシ]-ベンゾニトリルフマルレート

a) 4-クロロ-2-[3-ホルミル-2-(2-ヒドロキシエトキシ)フェノキシ]ベンゾニトリル

4-クロロ-2-(3-ホルミル-2-ヒドロキシフェノキシ)ベンゾニトリル溶液(0.30g、1.1mmol)、2-プロモエタノール(0.10mL、0.18g、1.4mmol)および炭酸セシウム(0.43g、

10

20

30

40

50

1.3mmol) を乾燥 DMF (3 mL) 中で攪拌しながら 22 時間 50 度で加熱した。22 時間後、2-ブロモエタノール (0.19mL、0.33g、2.7mmol) を加え、そしてさらに 24 時間 50 度で攪拌し続けた。反応混合物を冷却し、水に注ぎ、そして酢酸エチルで抽出した。酢酸エチル層を分離し、1N 水酸化ナトリウム溶液 (3X)、水 (1X)、塩水 (1X) で洗浄し、そして硫酸マグネシウム上で乾燥した。濾過の後、溶媒を真空中で除去し、4-クロロ-2-[3-ホルミル-2-(2-ヒドロキシエトキシ)フェノキシ]ベンゾニトリル (0.29g、83%) を黄褐色の油として得、それをさらに精製することなく使用した。

¹H-NMR (300 MHz, CDCl₃): 10.37 (1H, s), 7.79 (1H, dd), 7.62 (1H, d), 7.40 (1H, dd), 7.34 (1H, d), 7.16 (1H, dd), 6.69 (1H, d), 4.30 (2H, t), 3.90-3.82 (2H, m)

10

【0088】

b) 4-クロロ-2-[2-(2-ヒドロキシエトキシ)-3-(メチルアミノメチル)フェノキシ]-ベンゾニトリルフマレート

4-クロロ-2-[3-ホルミル-2-(2-ヒドロキシエトキシ)フェノキシ]ベンゾニトリル (0.29g、0.91mmol)、メチルアミン (2M、メタノール中、2.0mL、4.0mmol) および水素化シアノホウ素ナトリウム (70mg、1.1mmol) を 1% 酢酸 / メタノール溶液 (25mL) 中で 24 時間周囲温度で攪拌した。溶媒を真空中で除去した。残留物を 10% 炭酸ナトリウム溶液で処理し、そして酢酸エチルで抽出した。酢酸エチル層を分離し、そしてフマル酸 (0.11g、0.95mmol) を加えた。溶媒を真空中で除去した後、残留物を一晩酢酸エチルで磨碎し、濾過により集め、そして乾燥し、4-クロロ-2-[2-(2-ヒドロキシエトキシ)-3-(メチルアミノメチル)フェノキシ]-ベンゾニトリルフマレート (250mg、61%) を白色の固体として得た。

MS (APCI+) 333/335 [M+1]⁺.

¹H-NMR (300 MHz, d₆-DMSO): 7.96 (1H, d), 7.43-7.32 (2H, m), 7.28-7.18 (2H, m), 6.75 (1H, br s), 6.47 (2H, s), 4.04 (2H, t), 3.98 (2H, s), 3.58 (2H, t), 2.42 (3H, s).

【0089】

〔実施例 23〕

4-クロロ-2-[2-エトキシ-4-(メチルアミノメチル)フェノキシ]ベンゾニトリルフマレート
a) 4-クロロ-2-(2-エトキシ-4-ホルミルフェノキシ)ベンゾニトリル

30

4-クロロ-2-フルオロベンゾニトリル (0.40g、2.6mmol)、3-エトキシ-4-ヒドロキシベンズアルデヒド (0.43g、2.6mmol) および炭酸セシウム (0.84g、2.6mmol) を乾燥 DMF (4 mL) で 20 時間攪拌しながら 50 度で加熱した。反応混合物を冷却し、水に注ぎ、そして酢酸エチルで抽出した。酢酸エチル層を分離し、そして水 (1X)、10% 炭酸ナトリウム溶液 (1X)、0.5N 水酸化ナトリウム溶液 (1X)、水 (1X)、塩水 (1X) で洗浄し、硫酸マグネシウム上で乾燥した。濾過の後、溶媒を真空中で除去し、4-クロロ-2-(2-エトキシ-4-ホルミルフェノキシ)ベンゾニトリル (0.67g、86%) を黄色の固体として得た。

¹H-NMR (300 MHz, CDCl₃): 9.98 (1H, s), 7.59 (1H, d), 7.55-7.49 (2H, m), 7.30 (1H, d), 7.13 (1H, dd), 6.71 (1H, d), 4.10 (2H, q), 1.26 (3H, t).

40

【0090】

b) 4-クロロ-2-[2-エトキシ-4-(メチルアミノメチル)フェノキシ]ベンゾニトリルフマレート

4-クロロ-2-(2-エトキシ-4-ホルミルフェノキシ)ベンゾニトリル (0.67g、2.2mmol)、メチルアミン (2M、メタノール中、3.5mL、7.0mmol) および水素化シアノホウ素ナトリウム (2.5mmol、0.16g) を 1% 酢酸 / メタノール溶液 (65mL) 中で 18 時間周囲温度で攪拌した。溶媒を真空中で除去した。残留物を 10% 炭酸ナトリウム溶液で処理し、そして酢酸エチルで抽出した。酢酸エチル層を分離し、そしてフマル酸 (0.26g、2.2mmol) を加えた。溶媒を真空中で除去した後、残留物を一晩酢酸エチルで磨碎し、濾過により集め、そして乾燥し、4-クロロ-2-[2-エトキシ-4-(メチルアミノメチル)フェノキシ]ベンゾニトリルフマレート (707mg、74%) を白い固体として得た。

50

MS (APCI+) 317/319 [M+1]⁺.

¹H-NMR (300 MHz, d₆-DMSO): 7.92 (1H, d), 7.38 (1H, br s), 7.34-7.27 (2H, m), 7.10 (1H, br d), 6.67 (1H, br s), 6.49 (2H, s), 4.04 (2H, q), 3.97 (2H, s), 2.46 (3H, s), 1.12 (3H, t).

【0091】

〔実施例24〕

4-クロロ-2-[4-(メチルアミノメチル)ナフタレン-1-イルオキシ]ベンゾニトリルフマレート

a) 4-クロロ-2-(4-ホルミルナフタレン-1-イルオキシ)ベンゾニトリル

4-クロロ-2-フルオロベンゾニトリル (0.31g、2.0mmol)、4-ヒドロキシ-1-ナフタアルデヒド (0.34g、2.0mmol) および炭酸セシウム (2.0mmol、0.64g) を乾燥DMF (4 mL) 中で攪拌しながら10日間周囲温度で加熱した。反応混合物を水に注ぎ、そして酢酸エチルで抽出した。酢酸エチル層を分離し、そして1N水酸化ナトリウム溶液 (2X)、水 (1X)、塩水 (1X) で洗浄し、硫酸マグネシウム上で乾燥した。濾過の後、溶媒を真空下で除去し、4-クロロ-2-(4-ホルミルナフタレン-1-イルオキシ)ベンゾニトリル (0.34g、56%) を褐色の固体として得、それをさらに精製することなく使用した。

¹H-NMR (300 MHz, CDCl₃): 10.36 (1H, s), 9.35 (1H, d), 8.27 (1H, br d), 7.99 (1H, d), 7.83-7.77 (1H, m), 7.73-7.63 (2H, m), 7.29 (1H, br d), 7.09 (1H, d), 6.98 (1H, d).

【0092】

b) 4-クロロ-2-[4-(メチルアミノメチル)ナフタレン-1-イルオキシ]ベンゾニトリルフマレート

4-クロロ-2-(4-ホルミルナフタレン-1-イルオキシ)ベンゾニトリル (0.34g、1.1mmol)、メチルアミン (2M、メタノール中、2.0mL、4.0mmol) および水素化シアノホウ素ナトリウム (1.3mmol、80mg) を1%酢酸/メタノール溶液 (30mL) 中で18時間周囲温度で攪拌した。溶媒を真空下で除去した。残留物を10%炭酸ナトリウム溶液で処理し、そして酢酸エチルで抽出した。酢酸エチル層を分離し、そしてフマル酸 (0.12g、1.0mmol) を加えた。溶媒を真空下で除去した後、残留物を一晩酢酸エチルで磨碎し、濾過により集め、そして乾燥し、4-クロロ-2-[4-(メチルアミノメチル)ナフタレン-1-イルオキシ]ベンゾニトリルフマレート (328mg、68%) をオフホワイトの固体として得た。

MS (APCI+) 323/325 [M+1]⁺.

¹H-NMR (300 MHz, d₆-DMSO): 8.32 (1H, d), 8.05-7.98 (2H, m), 7.74-7.60 (3H, m), 7.41 (1H, dd), 7.30 (1H, d), 6.86 (1H, br d), 6.49 (2H, s), 4.33 (2H, s), 2.50 (3H, s).

【0093】

〔実施例25〕

4-クロロ-2-[3-(ジメチルアミノメチル)フェノキシ]ベンゾニトリルフマレート

4-クロロ-2-(3-ホルミルフェノキシ)ベンゾニトリル (0.20g、0.78mmol)、ジメチルアミン (2M、メタノール中、1.0mL、2.0mmol) および水素化シアノホウ素ナトリウム (0.96mmol、60mg) を1%酢酸/メタノール溶液 (20mL) 中で18時間周囲温度で攪拌した。溶媒を真空下で除去した。残留物を10%炭酸ナトリウム溶液で処理し、そして酢酸エチルで抽出した。酢酸エチル層を分離し、そしてフマル酸 (0.10g、0.86mmol) を加えた。溶媒を真空下で除去した後、残留物を一晩酢酸エチルで磨碎し、濾過により集め、そして乾燥し、4-クロロ-2-[3-(ジメチルアミノメチル)フェノキシ]ベンゾニトリルフマレート (179mg、58%) を白い固体として得た。

MS (APCI+) 287/289 [M+1]⁺.

¹H-NMR (300 MHz, d₆-DMSO): 7.96 (1H, d), 7.48 (1H, br t), 7.39 (1H, dd), 7.30 (1H, br d), 7.22-7.12 (2H, m), 6.99 (1H, d), 6.60 (2H, s), 3.64 (2H, s), 2.28 (6H, s).

【0094】

10

20

30

40

50

[実施例 26]

4-クロロ-2-{3-[(2-(ヒドロキシエチル)アミノ)メチル]フェノキシ}ベンゾニトリルフマレート

4-クロロ-2-(3-ホルミルフェノキシ)ベンゾニトリル(0.20g、0.78mmol)、エタノールアミン(50μL、51mg、0.83mmol)および水素化シアノホウ素ナトリウム(60mg、0.96mmol)を1%酢酸/メタノール溶液(20mL)中で40時間周囲温度で攪拌した。溶媒を真空中で除去した。残留物を10%炭酸ナトリウム溶液で処理し、そして酢酸エチルで抽出した。酢酸エチル層を分離し、そしてフマル酸(0.10g、0.86mmol)を加えた。溶媒を真空中で除去した後、残留物を一晩酢酸エチルで磨碎した、濾過により集め、そして乾燥し、4-クロロ-2-{3-[(2-(ヒドロキシエチル)アミノ)メチル]フェノキシ}ベンゾニトリルフマレート(240mg、73%)を白い固体として得た。

MS (APCI+) 303/305 [M+1]⁺

¹H-NMR (300 MHz, d₆-DMSO): 7.97 (1H, d), 7.49 (1H, t), 7.41-7.35 (2H, m), 7.31 (1H, br s), 7.16 (1H, br d), 6.97 (1H, br s), 6.53 (2H, s), 3.97 (2H, s), 3.57 (2H, t), 2.77 (2H, t).

【0095】

[実施例 27]

4-クロロ-2-{3-[(2-メトキシエチルアミノ)メチル]フェノキシ}ベンゾニトリルフマレート

4-クロロ-2-(3-ホルミルフェノキシ)ベンゾニトリル(0.20g、0.78mmol)、2-メトキシエチルアミン(72μL、62mg、0.83mmol)および水素化シアノホウ素ナトリウム(60mg、0.96mmol)を1%酢酸/メタノール溶液(20mL)中で40時間周囲温度で攪拌した。溶媒を真空中で除去した。残留物を10%炭酸ナトリウム溶液で処理し、そして酢酸エチルで抽出した。酢酸エチル層を分離し、そしてフマル酸(0.10g、0.86mmol)を加えた。溶媒を真空中で除去した後、残留物を一晩酢酸エチルで磨碎し、濾過により集め、そして乾燥し、4-クロロ-2-{3-[(2-メトキシエチルアミノ)メチル]フェノキシ}ベンゾニトリルフマレート(208mg、61%)を白い固体として得た。

MS (APCI+) 317/319 [M+1]⁺

¹H-NMR (300 MHz, d₆-DMSO): 7.96 (1H, d), 7.45 (1H, t), 7.39 (1H, dd), 7.30 (1H, br d), 7.22 (1H, br s), 7.11 (1H, br d), 6.94 (1H, br s), 6.62 (2H, s), 3.84 (2H, s), 3.43 (2H, t), 3.23 (3H, s), 2.73 (2H, t).

【0096】

[実施例 28]

4-クロロ-2-[3-(プロピルアミノメチル)フェノキシ]ベンゾニトリルフマレート

4-クロロ-2-(3-ホルミルフェノキシ)ベンゾニトリル(0.20g、0.78mmol)、n-プロピルアミン(140μL、101mg、1.7mmol)および水素化シアノホウ素ナトリウム(60mg、0.96mmol)を1%酢酸/メタノール溶液(20mL)中で5日間周囲温度で攪拌した。溶媒を真空中で除去した。残留物を10%炭酸ナトリウム溶液で処理し、そして酢酸エチルで抽出した。酢酸エチル層を分離し、そしてフマル酸(0.10g、0.86mmol)を加えた。溶媒を真空中で除去した後、残留物を一晩酢酸エチルで磨碎し、濾過により集め、そして乾燥し、4-クロロ-2-[3-(プロピルアミノメチル)フェノキシ]ベンゾニトリルフマレート(250mg、78%)を白い固体として得た。

MS (APCI+) 301/303 [M+1]⁺

¹H-NMR (300 MHz, d₆-DMSO): 7.97 (1H, d), 7.49 (1H, t), 7.40 (1H, dd), 7.35 (1H, br d), 7.29 (1H, br s), 7.17 (1H, br dd), 6.96 (1H, br s), 6.46 (2H, s), 3.94 (2H, s), 2.63 (2H, t), 1.61-1.46 (2H, m), 0.86 (3H, t).

【0097】

[実施例 29]

4-クロロ-2-{3-[(2-ジメチルエチルアミノエチルアミノ)メチル]フェノキシ}ベンゾニトリルフマレート

10

20

30

40

50

4-クロロ-2-(3-ホルミルフェノキシ)ベンゾニトリル(0.20g、0.78mmol)、N,N-ジメチルエチレンジアミン(90μL、72mg、0.82mmol)および水素化シアノホウ素ナトリウム(60mg、0.96mmol)を1%酢酸/メタノール溶液(20mL)で5日間周囲温度で攪拌した。溶媒を真空下で除去した。残留物を10%炭酸ナトリウム溶液で処理し、そして酢酸エチルで抽出した。酢酸エチル層を分離し、そしてフマル酸(0.10g、0.86mmol)を加えた。溶媒を真空下で除去した後、残留物を一晩酢酸エチルで磨碎し、濾過により集め、そして乾燥し、4-クロロ-2-{3-[(2-ジメチルアミノエチルアミノ)メチル]フェノキシ}ベンゾニトリルフマレート(315mg、90%)を白い固体として得た。

MS (APCI+) 330/332 [M+1]⁺.

¹H-NMR (300 MHz, d₆-DMSO): 7.98 (1H, d), 7.47 (1H, t), 7.40 (1H, dd), 7.31 (1H, br d), 7.25 (1H, br s), 7.13 (1H, br dd), 6.94 (1H, br s), 6.49 (2H, s), 3.85 (2H, s), 2.71 (2H, t), 2.55 (2H, t), 2.26 (6H, s). 10

【0098】

〔実施例30〕

4-クロロ-2-{3-[(3-ヒドロキシプロピルアミノ)メチル]フェノキシ}ベンゾニトリルフマレート

4-クロロ-2-(3-ホルミルフェノキシ)ベンゾニトリル(0.21g、0.81mmol)、3-アミノプロパン-1-オール(65μL、64mg、0.85mmol)および水素化シアノホウ素ナトリウム(0.96mmol、60mg)を1%酢酸/メタノール溶液(20mL)中で5日間周囲温度で攪拌した。溶媒を真空下で除去した。残留物を10%炭酸ナトリウム溶液で処理し、そして酢酸エチルで抽出した。酢酸エチル層を分離し、そしてフマル酸(0.10g、0.86mmol)を加えた。溶媒を真空下で除去した後、残留物を一晩酢酸エチルで磨碎し、濾過により集め、そして乾燥し、4-クロロ-2-{3-[(3-ヒドロキシプロピルアミノ)メチル]フェノキシ}ベンゾニトリルフマレート(352mg、99%)を白色の固体として得た。 20

MS (APCI+) 317/319 [M+1]⁺.

¹H-NMR (300 MHz, d₆-DMSO): 7.97 (1H, d), 7.48 (1H, t), 7.39 (1H, dd), 7.35 (1H, br d), 7.29 (1H, br s), 7.16 (1H, br dd), 6.95 (1H, br s), 6.46 (2H, s), 3.93 (2H, s), 3.45 (2H, t), 2.72 (2H, t), 1.71-1.61 (2H, m). 30

【0099】

〔実施例31〕

4-クロロ-2-[3-(ピロリジン-1-イルメチル)フェノキシ]ベンゾニトリルフマレート

4-クロロ-2-(3-ホルミルフェノキシ)ベンゾニトリル(0.20g、0.78mmol)、ピロリジン(0.14mL、0.12g、1.7mmol)および水素化シアノホウ素ナトリウム(0.96mmol、60mg)を1%酢酸/メタノール溶液(20mL)中で5日間周囲温度で攪拌した。溶媒を真空下で除去した。残留物を10%炭酸ナトリウム溶液で処理し、そして酢酸エチルで抽出した。酢酸エチル層を分離し、そしてフマル酸(0.10g、0.86mmol)を加えた。溶媒を真空下で除去した後、残留物を一晩酢酸エチルで磨碎し、濾過により集め、そして乾燥し、4-クロロ-2-[3-(ピロリジン-1-イルメチル)フェノキシ]ベンゾニトリルフマレート(117mg、35%)を白色の固体として得た。 40

MS (APCI+) 313/315 [M+1]⁺.

¹H-NMR (300 MHz, d₆-DMSO): 7.97 (1H, d), 7.45 (1H, t), 7.39 (1H, dd), 7.27 (1H, br d), 7.17 (1H, br s), 7.11 (1H, br d), 6.95 (1H, br s), 6.48 (2H, s), 3.68 (2H, s), 3.11-3.05 (4H, m), 1.85-1.77 (2H, m), 1.75-1.67 (2H, m). 50

【0100】

〔実施例32〕

4-クロロ-5-フルオロ-2-(2-メトキシ-3-メチルアミノメチルフェノキシ)ベンゾニトリルフマレート

a) 4-クロロ-2,5-ジフルオロベンスアミド

4-クロロ-2,5-ジフルオロ安息香酸(2.05g、10.6mmol)を乾燥トルエン(40mL、さらにDMFを2滴添加)中に氷水浴で冷却しながら懸濁した。塩化オキサリル(2.4mL、3.5g、27

50

.5mmol) を加え、そして反応混合物を攪拌しながら周囲温度にした。18時間後、溶媒は真空中で除去し、そして残留物を2-メトキシエチルエーテル(6mL)に溶解し、それを濃水酸化アンモニウム(80mL)に攪拌しながら加えた。1時間後、結果として生じた沈降物を濾過により集め、水で洗浄し、そして乾燥し、4-クロロ-2,5-ジフルオロベンズアミド(1.52g、75%)をベージュ色の固体として得た。

MS (APCI+) 192[M+1]⁺

¹H-NMR (300 MHz, CDCl₃): 7.96-7.88 (1H, m), 7.30-7.22 (1H, m), 6.61 (1H, br s), 5.98 (1H, br s).

【0101】

b) 4-クロロ-2,5-ジフルオロベンゾニトリル

4-クロロ-2,5-ジフルオロベンズアミド(1.50g、7.83mmol)を乾燥DMF(10mL)中に溶解し、そして氷水浴により冷却した。塩化チオニル(2.8mL、4.6g、38mmol)を加え、そして結果として生じた溶液を2.5時間攪拌しながら80°で加熱した。冷却した反応混合物を水に注ぎ、そして酢酸エチルで抽出した。酢酸エチル層を水(1X)、飽和炭酸水素ナトリウム(1X)、水(3X)、塩水(1X)で洗浄し、硫酸マグネシウム上で乾燥した。濾過の後、溶媒を真空中で除去し、黄色がかった褐色の固体(0.60g)を得た。クロマトグラフィーにより精製し、4-クロロ-2,5-ジフルオロベンゾニトリル(0.48g、35%)を褐色の結晶性固体として得た。

¹H-NMR (300 MHz, CDCl₃): 7.42 (1H, dd), 7.35 (1H, dd).

【0102】

c) 4-クロロ-5-フルオロ-2-(3-ホルミル-2-メトキシフェノキシ)ベンゾニトリル

4-クロロ-2,5-ジフルオロベンゾニトリル(0.45g、2.6mmol)、3-ヒドロキシ-2-メトキシベンズアルデヒド(0.39g、2.6mmol)および炭酸セシウム(0.84g、2.6mmol)を乾燥DMF(5mL)中で攪拌しながら18時間50°で加熱した。反応混合物を冷却し、0.1N水酸化ナトリウム溶液に注ぎ、そして酢酸エチルで抽出した。酢酸エチル層を分離し。そして、0.1N水酸化ナトリウム溶液(1X)、水(2X)、塩水(1X)で洗浄し、硫酸マグネシウム上で乾燥した。濾過の後、溶媒を真空中で除去し、そしてクロマトグラフィーで精製し、4-クロロ-5-フルオロ-2-(3-ホルミル-2-メトキシフェノキシ)ベンゾニトリル(0.33g、42%)を薄い黄色の固体として得た。

¹H-NMR (300 MHz, CDCl₃): 10.40 (1H, s), 7.81 (1H, dd), 7.47 (1H, d), 7.38 (1H, dd), 7.30 (1H, d), 6.76 (1H, d), 4.01 (3H, s).

【0103】

d) 4-クロロ-5-フルオロ-2-(2-メトキシ-3-メチルアミノメチルフェノキシ)ベンゾニトリルフマレート

4-クロロ-5-フルオロ-(3-ホルミル-2-メトキシフェノキシ)ベンゾニトリル(0.29g、0.95mmol)、メチルアミン(33%、エタノール中、1.0mL、8.0mmol)および水素化シアノホウ素ナトリウム(90mg、1.4mmol)を1%酢酸/メタノール溶液(50mL)中で44時間周囲温度で攪拌した。溶媒を真空中で除去した。残留物を10%炭酸ナトリウム溶液で処理し、そして酢酸エチルで抽出した。酢酸エチル層を分離し、そしてフマル酸(65mg、0.56mmol)を加えた。溶媒を真空中で除去した後、残留物を一晩酢酸エチルで磨碎し、濾過により集め、そして4-クロロ-5-フルオロ-2-(2-メトキシ-3-メチルアミノメチルフェノキシ)ベンゾニトリルフマレート(143mg、35%)を白色の固体として得た。

MS (APCI+) 321/323 [M+1]⁺.

¹H-NMR (300 MHz, d₆-DMSO): 8.20 (1H, d), 7.42-7.38 (1H, m), 7.25-7.17 (2H, m), 7.03 (1H, d), 6.48 (2H, s), 3.89 (2H, s), 3.79 (3H, s), 2.42 (3H, s).

【0104】

[実施例33]

4-ブロモ-2-(2-メトキシ-3-メチルアミノメチル-フェノキシ)-ベンゾニトリルフマレート

a) 4-ブロモ-2-(3-ホルミル-2-メトキシフェノキシ)-ベンゾニトリル

10

20

40

50

4-プロモ-2-フルオロベンゾニトリル(0.41g、2.0mmol)、3-ヒドロキシ-2-メトキシベンズアルデヒド(0.31g、2.0mmol)および炭酸セシウム(0.66g、2.0mmol)を乾燥DMF(4mL)中で18時間攪拌しながら50℃で加熱した。反応混合物を冷却し、水に注ぎ、そして酢酸エチルで抽出した。酢酸エチル層を分離し、そして1N水酸化ナトリウム溶液(2X)、水(1X)、塩水(1X)で洗浄し、硫酸マグネシウム上で乾燥した。濾過の後、溶媒を真空内で除去し、4-プロモ-2-(3-ホルミル-2-メトキシフェノキシ)ベンゾニトリル(0.55g、81%)を黄色の固体として得た。

MS (APCI+) 332/334 [M+1]⁺.

¹H-NMR (300 MHz, CDCl₃): 10.41 (1H, s), 7.81 (1H, dd), 7.54 (1H, d), 7.40 (1H, dd), 7.34-7.28 (2H, m), 6.85 (1H, d), 4.01 (3H, s). 10

【0105】

b) 4-プロモ-2-(2-メトキシ-3-メチルアミノメチル-フェノキシ)-ベンゾニトリルフマレート

4-プロモ-2-(3-ホルミル-2-メトキシフェノキシ)ベンゾニトリル(0.55g、1.7mmol)、メチルアミン(2M、メタノール中、3.0mL、6.0mmol)および水素化シアノホウ素ナトリウム(1.9mmol、120mg)を1%酢酸/メタノール溶液(40mL)中で17時間周囲温度で攪拌した。溶媒を真空下で除去した。残留物を10%炭酸ナトリウム溶液で処理し、そして酢酸エチルで抽出した。酢酸エチル層を分離し、そしてフマル酸(0.20g、1.7mmol)を加えた。溶媒を真空下で除去した後、残留物を一晩酢酸エチルで磨碎し、濾過により集め、そして乾燥し、4-プロモ-2-(2-メトキシ-3-メチルアミノメチル-フェノキシ)-ベンゾニトリルフマレート(546mg、71%)を白色の固体として得た。 20

MS (APCI+) 347/349 [M+1]⁺.

¹H-NMR (300 MHz, d₆-DMSO): 7.88 (1H, d), 7.50 (1H, dd), 7.46-7.41 (1H, m), 7.28-7.22 (2H, m), 6.89 (1H, d), 6.49 (2H, s), 3.94 (2H, s), 3.79 (3H, s), 2.44 (3H, s). 20

【0106】

〔実施例34〕

2-(2-メトキシ-3-メチルアミノメチル-フェノキシ)-6-トリフルオロメチル-ニコチノニトリルフマレート

a) 2-(3-ホルミル-2-メトキシフェノキシ)-6-(トリフルオロメチル)ニコチノニトリル 30

2-クロロ-6-(トリフルオロメチル)ニコチノニトリル(0.34g、1.6mmol)、3-ヒドロキシ-2-メトキシベンズアルデヒド(0.25g、1.6mmol)およびフッ化カリウム(0.29g、4.9mmol)を乾燥DMF(4mL)中で3時間攪拌しながら120℃で加熱した。反応混合物を冷却し、1N水酸化ナトリウム溶液に注ぎ、そして酢酸エチルで抽出した。酢酸エチル層を分離し、そして1N水酸化ナトリウム溶液(3X)、水(3X)、塩水(1X)で洗浄し、硫酸マグネシウム上で乾燥した。濾過の後、溶媒を真空下で除去し2-(3-ホルミル-2-メトキシフェノキシ)-6-(トリフルオロメチル)ニコチノニトリル(0.50g、94%)を黄色の固体として得た。 40

MS (APCI+) 323 [M+1]⁺.

¹H-NMR (300 MHz, CDCl₃): 10.37 (1H, s), 8.23 (1H, d), 7.81 (1H, dd), 7.54-7.47 (2H, m), 7.32-7.26 (1H, m), 3.96 (3H, s).

【0107】

b) 2-(2-メトキシ-3-メチルアミノメチル-フェノキシ)-6-トリフルオロメチル-ニコチノニトリルフマレート

2-(3-ホルミル-2-メトキシフェノキシ)-6-(トリフルオロメチル)ニコチノニトリル(0.50g、1.6mmol)、メチルアミン(33%、エタノール中、0.9mL、7.2mmol)および水素化シアノホウ素ナトリウム(120mg、1.9mmol)を1%酢酸/メタノール溶液(80mL)中で18時間周囲温度で攪拌した。溶媒を真空下除去した。残留物を10%炭酸ナトリウム溶液で処理し、そして酢酸エチルで抽出した。酢酸エチル層を分離し、そしてフマル酸(0.20g 50

、1.7mmol)を加えた。溶媒を真空中で除去した後、残留物を一晩酢酸エチルで磨碎し、濾過により集め、そして乾燥し、2-(2-メトキシ-3-メチルアミノメチル-フェノキシ)-6-トリフルオロメチル-ニコチノニトリルフマレート(468mg、67%)を白色の固体として得た。

MS (APCI+) 338 [M+1]⁺.

¹H-NMR (300 MHz, d₆-DMSO): 8.78 (1H, d), 7.85 (1H, d), 7.48 (1H, d), 7.37 (1H, d), 7.28-7.22 (1H, m), 6.50 (2H, s), 3.97 (2H, s), 3.74 (3H, s), 2.40 (3H, s).

【0108】

[実施例35]

4-メトキシ2-(2-メトキシ-3-メチルアミノメチル-フェノキシ)-ベンゾニトリルフマレート 10

a) 2-フルオロ-4-メトキシ-ベンゾニトリル

2-フルオロ-4-ヒドロキシベンゾニトリル(0.50g、3.7mmol)、炭酸カリウム(0.53g、3.8mmol)およびヨードメタン(0.34mL、0.78g、5.5mmol)を乾燥DMF(5mL)中で21時間周囲温度で攪拌した。反応混合物を水に注入し、そして酢酸エチルで抽出した。酢酸エチル層を1N水酸化ナトリウム溶液(2X)、水(3X)、塩水(1X)で洗浄し、硫酸マグネシウム上で乾燥した。濾過の後、溶媒を真空中で除去し、2-フルオロ-4-メトキシ-ベンゾニトリル(0.54g、98%)を白色の結晶性固体として得た。

¹H-NMR (300 MHz, CDCl₃): 7.55-7.48 (1H, m), 6.77 (1H, dd), 6.71 (1H, dd), 3.86 (3H, s).

【0109】

b) 2-(3-ホルミル-2-メトキシ-フェノキシ)-4-メトキシ-ベンゾニトリル

2-フルオロ-4-メトキシ-ベンゾニトリル(0.28g、1.8mmol)、3-ヒドロキシ-2-メトキシベンズアルデヒド(0.28g、1.8mmol)および炭酸セシウム(0.90g、2.4mmol)を乾燥DMF(4mL)中で40時間攪拌しながら50°で加熱した。反応混合物を冷却し、1N水酸化ナトリウム溶液に注ぎ、そして酢酸エチルで抽出した。酢酸エチル層を分離し、そして1N水酸化ナトリウム溶液(4X)、水(4X)、塩水(1X)で洗浄し、硫酸マグネシウム上で乾燥した。濾過の後、溶媒を真空中で除去し、2-(3-ホルミル-2-メトキシ-フェノキシ)-4-メトキシ-ベンゾニトリル(0.38g、73%)を褐色の油として得た。

MS (APCI+) 284 [M+1]⁺.

¹H-NMR (300 MHz, d₆-DMSO): 10.42 (1H, s), 7.75 (1H, dd), 7.60 (1H, br d), 7.36 (1H, dd), 7.27-7.21 (1H, m), 6.68 (1H, br dd), 6.21 (1H, br d), 4.04 (3H, s), 3.75 (3H, s).

【0110】

c) 4-メトキシ-2-(2-メトキシ-3-メチルアミノメチル-フェノキシ)-ベンゾニトリルフマレート

2-(3-ホルミル-2-メトキシ-フェノキシ)-4-メトキシ-ベンゾニトリル(0.38g、1.3mmol)、メチルアミン(2M、メタノール中、3.0mL、6.0mmol)および水素化シアノホウ素ナトリウム(1.8mmol、110mg)を1%酢酸/メタノール溶液(50mL)中で17時間周囲温度で攪拌した。溶媒を真空中で除去した。残留物を10%炭酸ナトリウム溶液で処理し、そして酢酸エチルで抽出した。酢酸エチル層を分離した、そしてフマル酸(0.15g、1.3mmol)を加えた。溶媒を真空中で除去し、残留物を一晩酢酸エチルで磨碎し、濾過により集め、そして乾燥し、4-メトキシ-2-(2-メトキシ-3-メチルアミノメチル-フェノキシ)-ベンゾニトリルフマレート(326mg、58%)をオフホワイトの固体として得た。

MS (APCI+) 299 [M+1]⁺.

¹H-NMR (300 MHz, d₆-DMSO): 7.83 (1H, d), 7.39 (1H, br d), 7.24-7.14 (2H, m), 6.85 (1H, dd), 6.48 (2H, s), 6.21 (1H, d), 3.93 (2H, s), 3.80 (3H, s), 3.73 (3H, s), 2.43 (3H, s).

【0111】

[実施例36]

10

20

30

40

50

3-フルオロ-2-(2-メトキシ-3-(メチルアミノメチル)フェノキシ-4-メチル-ベンゾニトリルフマレート

a) 2,3-ジフルオロ-4-メチルベンゾニトリル

2,3-ジフルオロ-4-メチルベンズアミド (1.02 g、5.96 mmol) を乾燥DMF (8 mL) 中に溶解し、そして氷水浴により冷却した。塩化チオニル (2.2 mL、3.6 g、30 mmol) を加え、そして得られた溶液を8時間攪拌しながら80 °C で加熱した。冷却された反応溶液を水に注ぎ、そしてジエチルエーテルで抽出した。エーテル層を水(1X)、飽和炭酸水素ナトリウム(1X)、水(1X)、塩水(1X)で洗浄し、硫酸マグネシウム上で乾燥した。濾過の後、溶媒を真空下で除去し、暗いオレンジ色の固体 (0.87 g)を得た。クロマトグラフィーにより精製し、2,3-ジフルオロ-4-メチルベンゾニトリル (0.28 g、30%) を黄色の固体として得た。

10

¹H-NMR (300 MHz, CDCl₃): 7.32-7.25 (1H, m), 7.10-7.03 (1H, m), 2.39 (3H, d) 【0112】

b) 3-フルオロ-2-(3-ホルミル-2-メトキシフェノキシ)-4-メチルベンゾニトリル

2,3-ジフルオロ-4-メチルベンゾニトリル (0.21 g、1.4 mmol)、3-ヒドロキシ-2-メトキシベンズアルデヒド (0.21 g、1.4 mmol) および炭酸セシウム (0.45 g、1.4 mmol) を乾燥DMF (4 mL) 中で18時間攪拌しながら50 °C で加熱した。反応溶液を冷却し、0.1N水酸化ナトリウム溶液に注ぎ、そしてジエチルエーテルで抽出された。エーテル層を分離し、0.1N水酸化ナトリウム溶液 (2X)、水 (3X)、塩水 (1X) で洗浄し、硫酸マグネシウム上で乾燥した。濾過の後、溶媒を真空下で除去し、そしてクロマトグラフィーで精製し、3-フルオロ-2-(3-ホルミル-2-メトキシフェノキシ)-4-メチルベンゾニトリル (0.12 g、31%) を無色のガラス状の物質として得た。

20

MS (APCI+) 286 [M+1]⁺.

¹H-NMR (300 MHz, CDCl₃): 10.45 (1H, s), 7.61 (1H, br d), 7.40 (1H, br d), 7.19-7.06 (2H, m), 6.95 (1H, br d), 4.12 (3H, s), 2.37 (3H, d).

【0113】

c) 3-フルオロ-2-(2-メトキシ-3-(メチルアミノメチル)フェノキシ)-4-メチル-ベンゾニトリルフマレート

3-フルオロ-2-(3-ホルミル-2-メトキシフェノキシ)-4-メチルベンゾニトリル (0.10 g、0.35 mmol)、メチルアミン (33%、エタノール中、0.5 mL、4.0 mmol) および水素化シアノホウ素ナトリウム (30 mg、0.48 mmol) を1%の酢酸/メタノール溶液 (25 mL) 中で67時間周囲温度で攪拌した。溶媒を真空下で除去した。残留物を10%炭酸ナトリウム溶液で処理し、そして酢酸エチルで抽出した。酢酸エチル層を分離し、そしてフマル酸 (41 mg、0.35 mmol) を加えた。溶媒を真空下で除去した後、残留物を一晩酢酸エチルで磨碎し、濾過により集め、そして乾燥し、3-フルオロ-2-(2-メトキシ-3-(メチルアミノメチル)フェノキシ)-4-メチルベンゾニトリルフマレート (83 mg、57%) を白い固体として得た。

30

MS (APCI+) 301 [M+1]⁺

¹H-NMR (300 MHz, d₆-DMSO): 7.72 (1H, d), 7.43 (1H, t), 7.26 (1H, d), 7.13 (1H, t), 6.82 (1H, d), 6.66 (2H, s), 4.23 (2H, s), 4.00 (3H, s), 2.64 (3H, s), 2.38 (3H, s).

40

【0114】

〔実施例37〕

2-(2-メトキシ-3-メチルアミノメチル-フェノキシ)-6-メチル-ニコチノニトリルフマレート

a) 2-(3-ホルミル-2-メトキシ-フェノキシ)-6-メチル-ニコチノニトリル

2-クロロ-6-メチルニコチノニトリル (0.25 g、1.6 mmol)、3-ヒドロキシ-2-メトキシベンズアルデヒド (0.25 g、1.6 mmol) およびフッ化カリウム (0.29 g、4.9 mmol) を乾燥DMF (4 mL) 中で5時間攪拌しながら120 °C で加熱した。反応混合物を冷却し、1 N水酸化ナトリウム溶液に注ぎ、そして酢酸エチルで抽出した。酢酸エチル層を分離し、そして1 N水酸化ナトリウム溶液 (2X)、水 (3X)、塩水 (1X) で洗浄し、硫酸マグネシウム上で乾燥した。濾過の後、溶媒を真空下で除去し、2-(3-ホルミル-2-メトキシ-フェノキシ)-6-

50

メチル-ニコチノニトリル (0.30 g、68%) を黄色の固体として得た。

MS (APCI+) 269 [M+1]⁺.

¹H-NMR (300 MHz, CDCl₃): 10.39 (1H, s), 7.89 (1H, d), 7.76 (1H, dd), 7.46 (1H, dd), 7.28-7.20 (1H, m), 6.97 (1H, d), 3.97 (3H, s), 2.38 (3H, s).

【0115】

b) 2-(2-メトキシ-3-メチルアミノメチル-フェノキシ)-6-メチル-ニコチノニトリルフマレート

2-(3-ホルミル-2-メトキシ-フェノキシ)-6-メチル-ニコチノニトリル (1.1mmol、0.30g)、メチルアミン (2 M、メタノール中、3.0mL、6.0mmol) および水素化シアノホウ素ナトリウム (90mg、1.4mmol) を1%酢酸/メタノール溶液 (50mL) 中で20時間周囲温度で攪拌した。溶媒を真空下で除去した。残留物を10%炭酸ナトリウム溶液で処理し、そして酢酸エチルで抽出した。酢酸エチル層を分離し、そしてフマル酸 (1.1mmol、0.13g) を加えた。溶媒を真空下で除去した後、残留物を一晩酢酸エチルで磨碎し、濾過により集め、そして乾燥し、2-(2-メトキシ-3-メチルアミノメチル-フェノキシ)-6-メチル-ニコチノニトリルフマレート (180mg、40%) をオフホワイトの固体として得た。

MS (APCI+) 284 [M+1]⁺.

¹H-NMR (300 MHz, d₆-DMSO): 8.28 (1H, d), 7.36 (1H, dd), 7.26-7.15 (3H, m), 6.48 (2H, s), 3.88 (2H, s), 3.72 (3H, s), 2.40 (3H, s), 2.32 (3H, s).

【0116】

〔実施例38〕

6-エチル-2-(2-メトキシ-3-メチルアミノメチル-フェノキシ)-ニコチノニトリルジフマレート

a) 6-エチル-2-(3-ホルミル-2-メトキシ-フェノキシ)-ニコチノニトリル
2-クロロ-6-エチルニコチノニトリル (0.27 g、1.6mmol)、3-ヒドロキシ-2-メトキシベンズアルデヒド (0.25 g、1.6mmol) およびフッ化カリウム (0.29 g、4.9mmol) を乾燥DMF (4mL) 中で攪拌しながら120℃で6時間、次いで80℃で16時間加熱した。反応混合物を冷却し、1N水酸化ナトリウム溶液に注ぎ、そして酢酸エチルで抽出した。酢酸エチル層を分離し、1N水酸化ナトリウム溶液 (3X)、水 (4X)、塩水 (1X) で洗浄し、そして硫酸マグネシウム上で乾燥した。濾過の後、溶媒を真空下で除去し、6-エチル-2-(3-ホルミル-2-メトキシ-フェノキシ)-ニコチノニトリル (0.28 g、61%) を黄色の油として得た。

MS (APCI+) 283 [M+1]⁺.

¹H-NMR (300 MHz, CDCl₃): 10.40 (1H, s), 7.91 (1H, d), 7.76 (1H, dd), 7.46 (1H, dd), 7.27-7.20 (1H, m), 6.97 (1H, d), 3.98 (3H, s), 2.65 (2H, q), 1.10 (3H, t).

【0117】

b) 6-エチル-2-(2-メトキシ-3-メチルアミノメチル-フェノキシ)-ニコチノニトリルジフマレート

6-エチル-2-(3-ホルミル-2-メトキシ-フェノキシ)-ニコチノニトリル (0.28 g、1.0mmol)、メチルアミン (33%、エタノール中、0.8mL、6.4mmol) および水素化シアノホウ素ナトリウム (80mg、1.3mmol) を1%酢酸/メタノール溶液 (60mL) 中で16時間周囲温度で攪拌した。溶媒を真空下で除去した。残留物を10%炭酸ナトリウム溶液で処理し、そして酢酸エチルで抽出した。酢酸エチル層を分離し、そしてフマル酸 (0.12 g、1.0mmol) を加えた。溶媒を真空下で除去した後、残留物を一晩酢酸エチルで磨碎し、濾過により集め、そして乾燥し、6-エチル-2-(2-メトキシ-3-メチルアミノメチル-フェノキシ)-ニコチノニトリルジフマレート (166mg、32%) をベージュ色の固体として得た。

MS (APCI+) 298 [M+1]⁺.

¹H-NMR (300 MHz, d₆-DMSO): 8.30 (1H, d), 7.36 (1H, br d), 7.26-7.15 (3H, m), 6.47 (4H, s), 3.87 (2H, s), 3.71 (3H, s), 2.59 (2H, q), 2.38 (3H, s), 1.02 (3H, t).

【0118】

10

20

30

40

50

[実施例 3 9]

4-メチル-2-(3-メチルアミノメチル-フェノキシ)-ベンゾニトリルフマレート

a) 2-(3-ホルミル-フェノキシ)-4-メチル-ベンゾニトリル

4-メチル-2-ニトロベンゾニトリル(0.50g、3.1mmol)、3-ヒドロキシベンズアルデヒド(0.38g、3.1mmol)および炭酸セシウム(1.00g、3.1mmol)を乾燥DMF(5mL)中で攪拌しながら28時間80℃で加熱した。反応混合物を冷却し、水に注ぎ、そして酢酸エチルで抽出した。酢酸エチル層を分離し、0.1N水酸化ナトリウム溶液(3X)、水(1X)、塩水(1X)で洗浄し、そして硫酸マグネシウム上で乾燥した。濾過の後、溶媒を真空下で除去し、2-(3-ホルミル-フェノキシ)-4-メチル-ベンゾニトリル(0.26g、36%)を茶色の樹脂状物質として得、そしてそれを更に精製することなく次に用いた。

10

MS (APCI+) 233 [M+1]⁺.

¹H-NMR (300 MHz, CDCl₃): 10.00 (1H, s), 7.71 (1H, br d), 7.62-7.55 (2H, m), 7.53-7.49 (1H, m), 7.36 (1H, br dd), 7.03 (1H, br d), 6.74 (1H, br s), 2.35 (3H, s)

【0119】

b) 4-メチル-2-(3-メチルアミノメチル-フェノキシ)-ベンゾニトリルフマレート

2-(3-ホルミル-フェノキシ)-4-メチル-ベンゾニトリル(0.26g、1.1mmol)、メチルアミン(2M、メタノール中、2.5mL、5.0mmol)および水素化シアノホウ素ナトリウム(80mg、1.3mmol)を1%酢酸/メタノール溶液(30mL)中で18時間周囲温度で攪拌した。溶媒を真空下で除去した。残留物を10%炭酸ナトリウム溶液で処理し、そして酢酸エチルで抽出した。酢酸エチル層を分離し、そしてフマル酸(0.12g、1.1mmol)を加えた。溶媒を真空下で除去した後、残留物を一晩酢酸エチルで磨碎し、濾過により集め、そして乾燥し、4-メチル-2-(3-メチルアミノメチル-フェノキシ)-ベンゾニトリルフマレート(78mg、20%)を黄褐色の固体として得た。

20

MS (APCI+) 253 [M+1]⁺.

¹H-NMR (300 MHz, d₆-DMSO): 7.89 (1H, d), 7.44 (1H, t), 7.30-7.03 (4H, m), 6.81 (1H, br s), 6.44 (2H, s), 3.86 (2H, s), 2.36 (3H, s), 2.31 (3H, s).

【0120】

[実施例 4 0]

6-メチル-2-(3-メチルアミノメチル-フェノキシ)-ニコチノニトリルフマレート

30

a) 2-(3-ホルミル-フェノキシ)-6-メチル-ニコチノニトリル

2-クロロ-6-メチルニコチノニトリル(0.50g、3.3mmol)、3-ヒドロキシベンズアルデヒド(0.40g、3.3mmol)およびフッ化カリウム(0.57g、9.8mmol)を乾燥DMF(5mL)中で攪拌しながら7時間120℃で加熱した。反応混合物を冷却し、水に注ぎ、そして酢酸エチルで抽出した。酢酸エチル層を分離し、そして1N水酸化ナトリウム溶液(4X)、水(4X)、塩水(1X)で洗浄し、硫酸マグネシウム上で乾燥した。濾過の後、溶媒を真空下で除去し、2-(3-ホルミル-フェノキシ)-6-メチル-ニコチノニトリル(0.77g、97%)を黄色の固体として得た。

MS (APCI+) 239 [M+1]⁺.

¹H-NMR (300 MHz, CDCl₃): 10.03 (1H, s), 7.89 (1H, d), 7.77 (1H, br d), 7.72 (1H, br d), 7.59 (1H, dd), 7.47 (1H, br d), 6.98 (1H, d), 2.41 (3H, s).

【0121】

b) 6-メチル-2-(3-メチルアミノメチル-フェノキシ)-ニコチノニトリルフマレート

2-(3-ホルミル-フェノキシ)-6-メチル-ニコチノニトリル(0.77g、3.2mmol)、メチルアミン(2M、メタノール中、7.0mL、14mmol)および水素化シアノホウ素ナトリウム(250mg、4.0mmol)を1%酢酸/メタノール溶液(100mL)中で20時間周囲温度で攪拌した。溶媒を真空下で除去した。残留物を10%炭酸ナトリウム溶液で処理し、そして酢酸エチルで抽出した。酢酸エチル層を分離し、そしてフマル酸(0.36g、3.1mmol)を加えた。溶媒を真空下で除去し、残留物を一晩酢酸エチルで磨碎し、濾過により集め、そして乾燥し、6-メチル-2-(3-メチルアミノメチル-フェノキシ)-ニコチノニトリルフマレート(650mg、50%)を黄褐色の固体として得た。

mg、55%) をオフホワイトの固体として得た。

MS (APCI+) 255 [M+1]⁺.

¹H-NMR (300 MHz, d₆-DMSO): 8.27 (1H, d), 7.44 (1H, br t), 7.30 (1H, br s), 7.19 (1H, br d), 6.47 (2H, s), 3.92 (2H, s), 2.40 (3H, s), 2.35 (3H, s).

【0122】

〔実施例41〕

4-クロロ-2-(5-メチルアミノ-5,6,7,8-テトラヒドロナフタレン-1-イルオキシ)-ベンゾニトリルフマレート

a) 4-クロロ-2-(5-オキソ-5,6,7,8-テトラヒドロナフタレン-1-イルオキシ)ベンゾニトリル

4-クロロ-2-フルオロベンゾニトリル (0.30 g、1.9mmol)、5-ヒドロキシ-3,4-ジヒドロ-2H-ナフタレン-1-オン (0.31 g、1.9mmol) および炭酸セシウム (0.63 g、1.9mmol) を乾燥DMF (4 mL) 中で18時間攪拌しながら50℃で加熱した。反応混合物を冷却し、0.1N水酸化ナトリウム溶液に注ぎ、そして酢酸エチルで抽出した。酢酸エチル層を分離し、そして0.1N水酸化ナトリウム溶液(1X)、水(3X)、塩水(1X)で洗浄し、そして硫酸マグネシウム上で乾燥した。濾過の後、溶媒を真空中で除去し、琥珀色の油状物 (0.61 g) を得、それをクロマトグラフィーにより精製し、4-クロロ-2-(5-オキソ-5,6,7,8-テトラヒドロナフタレン-1-イルオキシ)ベンゾニトリル (0.22 g、39%) を白い固体として得た。

MS (APCI+) 298/300 [M+1]⁺.

¹H-NMR (300 MHz, CDCl₃): 8.01 (1H, d), 7.62 (1H, d), 7.40 (1H, dd), 7.23 (1H, br d), 7.14 (1H, dd), 6.69 (1H, br d), 2.87 (2H, t), 2.68 (2H, t), 2.19-2.09 (2H, m).

【0123】

b) 4-クロロ-2-(5-メチルアミノ-5,6,7,8-テトラヒドロナフタレン-1-イルオキシ)-ベンゾニトリルフマレート

4-クロロ-2-(5-オキソ-5,6,7,8-テトラヒドロナフタレン-1-イルオキシ)ベンゾニトリル (0.22 g、0.74mmol)、メチルアミン (33%、エタノール中、0.7mL、5.6mmol) および水素化シアノホウ素ナトリウム (60mg、0.81mmol) を1%酢酸/メタノール溶液 (40mL) 中で6日間周囲温度で攪拌した。溶媒を真空中で除去した。残留物を10%炭酸ナトリウム溶液で処理し、そして酢酸エチルで抽出した。酢酸エチル層を分離し、そしてフマル酸 (70mg、0.60mmol) を加えた。溶媒を真空中で除去した後、残留物を一晩酢酸エチルで磨碎し、濾過により集め、そして乾燥し、4-クロロ-2-(5-メチルアミノ-5,6,7,8-テトラヒドロナフタレン-1-イルオキシ)ベンゾニトリルフマレート (134mg、42%) を白い固体として得た。

MS (APCI+) 313/315 [M+1]⁺.

¹H-NMR (300 MHz, d₆-DMSO/d-TFA): 7.97 (1H, d), 7.49 (1H, d), 7.45-7.35 (2H, m), 7.21 (1H, d), 6.80 (2H, br d), 6.65 (2H, s), 4.53-4.47 (1H, m), 2.66 (3H, s), 2.75-2.55 (2H, m), 2.42-2.35 (2H, m), 2.15-1.95 (2H, m).

【0124】

〔実施例42〕

4-クロロ-2-(1-メチルアミノインダン-4-イルオキシ)ベンゾニトリルフマレート

a) 4-クロロ-2-(1-オキソインダン-4-イルオキシ)ベンゾニトリル

4-クロロ-2-フルオロベンゾニトリル (0.30 g、1.9mmol)、4-ヒドロキシインダン-1-オン (0.29 g、1.9mmol) および炭酸セシウム (0.63 g、1.9mmol) を乾燥DMF (4 mL) 中で18時間攪拌しながら50℃で加熱した。反応混合物を冷却し、0.1N水酸化ナトリウム溶液(1X)、水(3X)、塩水(1X)で洗浄し、そして硫酸マグネシウム上で乾燥した。濾過の後、溶媒を真空中で除去し、茶色の油 (0.27 g) を得、そしてそれをクロマトグラフィーで精製し4-クロロ-2-(1-オキソインダン-4-イルオキシ)ベンゾニトリル (0.15 g、27%) を白い固体として得た。

10

20

30

40

50

MS (APCI+) 284/286 [M+1]⁺.

¹H-NMR (300 MHz, CDCl₃): 7.70 (1H, d), 7.63 (1H, d), 7.47 (1H, dd), 7.27 (1H, d), 7.18 (1H, dd), 6.81 (1H, d), 3.08-3.01 (2H, m), 2.76-2.70 (2H, m).

【0125】

b) 4-クロロ-2-(1-メチルアミノインダン-4-イルオキシ)ベンゾニトリルスマレート

4-クロロ-2-(1-オキソインダン-4-イルオキシ)ベンゾニトリル (0.12 g, 0.42 mmol)、メチルアミン (33%、エタノール中、1.0 mL, 8.0 mmol) および水素化シアノホウ素ナトリウム (100 mg, 0.86 mmol) をメタノール (30 mL) 中の冰酢酸 (1.0 mL) 溶液中で 5 日間周囲温度で攪拌した。溶媒を真空中で除去した。残留物を10%炭酸ナトリウム溶液で処理し、そして酢酸エチルで抽出した。酢酸エチル層を分離し、そしてフマル酸 (40 mg, 0.34 mmol) を加えた。溶媒を真空中で除去した後、残留物を一晩酢酸エチルで磨碎し、濾過により集め、そして乾燥し、4-クロロ-2-(1-メチルアミノインダン-4-イルオキシ)ベンゾニトリルスマレート (111 mg, 63%) を白色の固体として得た。

MS (APCI+) 299/301 [M+1]⁺.

¹H-NMR (300 MHz, d₆-DMSO/d-TFA): 7.97 (1H, d), 7.56 (1H, d), 7.46 (1H, dd), 7.40 (1H, dd), 7.22 (1H, d), 6.89 (1H, br s), 6.65 (2H, s), 4.87-4.78 (1H, m), 3.03-2.89 (1H, m), 2.84-2.72 (1H, m), 2.64 (3H, s), 2.57-2.43 (1H, m), 2.27-2.13 (1H, m).

【0126】

〔実施例43〕

[2-メトキシ-3-(5-メチル-2-ニトロフェノキシ)ベンジル]メチルアミンスマレート

a) 2-メトキシ-3-(5-メチル-2-ニトロフェノキシ)ベンズアルデヒド

2-フルオロ-4-メチル-1-ニトロベンゼン (0.25 g, 1.6 mmol)、3-ヒドロキシ-2-メトキシベンズアルデヒド (0.25 g, 1.6 mmol) および炭酸セシウム (0.54 g, 1.6 mmol) を乾燥 DMF (4 mL) 中で 20 時間攪拌しながら 50 度で加熱した。反応混合物を冷却し、0.1N 水酸化ナトリウム溶液に注ぎ、そしてジエチルエーテルで抽出した。エーテル層を分離し、0.1N 水酸化ナトリウム溶液 (4X)、水 (4X)、塩水 (1X) で洗浄し、硫酸マグネシウム上で乾燥した。濾過の後、溶媒を真空中で除去し、2-メトキシ-3-(5-メチル-2-ニトロフェノキシ)ベンズアルデヒド (0.36 g, 77%) 茶色の油として得、そしてそれをさらに精製することなく使用した。

¹H-NMR (300 MHz, CDCl₃): 10.43 (1H, s), 7.94 (1H, d), 7.71 (1H, dd), 7.24-6.95 (3H, m), 6.66 (1H, br s), 4.04 (3H, s), 2.34 (3H, s).

【0127】

b) [2-メトキシ-3-(5-メチル-2-ニトロフェノキシ)ベンジル]メチルアミノスマレート

2-メトキシ-3-(5-メチル-2-ニトロフェノキシ)ベンズアルデヒド (0.36 g, 1.3 mmol)、メチルアミン (2 M、メタノール中、3.0 mL, 6.0 mmol) および水素化シアノホウ素ナトリウム (100 mg, 1.6 mmol) を 1% 酢酸 / メタノール溶液 (50 mL) 中で 18 時間周囲温度で攪拌した。溶媒を真空中で除去した。残留物を 10% 炭酸ナトリウム溶液で処理し、そして酢酸エチルで抽出した。酢酸エチル層を分離し、そしてフマル酸 (0.14 g, 1.2 mmol) を加えた。溶媒を真空中で除去した後、残留物を温メタノールで磨碎し、そして一晩冷却した。濾液を集め、そして溶媒を真空中で除去した。残留物を一晩酢酸エチルで磨碎し、濾過により集め、そして乾燥し、[2-メトキシ-3-(5-メチル-2-ニトロフェノキシ)ベンジル]メチルアミンスマレート (195 mg, 38%) をベージュ色の固体として得た。

MS (APCI+) 303 [M+1]⁺.

¹H-NMR (300 MHz, d₆-DMSO): 7.98 (1H, d), 7.33 (1H, d), 7.20-7.10 (2H, m), 7.03 (1H, dd), 6.75 (1H, br s), 6.48 (2H, s), 3.90 (2H, s), 3.78 (3H, s), 2.42 (3H, s), 2.30 (3H, s).

【0128】

〔実施例44〕

4-クロロ-2-(3-ジメチルアミノメチル-2-エチルフェノキシ)ベンゾニトリルスマレート

10

20

30

40

50

a) (2-エチル-3-メトキシベンジル)ジメチルアミン

(3-メトキシベンジル)ジメチルアミン(2.03mL, 2.00g, 12.1mmol)を窒素雰囲気下、無水THF(20mL)に溶解し、そして氷水浴で0℃に冷却した。ブチルリチウム(2.5M、ヘキサン中、5.3mL, 13.3mmol)を10分以上かけてシリングで滴下して加えた(温度を5℃以下に保った)。0℃で2時間攪拌した後、ヨードエタン(1.1mL, 2.1g, 13.8mmol)を25分以上かけてシリングで滴下して加えた(温度を5℃以下に保った)。反応溶液を周囲温度に到達するのにまかせた。4時間後、反応内容物をジエチルエーテルに移し、そしてシリカゲル(3.8g)に吸着させ真空下で溶媒を除去した。クロマトグラフィーにより、(2-エチル-3-メトキシベンジル)ジメチルアミン(1.30g, 56%)を薄い黄色の固体として得た。

10

MS (APCI+) 194 [M+1]⁺.

¹H-NMR (300 MHz, CDCl₃): 7.11 (1H, dd), 6.92 (1H, d), 6.78 (1H, d), 3.82 (3H, s), 3.39 (2H, s), 2.75 (2H, q), 2.24 (6H, s), 1.10 (3H, t).

【0129】

b) 3-ジメチルアミノメチル-2-エチルフェノール臭化水素酸塩

(2-エチル-3-メトキシベンジル)ジメチルアミン(1.30g, 6.73mmol)を30%臭化水素/酢酸(10mL)に懸濁させ、そして21時間攪拌しながら還流下で加熱した。冷却された反応混合物を磨碎し、そして連続して一部ずつジエチルエーテル(3X)に移し、そして一晩ジエチルエーテルで磨碎した。固体を濾過により集め、エーテルで洗浄し、そして乾燥し、3-ジメチルアミノメチル-2-エチルフェノール臭化水素酸塩(1.37g, 78%)を黄褐色の固体として得た。

20

MS (APCI+) 180 [M+1]⁺.

¹H-NMR (300 MHz, d₆-DMSO): 9.56 (1H, s), 9.30 (1H, br s), 7.10 (1H, dd), 6.93 (1H, d), 6.89 (1H, d), 4.27 (2H, d), 2.77 (6H, d), 2.67 (2H, q), 1.04 (3H, t).

【0130】

c) 4-クロロ-2-(3-ジメチルアミノメチル-2-エチルフェノキシ)ベンゾニトリルスマレート

4-クロロ-2-フルオロベンゾニトリル(0.82g, 5.27mmol)、3-ジメチルアミノメチル-2-エチルフェノール臭化水素酸塩(1.37g, 5.27mmol)、そして炭酸セシウム(3.43g, 10.5mmol)を乾燥DMF(8mL)中で4時間攪拌しながら50℃で加熱した。反応混合物を冷却し、0.1N水酸化ナトリウム溶液に注ぎ、そしてジエチルエーテルで抽出した。エーテル層を分離し、そして1N水酸化ナトリウム溶液(2X)、水(3X)、塩水(1X)で洗浄し、硫酸マグネシウム上で乾燥した。濾過の後、溶媒を真空下で除去し、黄色の油状物(1.86g)を得た。それをクロマトグラフィーで精製し、4-クロロ-2-(3-ジメチルアミノメチル-2-エチルフェノキシ)ベンゾニトリル(1.29g, 78%)を薄い黄色の油状物として得た。少量部分(98mg)がフマル酸塩(60%、80mg)に変換された。

30

MS (APCI+) 315 [M+1]⁺.

¹H-NMR (300 MHz, d₆-DMSO): 7.96 (1H, d), 7.35 (1H, dd), 7.32-7.23 (2H, m), 7.06 (1H, dd), 6.76 (1H, d), 6.62 (2H, s), 3.49 (2H, s), 2.64 (2H, q), 2.21 (6H, s), 1.08 (3H, t).

40

【0131】

〔実施例45〕

2-(3-アミノメチル-2-エチル-フェノキシ)-4-クロロ-ベンゾニトリルスマレート

a) 4-クロロ-2-(3-クロロメチル-2-エチル-フェノキシ)-ベンゾニトリル

4-クロロ-2-(3-ジメチルアミノメチル-2-エチルフェノキシ)ベンゾニトリル(1.18g, 3.75mmol)を乾燥トルエン(20mL)中に溶解し、そして氷水浴で0℃に冷却した。エチルクロロホルムート(1.08mL, 1.22g, 11.2mmol)を攪拌しながら5分間以上かけて滴下して加えた(白色の沈降物が形成した)。反応混合物を周囲温度に到達するのにまかせ、19時間攪拌し、水に注ぎ、そしてジエチルエーテルで抽出した。エーテル層を水(2X)、塩水(1X)で洗浄し、硫酸マグネシウム上で乾燥した。濾過の後、溶媒を真空下で除去し、薄

50

い黄色の油状物 (0.89 g) を得た。そして、それをクロマトグラフィーで精製し、4-クロロ-2-(3-クロロメチル-2-エチルフェノキシ)-ベンゾニトリル (0.71 g、62%) を無色の油状物として得た(これは後で固化した)。

¹H-NMR (300 MHz, d₆-DMSO): 7.98 (1H, d), 7.43-7.30 (3H, m), 7.14 (1H, d), 6.83 (1H, d), 4.87 (2H, s), 2.68 (2H, q), 1.15 (3H, t).

【0132】

b) 2-(3-アミノメチル-2-エチルフェノキシ)-4-クロロベンゾニトリルヘミスマレートメタノール (10mL) 中の4-クロロ-2-(3-クロロメチル-2-エチルフェノキシ)-ベンゾニトリル (0.53mmol、0.16 g) 溶液にアンモニア (7 N、メタノール中、15mL、105mmol) を添加し、反応混合物を周囲温度で4日間攪拌した。溶媒を真空下で除去した。残留物を10%炭酸ナトリウム溶液で処理し、そして酢酸エチルで抽出した。酢酸エチル層を分離し、そしてメタノール (3 mL) 中のフマル酸 (60mg、0.52mmol) 溶液を加えた。溶媒を真空下で除去した後、残留物を一晩ジエチルエーテルで磨碎し、濾過により集め、そして乾燥し2-(3-アミノメチル-2-エチルフェノキシ)-4-クロロベンゾニトリルヘミスマレート (174mg、83%) を白色の固体として得た。

MS (APCI+) 287/289 [M+1]⁺.

¹H-NMR (300 MHz, d₆-DMSO): 8.24 (2H, br s), 7.99 (1H, d), 7.47-7.33 (3H, m), 7.19 (1H, br d), 6.76 (1H, s), 6.63 (1H, s), 4.14 (2H, br s), 2.62 (2H, q), 1.08 (3H, t).

【0133】

〔実施例46〕

4-クロロ-2-(2-エチル-3-メチルアミノメチルフェノキシ)-ベンゾニトリルスマレートエタノール (20mL) 中の4-クロロ-2-(3-クロロメチル-2-エチルフェノキシ)-ベンゾニトリル (0.39 g、1.3mmol) にメチルアミン (5.0mL、33%、エタノール中、40mmol) を添加し、反応混合物を周囲温度で24時間攪拌した。溶媒を真空下で除去した。残留物を10%炭酸ナトリウム溶液で処理し、そして酢酸エチルで抽出した。酢酸エチル層を分離し、そしてメタノール (5 mL) 中のフマル酸 (148mg、1.3mmol) 溶液を加えた。溶媒を真空下で除去した後、残留物を一晩ジエチルエーテルで磨碎し、濾過により集め、そして乾燥し、4-クロロ-2-(2-エチル-3-メチルアミノメチルフェノキシ)-ベンゾニトリルスマレート (455mg、86%) を白色の固体として得た。

MS (APCI+) 301/303 [M+1]⁺.

¹H-NMR (300 MHz, d₆-DMSO): 7.98 (1H, d), 7.43-7.30 (3H, m), 7.12 (1H, d), 6.76 (1H, d), 6.51 (2H, s), 3.97 (2H, s), 2.62 (2H, q), 2.50 (3H, s), 1.07 (3H, t).

【0134】

〔実施例47〕

4-クロロ-2-(3-ジメチルアミノメチル-2-プロピルフェノキシ)-ベンゾニトリルスマレート

a) (3-メトキシ-2-プロピルベンジル)-ジメチルアミン

(3-メトキシベンジル)ジメチルアミン (2.03mL、2.00 g、12.1mmol) を窒素雰囲気下で無水THF (20mL) に溶解し、そして氷水浴で0℃に冷却した。ブチルリチウム (2.5M、ヘキサン中、5.1mL、12.7mmol) を20分かけてシリンドリで滴下した(温度を5℃以下に保った)。0℃で2時間攪拌した後、1-ヨードプロパン (1.25mL、2.18 g、12.8mmol) を15分以上かけてシリンドリで滴下して加えた(温度を5℃以下に保った)。反応混合物を周囲温度に到達するのにまかせた。23時間後、水 (~10mL) を加え、そして有機溶媒を真空下で除去した。残留物をジエチルエーテルで抽出し、そして水 (2X)、塩水 (1X) で洗浄し、硫酸マグネシウム上で乾燥した。濾過の後、溶媒を真空下で除去し、無色の油 (2.25 g)を得た。そして、それをクロマトグラフィーで精製し、(3-メトキシ-2-プロピルベンジル)ジメチルアミン (1.52 g、62%) を無色の油状物として得た。

MS (APCI+) 208 [M+1]⁺.

¹H-NMR (300 MHz, CDCl₃): 7.10 (1H, dd), 6.92 (1H, d), 6.77 (1H, d), 3.80 (3H,

10

20

30

40

50

s), 3.38 (2H, s), 2.73-2.64 (2H, m), 2.23 (6H, s), 1.58-1.43 (2H, m), 0.97 (3H, t).

【0135】

b) 3-ジメチルアミノメチル-2-プロピルフェノール臭化水素酸塩

(3-メトキシ-2-プロピルベンジル)-ジメチルアミン (1.51g、7.28mmol) を30%臭化水素/酢酸 (10mL) に懸濁させ、そして攪拌しながら20時間還流下に加熱した。冷却された反応混合物を磨碎し、そして連続して一部ずつジエチルエーテル (4X) に移した。そして、一晩ジエチルエーテルで磨碎した。固体を濾過により集め、エーテルで洗浄し、そして乾燥し、3-ジメチルアミノメチル-2-プロピルフェノール臭化水素酸塩 (1.58g、79%) を黄褐色の固体として得た。

10

MS (APCI+) 194 [M+1]⁺.

¹H-NMR (300 MHz, CDCl₃): 9.54 (1H, s), 9.28 (1H, br s), 7.10 (1H, dd), 6.94 (1H, d), 6.89 (1H, d), 4.27 (2H, d), 2.77 (6H, d), 2.66-2.57 (2H, m), 1.51-1.35 (2H, m), 0.93 (3H, t).

【0136】

c) 4-クロロ-2-(3-ジメチルアミノメチル-2-プロピルフェノキシ)-ベンゾニトリルマレート

4-クロロ-2-フルオロベンゾニトリル (0.90g、5.8mmol)、3-ジメチルアミノメチル-2-プロピルフェノール臭化水素酸塩 (1.58g、5.8mmol) および炭酸セシウム (12.1mmol、3.94g) を乾燥DMF (6mL) 中で18時間攪拌しながら50℃で加熱した。反応混合物を冷却し、0.1N水酸化ナトリウム溶液に注ぎ、そしてジエチルエーテルで抽出した。エーテル層を分離し、そして1N水酸化ナトリウム溶液 (1X)、水 (2X)、塩水 (1X) で洗浄し、硫酸マグネシウム上で乾燥した。濾過の後、溶媒を真空下で除去し、黄色の油状物 (1.77g) を得、そしてそれをクロマトグラフィーで精製し、4-クロロ-2-(3-ジメチルアミノメチル-2-プロピルフェノキシ)-ベンゾニトリル (1.53g、81%) を薄い黄色の油状物として得た。少量 (100mg) がフマル酸エステル塩 (47%、63mg) に変換された。

20

MS (APCI+) 329/331 [M+1]⁺.

¹H-NMR (300 MHz, d₆-DMSO): 7.96 (1H, d), 7.35 (1H, br dd), 7.31-7.24 (2H, m), 7.07 (1H, dd), 6.74 (1H, br d), 6.62 (2H, s), 3.49 (2H, s), 2.62-2.53 (2H, m), 2.22 (6H, s), 1.56-1.41 (2H, m), 0.89 (3H, t).

30

【0137】

〔実施例48〕

2-(3-アミノメチル-2-プロピル-フェノキシ)-4-クロロ-ベンゾニトリルヘミマレート
a) 4-クロロ-2-(3-クロロメチル-2-プロピルフェノキシ)-ベンゾニトリル

4-クロロ-2-(3-ジメチルアミノメチル-2-プロピルフェノキシ)-ベンゾニトリル (1.40g、4.26mmol) を乾燥トルエン (20mL) に溶解し、氷水浴で0℃に冷却した。エチルクロロホルメート (1.42g、1.25mL、13.1mmol) を5分にわたって攪拌しながら滴下して加えた (白色の沈降物が形成した)。反応混合物を周囲温度に到達するのにまかせ、18時間攪拌し、水に注ぎ、そしてジエチルエーテルで抽出した。エーテル層を水 (2X)、塩水 (1X) で洗浄し、硫酸マグネシウム上で乾燥した。濾過の後、溶媒を真空下で除去し、薄い黄色の油状物 (1.05g) を得、それをクロマトグラフィーで精製し、4-クロロ-2-(3-クロロメチル-2-プロピルフェノキシ)ベンゾニトリル (0.83g、61%) を白色の固体として得た。

40

¹H-NMR (300 MHz, CDCl₃): 7.60 (1H, d), 7.34-7.22 (2H, m), 7.11 (1H, dd), 6.97 (1H, dd), 6.74 (1H, d), 4.66 (2H, s), 2.70-2.62 (2H, m), 1.69-1.55 (2H, m), 0.99 (3H, t).

【0138】

b) 2-(3-アミノメチル-2-プロピル-フェノキシ)-4-クロロ-ベンゾニトリルヘミマレート

アンモニア (7N、メタノール中、25mL、175mmol) 中の4-クロロ-2-(3-クロロメチル-2-

50

-プロピルフェノキシ) -ベンゾニトリル (0.50mmol、0.16g) を65時間周囲温度で攪拌した。溶媒を真空下で除去した。残留物を10%炭酸ナトリウム溶液で処理し、そして酢酸エチルで抽出した。酢酸エチル層を分離し、そしてメタノール (3mL) 中のフマル酸 (58mg、0.50mmol) 溶液を加えた。溶媒を真空下で除去し、残留物を一晩ジエチルエーテルで磨碎し、濾過により集め、そして乾燥し、2-(3-アミノメチル-2-プロピル-フェノキシ)-4-クロロ-ベンゾニトリルヘミフマレート (200mg、96%) を白い固体として得た。

MS (APCI+) 301/303 [M+1]⁺.

¹H-NMR (300 MHz, d₆-DMSO): 8.23 (2H, br s), 7.99 (1H, d), 7.47-7.34 (3H, m), 7.21 (1H, br d), 6.74 (1H, s), 6.63 (1H, s), 4.13 (2H, br s), 2.61-2.52 (2H, m), 1.55-1.40 (2H, m), 0.91 (3H, t).

10

【0139】

〔実施例49〕

4-クロロ-2-(3-メチルアミノメチル-2-プロピル-フェノキシ)-ベンゾニトリルフマレート

エタノール (20mL) 中の4-クロロ-2-(3-クロロメチル-2-プロピルフェノキシ)ベンゾニトリル (0.35g、1.1mmol) にメチルアミン (9.0mL、33%、エタノール中、72mmol) を加え、反応混合物を周囲温度で18時間攪拌した。溶媒を真空下で除去した。残留物を10%炭酸ナトリウム溶液で処理し、そして酢酸エチルで抽出した。酢酸エチル層を分離し、そしてメタノール (5mL) 中のフマル酸 (1.1mmol、127mg) 溶液を加えた。溶媒を真空下で除去した後、残留物を一晩ジエチルエーテルで磨碎し、濾過により集め、そして乾燥し、4-クロロ-2-(3-メチルアミノメチル-2-プロピル-フェノキシ)-ベンゾニトリルフマレート (354mg、75%) を白色の固体として得た。

MS (APCI+) 315/317 [M+1]⁺

¹H-NMR (300 MHz, d₆-DMSO): 7.97 (1H, d), 7.43-7.29 (3H, m), 7.11 (1H, d), 6.73 (1H, br s), 6.50 (2H, s), 3.91 (2H, s), 2.60-2.51 (2H, m), 2.46 (3H, s), 1.54-1.39 (2H, m), 0.89 (3H, t).

20

【0140】

〔実施例50〕

2-(2-アリル-4-メチルアミノメチル-フェノキシ)-4-クロロベンゾニトリルフマレート

a) 3-アリル-4-ヒドロキシベンズアルデヒド

30

乾燥DMF (3mL) 中の4-アリルオキシベンズアルデヒド (1.16g、7.15mmol) を170°で30時間攪拌した。反応混合物を冷却し、水に注ぎ、そして酢酸エチルで抽出した。酢酸エチル層を1N水酸化ナトリウム溶液 (2X) で抽出した。塩基性の抽出溶液を混合し、そして3N塩酸を加えることにより酸性化し、そして酢酸エチルで抽出した。酢酸エチル層を水 (2X)、塩水 (1X) で洗浄し、そして硫酸マグネシウムで乾燥した。濾過の後、溶媒を真空下で除去し、3-アリル-4-ヒドロキシベンズアルデヒド (0.34g、29%) を黄色の油状物として得た。

MS (APCI+) 163 [M+1]⁺.

¹H-NMR (300 MHz, CDCl₃): 9.85 (1H, s), 7.75-7.67 (2H, m), 6.95 (1H, d), 6.10-5.95 (1H, m), 5.24-5.20 (1H, m), 5.19-5.14 (1H, m), 3.47 (2H, br d).

40

【0141】

b) 2-(2-アリル-4-ホルミル-フェノキシ)-4-クロロベンゾニトリル

4-クロロ-2-フルオロベンゾニトリル (0.34g、2.2mmol)、3-アリル-4-ヒドロキシベンズアルデヒド (0.34g、2.1mmol) およびフッ化カリウム (0.37g、6.3mmol) を乾燥DMF (4mL) 中で4時間攪拌しながら120°で加熱した。反応混合物を冷却し、0.1N水酸化ナトリウム溶液に注ぎ、そして酢酸エチルで抽出した。酢酸エチル層を分離し、0.1N水酸化ナトリウム溶液 (3X)、水 (2X)、塩水 (1X) で洗浄し、硫酸マグネシウム上で乾燥した。濾過の後、溶媒を真空下で除去し、そして残留物をクロマトグラフィーで精製し、2-(2-アリル-4-ホルミル-フェノキシ)-4-クロロベンゾニトリル (0.09g、15%) を無色の油状物として得た。

50

¹H-NMR (300 MHz, CDCl₃): 10.00 (1H, s), 7.89 (1H, br d), 7.80 (1H, dd), 7.67-7.56 (1H, m), 7.28 (1H, d), 7.05 (1H, d), 6.84 (1H, d), 6.04-5.88 (1H, m), 5.18-5.06 (2H, m), 3.49 (2H, d).

【0142】

c) 2-(2-アリル-4-メチルアミノメチル-フェノキシ)-4-クロロベンゾニトリルスマレート

2-(2-アリル-4-ホルミル-フェノキシ)-4-クロロベンゾニトリル (0.09 g, 0.30 mmol)、メチルアミン (33%、エタノール中、0.3 mL, 2.4 mmol) および水素化シアノホウ素ナトリウム (40 mg, 0.64 mmol) をメタノール中 (25 mL) の冰酢酸 (0.5 mL) 溶液中で20時間周囲温度で攪拌した。溶媒を真空下で除去した。残留物を10%炭酸ナトリウム溶液で処理し、そして酢酸エチルで抽出した。酢酸エチル層を分離し、そしてフマル酸 (36 mg, 0.30 mmol) を加えた。溶媒を真空下で除去した後、残留物を一晩酢酸エチルで磨碎し、濾過により集め、そして乾燥し、2-(2-アリル-4-メチルアミノメチル-フェノキシ)-4-クロロベンゾニトリルスマレート (104 mg, 80%) を白色の固体として得た。

MS (APCI+) 313/315 [M+1]⁺

¹H-NMR (300 MHz, d₆-DMSO): 7.97 (1H, d), 7.52 (1H, s), 7.46 (1H, s), 7.38 (1H, d), 7.23 (1H, d), 6.79 (1H, d), 6.65 (2H, s), 5.97-5.85 (1H, m), 5.08-5.02 (2H, m), 4.16 (2H, s), 3.36 (2H, d), 2.60 (3H, s).

【0143】

〔実施例51〕

4-クロロ-2-(3-ジメチルアミノメチル-4-フルオロフェノキシ)ベンゾニトリル

a) (2-フルオロ-5-メトキシベンジル)ジメチルアミン

2-フルオロ-5-メトキシベンズアルデヒド (2.62 g, 17.0 mmol)、ジメチルアミン (2 M、メタノール中、17 mL, 34 mmol) および水素化シアノホウ素ナトリウム (18.7 mmol, 1.17 g) をメタノール (100 mL) 中の冰酢酸 (2 mL) 溶液中で66時間周囲温度で攪拌した。溶媒を真空下で除去した。残留物を10%炭酸ナトリウム溶液で処理し、そして酢酸エチルで抽出した。酢酸エチル層を水 (2X)、塩水 (1X) で洗浄し、硫酸マグネシウムで乾燥した。濾過の後、溶媒を真空下で除去し、(2-フルオロ-5-メトキシベンジル)ジメチルアミン (3.02 g, 97%) を黄色の油状物として得た。

MS (APCI+) 184 [M+1]⁺.

¹H-NMR (300 MHz, CDCl₃): 6.98-6.86 (2H, m), 6.78-6.71 (1H, m), 3.78 (3H, s), 3.46 (2H, s), 2.27 (6H, s).

【0144】

b) 3-ジメチルアミノメチル-4-フルオロフェノール臭化水素酸塩

(2-フルオロ-5-メトキシベンジル)-ジメチルアミン (1.51 g, 8.24 mmol) を30%臭化水素/酢酸 (10 mL) 中で17時間還流下で加熱した。冷却された反応混合物を磨碎し、そして連続して一部ずつジエチルエーテル (4X) に移し、そして一晩ジエチルエーテルで磨碎した。固体を濾過により集め、エーテルで洗浄し、そして乾燥し、3-ジメチルアミノメチル-4-フルオロフェノール臭化水素酸塩 (1.43 g, 69%) を黄褐色の固体として得た。

MS (APCI+) 170 [M+1]⁺.

¹H-NMR (300 MHz, d₆-DMSO): 9.68 (1H, s), 7.18-7.10 (1H, m), 6.98-6.93 (1H, m), 6.92-6.85 (1H, m), 4.26 (2H, s), 2.76 (6H, s).

【0145】

c) 4-クロロ-2-(3-ジメチルアミノメチル-4-フルオロフェノキシ)ベンゾニトリル

4-クロロ-2-フルオロベンゾニトリル (0.48 g, 3.1 mmol)、3-ジメチルアミノメチル-4-フルオロフェノール臭化水素酸塩 (0.74 g, 3.0 mmol) および炭酸セシウム (2.02 g, 6.2 mmol) を乾燥DMF (5 mL) 中で18時間攪拌しながら50℃で加熱した。反応混合物を冷却し、0.1N水酸化ナトリウム溶液で洗浄し、そしてジエチルエーテルで抽出した。エーテル層を分離し、そして1N水酸化ナトリウム溶液 (2X)、水 (2X)、塩水 (1X) で洗浄し、硫酸マグネシウム上で乾燥した。濾過の後、溶媒を真空下で除去し、黄色の油上物 (0.93 g)

10

20

30

40

50

を得、それをクロマトグラフィーで精製し、4-クロロ-2-(3-ジメチルアミノメチル-4-フルオロフェノキシ)ベンゾニトリル(0.68g、76%)を薄い黄色の油状物として得た。

MS (APCI+) 305/307 [M+1]⁺.

¹H-NMR (300 MHz, CDCl₃): 7.57 (1H, d), 7.21-7.07 (3H, m), 7.02-6.95 (1H, m), 6.75 (1H, br s), 3.50 (2H, s), 2.28 (6H, s).

【0146】

〔実施例52〕

4-クロロ-2-(4-フルオロ-3-メチルアミノメチル-フェノキシ)-ベンゾニトリルフマレート

a) 4-クロロ-2-(3-クロロメチル-4-フルオロフェノキシ)ベンゾニトリル

10

4-クロロ-2-(3-ジメチルアミノメチル-4-フルオロフェノキシ)ベンゾニトリル(0.56g、1.8mmol)を乾燥トルエン(12mL)に溶解し、そして氷水浴で0℃に冷却した。エチルクロロホルムート(0.55mL、0.62g、5.8mmol)を攪拌しながら5分にわたって滴下して加えた。反応混合物を周囲温度に到達するのにまかせ、20時間攪拌し、水に注ぎ、そしてジエチルエーテルで抽出した。エーテル層を水(2X)、塩水(1X)で洗浄し、そして硫酸マグネシウム上で乾燥した。濾過の後、溶媒を真空下で除去し、薄い黄色の油(0.39g)を得、そしてそれをクロマトグラフィーで精製し、4-クロロ-2-(3-クロロメチル-4-フルオロフェノキシ)-ベンゾニトリル(0.14g、26%)を白色の固体として得た。

¹H-NMR (300 MHz, CDCl₃): 7.60 (1H, d), 7.24-7.12 (3H, m), 7.09-7.02 (1H, m), 6.80 (1H, d), 4.63 (2H, s).

20

【0147】

b) 4-クロロ-2-(4-フルオロ-3-メチルアミノメチル-フェノキシ)-ベンゾニトリルフマレート

エタノール(15mL)中の4-クロロ-2-(3-クロロメチル-4-フルオロフェノキシ)-ベンゾニトリル(0.14g、0.47mmol)溶液にメチルアミン(33%、エタノール中、4.0mL、32mmol)を加え、そして反応混合物を周囲温度で10日間攪拌した。溶媒を真空下で除去した。残留物を10%炭酸ナトリウム溶液で処理し、そして酢酸エチルで抽出した。酢酸エチル層を分離し、そしてメタノール(3mL)中のフマル酸(50mg、0.43mmol)溶液を加えた。溶媒を真空下で除去した後、残留物を一晩ジエチルエーテルで磨碎し、濾過により集め、そして乾燥し、4-クロロ-2-(4-フルオロ-3-メチルアミノメチル-フェノキシ)-ベンゾニトリルフマレート(183mg、95%)を白色の固体として得た。

30

MS (APCI+) 291/293 [M+1]⁺.

¹H-NMR (300 MHz, d₆-DMSO): 7.95 (1H, d), 7.38 (1H, dd), 7.33-7.27 (2H, m), 7.23-7.15 (1H, m), 6.93 (1H, m), 6.45 (1H, s), 3.74 (2H, s), 2.29 (3H, s).

【0148】

〔実施例53〕

2-(2-メトキシ-3-メチルアミノメチル-フェノキシ)-4-トリフルオロメチル-ベンゾニトリルフマレート

a) 2-(3-ホルミル-2-メトキシ-フェノキシ)-4-トリフルオロメチル-ベンゾニトリル

40

2-フルオロ-4-トリフルオロメチル-ベンゾニトリル(0.56mL、0.76g、4mmol)、3-ヒドロキシ-2-メトキシベンズアルデヒド(0.61g、4mmol)および炭酸セシウム(1.3g、4mmol)を乾燥DMF(4mL)中で18時間攪拌しながら50℃で加熱した。反応混合物を冷却し、水に注ぎ、そして酢酸エチルで抽出した。酢酸エチル層を分離し、そして水(2X)、10%炭酸ナトリウム溶液(2X)、水(1X)、塩水(1X)で洗浄し、硫酸マグネシウム上で乾燥した。濾過の後、溶媒を真空下で除去し、2-(3-ホルミル-2-メトキシ-フェノキシ)-4-トリフルオロメチル-ベンゾニトリル(1.17g、91%)を茶色の固体として得た。

¹H-NMR (300 MHz, d₆-DMSO): 10.30 (1H, s), 8.21 (1H, d), 7.63 (3H, m), 7.39 (1H, m), 7.18 (1H, s), 3.93 (3H, s).

【0149】

b) 2-(2-メトキシ-3-メチルアミノメチル-フェノキシ)-4-トリフルオロメチル-ベンゾ

50

ニトリルフマレート

2-(3-ホルミル-2-メトキシ-フェノキシ)-4-トリフルオロメチル-ベンゾニトリル(0.46g、1.43mmol)、メチルアミン(2M、メタノール中、22.2mL、4.4mmol)および水素化シアノホウ素ナトリウム(0.13g、2.1mmol)を1%酢酸/メタノール溶液(70mL)中で20時間周囲温度で攪拌した。溶媒を真空下で除去した。残留物を10%炭酸ナトリウム溶液で処理し、そして酢酸エチルで抽出した。フマル酸(0.15g、1.3mmol)を分離した酢酸エチル層に加え、溶媒を真空下で除去した。残留物を一晩ジエチルエーテルで磨碎し、濾過し、そして乾燥し、2-(2-メトキシ-3-メチルアミノメチル-フェノキシ)-4-トリフルオロメチル-ベンゾニトリルフマレート(179mg、28%)を白色固体として得た。

MS (APCI+) 337 [M+1]⁺.

10

¹H-NMR (300 MHz, d₆-DMSO): 8.22 (1H, d), 7.67 (1H, d), 7.43 (1H, d), 7.28 (2H, m), 6.97 (1H, s), 6.51 (2H, s), 3.93 (2H, s), 3.79 (3H, s), 2.42 (3H, s).

【0150】

〔実施例54〕

2-(4-メチルアミノメチル-3-フェニル-フェノキシ)-4-トリフルオロメチル-ベンゾニトリルフマレート

a) 2-(3-ブロモ-4-ホルミル-フェノキシ)-4-トリフルオロメチル-ベンゾニトリル
2-フルオロ-4-トリフルオロメチル-ベンゾニトリル(3.1g、20mmol)、2-ブロモ-4-ヒドロキシベンズアルデヒド(4g、20mmol)およびフッ化カリウム(3.47g、60mmol)を乾燥DMF(20mL)中で攪拌しながら、120で4時間、80で16時間、120で4時間、130で1時間、そして140で16時間加熱した。反応混合物を冷却し、1N水酸化ナトリウムに注ぎ、酢酸エチルで抽出し、そして硫酸マグネシウム上で乾燥した。濾過の後、溶媒を真空下で除去し、2-(3-ブロモ-4-ホルミル-フェノキシ)-4-トリフルオロメチル-ベンゾニトリル(6.38g、96%)を茶色の油状物として得た。

20

【0151】

b) 2-(4-ホルミル-3-フェニル-フェノキシ)-4-トリフルオロメチル-ベンゾニトリル
窒素雰囲気下、ジメトキシエタン:水:エタノール溶液(7:3:2、10mL)中の2-(3-ブロモ-4-ホルミル-フェノキシ)-4-トリフルオロメチル-ベンゾニトリル(0.87g、2.6mmol)、フェニルボロン酸(336mg、2.7mmol)、1,1'-ビス(ジフェニル)ホスフィノ-フェロセンパラジウム(9mg、0.13mmol)および炭酸ナトリウム(331mg、3.1mmol)を、60で6時間、そして40で16時間攪拌した。混合物を水に注ぎ、酢酸エチルで抽出し、そして硫酸マグネシウム上で乾燥した。粗生成物をISCO CombiFlash Chromatographyシステムでクロマトグラフし、2-(4-ホルミル-2-メトキシ-フェノキシ)-4-トリフルオロメチル-ベンゾニトリル(117mg、14%)を澄明な油状物として得た。

30

【0152】

c) 2-(4-メチルアミノメチル-3-フェニル-フェノキシ)-4-トリフルオロメチル-ベンゾニトリルフマレート

2-(4-ホルミル-3-フェニル-フェノキシ)-4-トリフルオロメチル-ベンゾニトリル(0.117g、0.35mmol)、メチルアミン(2M、メタノール中、0.233mL、1.05mmol)および水素化シアノホウ素ナトリウム(0.025g、0.39mmol)を1%酢酸/メタノール溶液中で20時間周囲温度で攪拌した。溶媒を真空中で除去した。残留物を10%炭酸ナトリウム溶液で処理し、そして酢酸エチルで抽出した。フマル酸(0.032g、0.28mmol)を分離された酢酸エチル層に加え、溶媒を真空下で除去した。残留物を一晩酢酸エチルで磨碎し、濾過し、そして乾燥し、2-(4-メチルアミノメチル-3-フェニル-フェノキシ)-4-トリフルオロメチル-ベンゾニトリルフマレート(75mg、61%)を白色の固体として得た。

40

MS (APCI+) 350 [M+1]⁺.

¹H-NMR (300 MHz, d₆-DMSO): 7.67 (1H, d), 7.59 (2H, m), 7.51 (2H, m), 7.33 (3H, m), 7.09 (1H, dd), 6.68 (2H, s), 6.62 (1H, d), 4.26 (2H, s), 2.77 (3H, s).

【0153】

〔実施例55〕

50

4-クロロ-2-(3-ジメチルアミノメチル-2-メチルスルファニル-フェノキシ)-ベンゾニトリルフマレート

a) (2-メチルスルファニル-3-メトキシベンジル)-ジメチルアミン

窒素雰囲気下、3-メトキシ-N,N-ジメチルベンジルアミン(2.00g、12.1mmol)を無水THF(20mL)に溶解し、そして氷浴槽で0℃に冷却した。温度を5℃以下維持しながら、ヘキサン中の2.5Mn-ブチルリチウム(5.3mL、13.3mmol)をゆっくり加えた。反応を2時間0で攪拌し、そして温度を5℃以下維持しながら、ジメチルジスルフィド(1.59g、13mmol)を90分以上かけてゆっくり加えた。反応混合物を17時間攪拌し、その時間中に温度を室温に到達するのにまかせた。水(20mL)およびジエチルエーテル(30mL)を加え、そして有機層を分離し、硫酸マグネシウムで乾燥した。濾過の後、粗溶液を酢酸エチルに溶解し、そしてシリカゲル(1.5g)に真空下で吸収させた。この物質を、ISCO CombiFlash Chromatographyシステムでクロマトグラフし、(2-メチルスルファニル-3-メトキシベンジル)-ジメチル-アミンを黄色の油(57%、1.47g)として得た。

MS (APCI+) 212 [M+1]⁺

¹H-NMR (300 MHz, CDCl₃): 7.25 (1H, dd), 7.05 (1H, d), 6.80 (1H, d), 3.91 (3H, s), 3.70 (2H, s), 2.32 (3H, s), 2.26 (6H, s).

【0154】

b) 3-ジメチルアミノメチル-2-メチルスルファニル-フェノール臭化水素酸塩

酢酸(34mmol、7mL)中の30%臭化水素を(2-メチルスルファニル-3-メトキシベンジル)-ジメチルアミン(1.44g、6.8mmol)に加え、そして攪拌しながら100℃で加熱した。17時間後、反応をLC/MS分析により完了させ、そして室温に冷却した。ジエチルエーテル(100mL)を攪拌しながら加えた。20分後、オレンジ色のジエチルエーテル溶液を移した。これを黄褐色の固体が沈殿するまで繰り返した。3-ジメチルアミノメチル-2-メチルスルファニル-フェノール臭化水素酸塩(1.74g、90%)を茶色の固体として濾過した。

MS (APCI+) 198 [M+1]⁺.

¹H-NMR (300 MHz, CDCl₃): 10.18 (1H, s), 9.16 (1H, s), 7.28 (1H, t), 7.03 (2H, m), 4.48 (2H, d), 2.77 (6H, d), 2.30 (3H, s).

【0155】

c) 4-クロロ-2-(3-ジメチルアミノメチル-2-メチルスルファニル-フェノキシ)-ベンゾニトリルフマレート

4-クロロ-2-フルオロベンゾニトリル(0.974g、6.26mmol)、3-ジメチルアミノメチル-2-メチルスルファニル-フェノール臭化水素酸塩(1.74g、6.26mmol)および炭酸セシウム(12.5mmol、4.08g)を乾燥DMF(4mL)中で攪拌しながら17時間50℃で加熱した。反応はLC/MS分析で完結していた。反応溶液を冷却し、水に注ぎ、そして酢酸エチルで抽出した。酢酸エチル層を分離し、そして水(1X)、10%炭酸ナトリウム溶液(2X)、水(2X)、塩水(1X)で洗浄し、硫酸マグネシウム上で乾燥した。濾過の後、溶媒を真空下で除去し、4-クロロ-2-(3-ジメチルアミノメチル-2-メチルスルファニル-フェノキシ)-ベンゾニトリル(1.2g、58%)を黄色の油状物として得た。メタノール(5mL)中のフマル酸(92mg、0.3mmol)を4-クロロ-2-(3-ジメチルアミノメチル-2-エチルスルファニル-フェノキシ)-ベンゾニトリル(91mg、0.26mmol)に加えた。溶媒を真空下で除去し、そしてジエチルエーテル(20mL)を攪拌しながら加えた。17時間後、4-クロロ-2-(3-ジメチルアミノメチル-2-メチルスルファニル-フェノキシ)-ベンゾニトリルフマレート(63.2mg、47%)を白色の固体として濾過した。

MS (APCI+) 334 [M+1]⁺.

¹H-NMR (300 MHz, d₆-DMSO): 7.95 (1H, d), 7.43 (2H, m), 7.36 (1H, dd), 7.23 (1H, dd), 6.67 (1H, d), 6.61 (2H, s), 3.71 (2H, s), 2.32 (3H, s), 2.23 (6H, s).

【0156】

〔実施例56〕

4-クロロ-2-(3-アミノメチル-2-メチルスルファニル-フェノキシ)-ベンゾニトリルフマレート

10

20

30

40

50

a) 4-クロロ-2-(3-クロロメチル-2-メチルスルファニル-フェノキシ)-ベンゾニトリル
窒素雰囲気下、4-クロロ-2-(3-ジメチルアミノメチル-2-メチルスルファニル-フェノキシ)-ベンゾニトリル(1.02g、3.06mmol)を無水トルエン(10mL)に溶解した。溶液を0に冷却し、そしてエチルクロロホルムート(900μL、9.2mmol)をゆっくり加えた。反応溶液を17時間攪拌し、そしてその間に室温にした。水(5mL)およびジエチルエーテル(5mL)を加え、有機層を分離し、そして硫酸マグネシウムで乾燥した。濾過の後、溶液をシリカゲル(1.5g)に吸収させ、そして溶媒を真空下で除去した。この材料は、ISCO CombiFlash Chromatographyシステムでクロマトグラフし、4-クロロ-2-(3-クロロメチル-2-メチルスルファニル-フェノキシ)-ベンゾニトリル(800mg、81%)を澄明な油状物として得た。

¹H-NMR (300MHz, CDCl₃): 7.59 (1H, s), 7.45 (2H, m), 7.13 (2H, m), 6.59 (1H, d), 4.93 (2H, s), 2.48 (3H, s).

【0157】

b) 4-クロロ-2-(3-アミノメチル-2-メチルスルファニル-フェノキシ)-ベンゾニトリルフマレート

メタノール(30mL、210mmol)中の7Nアンモニアを4-クロロ-2-(3-クロロメチル-2-メチルスルファニル-フェノキシ)-ベンゾニトリル(240mg、0.8mmol)に加えた。17時間攪拌した後、TLCでなお4-クロロ-2-(3-クロロメチル-2-メチルスルファニル-フェノキシ)-ベンゾニトリルの存在も示された。反応混合物を真空下で蒸発し、約10mLに濃縮し、濃アンモニア(7mL)を加え、そして混合物を攪拌しながら17時間60で加熱した。炭酸ナトリウム溶液(4mL)および酢酸エチル(6mL)を加え、有機層を分離し、硫酸マグネシウムで乾燥した。これに、メタノール(3mL)中のフマル酸(84mg、0.64mmol)を加えた。すぐに溶媒を真空下で除去し、そしてジエチルエーテル(40mL)を残留物に加えた。17時間攪拌した後、4-クロロ-2-(3-アミノメチル-2-メチルスルファニル-フェノキシ)ベンゾニトリルフマレート(134.7mg、53%)を白い固体としてろ過した。

MS (APCI+) 305 [M+1]⁺.

¹H-NMR (300MHz, d₆-DMSO): 7.95 (1H, d), 7.53 (2H, d), 7.34 (1H, dd), 7.25 (2H, t), 6.68 (1H, d), 6.43 (2H, s), 4.15 (2H, s), 2.5 (6H, m), 2.35 (3H, s).

【0158】

〔実施例57〕

4-クロロ-2-(2-メチルスルファニル-3-メチルアミノメチル-フェノキシ)-ベンゾニトリルフマレート

エタノール(48mmol、6mL)中の33%メチルアミンを4-クロロ-2-(3-クロロメチル-2-メチルスルファニル-フェノキシ)-ベンゾニトリル(0.8mmol、256mg)に加えた。17時間溶液を攪拌した後、溶媒を真空下で除去した。炭酸ナトリウム溶液(4mL)および酢酸エチル(6mL)を加え、そして有機層を分離し、そして硫酸マグネシウムで乾燥した。これに、メタノール(3mL)中のフマル酸(74mg、0.64mmol)を加えた。すぐに溶媒を真空下で除去し、そしてジエチルエーテル(40mL)を粗材料に加えた。17時間攪拌した後、4-クロロ-2-(2-メチルスルファニル-3-メチルアミノメチル-フェノキシ)-ベンゾニトリルフマレート(253mg、0.581mmol、73%)を白い固体としてろ過した。

¹H-NMR (300 MHz, d-DMSO): 7.96 (1H, d), 7.51 (2H, d), 7.26 (2H, m), 6.99 (1H, s), 6.52 (2H, s), 4.12 (2H, s), 2.45 (3H, s), 2.34 (3H, s).

【0159】

〔実施例58〕

4-クロロ-2-(3-ジメチルアミノメチル-2-エチルスルファニル-フェノキシ)-ベンゾニトリルフマレート

a) 3-ジメチルアミノメチル-2-エチルスルファニル-フェノール臭化水素酸塩
酢酸(18.05mmol、3.6mL)中の30%臭化水素を(2-エチルスルファニル-3-メトキシベンジル)-ジメチルアミン(800mg、3.55mmol)に加え、そして反応混合物を攪拌しながら10で加熱した。17時間後、反応はLC/MS分析で完結しており、そして室温に冷却した。ジ

10

20

30

40

50

エチルエーテル (100mL) を攪拌しながら加え、そして20分後オレンジ色のジエチルエーテル溶液を移した。この方法を褐色の固体が沈殿するまで繰り返した。3-ジメチルアミノメチル-2-エチルスルファニル-フェノール臭化水素酸塩 (770mg、100%) を褐色の固体としてろ過した。

¹H-NMR (300 MHz, CDCl₃): 10.16 (1H, s), 7.30 (1H, t) 7.03 (2H, m), 4.48 (2H, d), 2.80 (2H, m), 2.76 (6H, d) 1.05 (3H, t).

【0160】

b) 4-クロロ-2-(3-ジメチルアミノメチル-2-エチルスルファニル-フェノキシ)-ベンゾニトリルスマレート

4-クロロ-2-フルオロベンゾニトリル (0.567g、3.6mmol)、3-ジメチルアミノメチル-エチルスルファニル-フェノール臭化水素酸塩 (0.77g、2.6mmol) および炭酸セシウム (1.19g、3.6mmol) を乾燥DMF (4mL) 中で攪拌しながら17時間50 で加熱した。さらに炭酸セシウム (1.19g、3.6mmol) を加えた。1時間後、反応はLC/MS分析で完結していた。反応溶液を冷却し、水に注ぎ、そして酢酸エチルで抽出した。酢酸エチル層を分離し、そして水(1X)、10%炭酸ナトリウム溶液 (2X)、水 (2X)、塩水 (1X)で洗浄し、硫酸マグネシウム上で乾燥した。濾過の後、溶媒を真空中で除去し、4-クロロ-2-(3-ジメチルアミノメチル-2-エチルスルファニル-フェノキシ)-ベンゾニトリル (662mg、52%) を透明な油状物として得た。メタノール (5mL) 中のフマル酸 (30mg、0.26mmol) を4-クロロ-2-(3-ジメチルアミノメチル-2-エチルスルファニル-フェノキシ)-ベンゾニトリル (91mg、0.26mmol) に加えた。溶媒を真空中で除去し、そしてジエチルエーテル (20mL) を攪拌しながら加えた。17時間後、4-クロロ-2-(3-ジメチルアミノメチル-2-エチルスルファニル-フェノキシ)-ベンゾニトリルスマレート (41.4mg、34%) を白色の固体としてろ過した。

MS (APCI+) 348[M+1]⁺.

¹H-NMR (300 MHz, d₆-DMSO): 7.94 (1H, d), 7.50 (2H, m), 7.23 (2H, dd), 6.61 (1H, s), 6.61 (2H, s), 3.71 (2H, s), 2.79 (3H, q), 2.22 (6H, s), 1.07 (3H, t).

【0161】

〔実施例59〕

4-クロロ-2-(3-アミノメチル-2-エチルスルファニル-フェノキシ)-ベンゾニトリルスマレート

a) 4-クロロ-2-(3-クロロメチル-2-エチルスルファニル-フェノキシ)-ベンゾニトリル
窒素雰囲気下、4-クロロ-2-(3-ジメチルアミノメチル-2-エチルスルファニル-フェノキシ)-ベンゾニトリル (1.64mmol、570mg) を無水トルエン (10mL) に溶解した。溶液を0 に冷却し、エチルクロロホルム (480 μL、5 mmol) をゆっくり加えた。反応溶液を17時間攪拌し、そして室温にした。水 (5mL) およびジエチルエーテル (5mL) を加え、そして、有機層を分離し、そして硫酸マグネシウムで乾燥した。濾過の後、溶媒を真空中で除去し、粗生成物 (340mg) を得、そしてそれを酢酸エチルに溶解し、シリカゲル (1.5g) に真空中で吸収させた。この物質をISCO CombiFlash Chromatographyシステムでクロマトグラフし、4-クロロ-2-(3-クロロメチル-2-エチルスルファニル-フェノキシ)-ベンゾニトリル (240mg、43%) を透明な油状物として得た。

¹H-NMR (300MHz, CDCl₃): 7.58 (1H, d), 7.45 (2H, m), 7.11 (2H, m), 6.57 (1H, d), 4.94 (2H, s) 2.96 (2H, q), 1.22 (3H, t)

【0162】

b) 4-クロロ-2-(3-アミノメチル-2-エチルスルファニル-フェノキシ)ベンゾニトリルスマレート

メタノール (12mL、84mmol) 中の7Nアンモニアを4-クロロ-2-(3-クロロメチル-2-エチルスルファニル-フェノキシ)-ベンゾニトリル (80mg、0.24mmol) に加えた。17時間攪拌した後、溶媒を真空中で除去した。炭酸ナトリウム溶液 (4mL) および酢酸エチル (6mL) を加え、そして有機層を分離し、そして硫酸マグネシウムで乾燥した。これに、メタノール (3mL) 中のフマル酸 (22mg、0.19mmol) を加えた。すぐに溶媒を真空中で除去し、

10

20

30

40

50

そしてジエチルエーテル(40mL)を粗生成物に加えた。17時間攪拌の後、4-クロロ-2-(3-アミノメチル-2-エチルスルファニル-フェノキシ)-ベンゾニトリルフマレート(54.6mg、0.126mmol、53%)を白色の固体としてろ過した。

MS (APCI+) 320 [M+1]⁺.

¹H-NMR (300MHz, d₆-DMSO): 7.94 (1H, d), 7.49 (2H, m), 7.32 (1H, m), 7.21 (1H, dd), 6.60 (1H, m), 6.37 (1H, s), 4.01 (2H, s), 2.78 (2H, m), 1.06 (3H, t).

【0163】

〔実施例60〕

4-クロロ-2-(2-エチルスルファニル-3-メチルアミノメチル-フェノキシ)-ベンゾニトリルフマレート

10

メタノール(14mL、28mmol)中の2Mメチルアミンを4-クロロ-2-(3-クロロメチル-2-エチルスルファニル-フェノキシ)-ベンゾニトリル(160mg、0.47mmol)に加えた。17時間溶液を攪拌した後に、溶媒を真空下で除去した。炭酸ナトリウム溶液(4mL)および酢酸エチル(6mL)を加え、有機層を分離し、そして硫酸マグネシウムで乾燥した。これに、メタノール(3mL)中のフマル酸(44mg、37.6mmol)を加えた。溶媒を真空下ですぐに除去し、そしてジエチルエーテル(40mL)を粗生成物に加えた。17時間攪拌した後に、4-クロロ-2-(2-エチルスルファニル-3-メチルアミノメチル-フェノキシ)-ベンゾニトリルフマレート(66.3mg、0.148mmol、31%)を白色固体としてろ過した。

MS (APCI+) 334 [M+1]⁺.

¹H-NMR (300 MHz, d₆-DMSO): 8.52 (1H, d), 7.95 (1H, d), 7.88 (1H, s), 7.5 (1H, m), 7.32 (1H, dd), 6.61 (1H d), 6.45 (2H, s), 3.99 (3H, s), 2.78 (2H, m), 2.36 (3H, s), 1.08 (3H, m).

【0164】

スクリーニング

本発明の化合物の薬理学的活性を以下のスクリーニングにより試験した。

スクリーニング1

式(I)の化合物またはその薬学的に許容しうる塩の一酸化窒素合成酵素阻害活性は、Foerstermann et al., Eur. J. Pharm., 1992, 225, 161-165に基づいた方法によりスクリーニングし得る。一酸化窒素合成酵素は、³H-L-アルギニンを³H-L-シトルリンに転化し、それは陽イオン交換クロマトグラフィーで分離することができ、そして液体シンチレーション計測で定量化することができる。

酵素は、培養マクロファージ細胞系であるJ774A-1(インペリアルキャンサリサーチファンドから得た)から誘導の後調製した。J774A-1細胞を10%牛胎児血清、4mM L-グルタミンおよび抗生物質(100 units/mlペニシリンG、100mg/mlストレプトマイシンおよび0.25mg/mlアンフォテリシンB)を添加したDulbeccos Modified Eagles Medium(DMEM)中で培養した。細胞は37℃に保った35mlの培養液を含む225cm³フラスコで、5%CO₂を含む加湿雰囲気下でルーチン的に成長させた。

【0165】

一酸化窒素合成酵素がインターフェロン- γ (IFNg)およびリポポリサッカリド(LPS)に応答して細胞により生成された。培養液をコンフルエントの培養フラスコから除去し、そして1mg/ml LPSおよび10 unit/ml IFNgを含む25ml(1フラスコ当り)の新しい培養液に取り替えた。17~20時間の培養の後、細胞の収穫を培養液中のフラスコの表面から細胞シートをこすり落すことにより達成した。細胞を遠心(1000gで10分)により集め、細胞のペレットに50mMのトリス-塩酸(pH 7.5、20℃)、10% (v/v)グリセリン、0.1% (v/v) Triton-X-100、0.1mMジチオトレイトールならびにロイペプチド(2mg/ml)、大豆トリプシンインヒビター(10mg/ml)、アプロチニン(5mg/ml)およびフェニルメチルスルホニルフルオライド50mg/mlからなるプロテアーゼインヒビターの混合溶液を含む溶液を添加することによりライゼートを調製した。

【0166】

アッセイのために25μlの基質混合溶液(50mM トリス-塩酸(pH 7.5、20℃)、400μM 50

NADPH、20 μM フラビンアデニンジヌクレオチド、20 μM フラビンモノヌクレオチド、4 μM テトラヒドロビオブテリン、12 μM L-アルギニンおよび0.025mCi L-[³H]アルギニン）を、50mMトリス・塩酸中の25 μlの被験化合物溶液を含む96ウェルのフィルターブレート（細孔径0.45 μM）のウェルに加えた。反応を細胞ライゼート（上記のように調製した）を加えることにより開始し、1時間室温でインキュベートした後、50 μlの3 mM二トロアルギニン水溶液と21mM EDTAを加えることにより終了させた。

【0167】

標識されたL-シトルリンをDowex AG-50Wを使用し標識されたL-アルギニンから分離した。150 μlのDowex 50W (Na⁺型) の25%水性スラリーをアッセイに加え、96穴プレート中に濾過した。75 μlの濾液を採取し、固体のシンチラントを含む96穴のプレートに加えた。標本を乾燥させた後、L-シトルリンをシンチレーション計測で定量した。

10

典型的な実験では、試薬対照において、基礎活性は75 μlの標本当たり300dpmで、それが190 0dpmに増加した。化合物の活性はIC₅₀（アッセイにおいて50%酵素阻害を得る薬剤基質の濃度）として表現し、そしてアミノグアニジン（10 μMのIC₅₀（50%阻害濃度）を得る）を方法を検証するために標準として試験した。化合物はある濃度範囲で試験され、得られた阻害からIC₅₀値が計算された。100 μMで少なくとも25%の酵素を阻害する化合物を活性と分類し、少なくとも1回の再試験に供した。

【0168】

スクリーニング2

リコンビナントヒト一酸化窒素合成酵素（iNOS、eNOSおよびnNOS）をE.coliに発現させ、そしてライゼートを補因子（FAD、FMN、H₄B）、プロテアーゼインヒビター、リゾチームおよび界面活性剤のCHAPSを含むHepes緩衝溶液（pH 7.4）中に調製した。これらの標品は、適切な希釈液で、様々なアイソフォームの阻害を評価するために使用された。NOSの阻害は、Forstermann et al. の方法を適応して使用し、L-[³H]アルギニンからのL-[³H]シトルリンの形成を測定することにより決定した。酵素アッセイは3 μM [³H]アルギニン、1 mM NADPHおよびNOS活性をサポートする補因子（FAD、FMN、H₄B、カルモジュリン、Ca²⁺）の存在下で実施した。様々なNOS阻害剤は遅い結合速度論を示すことまたは時間依存的に酵素を不活性化することが報告されているので、酵素と阻害剤とを、反応を開始させるアルギニンを添加する前に、NADPHの存在下で60分インキュベートした。アッセイをクエンチする前にインキュベーションを更に60分間続け、[³H]シトルリンを96ウェルフォーマット中でDowex-50W樹脂のクロマトグラフィーにより未反応の基質から分離した。

20

上記のスクリーニングにおいて、実施例1～60の化合物が試験され、iNOSおよびnNOSに対し10 μM未満のIC₅₀値が得られ、そして有用な治療活性を示すことが予期されることを示唆するeNOS阻害に関する優れた選択性を示した。実例を以下の表に示す。

30

【0169】

【表1】

化合物	IC ₅₀ (μM)		
	nNOS	eNOS	iNOS
実施例10	0.0048	0.34	0.0029
実施例24	0.039	5.4	0.16
実施例25	0.20	44	0.09

40

【0170】

スクリーニング3

50

化合物はまた、以下のアッセイで実証されるように、ヒト型の誘導一酸化窒素合成酵素に對しても活性を示した。

ヒト結腸直腸癌細胞系の DLD-1 (欧州動物細胞培養コレクションから得た、細胞系番号 90102540) を、通常 10% (v/v) ウシ胎児血清および 2 mM L-グルタミンを添加した RPMI 1640 中、37 °C / 5% CO₂ の存在下で慣例の手順で成長させた。

一酸化窒素合成酵素を、ヒトリコンビナント -IFN (1000 units/ml) 、 TNF- (200 U/ml) および IL-6 (200 U/ml) および IL-1- (250 U/ml) を含む培養液を添加することにより、細胞中で導入した。37 °C で 18 時間インキュベートした後、培養液を除去し、細胞を温リン酸緩衝生理食塩水で洗浄した。細胞を化合物の存在下または非存在下で、100 μM L-アルギニンおよびベラパミル-HClを含む RPMI 1640 中で、37 °C / 5% CO₂ でさらに 5 時間インキュベートした。 10

亜硝酸の蓄積を等しい容積のグリース試薬 (10mg/ml スルファニルアミド、 1 mg N- (1 -ナフチル) エチレンジアミン (1 ml の 2.5% (v/v) リン酸中) を有する培養液を混合することで測定した。化合物の存在下における阻害は非処理の細胞が產生する亜硝酸レベルとの比較により計算した。 IC₅₀ 値を化合物の濃度に対する % 阻害のセミログプロットから推定した。

【国際公開パンフレット】

(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(19) World Intellectual Property Organization
International Bureau(43) International Publication Date
10 April 2003 (10.04.2003)

PCT

(10) International Publication Number
WO 03/029185 A1(51) International Patent Classification: C07C 217/56,
323/52, 255/54, C07D 213/62, 213/84, 295/08, A61K
31/135, 31/4412, A61P 29/00, 25/00, 19/02

(21) International Application Number: PCT/SE02/01803

(22) International Filing Date: 2 October 2002 (02.10.2002)

(25) Filing Language: English

(26) Publication Language: English

(30) Priority Data:
0103325-7 4 October 2001 (04.10.2001) SE

(71) Applicant (for all designated States except US): ASTRAZENECA AB [SE/SE]; S-151 85 Södertälje (SE).

(72) Inventors; and

(75) Inventors/Applicants (for US only): CONNOLLY, Stephen [GB/GB]; Astrazeneca R & D Charnwood, Bakewell Road, Loughborough, Leicestershire LE11 5RH (GB); ERNST, Glen [US/US]; Astrazeneca Wilmington, P.O. Box 15437, Wilmington, DE 19850-5437 (US).

(74) Agent: GLOBAL INTELLECTUAL PROPERTY; Astrazeneca AB, S-151 85 Södertälje (SE).

(84) Designated States (regional): ARIPO patent (GH, GM, KE, LS, MW, MZ, SD, SI, SZ, TZ, UG, ZM, ZW),

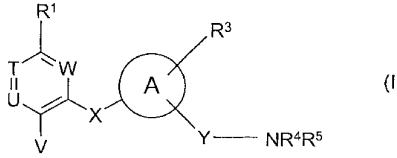
Eurasian patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM),

European patent (AL, BE, BG, CH, CY, CZ, DE, DK, BE,

IS, IT, GR, HU, IE, IL, LU, MC, NL, PT, SI, SK, TR), OAPI patent (BJ, CG, CI, CM, GA, GN, GQ,

GW, ML, MR, NE, SN, TD, TG);

Declarations under Rule 4.17:


as to applicant's entitlement to apply for and be granted a patent (Rule 4.17(g)) for the following designations: AE, AG, AT, AM, AT, AU, AZ, BA, BB, BG, BR, BY, BZ, CA, CI, CN, CO, CR, CU, CZ, DE, DK, DM, DZ, EC, EI, ES, FI, GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, ML, MD, MG, MK, MN, MW, MX, MZ, NO, NZ, OM, PH, PT, RO, RU, SD, SE, SG, SI, SK, SL, TJ, TM, TN, TH, TT, TZ, UG, UG, UZ, FC, VN, YU, ZA, ZM, ZW, ARIPO patent (GH, GM, KE, LS, MW, MZ, SD, SI, SZ, TZ, UG, ZM, ZW), Eurasian patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), European patent (AL, BE, BG, CH, CY, CZ, DE, DK, EE, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE, SK, TR), OAPI patent (BJ, CG, CI, CM, GA, GN, GQ, GW, ML, MR, NE, SN, TD, TG) of inventorship (Rule 4.17(iv)) for US only

Published:
with international search report

For two-letter codes and other abbreviations, refer to the "Guide to Codes and Abbreviations" appearing at the beginning of each regular issue of the PCT Gazette.

(54) Title: NOVEL COMPOUNDS

WO 03/029185 A1

(57) Abstract: There are provided novel compounds of formula (I) wherein A, R¹, R², R⁴, R⁵, T, U, V, W, X and Y are as defined in the specification, and pharmaceutically acceptable salts thereof; together with processes for their preparation, compositions containing them and their use in therapy. The compounds are inhibitors of nitric oxide synthase and are thereby particularly useful in the treatment or prophylaxis of inflammatory diseases, pain and CNS diseases.

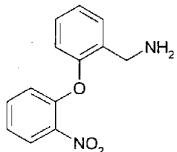
WO 03/029185

PCT/SE02/01803

1

NOVEL COMPOUNDS

Field of the Invention

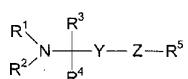

The present invention relates to novel phenylalkylamine derivatives, processes for their preparation, compositions containing them and their use in therapy.

Background of the Invention

Nitric oxide is produced in mammalian cells from L-arginine by the action of specific nitric oxide synthases (NOs). These enzymes fall into two distinct classes - constitutive NOS (cNOS) and inducible NOS (iNOS). At the present time, two constitutive NOSs and one inducible NOS have been identified. Of the constitutive NOSs, an endothelial enzyme (cNOS) is involved with smooth muscle relaxation and the regulation of blood pressure and blood flow, whereas the neuronal enzyme (nNOS) appears to be involved in the regulation of various biological functions. Inducible NOS has been particularly implicated in the pathogenesis of inflammatory diseases. Regulation of these enzymes should therefore offer considerable potential in the treatment of a wide variety of disease states (J. E. Macdonald, *Ann. Rep. Med. Chem.*, 1996, 31, 221 - 230).

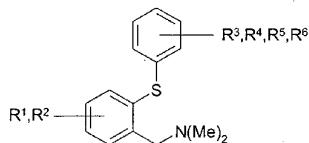
Considerable effort has been expended in efforts to identify compounds that act as specific inhibitors of one or more isoforms of the enzyme nitric oxide synthase. The use of such compounds in therapy has also been widely claimed.

2-(2-Nitrophenoxy)benzenemethanamine,


25 is disclosed in *Polish J. Chem.*, 1982, **56**, 1139-1144 as an intermediate in the synthesis of N,N'-disubstituted derivatives of dibenzo-[b,h]-tetrahydro-1,4,6-oxadiazonine.

WO 03/029185

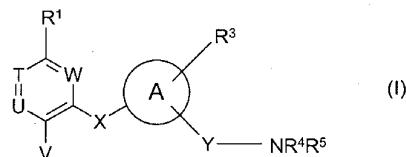
PCT/SE02/01803


2

WO 94/12163 discloses 2-nitroaryl compounds of general formula

5 that are regulators of nitric oxide synthase.

WO 97/17325 discloses compounds of general formula



These compounds are serotonin re-uptake inhibitors useful in the treatment of depression.

10

Disclosure of the invention

According to the present invention, there is provided a compound of formula (I)

15

wherein:

A represents a phenyl ring or A represents a C8 to 10 aromatic or partially aromatic bicyclic ring system;

20

R^1 represents C1 to 6 alkyl, C1 to 6 alkoxy, halogen, hydroxy, cyano, trifluoromethyl or NR^6R^7 ;

R^3 represents hydrogen, C1 to 6 alkyl, C2 to 6 alkenyl, C3 to 6 cycloalkyl, C1 to 6 alkylthio, C1 to 6 alkoxy, halogen, hydroxy, cyano, trifluoromethyl or NR^8R^9 ; said alkoxy group being optionally further substituted by hydroxy or by one or more fluorine atoms.

or R^3 represents phenyl or a five or six membered aromatic heterocyclic ring containing 1 to 3 heteroatoms independently selected from O, S and N; said phenyl or aromatic heterocyclic ring being optionally substituted by one or more substituents selected independently from halogen, C1 to 4 alkyl, C1 to 4 alkoxy, hydroxy, cyano or NR^8R^9 ; said alkyl or alkoxy group being optionally further substituted by one or more fluorine atoms;

R^4 and R^5 independently represent hydrogen or C1 to 6 alkyl; said alkyl group being optionally substituted by OH, C1 to 6 alkoxy, $NR^{10}R^{11}$ or phenyl; said phenyl group being optionally further substituted by C1 to 6 alkyl, C1 to 6 alkoxy, halogen, hydroxy, cyano or $NR^{12}R^{13}$;

R^6 , R^7 , R^8 , R^9 , R^{10} , R^{11} , R^{12} and R^{13} independently represent hydrogen or C1 to 6 alkyl; said alkyl group being optionally substituted by OH or C1 to 6 alkoxy;

or the groups NR^4R^5 , NR^6R^7 and NR^8R^9 independently represent a 4 to 7 membered saturated azacyclic ring optionally incorporating one further heteroatom selected from O or N; said ring being optionally substituted by OH, C1 to 3 hydroxyalkyl or C1 to 3 alkoxy;

V represents cyano or nitro;

X represents O or $S(O)_a$;

n represents an integer 0, 1 or 2;

Y represents C 1 to 6 alkyl;

5 Either one of T, U and W represents N and the other two independently represent CR²; or each of T, U and W represents CR²; and each R² group independently represents hydrogen, C1 to 3 alkyl, C1 to 3 alkoxy or halogen;

10 or a pharmaceutically acceptable salt thereof;

with the proviso that when A represents phenyl, V represents nitro, Y represents CH₂, X represents S, each of T, U and W represents CR² and the group Y-NR⁴R⁵ is bonded to the phenyl ring ortho to X, then R⁴ and R⁵ do not both represent CH₃.

15 The compounds of formula I may exist in enantiomeric forms. Therefore, all enantiomers, diastereomers, racemates and mixtures thereof are included within the scope of the invention.

The compounds of formula (I) and their pharmaceutically acceptable salts have the advantage
20 that they are inhibitors of the enzyme nitric oxide synthase (NOS). In general, the compounds of formula (I) and their pharmaceutically acceptable salts have the advantage that they are inhibitors of the inducible isoform of the enzyme nitric oxide synthase (iNOS). Certain compounds of formula (I) and their pharmaceutically acceptable salts have the advantage that they are additionally or alternatively inhibitors of the neuronal isoform of the enzyme nitric
25 oxide synthase (nNOS). In general, compounds of formula (I) and their pharmaceutically acceptable salts have the advantage that they show good selectivity for the inhibition of iNOS and/or nNOS in comparison to the inhibition of the endothelial isoform, eNOS.

The invention further provides a process for the preparation of compounds of formula (I)
30 or a pharmaceutically acceptable salt, enantiomer or racemate thereof.

According to the invention there is also provided a compound of formula (I), or a pharmaceutically acceptable salt thereof, for use as a medicament.

- 5 Another aspect of the invention provides the use of a compound of formula (I) or a pharmaceutically acceptable salt thereof, in the manufacture of a medicament, for the treatment or prophylaxis of diseases or conditions in which inhibition of nitric oxide synthase activity is beneficial.
- 10 Another aspect of the invention provides the use of a compound of formula (I) or a pharmaceutically acceptable salt thereof, in the manufacture of a medicament, for the treatment or prophylaxis of diseases or conditions in which inhibition of iNOS activity is beneficial.
- 15 Another aspect of the invention provides the use of a compound of formula (I) or a pharmaceutically acceptable salt thereof, in the manufacture of a medicament, for the treatment or prophylaxis of diseases or conditions in which inhibition of nNOS activity is beneficial.
- 20 Another aspect of the invention provides the use of a compound of formula (I) or a pharmaceutically acceptable salt thereof, in the manufacture of a medicament, for the treatment or prophylaxis of inflammatory disease.

- 25 Another aspect of the invention provides the use of a compound of formula (I) or a pharmaceutically acceptable salt thereof, in the manufacture of a medicament, for the treatment or prophylaxis of CNS disease.

- According to the invention, there is also provided a method of treating, or reducing the risk of, diseases or conditions in which inhibition of nitric oxide synthase activity is beneficial
- 25 which comprises administering to a person suffering from or at risk of, said disease or condition, a therapeutically effective amount of a compound of formula (I) or a pharmaceutically acceptable salt thereof.

There is also provided a method of treating, or reducing the risk of, inflammatory disease in a person suffering from or at risk of, said disease, wherein the method comprises administering to the person a therapeutically effective amount of a compound of formula (I) or a pharmaceutically acceptable salt thereof.

There is also provided a method of treating, or reducing the risk of, CNS disease in a person suffering from or at risk of, said disease, wherein the method comprises administering to the person a therapeutically effective amount of a compound of formula (I) or a pharmaceutically acceptable salt thereof.

The compounds of the present invention may also be used advantageously in combination with a second pharmaceutically active substance; particularly in combination with a cyclooxygenase inhibitor; more particularly in combination with a selective inhibitor of the inducible isoform of cyclooxygenase (COX-2). Thus, in a further aspect of the invention there is provided the use of a compound of formula (I) or a pharmaceutically acceptable salt thereof, in combination with a COX-2 inhibitor in the manufacture of a medicament for the treatment of inflammation, inflammatory disease and inflammatory related disorders. And there is also provided a method of treating, or reducing the risk of, inflammation, inflammatory disease and inflammatory related disorders in a person suffering from or at risk of, said disease or condition, wherein the method comprises administering to the person a therapeutically effective amount of a compound of formula (I) or a pharmaceutically acceptable salt thereof in combination with a COX-2 inhibitor.

25 In one embodiment, X in formula (I) represents oxygen.

In another embodiment, X in formula (I) represents $S(O)_n$ and n represents 0.

In one embodiment, V in formula (I) represents cyano.

30 In one embodiment, A in formula (I) represents phenyl.

In one embodiment, R^3 in formula (I) represents hydrogen, C1 to 6 alkoxy, hydroxy, or optionally substituted phenyl.

In one embodiment, R^4 and R^5 in formula (I) independently represent hydrogen or methyl.

5

In one embodiment, Y in formula (I) represents CH_2 .

In one embodiment, T, U and W in formula (I) each independently represent CH or CF.

10 In another embodiment, T represents N and U and W each independently represent CH or CF.

In another embodiment, W represents N and T and U each independently represent CH or CF.

15

In one embodiment, A represents phenyl, R^1 represents C1 to 6 alkyl, C1 to 6 alkoxy, halogen, hydroxy, cyano, trifluoromethyl or NR^6R^7 ; X represents oxygen or $S(O)_n$ and n represents 0; V represents cyano; R^3 represents hydrogen, C1 to 6 alkoxy, hydroxy, or optionally substituted phenyl; R^4 and R^5 independently represent hydrogen or methyl; Y represents CH_2 ; and T, U and W in formula (I) each independently represent CH or CF; or T represents N and U and W each independently represent CH or CF; or W represents N and T and U each independently represent CH or CF.

20 In one embodiment, A represents a phenyl ring; R^3 represents hydrogen, C1 to 6 alkyl, C3 to 6 cycloalkyl, C1 to 6 alkylthio, C1 to 6 alkoxy, halogen, hydroxy, cyano, trifluoromethyl or NR^8R^9 ; or R^3 represents phenyl or a five or six membered aromatic heterocyclic ring containing 1 to 3 heteroatoms independently selected from O, S and N; said phenyl or aromatic heterocyclic ring being optionally substituted by one or more substituents selected

independently from halogen, C1 to 4 alkyl, C1 to 4 alkoxy, hydroxy, cyano or NR⁸R⁹; said alkyl or alkoxy group being optionally further substituted by one or more fluorine atoms; R⁴ and R⁵ independently represent hydrogen or C1 to 6 alkyl; said alkyl group being optionally substituted by OH, C1 to 6 alkoxy or phenyl; said phenyl group being optionally substituted by C1 to 6 alkyl, C1 to 6 alkoxy, halogen, hydroxy, cyano or NR¹²R¹³; and all other groups are as defined in formula (I) above.

Particular compounds of the invention include:

- 3-(5-methoxy-2-nitrophenoxy)benzenemethanamine;
- 10 3-(5-methyl-2-nitrophenoxy)benzenemethanamine;
- 3-(5-chloro-2-nitrophenoxy)benzenemethanamine;
- 3-(5-fluoro-2-nitrophenoxy)benzenemethanamine;
- 3-(5-methylamino-2-nitrophenoxy)benzenemethanamine;
- 15 3-(5-methyl-2-nitrophenylthio)benzenemethanamine;
- 2-[3-(aminomethyl)phenoxy]-4-chlorobenzonitrile;
- 4-chloro-2-[3-hydroxy-5-[(methylamino)methyl]phenoxy]benzonitrile;
- 4-chloro-2-[3-methoxy-5-[(methylamino)methyl]phenoxy]benzonitrile;
- 4-chloro-2-(3-methylaminomethyl-phenoxy)-benzonitrile;
- 20 4-chloro-2-(4-methoxy-3-methylaminomethyl-phenoxy)-benzonitrile;
- 4-chloro-2-(2-methoxy-3-methylaminomethyl-phenoxy)-benzonitrile;
- 4-chloro-2-(2-methoxy-4-methylaminomethyl-phenoxy)-benzonitrile;
- 4-chloro-2-(3-methoxy-4-methylaminomethyl-phenoxy)-benzonitrile;
- 25 2-(4-bromo-3-methylaminomethyl-phenoxy)-4-trifluoromethyl-benzonitrile;
- 2-(2-methylaminomethyl-biphenyl-4-yloxy)-4-trifluoromethyl-benzonitrile;
- 4-chloro-2-[2-hydroxy-3-(methylaminomethyl)phenoxy]benzonitrile;
- 4-chloro-2-[2-ethoxy-3-(methylaminomethyl)phenoxy]benzonitrile;
- 4-chloro-2-[2-(2-fluoroethoxy)-3-(methylaminomethyl)phenoxy]benzonitrile;
- 4-chloro-2-[3-methylaminomethyl-2-(2,2,2-trifluoroethoxy)phenoxy]benzonitrile;
- 4-chloro-2-(3-methylaminomethyl-2-propoxyphenoxy)benzonitrile;
- 30 4-chloro-2-[2-(2-hydroxyethoxy)-3-(methylaminomethyl)phenoxy]benzonitrile;
- 4-chloro-2-[2-ethoxy-4-(methylaminomethyl)phenoxy]benzonitrile;

4-chloro-2-[4-(methylaminomethyl)naphthalen-1-yloxy]benzonitrile;
4-chloro-2-[3-(dimethylaminomethyl)phenoxy]benzonitrile;
4-chloro-2-(3-[(2-hydroxyethyl)amino)methyl]phenoxy)benzonitrile;
4-chloro-2-(3-[(2-methoxyethyl)amino)methyl]phenoxy)benzonitrile;
5 4-chloro-2-[3-(propylaminomethyl)phenoxy]benzonitrile;
4-chloro-2-{3-[(2-dimethylaminoethylamino)methyl]phenoxy}benzonitrile;
4-chloro-2-{3-[(3-hydroxypropylamino)methyl]phenoxy}benzonitrile;
4-chloro-2-[3-(pyrrolidin-1-ylmethyl)phenoxy]benzonitrile;
4-chloro-5-fluoro-2-(2-methoxy-3-methylaminomethylphenoxy)benzonitrile;
10 4-bromo-2-(2-methoxy-3-methylaminomethyl-phenoxy)-benzonitrile;
2-(2-methoxy-3-methylaminomethyl-phenoxy)-6-trifluoromethyl-nicotinonitrile;
4-methoxy-2-(2-methoxy-3-methylaminomethyl-phenoxy)-benzonitrile;
3-fluoro-2-(2-methoxy-3-(methylaminomethyl)phenoxy)-4-methyl-benzonitrile;
2-(2-methoxy-3-methylaminomethyl-phenoxy)-6-methyl-nicotinonitrile;
15 6-ethyl-2-(2-methoxy-3-methylaminomethyl-phenoxy)-nicotinonitrile;
4-methyl-2-(3-methylaminomethyl-phenoxy)-benzonitrile;
6-methyl-2-(3-methylaminomethyl-phenoxy)-nicotinonitrile;
4-chloro-2-(5-methylamino-5,6,7,8-tetrahydronaphthalen-1-yloxy)-benzonitrile;
4-chloro-2-(1-methylaminoindan-4-yloxy)benzonitrile;
20 [2-methoxy-3-(5-methyl-2-nitrophenoxy)benzyl]methylamine;
4-chloro-2-(3-dimethylaminomethyl-2-ethylphenoxy)benzonitrile;
2-(3-aminomethyl-2-ethyl-phenoxy)-4-chloro-benzonitrile;
4-chloro-2-(2-ethyl-3-methylaminomethyl-phenoxy)-benzonitrile;
4-chloro-2-(3-dimethylaminomethyl-2-propylphenoxy)-benzonitrile;
25 2-(3-aminomethyl-2-propyl-phenoxy)-4-chloro-benzonitrile;
4-chloro-2-(3-methylaminomethyl-2-propyl-phenoxy)-benzonitrile;
2-(2-allyl-4-methylaminomethyl-phenoxy)-4-chlorobenzonitrile;
4-chloro-2-(3-dimethylaminomethyl-4-fluorophenoxy)benzonitrile;
4-chloro-2-(4-fluoro-3-methylaminomethyl-phenoxy)-benzonitrile;
30 2-(2-methoxy-3-methylaminomethyl-phenoxy)-4-trifluoromethyl-benzonitrile;
2-(4-methylaminomethyl-3-phenyl-phenoxy)-4-trifluoromethyl-benzonitrile;
4-chloro-2-(3-dimethylaminomethyl-2-methylsulfanyl-phenoxy)-benzonitrile;

WO 03/029185

PCT/SE02/01803

10

4-chloro-2-(3-aminomethyl-2-methylsulfanyl-phenoxy)-benzonitrile;
4-chloro-2-(2-methylsulfanyl-3-methylaminomethyl-phenoxy)-benzonitrile;
4-chloro-2-(3-dimethylaminomethyl-2-ethylsulfanyl-phenoxy)-benzonitrile;
4-chloro-2-(3-aminomethyl-2-ethylsulfanyl-phenoxy)-benzonitrile;
5 4-chloro-2-(2-ethylsulfanyl-3-methylaminomethyl-phenoxy)-benzonitrile;
and pharmaceutically acceptable salts thereof.

Unless otherwise indicated, the term "C1 to 6 alkyl" referred to herein denotes a straight or branched chain alkyl group having from 1 to 6 carbon atoms. Examples of such groups
10 include methyl, ethyl, n-propyl, i-propyl, n-butyl, i-butyl and t-butyl.

The terms "C1 to 3 alkyl" and "C1 to 4 alkyl" are to be interpreted analogously.

Unless otherwise indicated, the term "C1 to 6 alkoxy" referred to herein denotes a straight or branched chain alkoxy group having from 1 to 6 carbon atoms. Examples of such groups
15 include methoxy, ethoxy, n-propoxy, i-propoxy and t-butoxy.

The terms "C1 to 3 alkoxy", "C1 to 4 alkoxy" and "C1 to 6 alkylthio" are to be interpreted analogously.

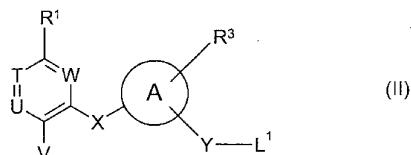
20 Unless otherwise indicated, the term "C1 to 3 hydroxylalkyl" referred to herein denotes a straight or branched chain alkyl group having from 1 to 3 carbon atoms substituted by OH. Examples of such groups include hydroxymethyl, 1-hydroxyethyl, 2-hydroxyethyl and 2-hydroxy-2-methylethyl.

25 Unless otherwise indicated, the term "C2 to 6 alkenyl" referred to herein denotes a straight or branched chain alkyl group having from 2 to 6 carbon atoms and including a carbon-carbon double bond. Examples of such groups include ethenyl, 1-propenyl, 2-propenyl and butenyl.

30

Unless otherwise indicated, the term "C3 to 6 cycloalkyl" referred to herein denotes a carbocyclic ring having from 3 to 6 carbon atoms. Examples of such groups include cyclopropyl, cyclopentyl and cyclohexyl.

5 Halogen represents fluoro, chloro, bromo or iodo.


Examples of a C8 to 10 aromatic or partially aromatic bicyclic ring system include indanyl, naphthyl and tetrahydronaphthyl.

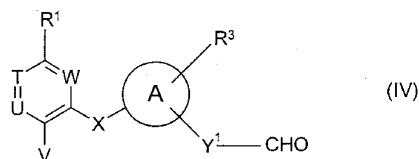
10 Examples of a five or six membered aromatic heterocyclic ring containing 1 to 3 heteroatoms independently selected from O, S and N include furan, thiophene, pyrrole, thiazole, oxazole, imidazole, pyridine, pyrimidine and pyrazine.

15 Examples of a 4 to 7 membered saturated azacyclic ring optionally incorporating one further heteroatom selected from O or N include pyrrolidine, piperidine, piperazine, morpholine and perhydroazepine.


According to the invention, we further provide a process for the preparation of compounds of formula (I), or a pharmaceutically acceptable salt, enantiomer or racemate thereof which 20 comprises:

(a) reaction of a compound of formula (II)

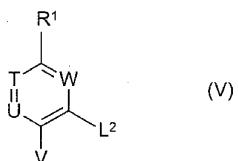
25 wherein A, R¹, R³, T, U, V, W, X and Y are as defined in formula (I) and L¹ is a leaving group,


with a compound of formula (III)

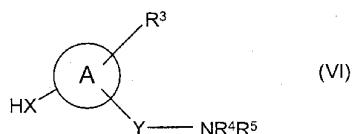
wherein R^4 and R^5 are as defined in formula (I); or

5

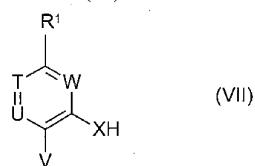
(b) reductive amination of a compound of formula (IV)


10 wherein A, R¹, R³, T, U, V and X are as defined in formula (I) and Y¹-CH₂ represents Y as defined in formula (I),

with a compound of formula (III)

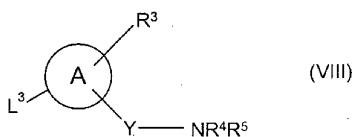

15 wherein R⁴ and R⁵ are as defined in formula (I); or

(c) reaction of a compound of formula (V)

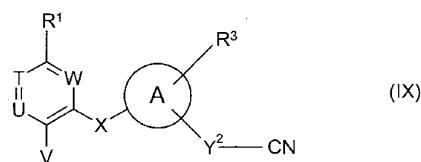

20 wherein R¹, T, U, V and W are as defined in formula (I) and L² is a leaving group,

with a compound of formula (VI)

5 wherein A, R³, R⁴, R⁵ and Y are as defined in formula (I) and X is O or S; or


(d) reaction of a compound of formula (VII)

10 wherein R¹, T, U, V and W are as defined in formula (I) and X represents O or S,


with a compound of formula (VIII)

15

wherein A, R³, R⁴, R⁵ and Y are as defined in formula (I) and L³ is a leaving group; or

(e) preparing a compound of formula (I) wherein R^4 and R^5 each represent hydrogen, by reduction of a compound of formula (IX)

5

wherein A, R¹, R³, T, U, V, W and X are as defined in formula (I) and the group (-Y²-CH₂-) represents Y as defined in formula (I);

and where desired or necessary converting the resultant compound of formula (I), or another 10 salt thereof, into a pharmaceutically acceptable salt thereof; or converting one compound of formula (I) into another compound of formula (I); and where desired converting the resultant compound of formula (I) into an optical isomer thereof.

In process (a), the reaction is performed by treating an amine of formula (III) with an 15 electrophile of formula (II) in an inert solvent. Suitable leaving groups L¹ include sulfonate, trifluorosulfonate, mesylate, tosylate, and halides selected from the group chloride, bromide or iodide. The reaction is generally performed in the presence of a base. This base can be either an excess of the amine nucleophile or can be an additive to the 20 reaction mixture. Potential basic additives are metal carbonates, especially alkali metal carbonates such as caesium carbonate, metal oxides and hydroxides, and tertiary amine bases. Suitable organic solvents are those such as acetonitrile, dioxane, N,N-dimethylformamide, N-methyl-2-pyrrolidinone, tetrahydrofuran, dimethylsulfoxide, sulfolane and C1 to 4 alcohols.

In process (b), the reductive amination reaction generally takes place under conditions which will be known to persons skilled in the art. For example, treatment of an aldehyde (IV) with an amine (III) in the presence of a reducing agent in an inert solvent. Suitable reducing systems include catalytic hydrogenation or borane and derivatives thereof. A 5 partial list of such reagents can be found in "Advanced Organic Chemistry", J. March (1985) 3rd Edition on page 799.

In processes (c) and (d), the reaction will take place either using an appropriate palladium source such as palladium (II) acetate in the presence of a suitable phosphine ligand, or 10 using a copper salt under Ullmann coupling conditions. Suitable conditions for such coupling reactions are referred to in the article by Buchwald et al, *J. Amer. Chem. Soc.*, 1999, 121, 4369-4378.

Alternatively, in process (c), the reaction will take place under conditions similar to those 15 described above for process (a).

In process (e), the reduction of the cyano group will take place under conditions that will be generally well known to the man skilled in the art. These include the use of diborane or of Raney nickel in the presence of hydrogen and a base such as ammonia, as the reducing 20 agent.

It will be apparent to a person skilled in the art that in the above processes it may be desirable to protect an amine or other potentially reactive group. Suitable protecting groups and details of processes for adding and removing such groups may be found by reference to 25 the standard text "Protective Groups in Organic Synthesis", 3rd Edition (1999) by Greene and Wuts.

In one particular embodiment, amine groups are protected as carbamate derivatives, for example, as t-butylloxycarbamates.

The present invention includes compounds of formula (I) in the form of salts, in particular acid addition salts. Suitable salts include those formed with both organic and inorganic acids. Such acid addition salts will normally be pharmaceutically acceptable although salts of non-pharmaceutically acceptable acids may be of utility in the preparation and 5 purification of the compound in question. Thus, preferred salts include those formed from hydrochloric, hydrobromic, sulphuric, phosphoric, citric, tartaric, lactic, pyruvic, acetic, succinic, fumaric, maleic, methanesulphonic and benzenesulphonic acids.

Salts of compounds of formula (I) may be formed by reacting the free base, or a salt, 10 enantiomer or racemate thereof, with one or more equivalents of the appropriate acid. The reaction may be carried out in a solvent or medium in which the salt is insoluble or in a solvent in which the salt is soluble, for example, water, dioxane, ethanol, tetrahydrofuran or diethyl ether, or a mixture of solvents, which may be removed *in vacuo* or by freeze drying. The reaction may also be a metathetical process or it may be carried out on an ion exchange 15 resin.

Certain novel intermediates of formulae (II), (IV) and (IX) form another aspect of the invention.

20 In general, compounds of formulae (II), (IV) and (IX) may be prepared using similar types of reactions to those described above for the preparation of compounds of formula (I).

Compounds of formula (I) wherein X represents $S(O)_n$ and n is 1 or 2 may be prepared by 25 oxidation of a corresponding compound of formula (I) wherein n is 0. The reaction is performed by reacting a compound of formula (I) wherein X is S with a suitable oxidising agent in an inert solvent. The reaction can be controlled so as to afford either the corresponding sulfoxide (X = SO) or sulfone (X = SO₂) by correct choice of the oxidising reagent used, the quantity of reagent used and the reaction conditions employed. Suitable oxidising reagents and reaction conditions are given in "Advanced Organic Chemistry", J. 30 March (1985) 3rd Edition on pages 1089-1090.

Compounds of formulae (III), (V), (VI), (VII) and (VIII) are either known or may be prepared by conventional methods known *per se*.

Intermediate compounds may be used in protected form. Protecting groups and details of processes for their removal may be found by reference to the standard text "Protective Groups in Organic Synthesis", 3rd Edition (1999) by Greene and Wuts.

The compounds of the invention and intermediates thereto may be isolated from their reaction mixtures and, if necessary further purified, by using standard techniques.

10 The compounds of formula I may exist in enantiomeric forms. Therefore, all enantiomers, diastereomers, racemates and mixtures thereof are included within the scope of the invention. The various optical isomers may be isolated by separation of a racemic mixture of the compounds using conventional techniques, for example, fractional crystallisation, or HPLC.

15 Intermediate compounds may also exist in enantiomeric forms and may be used as purified enantiomers, diastereomers, racemates or mixtures.

20 The compounds of formula (I), and their pharmaceutically acceptable salts, are useful because they possess pharmacological activity in animals. In particular, the compounds are active as inhibitors of the enzyme nitric oxide synthase. More particularly, they are inhibitors of the inducible isoform of the enzyme nitric oxide synthase and as such are predicted to be useful in therapy, for example, as anti-inflammatory agents. Alternatively or additionally, they may have utility as inhibitors of the neuronal isoform of the enzyme nitric oxide synthase and as such are predicted to have utility in the treatment of CNS disorders.

25 The compounds and their pharmaceutically acceptable salts are indicated for use in the treatment or prophylaxis of diseases or conditions in which synthesis or oversynthesis of nitric oxide forms a contributory part. In one aspect, the compounds are indicated for use in the treatment of inflammatory conditions in mammals including man. In another aspect, the compounds are indicated for use in the treatment of CNS disorders in mammals including man.

As used herein, reference to any of the terms "disease", "condition" and "disorder" is to be taken as a reference to all three terms.

- 5 Diseases, conditions and disorders that may be specifically mentioned are:
osteoarthritis, rheumatoid arthritis, rheumatoid spondylitis, gouty arthritis and other arthritic conditions, inflamed joints;
- 10 eczema, psoriasis, dermatitis or other inflammatory skin conditions such as sunburn, inflammatory eye conditions including uveitis, glaucoma and conjunctivitis;
- 15 lung disorders in which inflammation is involved, for example, asthma, bronchitis, chronic obstructive pulmonary disease, pigeon fancier's disease, farmer's lung, acute respiratory distress syndrome;
- 20 bacteraemia, endotoxaemia (septic shock), aphthous ulcers, gingivitis, pyresis, pain, meningitis and pancreatitis;
- 25 conditions of the gastrointestinal tract including inflammatory bowel disease, Crohn's disease, atrophic gastritis, gastritis variaform, ulcerative colitis, coeliac disease, regional ileitis, peptic ulceration, irritable bowel syndrome, reflux oesophagitis, damage to the gastrointestinal tract resulting from infections by, for example, *Helicobacter pylori*, or from treatments with non-steroidal anti-inflammatory drugs;
- 30 and other conditions associated with inflammation.

The compounds may also be useful in the treatment of cancer.

The compounds may also be useful in the treatment and alleviation of acute pain or persistent inflammatory pain or neuropathic pain or pain of a central origin.

We are particularly interested in the conditions inflammatory bowel disease, rheumatoid arthritis, osteoarthritis, chronic obstructive pulmonary disease, pain and cancer.

- 35 The compounds of formula (I) and their pharmaceutically acceptable salts may also be useful in the treatment or prophylaxis of diseases or conditions in addition to those mentioned above. For example, the compounds may be useful in the treatment of atherosclerosis, cystic fibrosis,

hypotension associated with septic and/or toxic shock, in the treatment of dysfunction of the immune system, as an adjuvant to short-term immunosuppression in organ transplant therapy, in the control of onset of diabetes, in the maintenance of pancreatic function in diabetes, in the treatment of vascular complications associated with diabetes and in co-therapy with 5 cytokines, for example TNF or interleukins.

The compounds of formula (I) may also be useful in the treatment of hypoxia, for example in cases of cardiac arrest and stroke, neurodegenerative disorders including nerve degeneration and/or nerve necrosis in disorders such as ischaemia, hypoxia, hypoglycaemia, epilepsy, and 10 in external wounds (such as spinal cord and head injury), hyperbaric oxygen convulsions and toxicity, dementia, for example pre-senile dementia, Alzheimer's disease and AIDS-related dementia, Sydenham's chorea, Parkinson's disease, Tourette's Syndrome, Huntington's disease, Amyotrophic Lateral Sclerosis, Multiple Sclerosis, muscular dystrophy, Korsakoff's disease, imbecility relating to a cerebral vessel disorder, sleeping disorders, schizophrenia, 15 depression, pain, autism, seasonal affective disorder, jet-lag, depression or other symptoms associated with Premenstrual Syndrome (PMS), anxiety and septic shock. Compounds of formula (I) may also be expected to show activity in the prevention and reversal of drug addiction or tolerance such as tolerance to opiates and diazepines, treatment of drug addiction, treatment of migraine and other vascular headaches, neurogenic inflammation, in the 20 treatment of gastrointestinal motility disorders and in the induction of labour.

We are particularly interested in the conditions stroke, Alzheimer's disease, Parkinson's disease, multiple sclerosis, schizophrenia, migraine, septic shock and pain; more particularly migraine.

25 Prophylaxis is expected to be particularly relevant to the treatment of persons who have suffered a previous episode of, or are otherwise considered to be at increased risk of, the disease or condition in question. Persons at risk of developing a particular disease or condition generally include those having a family history of the disease or condition, or 30 those who have been identified by genetic testing or screening to be particularly susceptible to developing the disease or condition.

For the above mentioned therapeutic indications, the dosage administered will, of course, vary with the compound employed, the mode of administration and the treatment desired. However, in general, satisfactory results are obtained when the compounds are administered at a dosage of the solid form of between 1 mg and 2000 mg per day.

5 The compounds of formula (I), and pharmaceutically acceptable derivatives thereof, may be used on their own, or in the form of appropriate pharmaceutical compositions in which the compound or derivative is in admixture with a pharmaceutically acceptable adjuvant, diluent or carrier. Administration may be by, but is not limited to, enteral (including oral, sublingual or rectal), intranasal, inhalation/intravenous, topical or other parenteral routes.

10 Conventional procedures for the selection and preparation of suitable pharmaceutical formulations are described in, for example, "Pharmaceuticals - The Science of Dosage Form Designs", M. E. Aulton, Churchill Livingstone, 1988. The pharmaceutical composition preferably comprises less than 80% and more preferably less than 50% of a

15 compound of formula (I), or a pharmaceutically acceptable salt thereof.

The invention further provides a pharmaceutical composition comprising a compound of formula (I), or a pharmaceutically acceptable salt thereof, in admixture with a pharmaceutically acceptable adjuvant, diluent or carrier. There is also provided a process for

20 the preparation of such a pharmaceutical composition which comprises mixing the ingredients.

The compounds of formula (I), and pharmaceutically acceptable derivatives thereof, may also be advantageously used in combination with a COX inhibitor, more particularly in

25 combination with a COX-2 inhibitor. Particularly preferred COX-2 inhibitors are Celecoxib and MK-966. The NOS inhibitor and the COX-2 inhibitor may either be formulated together within the same pharmaceutical composition for administration in a single dosage unit, or each component may be individually formulated such that separate dosages may be administered either simultaneously or sequentially.

30 The invention is illustrated, but in no way limited, by the following examples:

The following abbreviations are used:

CDI 1,1'-carbonyldiimidazole;
DMF N,N-dimethylformamide;
DMSO dimethylsulphoxide;
THF tetrahydrofuran

Unless otherwise stated, chromatography was carried out on silica gel columns using gradients of ethyl acetate in hexanes as eluent.

10 Preparation 1

[(3-Hydroxyphenyl)methyl]carbamic acid tert-butyl ester

3-(Aminomethyl)phenol hydrobromide (4.2 g, 20.6 mmol) was dissolved in ethyl alcohol (80 ml) and triethylamine (3.5 ml, 25 mmol) was added followed by di-tert-butyl dicarbonate (4.8 g, 22 mmol) and the reaction mixture stirred for 4 h. The solvent was removed by evaporation, water added and the mixture extracted with ethyl acetate and dried over magnesium sulphate. The solvent was evaporated and the residue purified by flash chromatography using 50% ethyl acetate/isohexane as eluent to give the title compound as a colourless solid (3.8 g, 83%).

20 MS (+Cl) 124 [M -100 +H]⁺.

Example 1

25 3-(5-Methoxy-2-nitrophenoxy)benzenemethanamine hydrochloride
(2-Fluoro-4-methoxy)nitrobenzene (0.342 g), [(3-hydroxyphenyl)methyl]carbamic acid tert-butyl ester (0.45 g) and anhydrous potassium carbonate (0.28 g) were heated with stirring in dry DMF (15 ml) at 80 °C for 20 h. The reaction mixture was cooled, partitioned between ethyl acetate and water, the organic layer separated, washed five times with water, then brine and dried (MgSO₄). The solvent was evaporated and the residue eluted down a Biotage column using isohexane/ether (4:1) as eluent to give a viscous oil

(the tert-butyl ester of the product). This material was stirred with 4M hydrogen chloride in dioxane (15 ml) for 2 h, concentrated to dryness and the residue triturated with ether to give after collection by filtration and drying, a cream solid (0.5 g, 80%).

5 MS (+Cl) 275 $[M+H]^+$.
300MHz 1H NMR (d_6 -DMSO) 8.37 (1H, br.s), 8.17 (1H, d), 7.46 (1H, t), 7.30 (1H, d), 7.23 (1H, d), 7.08 (1H, d of d), 6.98 (1H, d of d), 6.63 (1H, d), 4.03 (2H, br.d), 3.83 (3H, s).

10 Example 2

3-(5-Methyl-2-nitrophenoxy)benzenemethanamine hydrochloride

The title compound was prepared as a yellow solid using the method of Example 1 and starting with 3-fluoro-4-nitrotoluene.

15 MS (+Cl) 259 $[M+H]^+$.
300MHz 1H NMR (d_6 -DMSO) 8.42 (3H, br.s), 8.02 (1H, d), 7.46 (1H, t), 7.31 (1H, d), 7.22 (2H, m), 7.05 (1H, d of d), 7.0 (1H, d), 4.03 (2H, d), 2.36 (3H, s).

20 Example 3

3-(5-Chloro-2-nitrophenoxy)benzenemethanamine hydrochloride

The title compound was prepared as a yellow solid using the method of Example 1 and starting from 2,4-dichloronitrobenzene.

25 MS (+Cl) 279 $[M+H]^+$.
400MHz 1H NMR (d_6 -DMSO) 8.34 (2H, br.s), 8.17 (1H, d), 7.55-7.49 (2H, m), 7.37 (1H, d), 7.30 (1H, s), 7.20-7.11 (2H, m), 4.05 (2H, s).

30 Example 4

3-(5-Fluoro-2-nitrophenoxy)benzenemethanamine hydrochloride

The title compound was prepared as a yellow solid using the method of Example 1 and starting from 2,4-difluoronitrobenzene.

5

MS (+CI) 263 [M+H]⁺.

300MHz ¹H NMR (d₆-DMSO) 8.36 (2H, br.s), 8.24 (1H, dd), 7.45 (1H, t), 7.38 (1H, d), 7.36-7.24 (2H, m), 7.20 (1H, dd), 7.02 (1H, dd), 4.05 (2H, d).

10

Example 53-(5-Methylamino-2-nitrophenoxy)benzenemethanamine hydrochloride

3-(5-Fluoro-2-nitrophenoxy)benzenemethanamine tert-butyl ester (prepared by the method of Example 4 but omitting the final treatment with hydrogen chloride) (92 mg) was stirred with methylamine (2M in THF, 2.5 ml) for 16 h at room temperature. Purification by flash column chromatography eluting with 25% ethyl acetate/hexane gave the tert-butyl ester of the title compound which was dissolved in 4N hydrogen chloride in dioxane and stirred for 16 h. The resulting yellow solid was filtered off to give the product.

20

MS (+CI) 274 [M+H]⁺.

300MHz ¹H NMR (d₆-DMSO) 8.26 (2H, br.s), 8.03 (1H, d), 7.42 (1H, t), 7.22 (1H, d), 7.14 (1H, s), 6.99 (1H, dd), 6.49 (1H, dd), 6.13 (1H, d), 4.02 (2H, q), 2.72 (3H, s).

25

Example 63-(5-Methoxy-2-nitrophenylthio)benzenemethanamine hydrochloridea) 3-[(5-Methoxy-2-nitrophenyl)thio]benzoic acid

(2-Fluoro-4-methoxy)nitrobenzene (0.86 g, 5 mmol), 3-mercaptopbenzoic acid (0.77 g, 5 mmol) and anhydrous potassium carbonate (1.38 g, 10 mmol) in dry DMF (25 ml) were heated at 80 °C with stirring for 3 h. The reaction mixture was concentrated to low

volume, diluted with water (100 ml), washed with ethyl acetate, the aqueous layer was acidified and the precipitated product collected by filtration and dried to give a yellow solid (1.16 g).

MS (-Cl) 304 [M-H]⁺.

5

b) 3-[(5-Methoxy-2-nitrophenyl)thio]benzamide

3-[(5-Methoxy-2-nitrophenyl)thio]benzoic acid (0.89 g, 2.88 mmol) in dichloromethane (30 ml) was treated with oxalyl chloride (0.51 ml, 5.8 mmol) followed by dry DMF (2 drops) and stirred for 20 h. The solvent and excess reagent were removed by evaporation, the residual solid dissolved in dry dioxane (50 ml), cooled in ice and saturated with ammonia gas. The ammonium chloride was filtered off and the filtrate evaporated. The residual solid was triturated with ether to give a pale yellow solid (0.72 g).

MS (+Cl) 305 [M+1]⁺.

15

c) 3-(5-Methoxy-2-nitrophenylthio)benzenemethanamine hydrochloride

3-[(5-Methoxy-2-nitrophenyl)thio]benzamide (0.6 g, 1.97 mmol) in THF (25 ml) was treated with 1M borane in THF (10 ml, 9.86 mmol) at 0 °C with stirring. The clear solution was heated under reflux with stirring for 24 h under nitrogen. The reaction mixture was cooled, treated with 5N hydrochloric acid (20 ml) and stirred for 1 h. The mixture was cooled to 0 °C, basified with solid potassium hydroxide and extracted with ethyl acetate. The extracts were washed with brine and dried (MgSO₄). The solvent was evaporated and the residue eluted down a silica column using 5% methanol/dichloromethane as eluent to give a yellow solid (0.414 g, 72%).

25

MS (+Cl) 291 [M+H]⁺.

300MHz ¹H NMR (d₆-DMSO) 8.30 (1H, d), 7.63 (1H, d), 7.45-7.56 (3H, m), 6.95 (1H, d of d), 6.16 (1H, d), 3.77 (2H, s), 3.66 (3H, s), 1.98 (2H, br.s).

30

Example 7

2-[3-(Aminomethyl)phenoxy]-4-chlorobenzonitrile hydrochloridea) 4-Chloro-2-(3-aminomethyl-2-phenoxy)benzoic acid hydrochloride

2,4-Dichlorobenzoic acid (191 mg) and 1,1-dimethylethyl

{(3-hydroxyphenyl)methyl}carbamate (249 mg) were dissolved in methanol (15 ml) and treated with 25% sodium methoxide in methanol (0.26 ml). The reaction mixture was evaporated to dryness, treated with dry dioxan (10 ml) followed by copper (I) chloride (10 mg) and tris[2-(2-methoxyethoxy)ethyl]amine (TDA-1, 0.032 ml) and heated under reflux with stirring for 8 h. The reaction was left to stand over the weekend, concentrated to dryness, dissolved in water, and washed with ethyl acetate. The aqueous layer was acidified with dilute hydrochloric acid and extracted into ethyl acetate which was dried ($MgSO_4$). The solvent was evaporated and the residual viscous oil was stirred with 4M hydrogen chloride in dioxan (10 ml) for 1 h. The precipitated solid was collected by filtration, washed with ether and dried to give the sub-title compound (95 mg) as a colourless solid.

1H NMR 300 MHz (d_6 -DMSO) 13.1 (1H, br.s), 8.37 (3H, br.s), 7.89 (1H, d), 7.44 (1H, t), 7.36 (1H, dd), 7.28 (1H, d), 7.19 (1H, d), 7.00 (2H, m), 4.02 (2H, d).

MS APCI +ve m/z 278 ($[M+H]^+$).

20

b) 2-[3-(Aminomethyl)phenoxy]-4-chlorobenzonitrile hydrochloride

The product from step (a) (542 mg) in acetonitrile (20 ml) was treated with CDI (235 mg) and stirred for 2 h. The solution was cooled in ice, saturated with ammonia gas and stirred for 1 h. The reaction mixture was diluted with dichloromethane, washed with water, aqueous sodium bicarbonate solution, then brine and dried ($MgSO_4$). The solvent was

25 evaporated to give 1,1-dimethylethyl {(3-[2-(aminocarbonyl)-5-chlorophenoxy]phenyl)methyl}carbamate (490 mg) as a gum.

The above amide (490 mg) and triethylamine (0.37 ml) in dichloromethane (10 ml) was treated dropwise with trichloroacetyl chloride (0.16 ml) in dichloromethane (10 ml) with 30 stirring at 0-5 °C. After 0.5 h, more trichloroacetyl chloride (0.8 ml) was added and stirring

continued for 0.25 h. The reaction mixture was washed with aqueous sodium bicarbonate solution, dilute hydrochloric acid, water, then brine, and dried (MgSO_4). The solvent was evaporated and the residue was purified by chromatography (silica gel, dichloromethane as eluent) to give 1,1-dimethylethyl {[3-(5-chloro-2-cyanophenoxy)phenyl]methyl} carbamate (240 mg) as a colourless solid.

MS APCI+ve m/z 259/261 ($[\text{M}+\text{H}]^+$ - Boc).

The above cyano compound (240 mg) was stirred with 4M hydrogen chloride in dioxan (10 ml) for 1 h and the product which had precipitated was collected by filtration, washed with ether and dried to give the title compound (122 mg) as a colourless solid.

MS APCI+ve m/z 259 ($[\text{M}+\text{H}]^+$).

^1H NMR 300MHz (d_6 -DMSO) 8.41 (3H, br.s), 8.0 (1H, d), 7.55 (1H, t), 7.43 (2H, dd), 7.36 (1H, m), 7.25 (1H, dd), 6.99 (1H, d), 4.07 (2H, br s).

Example 8

4-Chloro-2-[3-hydroxy-5-[(methylamino)methyl]phenoxy]benzonitrile

a) 4-Chloro-2-[3-hydroxy-5-(hydroxymethyl)phenoxy]benzonitrile
To a stirred solution of cesium carbonate (11.62 g) in dry DMF (70 ml) was added 5-(hydroxymethyl)-1,3-benzenediol (5 g) followed by 4-chloro-2-fluorobenzonitrile (5 g). The mixture was then stirred and heated at 120 °C for 3h. The cooled mixture was then poured into water (200 ml) and made acidic by the addition of 2M aqueous hydrochloric acid. The products were extracted into ethyl acetate (3 x 150 ml), and the combined extracts were washed with 10% aqueous potassium carbonate solution (100 ml). The organic extract was collected, dried (MgSO_4) and concentrated to dryness. Diethyl ether was added to the residue and the mixture filtered. The filtrate was concentrated to dryness and the residue purified by chromatography (silica, 70% diethyl ether/isohexane) to afford, after trituration with diethyl ether, the sub-title compound (800 mg).

300MHz ^1H NMR ($\text{d}_6\text{-DMSO}$) 9.80 (1H, s), 7.95 (1H, d), 7.38 (1H, dd), 6.98 (1H, d), 6.7 (1H, s), 6.52 (1H, s), 6.4 (1H, t), 5.22 (1H, t), 4.43 (2H, d).

5 **b) 4-Chloro-2-[3-hydroxy-5-[(methylamino)methyl]phenoxy]benzonitrile**
 The product from step (a) (0.5 g) was treated with thionyl chloride (20 ml) and the mixture stirred at room temperature for 1.5 h. The excess reagent was removed under reduced pressure and the residual oil dissolved in methanol (20 ml). The solution was treated with excess methylamine and stirred at room temperature for 1 h. The solvent was removed
 10 under reduced pressure and the purified by chromatography (silica, 10% 7M ammonia in methanol/dichloromethane) to afford the title compound (195 mg) as a colourless solid.

MS (+CI) 289 $[\text{M}+\text{H}]^+$.

15 300MHz ^1H NMR ($\text{d}_6\text{-DMSO}$) 7.94 (1H, d), 7.38 (1H, dd), 6.97 (1H, d), 6.67 (1H, m),
 6.55 (1H, s), 6.4 (1H, t), 3.56 (2H, s), 2.23 (3H, s).

Example 9

4-Chloro-2-[3-methoxy-5-[(methylamino)methyl]phenoxy]benzonitrile oxalate

20 **a) 4-Chloro-2-(3-formyl-5-hydroxyphenoxy)benzonitrile**
 Sodium hydride (502 mg, 60% in mineral oil) was added portionwise to 4-chloro-2-fluorobenzonitrile (2.04 g) and 3,5-dihydroxybenzaldehyde (1.81 g) in DMF and the solution heated to 80 °C for 16 h. The cooled solution was diluted with water, acidified
 25 with concentrated hydrochloric acid, extracted twice with ethyl acetate, the extracts dried over sodium sulphate and evaporated. Purification by chromatography gave the sub-title compound as a white solid (0.83 g).

300MHz ^1H NMR (CDCl_3) 9.92 (1H, s), 7.63 (1H, d), 7.23-7.22 (2H, m), 7.13 (1H, m),
 6.94 (1H, s), 6.88 (1H, t), 5.52 (1H, br.s).

30 **b) 4-Chloro-2-(3-formyl-5-methoxyphenoxy)benzonitrile**

4-Chloro-2-(3-formyl-5-hydroxyphenoxy)benzonitrile (0.20 g, 0.75 mmol) in DMF (5 ml) was treated with sodium hydride (60% in mineral oil, 30 mg, 0.78 mmol) followed after 10 min by methyl iodide (0.1 ml). After 16 h, a further amount of sodium hydride (8 mg) and methyl iodide (0.1 ml) were added. After 3 h, the mixture was diluted with water, extracted with ethyl acetate, the extracts washed with water, dried over sodium sulphate and evaporated to give the sub-title compound as a pale yellow solid (213 mg).

300MHz ^1H NMR (CDCl_3) 9.95 (1H, s), 7.63 (1H, d), 7.31-7.26 (1H, m), 7.22-7.15 (2H, m), 6.93-6.91 (2H, m), 3.90 (3H, s).

c) 4-Chloro-2-[3-methoxy-5-[(methylamino)methyl]phenoxy]benzonitrile oxalate
4-Chloro-2-(3-formyl-5-methoxyphenoxy)benzonitrile (210 mg) was stirred in 40% aqueous methylamine (2 ml) and methanol (2 ml) for 16 h. The solution was evaporated, azeotroping with toluene. The residue was dissolved in ethanol and sodium borohydride (39 mg) added portionwise and stirred for 2 h. The mixture was diluted with water, extracted twice with ethyl acetate, the combined extracts dried over sodium sulphate and evaporated. Oxalic acid (58 mg) in ethanol was added and the title compound (187 mg) was collected by filtration as a white solid.

MS (+Cl) 303 $[\text{M}+\text{H}]^+$.
400MHz ^1H NMR (d_6 -DMSO) 7.99 (1H, d), 7.45 (1H, d), 7.43 (1H, d), 7.07 (1H, d), 7.01 (1H, br.s), 6.91 (1H, t), 6.85 (1H, br.s), 4.09 (2H, s), 3.81 (3H, s), 2.55 (3H,s).

Example 10

4-Chloro-2-(3-methylaminomethyl-phenoxy)-benzonitrile fumarate

a) 4-Chloro-2-(3-formyl-phenoxy)-benzonitrile
4-Chloro-2-fluorobenzonitrile (1.00 g, 6.43 mmol), 3-hydroxybenzaldehyde (0.79 g, 6.43 mmol) and cesium carbonate (2.09 g, 6.43 mmol) were heated with stirring in dry

DMF (5 ml) at 50 °C for 23 h. The reaction mixture was cooled, poured into water and extracted with ethyl acetate. The ethyl acetate layer was separated, washed with water (3x), 10% aqueous sodium carbonate (2x), water, brine, and dried over MgSO₄. After filtration, the solvent was removed *in vacuo* to yield 4-chloro-2-(3-formyl-phenoxy)-benzonitrile (1.52 g, 91%) as a yellow oil which solidified.

¹H NMR (300MHz, CDCl₃) 10.02 (1H, s), 7.78 (1H, d), 7.67-7.56 (3H, m), 7.40 (1H, dd), 7.20 (1H, dd), 6.87 (1H, d).

¹⁰ b) 4-Chloro-2-(3-methylaminomethyl-phenoxy)-benzonitrile fumarate
4-Chloro-2-(3-formyl-phenoxy)-benzonitrile (0.52 g, 2.02 mmol), methylamine (2M in methanol, 1.0 ml, 2.0 mmol) and sodium cyanoborohydride (0.14 g, 2.2 mmol) were stirred at ambient temperature in a 1% acetic acid/methanol solution (30 ml) for 18 h. The solvent was removed *in vacuo*. The residue was treated with 10% aqueous sodium carbonate and extracted with ethyl acetate. The ethyl acetate layer was separated and washed with water, brine and dried over MgSO₄. After filtration, fumaric acid (0.23 g, 2.0 mmol) was added to the filtrate and the solvent removed *in vacuo*. The residue was triturated with ethyl acetate overnight, filtered and dried to give 4-chloro-2-(3-methylaminomethyl-phenoxy)-benzonitrile fumarate (454 mg, 58%) as a white solid.

²⁰ MS (APCI+) 273/275 [M+]⁺.
¹H NMR (300MHz, d₆-DMSO) 7.97 (1H, d), 7.52 (1H, t), 7.41 (1H, dd), 7.37 (1H, br d), 7.31 (1H, br s), 7.22 (1H, dd), 6.99 (1H, d), 6.47 (2H, s), 4.01 (2H, s), 2.45 (3H, s).

²⁵ Example 11

4-Chloro-2-(4-methoxy-3-methylaminomethyl-phenoxy)-benzonitrile fumarate

³⁰ a) 5-Hydroxy-2-methoxybenzaldehyde
Concentrated sulfuric acid (110 ml) was added to 2,5-dimethoxybenzaldehyde (20.17 g, 0.121 mol) with cooling in an ice water bath. The resulting red suspension was stirred at

50 °C for 46 h. The reaction contents were poured over ice and extracted with diethyl ether. The ether layer was extracted with 1N sodium hydroxide (200 ml). The basic extract was acidified by addition of 3N hydrochloric acid and extracted with diethyl ether (2x). The ether extracts were combined and dried over MgSO₄. After filtration, the solvent was removed *in vacuo* to give 5-hydroxy-2-methoxybenzaldehyde (5.85 g, 32%) as an orange solid.

MS (APCI+) 153 [M+1]⁺.
¹H NMR (300MHz, CDCl₃) 10.40 (1H, s), 7.37 (1H, d), 7.13 (1H, dd), 6.91 (1H, d), 5.88 (1H, br s), 3.89 (3H, s).

b) 4-Chloro-2-(3-formyl-4-methoxy-phenoxy)-benzonitrile
4-Chloro-2-fluorobenzonitrile (0.60 g, 3.9 mmol), 5-hydroxy-2-methoxybenzaldehyde (0.59 g, 3.9 mmol) and cesium carbonate (1.26 g, 3.9 mmol) were heated with stirring in dry DMF (4 ml) at 50 °C for 17 h. The reaction mixture was cooled, poured into water and extracted with ethyl acetate. The ethyl acetate layer was separated, washed with water, 10% aqueous sodium carbonate (2x), water (2x), brine and dried over MgSO₄. After filtration, the solvent was removed *in vacuo* to yield 4-chloro-2-(3-formyl-4-methoxy-phenoxy)-benzonitrile (1.01 g, 90%) as a yellow solid.

¹H NMR (300MHz, d₆-DMSO) 10.33 (1H, s), 7.96 (1H, d), 7.61 (1H, dd), 7.47 (1H, d), 7.39 (1H, br s), 7.36 (1H, br s), 6.94 (1H, d), 3.97 (3H, s).

c) 4-Chloro-2-(4-methoxy-3-methylaminomethyl-phenoxy)-benzonitrile fumarate
4-Chloro-2-(3-formyl-4-methoxy-phenoxy)-benzonitrile (1.00 g, 3.48 mmol), methylamine (2M in methanol, 5.2 ml, 10.4 mmol) and sodium cyanoborohydride (0.24 g, 3.8 mmol) were stirred at ambient temperature in a 1% acetic acid/methanol solution (75 ml) for 18 h. The solvent was removed *in vacuo*. The residue was treated with 10% aqueous sodium carbonate and extracted with ethyl acetate. The ethyl acetate layer was separated and washed with water, brine and dried over MgSO₄. After filtration, fumaric acid (0.40 g, 3.4 mmol) was added to the filtrate and the solvent removed *in vacuo*. The residue was

triturated with ethyl acetate overnight, filtered and dried to give 4-chloro-2-(3-methylaminomethyl-phenoxy)-benzonitrile fumarate (892 mg, 61%) as a white solid.

MS (APCI+) 303/305 [M+1]⁺.

⁵ ¹H NMR (300MHz, d₆-DMSO) 7.94 (1H, d), 7.37-7.23 (3H, m), 7.15 (1H, d), 6.82 (1H, br s), 6.46 (2H, s), 3.94 (2H, s), 3.86 (3H, s), 2.45 (3H, s).

Example 12

¹⁰ 4-Chloro-2-(2-methoxy-3-methylaminomethyl-phenoxy)-benzonitrile fumarate

a) 3-Hydroxy-2-methoxy-benzaldehyde

2,3-Dihydroxybenzaldehyde (1.00 g, 7.24 mmol), potassium carbonate (1.00 g, 7.24 mmol) and iodomethane (0.59 ml, 1.34 g, 9.4 mmol) in dry DMF (10 ml) were stirred at ambient ¹⁵ temperature for 19 h. The reaction mixture was cooled, poured into water and extracted with ethyl acetate. The ethyl acetate layer was extracted with 1N aqueous sodium hydroxide (3x). The basic extracts were combined and acidified by addition of 3N hydrochloric acid, then extracted with ethyl acetate. The ethyl acetate layer was washed ²⁰ with water (4x), brine and dried over MgSO₄. After filtration, the solvent was removed *in vacuo* to yield 3-hydroxy-2-methoxy-benzaldehyde (0.68 g, 62%) as a yellowish-tan solid.

MS (APCI+) 153 [M+1]⁺.

¹H NMR (300MHz, CDCl₃) 10.27 (1H, s), 7.37 (1H, dd), 7.26-7.21 (1H, m), 7.15 (1H, d), ²⁵ 5.80 (1H, s), 3.97 (3H, s).

b) 4-Chloro-2-(3-formyl-2-methoxy-phenoxy)-benzonitrile

4-Chloro-2-fluorobenzonitrile (0.65 g, 4.2 mmol), 3-hydroxy-2-methoxybenzaldehyde (0.64 g, 4.2 mmol) and cesium carbonate (1.37 g, 4.2 mmol) were heated with stirring in ³⁰ dry DMF (4 ml) at 50 °C for 18 h. The reaction mixture was cooled, poured into water and extracted with ethyl acetate. The ethyl acetate layer was separated, washed with water (2x), 10% aqueous sodium carbonate (2x), water and brine and dried over MgSO₄. After

filtration, the solvent was removed *in vacuo* to yield 4-chloro-2-(3-formyl-4-methoxy-phenoxy)-benzonitrile (1.09 g, 90%) as a yellow-orange solid.

¹H NMR (300MHz, CDCl₃) 10.41 (1H, s), 7.80 (1H, dd), 7.62 (1H, d), 7.40 (1H, dd), 7.30 (1H, d), 7.15 (1H, dd), 6.69 (1H, d), 4.01 (3H, s).

g) 4-Chloro-2-(2-methoxy-3-methylaminomethyl-phenoxy)-benzonitrile fumarate
4-Chloro-2-(3-formyl-2-methoxy-phenoxy)-benzonitrile (0.52 g, 1.8 mmol), methylamine (2M in methanol, 2.7 ml, 5.4 mmol) and sodium cyanoborohydride (0.13 g, 2.1 mmol)
10 were stirred at ambient temperature in a 1% acetic acid/methanol solution (70 ml) for 20 h. The solvent was removed *in vacuo*. The residue was treated with 10% aqueous sodium carbonate and extracted with ethyl acetate. Fumaric acid (0.21 g, 1.8 mmol) was added to the separated ethyl acetate layer and the solvent removed *in vacuo*. The residue was triturated with ethyl acetate overnight, filtered and dried to give 4-chloro-2-(2-methoxy-3-methylaminomethyl-phenoxy)-benzonitrile fumarate (583 mg, 77%) as a white solid.

MS (APCI+) 303/305 [M+I]⁺.
¹H NMR (300MHz, d₆-DMSO) 7.97 (1H, d), 7.45 (1H, dd), 7.36 (1H, dd), 7.27-7.23 (2H, m), 6.78 (1H, d), 6.49 (2H, s), 3.95 (2H, s), 3.79 (3H, s), 2.45 (3H, s).

20

Example 13

4-Chloro-2-(2-methoxy-4-methylaminomethyl-phenoxy)-benzonitrile fumarate

a) 4-Chloro-2-(4-formyl-2-methoxy-phenoxy)-benzonitrile
4-Chloro-2-fluorobenzonitrile (0.60 g, 3.9 mmol), vanillin (0.59 g, 3.9 mmol) and cesium carbonate (1.26 g, 3.9 mmol) were heated with stirring in dry DMF (4 ml) at 50 °C for 22 h. The reaction mixture was cooled, poured into water and extracted with ethyl acetate. The ethyl acetate layer was separated, washed with water, 10% aqueous sodium carbonate (2x), water (2x), brine, and dried over MgSO₄. After filtration, the solvent was removed *in vacuo* to yield 4-chloro-2-(4-formyl-2-methoxy-phenoxy)-benzonitrile (0.98 g, 88%) as an off-white solid.

¹H NMR (300MHz, CDCl₃) 9.99 (1H, s), 7.61-7.51 (3H, m), 7.27 (1H, d), 7.14 (1H, dd), 6.70 (1H, d), 3.88 (3H, s).

5 b) 4-Chloro-2-(2-methoxy-4-methylaminomethyl-phenoxy)-benzonitrile fumarate
4-Chloro-2-(4-formyl-2-methoxy-phenoxy)-benzonitrile (0.98 g, 3.4 mmol), methylamine (2M in methanol, 5.1 ml, 10.2 mmol) and sodium cyanoborohydride (0.24 g, 3.8 mmol) were stirred at ambient temperature in a 1% acetic acid/methanol solution (125 ml) for 20 h. The solvent was removed *in vacuo*. The residue was treated with 10% aqueous sodium carbonate and extracted with ethyl acetate. Fumaric acid (0.41 g, 3.5 mmol) was added to the separated ethyl acetate layer and the solvent removed *in vacuo*. The residue was triturated with ethyl acetate overnight, filtered and dried to give 4-chloro-2-(2-methoxy-4-methylaminomethyl-phenoxy)-benzonitrile fumarate (1.14 g, 80%) as a white solid.

10 MS (APCI+) 303/305 [M+1]⁺.
15 ¹H NMR (300MHz, d₆-DMSO) 7.92 (1H, d), 7.37 (1H, br s), 7.31 (1H, dd), 7.26 (1H, d), 7.09 (1H, d), 6.62 (1H, d), 6.49 (2H, s), 3.94 (2H, s), 3.76 (3H, s), 2.45 (3H, s).

Example 14

20 4-Chloro-2-(3-methoxy-4-methylaminomethyl-phenoxy)-benzonitrile fumarate

a) 4-Chloro-2-(4-formyl-3-methoxy-phenoxy)-benzonitrile
4-Chloro-2-fluorobenzonitrile (0.60 g, 3.9 mmol), 4-hydroxy-2-methoxybenzaldehyde (0.59 g, 3.9 mmol) and cesium carbonate (1.26 g, 3.9 mmol) were heated with stirring in dry DMF (4 ml) at 50 °C for 21 h. The reaction mixture was cooled, poured into water and extracted with ethyl acetate. The ethyl acetate layer was separated, washed with water, 10% aqueous sodium carbonate (2x), water (2x), brine, and dried over magnesium sulphate. After filtration, the solvent was removed *in vacuo* to yield 4-chloro-2-(4-formyl-3-methoxy-phenoxy)-benzonitrile (0.93 g, 83%) as an orange solid.

¹H NMR (300MHz, CDCl₃) 10.40 (1H, s), 7.89 (1H, d), 7.64 (1H, d), 7.24 (1H, dd), 7.02 (1H, d), 6.74 (1H, d), 6.63 (1H, dd), 3.93 (3H, s).

b) 4-Chloro-2-(3-methoxy-4-methylaminomethyl-phenoxy)-benzonitrile fumarate

4-Chloro-2-(4-formyl-3-methoxy-phenoxy)-benzonitrile (0.93 g, 3.2 mmol), methylamine (2M in methanol, 4.8 ml, 9.6 mmol) and sodium cyanoborohydride (0.22 g, 3.6 mmol) were stirred at ambient temperature in a 1% acetic acid/methanol solution (125 ml) for 20 h. The solvent was removed *in vacuo*. The residue was treated with 10% aqueous sodium carbonate and extracted with ethyl acetate. Fumaric acid (0.40 g, 3.4 mmol) was added to the separated ethyl acetate layer and the solvent removed *in vacuo*. The residue was triturated with ethyl acetate overnight, filtered and dried to give 4-chloro-2-(2-methoxy-4-methylaminomethyl-phenoxy)-benzonitrile fumarate (782 mg, 58%) as a white solid.

MS (APCI+) 303/305 [M+1]⁺.

¹H NMR (300MHz, d₆-DMSO) 7.96 (1H, d), 7.46 (1H, d), 7.39 (1H, dd), 6.99-6.95 (2H, m), 6.76 (1H, dd), 6.47 (2H, s), 3.91 (2H, s), 3.83 (3H, s), 2.44 (3H, s).

Example 15

20 2-(4-Bromo-3-methylaminomethyl-phenoxy)-4-trifluoromethyl-benzonitrile fumarate

a) 2-(4-Bromo-3-formyl-phenoxy)-4-trifluoromethyl-benzonitrile

A flask was charged with 2-fluoro-4-(trifluoromethyl)benzonitrile (3.78 g, 2 mmol), 2-bromo-4-hydroxy-benzaldehyde (4.02 g, 2 mmol), cesium carbonate (6.5 g, 2 mmol) and 25 DMF (40 ml). The mixture was stirred overnight at 40 °C. The DMF was evaporated off and the residue was partitioned between ethyl acetate and 5% aqueous sodium hydrogen carbonate. The organic layer was dried with MgSO₄. Evaporation yielded a brown oil which solidified to give a brown solid (7.2 g, 97%).

³⁰ ¹H NMR (300MHz, CDCl₃) 10.34 (1H, s), 7.84 (1H, d), 7.74 (1H, d), 7.58 (1H, d), 7.49 (1H, d), 7.25 (1H, m), 7.12 (1H, s).

b) 2-(4-Bromo-3-methylaminomethyl-phenoxy)-4-trifluoromethyl-benzonitrile fumarate

To 2-(4-bromo-3-formyl-phenoxy)-4-trifluoromethyl-benzonitrile (550 mg, 1.5 mmol) was added a 2M solution of methylamine in methanol (2.25 ml, 4.5 mmol) and 1% acetic acid in methanol (25 ml). Sodium borohydride (104 mg, 1.1 eq.) was added. The reaction mixture was stirred at room temperature overnight. The methanol was evaporated off and the residue was partitioned between ethyl acetate and 5% aqueous sodium carbonate. To the organic layer was added fumaric acid (174 mg) and the solution stirred overnight. The white solid which precipitated was filtered off to yield the title compound (200 mg, 27%).

10 ^1H NMR (300MHz, $\text{d}_6\text{-DMSO}$) 8.18 (1H, d), 7.69 (2H, m), 7.43 (1H, s), 7.29 (1H, s), 7.13 (1H, m), 6.51 (2H, s), 3.88 (2H, d), 2.37 (2H, s).
MS (APCI+): 385.1, 387.09.

Example 16

15

2-(2-Methylaminomethyl-biphenyl-4-yloxy)-4-trifluoromethyl-benzonitrile fumarate**a) 2-(2-Formyl-biphenyl-4-yloxy)-4-trifluoromethyl-benzonitrile:**

20 To a mixture of 2-(4-bromo-3-formyl-phenoxy)-4-trifluoromethyl-benzonitrile (1.76 g, 4.76 mmol) and $\text{Pd}(\text{dba})_3$ (21.8 mg, 5 mole %) in dimethoxyethane (15 ml) was added a solution of phenylboronic acid (609 mg, 5 mmol), triphenylphosphine (15 mg, 12 mole %) and sodium carbonate (530 mg, 5 mmol) in water (10 ml). The mixture was refluxed for 3 h. The solvent was evaporated off and the aqueous layer was extracted with dichloromethane. The extracts were dried with MgSO_4 and filtered through silica. Evaporation yielded a brown solid (1.73 g, 99%).

25 ^1H NMR (300MHz) ($\text{d}_6\text{-DMSO}$) 9.86 (1H, s), 8.23 (1H, d), 7.78 (1H, d), 7.51-7.65 (8H, m).

30

b) 2-(2-Methylaminomethyl-biphenyl-4-yloxy)-4-trifluoromethyl-benzonitrile

fumarate

To 2-(2-formyl-biphenyl-4-yloxy)-4-trifluoromethyl-benzonitrile (550 mg, 1.5 mmol) was added a 2M solution of methylamine in methanol (2.25 mL, 4.5 mmol) and 1% acetic acid in methanol (25 mL). Sodium borohydride (104 mg, 1.1 eq.) was added. The mixture was stirred at room temperature overnight. The methanol was evaporated off and the residue was partitioned between ethyl acetate and 5% aqueous sodium carbonate. To the organic layer was added fumaric acid (174 mg), and the solution stirred overnight. The white solid which precipitated was filtered off to yield the title compound (300 mg, 50%).

10 ^1H NMR (300MHz) (d_6 -DMSO) 8.19 (1H, d), 7.71 (1H, d), 7.33-7.48 (8H, m), 7.25 (1H, m), 6.49 (2H, s), 3.78 (2H, s), 2.27 (3H, s).
MS (BPI Smooth/APCI+): 100% 383.5.

Example 17

15 4-Chloro-2-[2-hydroxy-3-(methylaminomethyl)phenoxy]benzonitrile fumarate

a) 4-Chloro-2-(3-formyl-2-hydroxyphenoxy)-benzonitrile
To a solution of 2,3-dihydroxybenzaldehyde (3.03 g, 21.9 mmol) in DMSO (25 mL) was added sodium hydride (1.97 g, 49.2 mmol, 60% suspension in mineral oil). After 45 min, 4-chloro-2-fluorobenzonitrile (3.41 g, 21.9 mmol) was added, and the reaction mixture stirred at ambient temperature for 24 h. The reaction mixture was poured into 5% ammonium chloride solution and extracted twice with ethyl acetate. The separated ethyl acetate layers were combined, washed with 1N hydrochloric acid (2x), water (2x), brine (1x), and dried over MgSO_4 . After filtration, the solvent was removed *in vacuo* to give a yellow solid (5.88 g) which was triturated with hexane to yield 4-chloro-2-(3-formyl-2-hydroxyphenoxy)-benzonitrile (4.62 g, 77%) as a yellow solid.

20 MS (APCI+) 274 $[\text{M}+1]^+$.

¹H-NMR (300 MHz, CDCl₃): δ 11.11 (1H, s), 9.98 (1H, s), 7.62-7.54 (2H, m), 7.44 (1H, br d), 7.15-7.07 (2H, m), 6.70 (1H, d).

b) 4-Chloro-2-[2-hydroxy-3-(methylaminomethyl)phenoxy]benzonitrile fumarate

4-Chloro-2-(3-formyl-2-hydroxyphenoxy)-benzonitrile (0.30 g, 1.10 mmol), methylamine (2M in methanol, 2.5 mL, 5.0 mmol) and sodium cyanoborohydride (0.10 g, 1.6 mmol) were stirred at ambient temperature in a 1% acetic acid/methanol solution (35 mL) for 19 h. The solvent was removed *in vacuo*. The residue was treated with saturated sodium hydrogen carbonate solution and extracted with ethyl acetate. To the ethyl acetate layer was added fumaric acid (0.12 g, 1.03 mmol) and the solvent removed *in vacuo*. The residue was triturated with ethyl acetate overnight, collected by filtration, and dried to give 4-chloro-2-[2-hydroxy-3-(methylaminomethyl)phenoxy]-benzonitrile fumarate (256 mg, 58%) as a white solid.

MS (APCI+) 289/291 [M+I]⁺.

¹H-NMR (300 MHz, d₆-DMSO): δ 7.88 (1H, d), 7.25 (1H, dd), 7.12 (1H, s), 7.10 (1H, s), 6.81 (1H, br t), 6.62 (1H, br s), 6.47 (2H, s), 4.00 (2H, s), 2.37 (3H, s).

Example 18

20

4-Chloro-2-[2-ethoxy-3-(methylaminomethyl)phenoxy]benzonitrile fumarate

a) 2-Ethoxy-3-hydroxybenzaldehyde

2,3-Dihydroxybenzaldehyde (1.12 g, 8.11 mmol), potassium carbonate (1.12 g, 8.11 mmol) and iodoethane (0.65 mL, 1.26 g, 8.11 mmol) in dry DMF (10 mL) were stirred at ambient temperature for 21 h. The reaction mixture was poured into water and extracted with diethyl ether. The ether layer was washed with water (2x), and extracted with 1N sodium hydroxide solution (3x). The basic extracts were combined and acidified by addition of 3N hydrochloric acid, then extracted with diethyl ether. The ether layer was washed with water

(2x), brine (1x), and dried over MgSO₄. After filtration, the solvent was removed *in vacuo* to yield 2-ethoxy-3-hydroxybenzaldehyde (0.74 g, 55%) as an orange solid.

MS (APCI+) 166 [M+I]⁺.

⁵ ¹H-NMR (300 MHz, CDCl₃): δ 10.26 (1H, s), 7.37 (1H, br dd), 7.24-7.11 (2H, m), 5.78 (1H, s), 4.14 (2H, q), 1.47 (3H, t).

b) 4-Chloro-2-(2-ethoxy-3-formylphenoxy)benzonitrile

4-Chloro-2-fluorobenzonitrile (0.35 g, 2.2 mmol), 2-ethoxy-3-hydroxybenzaldehyde (0.37 g, 2.2 mmol) and cesium carbonate (0.73 g, 2.2 mmol) were heated with stirring in dry DMF (4 mL) at 50 °C for 19 h. The reaction mixture was cooled, poured into water and extracted with ethyl acetate. The ethyl acetate layer was separated, washed with 1N sodium hydroxide solution (2x), water (2x), brine (1x), and dried over MgSO₄. After filtration, the solvent was removed *in vacuo* to yield 4-chloro-2-(2-ethoxy-3-formylphenoxy)benzonitrile (0.55 g, 82%) as a tan solid.

¹H-NMR (300 MHz, CDCl₃): δ 10.42 (1H, s), 7.81 (1H, dd), 7.61 (1H, d), 7.40 (1H, dd), 7.29 (1H, d), 7.14 (1H, dd), 6.68 (1H, d), 4.25 (2H, q), 1.34 (3H, t).

c) 4-Chloro-2-[2-ethoxy-3-(methylaminomethyl)phenoxy]benzonitrile fumarate

4-Chloro-2-(2-ethoxy-3-formylphenoxy)benzonitrile (0.55 g, 1.8 mmol), methylamine (2M in methanol, 3.0 mL, 6.0 mmol) and sodium cyanoborohydride (0.13 g, 2.1 mmol) were stirred at ambient temperature in a 1% acetic acid/methanol solution (55 mL) for 3 days. The solvent was removed *in vacuo*. The residue was treated with 10% sodium carbonate solution and extracted with ethyl acetate. Fumaric acid (0.21 g, 1.8 mmol) was added to the separated ethyl acetate layer and the solvent removed *in vacuo*. The residue was triturated overnight with ethyl acetate, collected by filtration, and dried to give 4-chloro-2-[2-ethoxy-3-(methylaminomethyl)phenoxy]benzonitrile fumarate (527 mg, 67%) as a white solid.

³⁰ MS (APCI+) 317/319 [M+I]⁺.

¹H-NMR (300 MHz, d₆-DMSO): δ 7.98 (1H, d), 7.48 (1H, br d), 7.36 (1H, dd), 7.32-7.23 (2H, m), 6.74 (1H, s), 6.49 (2H, s), 4.04 (2H, q), 3.98 (2H, s), 2.46 (3H, s), 1.21 (3H, t).

Example 19

5

4-Chloro-2-[2-(2-fluoroethoxy)-3-(methylaminomethyl)phenoxy]benzonitrile fumarate

a) 4-Chloro-2-[2-(2-fluoroethoxy)-3-formylphenoxy]benzonitrile

4-Chloro-2-(3-formyl-2-hydroxyphenoxy)benzonitrile (0.29 g, 1.1 mmol), 1-bromo-2-fluoroethane (0.20 mL, 0.34 g, 2.7 mmol) and cesium carbonate (0.41 g, 1.3 mmol) were heated with stirring in dry DMF (5 mL) at 50 °C for 23 h. The reaction mixture was cooled, poured into 1N sodium hydroxide solution and extracted with ethyl acetate. The ethyl acetate layer was separated, washed with 1N sodium hydroxide solution (3x), water (4x), brine (1x), and dried over MgSO₄. After filtration, the solvent was removed *in vacuo* to yield 4-chloro-2-[2-(2-fluoroethoxy)-3-formylphenoxy]benzonitrile (0.35 g) as a tan solid, which was used without further purification.

¹H-NMR (300 MHz, CDCl₃): δ 10.47 (1H, s), 7.82 (1H, dd), 7.61 (1H, d), 7.40 (1H, dd), 7.31 (1H, br t), 7.16 (1H, dd), 6.71 (1H, d) 4.77-4.72 (1H, m), 4.61-4.56 (1H, m), 4.52-4.47 (1H, m), 4.42-4.37 (1H, m).

b) 4-Chloro-2-[2-(2-fluoroethoxy)-3-(methylaminomethyl)phenoxy]benzonitrile fumarate

4-Chloro-2-[2-(2-fluoroethoxy)-3-formylphenoxy]benzonitrile (0.35 g, 1.1 mmol), methylamine (2M in methanol, 3.0 mL, 6.0 mmol) and sodium cyanoborohydride (90 mg, 1.4 mmol) were stirred at ambient temperature in a 1% acetic acid/methanol solution (50 mL) for 16 h. The solvent was removed *in vacuo*. The residue was treated with 10% sodium carbonate solution and extracted with ethyl acetate. The ethyl acetate layer was separated and fumaric acid (0.12 g, 1.0 mmol) was added. After the solvent was removed *in vacuo*, the residue was triturated with ethyl acetate overnight, collected by filtration and

dried to give 4-chloro-2-[2-(2-fluoroethoxy)-3-(methylaminomethyl)phenoxy]benzonitrile fumarate (194 mg, 40%) as a beige solid.

MS (APCI+) 335/337 [M+1]⁺.

¹H-NMR (300 MHz, d₆-DMSO): δ 7.95 (1H, d), 7.42 (1H, dd), 7.35 (1H, dd), 7.28-7.18 (2H, m), 6.76 (1H, d), 6.46 (2H, s), 4.71-4.68 (1H, m), 4.55-4.52 (1H, m), 4.28-4.24 (1H, m), 4.18-4.14 (1H, m), 3.85 (2H, s), 2.37 (3H, s).

Example 20

10

4-Chloro-2-[3-methylaminomethyl-2-(2,2,2-trifluoroethoxy)phenoxy]-benzonitrile fumarate

a) 4-Chloro-2-[3-formyl-2-(2,2,2-trifluoroethoxy)phenoxy]benzonitrile

15 To a solution of 4-chloro-2-(3-formyl-2-hydroxyphenoxy)benzonitrile (0.44 g, 1.6 mmol) in dry DMSO (10 mL) was added sodium hydride (50 mg, 2.0 mmol, 95%). After stirring for 15 min at ambient temperature, 2-iodo-1,1,1-trifluoroethane (0.47 mL, 1.01 g, 4.8 mmol) was added and the mixture heated with stirring at 120 °C for 43 h. The reaction mixture was cooled, poured into 1N hydrochloric acid and extracted with diethyl ether.

20 The ether layer was separated, washed with water (3x), brine (1x), and dried over MgSO₄. After filtration, the solvent was removed *in vacuo* to give a yellow syrup (0.51 g) which was purified by chromatography to yield 4-chloro-2-[3-formyl-2-(2,2,2-trifluoroethoxy)phenoxy]benzonitrile (0.12 g, 21%) as an off-white solid.

25

¹H-NMR (300 MHz, CDCl₃): δ 10.43 (1H, s), 7.84 (1H, dd), 7.65 (1H, d), 7.42-7.35 (2H, m), 7.22 (1H, dd), 6.74 (1H, br d), 4.59 (2H, q).

b) 4-Chloro-2-[3-methylaminomethyl-2-(2,2,2-trifluoroethoxy)phenoxy]-benzonitrile fumarate

4-Chloro-2-[3-formyl-2-(2,2,2-trifluoroethoxy)phenoxy]benzonitrile (0.12 g, 0.33 mmol), methylamine (33% in ethanol, 0.4 mL, 3.2 mmol) and sodium cyanoborohydride (40 mg, 0.6 mmol) were stirred at ambient temperature in a solution of glacial acetic acid (0.5 mL) in methanol (25 mL) for 18 h. The solvent was removed *in vacuo*. The residue was treated with 10% sodium carbonate solution and extracted with ethyl acetate. The ethyl acetate layer was separated and fumaric acid (39 mg, 0.34 mmol) was added. After the solvent was removed *in vacuo*, the residue was triturated with ethyl acetate overnight, collected by filtration and dried to give 4-chloro-2-[3-methylaminomethyl-2-(2,2,2-trifluoroethoxy)phenoxy]benzonitrile fumarate (76.5 mg, 47%) as a white solid.

10

MS (APCI+) 371/373 [M+I]⁺.¹H-NMR (300 MHz, d₆-DMSO): δ 8.00 (1H, d), 7.52-7.31 (4H, m), 6.99 (1H, br s), 6.63 (2H, s), 4.77 (2H, q), 4.22 (2H, s), 2.64 (3H, s).

15

Example 214-Chloro-2-(3-methylaminomethyl-2-propoxyphenoxy)benzonitrile fumarate

a) 3-Hydroxy-2-propoxybenzaldehyde

20 2,3-Dihydroxybenzaldehyde (1.16 g, 8.40 mmol), potassium carbonate (1.16 g, 8.40 mmol) and 1-iodopropane (0.82 mL, 1.43 g, 8.40 mmol) in dry DMF (10 mL) were stirred at ambient temperature for 20 h. The reaction mixture was poured into water and extracted with diethyl ether. The diethyl ether layer was washed with water (2x), then extracted with 1N sodium hydroxide solution (3x). The basic extracts were combined and acidified by 25 addition of 3N hydrochloric acid, then extracted with diethyl ether. The ether layer was washed with 10% sodium hydrogen carbonate (3x), water (1x), brine (1x), and dried over MgSO₄. After filtration, the solvent was removed *in vacuo* to yield 3-hydroxy-2-propoxybenzaldehyde (0.64 g, 42%) as a yellow solid.

30 MS (APCI+) 180 [M+I]⁺.

¹H-NMR (300 MHz, CDCl₃): δ 10.28 (1H, s), 7.38 (1H, dd), 7.23 (1H, dd), 7.14 (1H, br t), 5.78 (1H, s), 4.02 (2H, t), 1.95-1.83 (2H, m), 1.08 (3H, t).

b) 4-Chloro-2-(3-formyl-2-propoxyphenoxy)benzonitrile

4-Chloro-2-fluorobenzonitrile (0.35 g, 2.2 mmol), 3-hydroxy-2-propoxybenzaldehyde (0.40 g, 2.2 mmol) and cesium carbonate (0.72 g, 2.2 mmol) were heated with stirring in dry DMF (4 mL) at 50 °C for 19 h. The reaction mixture was cooled, poured into water and extracted with ethyl acetate. The ethyl acetate layer was separated, washed with 1N sodium hydroxide solution (2x), water (1x), brine (1x), and dried over MgSO₄. After filtration, the solvent was removed *in vacuo* to yield 4-chloro-2-(3-formyl-2-propoxyphenoxy)-benzonitrile (0.69 g, 98%) as a brown oil, which was used without further purification.

¹H-NMR (300 MHz, CDCl₃): δ 10.43 (1H, s), 7.81 (1H, dd), 7.61 (1H, d), 7.40 (1H, dd), 7.29 (1H, d), 7.14 (1H, dd), 6.68 (1H, d), 4.12 (2H, t), 1.80-1.65 (2H, m), 0.93 (3H, t).

c) 4-Chloro-2-(3-methylaminomethyl-2-propoxyphenoxy)benzonitrile fumarate
4-Chloro-2-(3-formyl-2-propoxyphenoxy)benzonitrile (0.68 g, 2.2 mmol), methylamine (2M in methanol, 3.2 mL, 6.4 mmol) and sodium cyanoborohydride (0.15 g, 2.4 mmol) were stirred at ambient temperature in a 1% acetic acid/methanol solution (70 mL) for 20 h. The solvent was removed *in vacuo*. The residue was treated with 10% sodium carbonate solution and extracted with ethyl acetate. The ethyl acetate layer was separated and fumaric acid (250 mg, 2.2 mmol) was added. After the solvent was removed *in vacuo*, the residue was triturated with ethyl acetate overnight, collected by filtration, and dried to give 4-chloro-2-(3-methylaminomethyl-2-propoxyphenoxy)benzonitrile fumarate (567 mg, 59%) as a white solid.

MS (APCI+) 331/333 [M+1]⁺.

¹H-NMR (300 MHz, d₆-DMSO): δ 7.95 (1H, d), 7.45 (1H, br dd), 7.34 (1H, d), 7.26-7.21 (2H, m), 6.71 (1H, s), 6.50 (2H, s), 3.92-3.85 (4H, m), 2.43 (3H, s), 1.68-1.53 (2H, m), 0.84 (3H, t).

Example 224-Chloro-2-[2-(2-hydroxyethoxy)-3-(methylaminomethyl)phenoxy]-benzonitrile fumarate

5

a) 4-Chloro-2-[3-formyl-2-(2-hydroxyethoxy)phenoxy]benzonitrile

A solution of 4-chloro-2-(3-formyl-2-hydroxyphenoxy)benzonitrile (0.30 g, 1.1 mmol), 2-bromoethanol (0.10 mL, 0.18 g, 1.4 mmol) and cesium carbonate (0.43 g, 1.3 mmol) were heated with stirring in dry DMF (3 mL) at 50 °C. After 22 h, 2-bromoethanol (0.19 mL, 0.33 g, 2.7 mmol) was added, and stirring continued for an additional 24 h at 50 °C. The reaction mixture was cooled, poured into water and extracted with ethyl acetate. The ethyl acetate layer was separated, washed with 1N sodium hydroxide solution (3x), water (1x), brine (1x), and dried over MgSO₄. After filtration, the solvent was removed *in vacuo* to yield 4-chloro-2-[3-formyl-2-(2-hydroxyethoxy)phenoxy]benzonitrile (0.29 g, 83%) as a tan oil, which was used without further purification.

¹H-NMR (300 MHz, CDCl₃): δ 10.37 (1H, s), 7.79 (1H, dd), 7.62 (1H, d), 7.40 (1H, dd), 7.34 (1H, d), 7.16 (1H, dd), 6.69 (1H, d), 4.30 (2H, t), 3.90-3.82 (2H, m).

20

b) 4-Chloro-2-[2-(2-hydroxyethoxy)-3-(methylaminomethyl)phenoxy]-benzonitrilefumarate

4-Chloro-2-[3-formyl-2-(2-hydroxyethoxy)phenoxy]benzonitrile (0.29 g, 0.91 mmol), methylamine (2M in methanol, 2.0 mL, 4.0 mmol) and sodium cyanoborohydride (70 mg, 1.1 mmol) were stirred at ambient temperature in a 1% acetic acid/methanol solution (25 mL) for 24 h. The solvent was removed *in vacuo*. The residue was treated with 10% sodium carbonate solution and extracted with ethyl acetate. The ethyl acetate layer was separated and fumaric acid (0.11 g, 0.95 mmol) was added. After the solvent was removed *in vacuo*, the residue was triturated with ethyl acetate overnight, collected by filtration, and dried to give 4-chloro-2-[2-(2-hydroxyethoxy)-3-methylaminomethyl]phenoxy]-benzonitrile fumarate (250 mg, 61%) as a white solid.

MS (APCI+) 333/335 [M+1]⁺.

¹H-NMR (300 MHz, d₆-DMSO): δ 7.96 (1H, d), 7.43-7.32 (2H, m), 7.28-7.18 (2H, m), 6.75 (1H, br s), 6.47 (2H, s), 4.04 (2H, t), 3.98 (2H, s), 3.58 (2H, t), 2.42 (3H, s).

5

Example 23

4-Chloro-2-[2-ethoxy-4-(methylaminomethyl)phenoxy]benzonitrile fumarate

10 a) 4-Chloro-2-(2-ethoxy-4-formylphenoxy)benzonitrile

4-Chloro-2-fluorobenzonitrile (0.40 g, 2.6 mmol), 3-ethoxy-4-hydroxybenzaldehyde (0.43 g, 2.6 mmol) and cesium carbonate (0.84 g, 2.6 mmol) were heated with stirring in dry DMF (4 mL) at 50 °C for 20 h. The reaction mixture was cooled, poured into water and extracted with ethyl acetate. The ethyl acetate layer was separated, washed with water (1x), 10% sodium carbonate solution (1x), 0.5N sodium hydroxide solution (1x), water (1x), brine (1x), and dried over MgSO₄. After filtration, the solvent was removed *in vacuo* to yield 4-chloro-2-(2-ethoxy-4-formylphenoxy)benzonitrile (0.67 g, 86%) as a yellow solid.

15 ¹H-NMR (300 MHz, CDCl₃): δ 9.98 (1H, s), 7.59 (1H, d), 7.55-7.49 (2H, m), 7.30 (1H, d), 20 7.13 (1H, dd), 6.71 (1H, d), 4.10 (2H, q), 1.26 (3H, t).

b) 4-Chloro-2-[2-ethoxy-4-(methylaminomethyl)phenoxy]benzonitrile fumarate

4-Chloro-2-(2-ethoxy-4-formylphenoxy)benzonitrile (0.67 g, 2.2 mmol), methylamine (2M in methanol, 3.5 mL, 7.0 mmol) and sodium cyanoborohydride (0.16 g, 2.5 mmol) were 25 stirred at ambient temperature in a 1% acetic acid/methanol solution (65 mL) for 18 h. The solvent was removed *in vacuo*. The residue was treated with 10% sodium carbonate solution and extracted with ethyl acetate. The ethyl acetate layer was separated and fumaric acid (0.26 g, 2.2 mmol) was added. After the solvent was removed *in vacuo*, the residue was triturated with ethyl acetate overnight, collected by filtration, and dried to give

4-chloro-2-[2-ethoxy-4-(methylaminomethyl)phenoxy]benzonitrile fumarate (707 mg, 74%) as a white solid.

MS (APCI+) 317/319[M+1]⁺.

¹H-NMR (300 MHz, δ_6 -DMSO): 7.92 (1H, d), 7.38 (1H, br s), 7.34 -7.27 (2H, m), 7.10 (1H, br d), 6.67 (1H, br s), 6.49 (2H, s), 4.04 (2H, q), 3.97 (2H, s), 2.46 (3H, s), 1.12 (3H, t).

Example 24

10

4-Chloro-2-[4-(methylaminomethyl)naphthalen-1-yloxy]benzonitrile fumarate

a) 4-Chloro-2-(4-formylnaphthalen-1-yloxy)benzonitrile

4-Chloro-2-fluorobenzonitrile (0.31 g, 2.0 mmol), 4-hydroxy-1-naphthaldehyde (0.34 g, 2.0 mmol) and cesium carbonate (0.64 g, 2.0 mmol) were heated with stirring in dry DMF (4 mL) at ambient temperature for 10 days. The reaction mixture was poured into water and extracted with ethyl acetate. The ethyl acetate layer was separated, washed with 1N sodium hydroxide solution (2x), water (1x), brine (1x), and dried over MgSO₄. After filtration, the solvent was removed *in vacuo* to yield 4-chloro-2-(4-formylnaphthalen-1-yloxy)benzonitrile (0.34 g, 56%) as a tan solid, which was used without further purification.

¹H-NMR (300 MHz, CDCl₃): δ 10.36 (1H, s), 9.35 (1H, d), 8.27 (1H, br d), 7.99 (1H, d), 7.83-7.77 (1H, m), 7.73-7.63 (2H, m), 7.29 (1H, br d), 7.09 (1H, d), 6.98 (1H, d).

25

b) 4-Chloro-2-[4-(methylaminomethyl)naphthalen-1-yloxy]benzonitrile fumarate

4-Chloro-2-(4-formylnaphthalen-1-yloxy)benzonitrile (0.34 g, 1.1 mmol), methylamine (2M in methanol, 2.0 mL, 4.0 mmol) and sodium cyanoborohydride (80 mg, 1.3 mmol) were stirred at ambient temperature in a 1% acetic acid/methanol solution (30 mL) for 18 h. The solvent was removed *in vacuo*. The residue was treated with 10% sodium carbonate

solution and extracted with ethyl acetate. The ethyl acetate layer was separated and fumaric acid (0.12 g, 1.0 mmol) was added. After the solvent was removed *in vacuo*, the residue was triturated with ethyl acetate overnight, collected by filtration, and dried to give 4-chloro-2-[4-(methylaminomethyl)naphthalen-1-yloxy]benzonitrile fumarate (328 mg, 68%) as an off-white solid.

10 MS (APCI+) 323/325 [M+1]⁺.

¹H-NMR (300 MHz, d₆-DMSO): δ 8.32 (1H, d), 8.05-7.98 (2H, m), 7.74-7.60 (3H, m), 7.41 (1H, dd), 7.30 (1H, d), 6.86 (1H, br d), 6.49 (2H, s), 4.33 (2H, s), 2.50 (3H, s).

15 Example 25

4-Chloro-2-[3-(dimethylaminomethyl)phenoxy]benzonitrile fumarate

15 4-Chloro-2-(3-formylphenoxy)benzonitrile (0.20 g, 0.78 mmol), dimethylamine (2M in methanol, 1.0 mL, 2.0 mmol) and sodium cyanoborohydride (60 mg, 0.96 mmol) were stirred at ambient temperature in a 1% acetic acid/methanol solution (20 mL) for 18 h. The solvent was removed *in vacuo*. The residue was treated with 10% sodium carbonate solution and extracted with ethyl acetate. The ethyl acetate layer was separated and fumaric acid (0.10 g, 0.86 mmol) was added. After the solvent was removed *in vacuo*, the residue was triturated with ethyl acetate overnight, collected by filtration, and dried to give 4-chloro-2-[3-(dimethylaminomethyl)phenoxy]benzonitrile fumarate (179 mg, 58%) as a white solid.

20 25 MS (APCI+) 287/289 [M+1]⁺.

¹H-NMR (300 MHz, d₆-DMSO): δ 7.96 (1H, d), 7.48 (1H, br t), 7.39 (1H, dd), 7.30 (1H, br d), 7.22-7.12 (2H, m), 6.99 (1H, d), 6.60 (2H, s), 3.64 (2H, s), 2.28 (6H, s).

30 Example 26

4-Chloro-2-{3-[2-(hydroxyethyl)amino)methyl]phenoxy}benzonitrile fumarate

4-Chloro-2-(3-formylphenoxy)benzonitrile (0.20 g, 0.78 mmol), ethanolamine (50 μ L, 51 mg, 0.83 mmol) and sodium cyanoborohydride (60 mg, 0.96 mmol) were stirred at ambient temperature in a 1% acetic acid/methanol solution (20 mL) for 40 h. The solvent was removed *in vacuo*. The residue was treated with 10% sodium carbonate solution and extracted with ethyl acetate. The ethyl acetate layer was separated and fumaric acid (0.10 g, 0.86 mmol) was added. After the solvent was removed *in vacuo*, the residue was triturated with ethyl acetate overnight, collected by filtration, and dried to give 4-chloro-2-{3-[2-(hydroxyethyl)amino)methyl]phenoxy}benzonitrile fumarate (240 mg, 73%) as a white solid.

MS (APCI+) 303/305 $[M+1]^+$.

1 H-NMR (300 MHz, d_6 -DMSO): δ 7.97 (1H, d), 7.49 (1H, t), 7.41-7.35 (2H, m), 7.31 (1H, br s), 7.16 (1H, br d), 6.97 (1H, br s), 6.53 (2H, s), 3.97 (2H, s), 3.57 (2H, t), 2.77 (2H, t).

Example 274-Chloro-2-{3-[2-(methoxyethyl)amino)methyl]phenoxy}benzonitrile fumarate

4-Chloro-2-(3-formylphenoxy)benzonitrile (0.20 g, 0.78 mmol), 2-methoxyethylamine (72 μ L, 62 mg, 0.83 mmol) and sodium cyanoborohydride (60 mg, 0.96 mmol) were stirred at ambient temperature in a 1% acetic acid/methanol solution (20 mL) for 40 h. The solvent was removed *in vacuo*. The residue was treated with 10% sodium carbonate solution and extracted with ethyl acetate. The ethyl acetate layer was separated and fumaric acid (0.10 g, 0.86 mmol) was added. After the solvent was removed *in vacuo*, the residue was triturated with ethyl acetate overnight, collected by filtration, and dried to give 4-chloro-2-{3-[2-(methoxyethyl)amino)methyl]phenoxy}benzonitrile fumarate (208 mg, 61%) as a white solid.

MS (APCI+) 317/319 $[M+1]^+$.
¹H-NMR (300 MHz, d₆-DMSO): δ 7.96 (1H, d), 7.45 (1H, t), 7.39 (1H, dd), 7.30 (1H, br d), 7.22 (1H, br s), 7.11 (1H, br d), 6.94 (1H, br s), 6.62 (2H, s), 3.84 (2H, s), 3.43 (2H, t), 3.23 (3H, s), 2.73 (2H, t).

5

Example 284-Chloro-2-[3-(propylaminomethyl)phenoxy]benzonitrile fumarate

10 4-Chloro-2-(3-formylphenoxy)benzonitrile (0.20 g, 0.78 mmol), n-propylamine (140 μL, 101 mg, 1.7 mmol) and sodium cyanoborohydride (60 mg, 0.96 mmol) were stirred at ambient temperature in a 1% acetic acid/methanol solution (20 mL) for 5 days. The solvent was removed *in vacuo*. The residue was treated with 10% sodium carbonate solution and extracted with ethyl acetate. The ethyl acetate layer was separated and fumaric acid (0.10 g, 0.86 mmol) was added. After the solvent was removed *in vacuo*, the residue was triturated with ethyl acetate overnight, collected by filtration, and dried to give 4-chloro-2-[3-(propylaminomethyl)phenoxy]benzonitrile fumarate (250 mg, 78%) as a white solid.

15 MS (APCI+) 301/303 $[M+1]^+$.
¹H-NMR (300 MHz, d₆-DMSO): δ 7.97 (1H, d), 7.49 (1H, t), 7.40 (1H, dd), 7.35 (1H, br d), 7.29 (1H, br s), 7.17 (1H, br dd), 6.96 (1H, br s), 6.46 (2H, s), 3.94 (2H, s), 2.63 (2H, t), 1.61-1.46 (2H, m), 0.86 (3H, t).

25

Example 294-Chloro-2-[3-[(2-dimethylaminoethyl)amino]methyl]phenoxy]benzonitrile fumarate

20 4-Chloro-2-(3-formylphenoxy)benzonitrile (0.20 g, 0.78 mmol), N,N-dimethylethylenediamine (90 μL, 72 mg, 0.82 mmol) and sodium cyanoborohydride (60 mg, 0.96 mmol) were stirred at ambient temperature in a 1% acetic acid/methanol

solution (20 mL) for 5 days. The solvent was removed *in vacuo*. The residue was treated with 10% sodium carbonate solution and extracted with ethyl acetate. The ethyl acetate layer was separated and fumaric acid (0.10 g, 0.86 mmol) was added. After the solvent was removed *in vacuo*, the residue was triturated with ethyl acetate overnight, collected by filtration, and dried to give 4-chloro-2-[(3-[(2-dimethylaminoethylamino)methyl]phenoxy)benzonitrile fumarate (315 mg, 90%) as a white solid.

MS (APCI+) 330/332 [M+1]⁺.

¹H-NMR (300 MHz, d₆-DMSO): δ 7.98 (1H, d), 7.47 (1H, t), 7.40 (1H, dd), 7.31 (1H, br d), 7.25 (1H, br s), 7.13 (1H, br dd), 6.94 (1H, br s), 6.49 (2H, s), 3.85 (2H, s), 2.71 (2H, t), 2.55 (2H, t), 2.26 (6H, s).

Example 30

15 4-Chloro-2-[(3-hydroxypropylamino)methyl]phenoxy)benzonitrile fumarate

4-Chloro-2-(3-formylphenoxy)benzonitrile (0.21 g, 0.81 mmol), 3-aminopropan-1-ol (65 μL, 64 mg, 0.85 mmol) and sodium cyanoborohydride (60 mg, 0.96 mmol) were stirred at ambient temperature in a 1% acetic acid/methanol solution (20 mL) for 5 days. The solvent was removed *in vacuo*. The residue was treated with 10% sodium carbonate solution and extracted with ethyl acetate. The ethyl acetate layer was separated and fumaric acid (0.10 g, 0.86 mmol) was added. After the solvent was removed *in vacuo*, the residue was triturated with ethyl acetate overnight, collected by filtration, and dried to give 4-chloro-2-[(3-hydroxypropylamino)methyl]phenoxy)benzonitrile fumarate (352 mg, 99%) as a white solid.

MS (APCI+) 317/319 [M+1]⁺.

¹H-NMR (300 MHz, d₆-DMSO): δ 7.97 (1H, d), 7.48 (1H, t), 7.39 (1H, dd), 7.35 (1H, br d), 7.29 (1H, br s), 7.16 (1H, br dd), 6.95 (1H, br s), 6.46 (2H, s), 3.93 (2H, s), 3.45 (2H, t), 2.72 (2H, t), 1.71-1.61 (2H, m).

Example 314-Chloro-2-[3-(pyrrolidin-1-ylmethyl)phenoxy]benzonitrile fumarate

5 4-Chloro-2-(3-formylphenoxy)benzonitrile (0.20 g, 0.78 mmol), pyrrolidine (0.14 mL, 0.12 g, 1.7 mmol) and sodium cyanoborohydride (60 mg, 0.96 mmol) were stirred at ambient temperature in a 1% acetic acid/methanol solution (20 mL) for 5 days. The solvent was removed *in vacuo*. The residue was treated with 10% sodium carbonate solution and 10 extracted with ethyl acetate. The ethyl acetate layer was separated and fumaric acid (0.10 g, 0.86 mmol) was added. After the solvent was removed *in vacuo*, the residue was triturated with ethyl acetate overnight, collected by filtration, and dried to give 4-chloro-2-[3-(pyrrolidin-1-ylmethyl)phenoxy]benzonitrile fumarate (117 mg, 35%) as a white solid.

15 MS (APCI+) 313/315 [M+]⁺.

¹H-NMR (300 MHz, d_6 -DMSO): δ 7.97 (1H, d), 7.45 (1H, t), 7.39 (1H, dd), 7.27 (1H, br d), 7.17 (1H, br s), 7.11 (1H, br d), 6.95 (1H, br s), 6.48 (2H, s), 3.68 (2H, s), 3.11-3.05 (4H, m), 1.85-1.77 (2H, m), 1.75-1.67 (2H, m).

20 Example 32

4-Chloro-5-fluoro-2-(2-methoxy-3-methylaminomethylphenoxy)benzonitrile fumarate

a) 4-Chloro-2,5-difluorobenzamide

25 4-Chloro-2,5-difluorobenzoic acid (2.05 g, 10.6 mmol) was suspended in dry toluene (40 mL, plus two drops DMF) with cooling in an ice water bath. Oxalyl chloride (2.4 mL, 3.5 g, 27.5 mmol) was added and reaction mixture was allowed to reach ambient temperature with stirring. After 18 h, the solvent was removed *in vacuo* and the residue dissolved in 2-methoxyethyl ether (6 mL), which was added to concentrated ammonium hydroxide (80 30 mL) with stirring. After 1 h, the resulting precipitate was collected by filtration, washed

with water and dried to give 4-chloro-2,5-difluorobenzamide (1.52 g, 75%) as a beige solid.

MS (APCI+) 192 [M+1]⁺.

¹H-NMR (300 MHz, CDCl₃): δ 7.96-7.88 (1H, m), 7.30-7.22 (1H, m), 6.61 (1H, br s), 5.98 (1H, br s).

b) 4-Chloro-2,5-difluorobenzonitrile

4-Chloro-2,5-difluorobenzamide (1.50 g, 7.83 mmol) was dissolved in dry DMF (10 mL) and cooled with an ice-water bath. Thionyl chloride (2.8 mL, 4.6 g, 38 mmol) was added, and the resulting solution was heated to 80 °C with stirring for 2.5 h. The cooled reaction mixture was poured into water and extracted with ethyl acetate. The ethyl acetate layer was washed with water (1x), saturated sodium hydrogen carbonate (1x), water (3x), brine (1x), and dried over MgSO₄. After filtration, the solvent was removed *in vacuo* to give a yellowish tan solid (0.60 g). Purification by chromatography gave 4-chloro-2,5-difluorobenzonitrile (0.48 g, 35%) as a tan crystalline solid.

¹H-NMR (300 MHz, CDCl₃): δ 7.42 (1H, dd), 7.35 (1H, dd).

c) 4-Chloro-5-fluoro-2-(3-formyl-2-methoxyphenoxy)benzonitrile

4-Chloro-2,5-difluorobenzonitrile (0.45 g, 2.6 mmol), 3-hydroxy-2-methoxybenzaldehyde (0.39 g, 2.6 mmol) and cesium carbonate (0.84 g, 2.6 mmol) were heated with stirring in dry DMF (5 mL) at 50 °C for 18 h. The reaction mixture was cooled, poured into 0.1N sodium hydroxide solution and extracted with ethyl acetate. The ethyl acetate layer was separated, washed with 0.1N sodium hydroxide solution (1x), water (2x), brine (1x), and dried over MgSO₄. After filtration, the solvent was removed *in vacuo*, and purified by chromatography to yield 4-chloro-5-fluoro-2-(3-formyl-2-methoxyphenoxy)benzonitrile (0.33 g, 42%) as a pale yellow solid.

¹H-NMR (300 MHz, CDCl₃): δ 10.40 (1H, s), 7.81 (1H, dd), 7.47 (1H, d), 7.38 (1H, dd), 7.30 (1H, d), 6.76 (1H, d), 4.01 (3H, s).

d) 4-Chloro-5-fluoro-2-(2-methoxy-3-methylaminomethylphenoxy)benzonitrile fumarate

4-Chloro-5-fluoro-2-(3-formyl-2-methoxyphenoxy)benzonitrile (0.29 g, 0.95 mmol), methylamine (33% in ethanol, 1.0 mL, 8.0 mmol) and sodium cyanoborohydride (90 mg, 1.4 mmol) were stirred at ambient temperature in a 1% acetic acid/methanol solution (50 mL) for 44 h. The solvent was removed *in vacuo*. The residue was treated with 10% sodium carbonate solution and extracted with ethyl acetate. The ethyl acetate layer was separated and fumaric acid (65 mg, 0.56 mmol) was added. After the solvent was removed *in vacuo*, the residue was triturated with ethyl acetate overnight, collected by filtration, and dried to give 4-chloro-5-fluoro-2-(2-methoxy-3-methylaminomethylphenoxy)benzonitrile fumarate (143 mg, 35%) as a white solid.

15 MS (APCI+) 321/323 [M+]⁺.

¹H-NMR (300 MHz, d₆-DMSO): δ 8.20 (1H, d), 7.42-7.38 (1H, m), 7.25-7.17 (2H, m), 7.03 (1H, d), 6.48 (2H, s), 3.89 (2H, s), 3.79 (3H, s), 2.42 (3H, s).

Example 33

20

4-Bromo-2-(2-methoxy-3-methylaminomethyl-phenoxy)-benzonitrile fumarate

a) 4-Bromo-2-(3-formyl-2-methoxyphenoxy)benzonitrile

4-Bromo-2-fluorobenzonitrile (0.41 g, 2.0 mmol), 3-hydroxy-2-methoxybenzaldehyde (0.31 g, 2.0 mmol) and cesium carbonate (0.66 g, 2.0 mmol) were heated with stirring in dry DMF (4 mL) at 50 °C for 18 h. The reaction mixture was cooled, poured into water and extracted with ethyl acetate. The ethyl acetate layer was separated, washed with 1N sodium hydroxide solution (2x), water (1x), brine (1x), and dried over MgSO₄. After filtration, the solvent was removed *in vacuo* to yield 4-bromo-2-(3-formyl-2-methoxyphenoxy)-benzonitrile (0.55 g, 81%) as a yellow solid.

MS (APCI+) 332/334 [M+1]⁺.

¹H-NMR (300 MHz, CDCl₃): δ 10.41 (1H, s), 7.81 (1H, dd), 7.54 (1H, d), 7.40 (1H, dd), 7.34-7.28 (2H, m), 6.85 (1H, d), 4.01 (3H, s).

5 b) 4-Bromo-2-(2-methoxy-3-methylaminomethyl-phenoxy)-benzonitrile fumarate
4-Bromo-2-(3-formyl-2-methoxyphenoxy)benzonitrile (0.55 g, 1.7 mmol), methylamine (2M in methanol, 3.0 mL, 6.0 mmol) and sodium cyanoborohydride (120 mg, 1.9 mmol) were stirred at ambient temperature in a 1% acetic acid/methanol solution (40 mL) for 17
10 h. The solvent was removed *in vacuo*. The residue was treated with 10% sodium carbonate solution and extracted with ethyl acetate. The ethyl acetate layer was separated and fumaric acid (0.20 g, 1.7 mmol) was added. After the solvent was removed *in vacuo*, the residue was triturated with ethyl acetate overnight, collected by filtration, and dried to give 4-bromo-2-(2-methoxy-3-methylaminomethyl-phenoxy)-benzonitrile fumarate (546 mg, 15 71%) as a white solid.

MS (APCI+) 347/349 [M+1]⁺.

¹H-NMR (300 MHz, d₆-DMSO): δ 7.88 (1H, d), 7.50 (1H, dd), 7.46-7.41 (1H, m), 7.28-7.22 (2H, m), 6.89 (1H, d), 6.49 (2H, s), 3.94 (2H, s), 3.79 (3H, s), 2.44 (3H, s).

20

Example 34

2-(2-Methoxy-3-methylaminomethyl-phenoxy)-6-trifluoromethyl-nicotinonitrile fumarate

25 a) 2-(3-Formyl-2-methoxyphenoxy)-6-(trifluoromethyl)nicotinonitrile
2-Chloro-6-(trifluoromethyl)nicotinonitrile (0.34 g, 1.6 mmol), 3-hydroxy-2-methoxybenzaldehyde (0.25 g, 1.6 mmol) and potassium fluoride (0.29 g, 4.9 mmol) were heated with stirring in dry DMF (4 mL) at 120 °C for 3 h. The reaction mixture was cooled, poured into 1N sodium hydroxide solution and extracted with ethyl acetate. The 30 ethyl acetate layer was separated, washed with 1N sodium hydroxide solution (3x), water

(3x), brine (1x), and dried over $MgSO_4$. After filtration, the solvent was removed *in vacuo* to yield 2-(3-formyl-2-methoxyphenoxy)-6-(trifluoromethyl)nicotinonitrile (0.50 g, 94%) as a yellow solid.

5 MS (APCI+) 323 $[M+1]^{+}$.
 1H -NMR (300 MHz, $CDCl_3$): δ 10.37 (1H, s), 8.23 (1H, d), 7.81 (1H, dd), 7.54-7.47 (2H, m), 7.32-7.26 (1H, m), 3.96 (3H, s).

b) 2-(2-Methoxy-3-methylaminomethyl-phenoxy)-6-trifluoromethyl-nicotinonitrile

10 fumarate
2-(3-Formyl-2-methoxyphenoxy)-6-(trifluoromethyl)nicotinonitrile (0.50 g, 1.6 mmol), methylamine (33% in ethanol, 0.9 mL, 7.2 mmol) and sodium cyanoborohydride (120 mg, 1.9 mmol) were stirred at ambient temperature in a 1% acetic acid/methanol solution (80 mL) for 18 h. The solvent was removed *in vacuo*. The residue was treated with 10% 15 sodium carbonate solution and extracted with ethyl acetate. The ethyl acetate layer was separated and fumaric acid (0.20 g, 1.7 mmol) was added. After the solvent was removed *in vacuo*, the residue was triturated with ethyl acetate overnight, collected by filtration, and dried to give 2-(2-methoxy-3-methylaminomethyl-phenoxy)-6-trifluoromethyl-nicotinonitrile fumarate (468 mg, 67%) as a white solid.

20 MS (APCI+) 338 $[M+1]^{+}$.
 1H -NMR (300 MHz, d_6 -DMSO): δ 8.78 (1H, d), 7.85 (1H, d), 7.48 (1H, d), 7.37 (1H, d), 7.28-7.22 (1H, m), 6.50 (2H, s), 3.97 (2H, s), 3.74 (3H, s), 2.40 (3H, s).

25 Example 35

4-Methoxy-2-(2-methoxy-3-methylaminomethyl-phenoxy)-benzonitrile fumarate

a) 2-Fluoro-4-methoxy-benzonitrile

2-Fluoro-4-hydroxybenzonitrile (0.50 g, 3.7 mmol), potassium carbonate (0.53 g, 3.8 mmol) and iodomethane (0.34 mL, 0.78 g, 5.5 mmol) in dry DMF (5 mL) were stirred at ambient temperature for 21 h. The reaction mixture was poured into water and extracted with ethyl acetate. The ethyl acetate layer was washed with 1N sodium hydroxide solution (2x), water (3x), brine (1x), and dried over MgSO_4 . After filtration, the solvent was removed *in vacuo* to yield 2-fluoro-4-methoxy-benzonitrile (0.54 g, 98%) as a white crystalline solid.

¹H-NMR (300 MHz, CDCl_3): δ 7.55-7.48 (1H, m), 6.77 (1H, dd), 6.71 (1H, dd), 3.86 (3H, s).

b) 2-(3-Formyl-2-methoxy-phenoxy)-4-methoxy-benzonitrile

2-Fluoro-4-methoxy-benzonitrile (0.28 g, 1.8 mmol), 3-hydroxy-2-methoxybenzaldehyde (0.28 g, 1.8 mmol) and cesium carbonate (0.90 g, 2.4 mmol) were heated with stirring in dry DMF (4 mL) at 50 °C for 40 h. The reaction mixture was cooled, poured into 1N sodium hydroxide solution and extracted with ethyl acetate. The ethyl acetate layer was separated, washed with 1N sodium hydroxide solution (4x), water (4x), brine (1x), and dried over MgSO_4 . After filtration, the solvent was removed *in vacuo* to yield 2-(3-formyl-2-methoxy-phenoxy)-4-methoxy-benzonitrile (0.38 g, 73%) as a tan oil.

MS (APCI+) 284 $[\text{M}+1]^+$.

¹H-NMR (300 MHz, d_6 -DMSO): δ 10.42 (1H, s), 7.75 (1H, dd), 7.60 (1H, br d), 7.36 (1H, dd), 7.27-7.21 (1H, m), 6.68 (1H, br dd), 6.21 (1H, br d), 4.04 (3H, s), 3.75 (3H, s).

c) 4-Methoxy-2-(2-methoxy-3-methylaminomethyl-phenoxy)-benzonitrile fumarate

2-(3-Formyl-2-methoxy-phenoxy)-4-methoxy-benzonitrile (0.38 g, 1.3 mmol), methylamine (2M in methanol, 3.0 mL, 6.0 mmol) and sodium cyanoborohydride (110 mg, 1.8 mmol) were stirred at ambient temperature in a 1% acetic acid/methanol solution (50 mL) for 17 h. The solvent was removed *in vacuo*. The residue was treated with 10% sodium carbonate solution and extracted with ethyl acetate. The ethyl acetate layer was

separated and fumaric acid (0.15 g, 1.3 mmol) was added. After the solvent was removed *in vacuo*, the residue was triturated with ethyl acetate overnight, collected by filtration, and dried to give 4-methoxy-2-(2-methoxy-3-methylaminomethyl-phenoxy)-benzonitrile fumarate (326 mg, 58%) as an off-white solid.

5 MS (APCI+) 299 [M+1]⁺.
¹H-NMR (300 MHz, d₆-DMSO): δ 7.83 (1H, d), 7.39 (1H, br d), 7.24-7.14 (2H, m), 6.85 (1H, dd), 6.48 (2H, s), 6.21 (1H, d), 3.93 (2H, s), 3.80 (3H, s), 3.73 (3H, s), 2.43 (3H, s).

10

Example 363-Fluoro-2-(2-methoxy-3-(methylaminomethyl)phenoxy)-4-methyl-benzonitrile fumaratea) 2,3-Difluoro-4-methylbenzonitrile

15 2,3-Difluoro-4-methylbenzamide (1.02 g, 5.96 mmol) was dissolved in dry DMF (8 mL) and cooled with an ice-water bath. Thionyl chloride (2.2 mL, 3.6 g, 30 mmol) was added, and the resulting solution was heated to 80 °C with stirring for 8 h. The cooled reaction mixture was poured into water and extracted with diethyl ether. The ether layer was washed with water (1x), saturated sodium hydrogen carbonate (1x), water (1x), brine (1x), and dried over MgSO₄. After filtration, the solvent was removed *in vacuo* to give a dark orange solid (0.87 g). Purification by chromatography gave 2,3-difluoro-4-methylbenzonitrile (0.28 g, 30%) as a yellow solid.

20 ¹H-NMR (300 MHz, CDCl₃): δ 7.32-7.25 (1H, m), 7.10-7.03 (1H, m), 2.39 (3H, d).

25

b) 3-Fluoro-2-(3-formyl-2-methoxyphenoxy)-4-methylbenzonitrile

2,3-Difluoro-4-methylbenzonitrile (0.21 g, 1.4 mmol), 3-hydroxy-2-methoxybenzaldehyde (0.21 g, 1.4 mmol) and cesium carbonate (0.45 g, 1.4 mmol) were heated with stirring in dry DMF (4 mL) at 50 °C for 18 h. The reaction mixture was cooled, poured into 0.1N sodium hydroxide solution and extracted with diethyl ether. The ether layer was separated,

washed with 0.1N sodium hydroxide solution (2x), water (3x), brine (1x), and dried over MgSO_4 . After filtration, the solvent was removed *in vacuo*, and purified by chromatography to yield 3-fluoro-2-(3-formyl-2-methoxyphenoxy)-4-methylbenzonitrile (0.12 g, 31%) as a colourless glass.

5 MS (APCI+) 286 $[\text{M}+1]^+$.

$^1\text{H-NMR}$ (300 MHz, CDCl_3): δ 10.45 (1H, s), 7.61 (1H, br d), 7.40 (1H, br d), 7.19-7.06 (2H, m), 6.95 (1H, br d), 4.12 (3H, s), 2.37 (3H, d).

10 **g) 3-Fluoro-2-(2-methoxy-3-(methylaminomethyl)phenoxy)-4-methyl-benzonitrile**

fumarate

3-Fluoro-2-(3-formyl-2-methoxyphenoxy)-4-methylbenzonitrile (0.10 g, 0.35 mmol), methylamine (33% in ethanol, 0.5 mL, 4.0 mmol) and sodium cyanoborohydride (30 mg, 0.48 mmol) were stirred at ambient temperature in a 1% acetic acid/methanol solution (25 mL) for 67 h. The solvent was removed *in vacuo*. The residue was treated with 10% sodium carbonate solution and extracted with ethyl acetate. The ethyl acetate layer was separated and fumaric acid (41 mg, 0.35 mmol) was added. After the solvent was removed *in vacuo*, the residue was triturated with ethyl acetate overnight, collected by filtration, and dried to give 3-fluoro-2-(2-methoxy-3-(methylaminomethyl)phenoxy)-4-methylbenzonitrile fumarate (83 mg, 57%) as a white solid.

20 MS (APCI+) 301 $[\text{M}+1]^+$.

$^1\text{H-NMR}$ (300 MHz, $d_6\text{-DMSO}$): δ 7.72 (1H, d), 7.43 (1H, t), 7.26 (1H, d), 7.13 (1H, t), 6.82 (1H, d), 6.66 (2H, s), 4.23 (2H, s), 4.00 (3H, s), 2.64 (3H, s), 2.38 (3H, s).

25

Example 37

2-(2-Methoxy-3-methylaminomethyl-phenoxy)-6-methyl-nicotinonitrile fumarate

30 **a) 2-(3-Formyl-2-methoxy-phenoxy)-6-methyl-nicotinonitrile**

2-Chloro-6-methylnicotinonitrile (0.25 g, 1.6 mmol), 3-hydroxy-2-methoxybenzaldehyde (0.25 g, 1.6 mmol) and potassium fluoride (0.29 g, 4.9 mmol) were heated with stirring in dry DMF (4 mL) at 120 °C for 5 h. The reaction mixture was cooled, poured into 1N sodium hydroxide solution and extracted with ethyl acetate. The ethyl acetate layer was separated, washed with 1N sodium hydroxide solution (2x), water (3x), brine (1x), and dried over MgSO₄. After filtration, the solvent was removed *in vacuo* to yield 2-(3-formyl-2-methoxy-phenoxy)-6-methyl-nicotinonitrile (0.30 g, 68%) as a yellow solid.

MS (APCI+) 269 [M+I]⁺.

¹⁰ ¹H-NMR (300 MHz, CDCl₃): δ 10.39 (1H, s), 7.89 (1H, d), 7.76 (1H, dd), 7.46 (1H, dd), 7.28-7.20 (1H, m), 6.97 (1H, d), 3.97 (3H, s), 2.38 (3H, s).

b) 2-(2-Methoxy-3-methylaminomethyl-phenoxy)-6-methyl-nicotinonitrile fumarate
¹⁵ 2-(3-Formyl-2-methoxy-phenoxy)-6-methyl-nicotinonitrile (0.30 g, 1.1 mmol), methylamine (2M in methanol, 3.0 mL, 6.0 mmol) and sodium cyanoborohydride (90 mg, 1.4 mmol) were stirred at ambient temperature in a 1% acetic acid/methanol solution (50 mL) for 20 h. The solvent was removed *in vacuo*. The residue was treated with 10% sodium carbonate solution and extracted with ethyl acetate. The ethyl acetate layer was separated and fumaric acid (0.13 g, 1.1 mmol) was added. After the solvent was removed ²⁰ *in vacuo*, the residue was triturated with ethyl acetate overnight, collected by filtration, and dried to give 2-(2-methoxy-3-methylaminomethyl-phenoxy)-6-methyl-nicotinonitrile fumarate (180 mg, 40%) as an off-white solid.

MS (APCI+) 284 [M+I]⁺.

²⁵ ¹H-NMR (300 MHz, d₆-DMSO): δ 8.28 (1H, d), 7.36 (1H, dd), 7.26-7.15 (3H, m), 6.48 (2H, s), 3.88 (2H, s), 3.72 (3H, s), 2.40 (3H, s), 2.32 (3H, s).

Example 38

³⁰ 6-Ethyl-2-(2-methoxy-3-methylaminomethyl-phenoxy)-nicotinonitrile difumarate

a) 6-Ethyl-2-(3-formyl-2-methoxy-phenoxy)-nicotinonitrile

2-Chloro-6-ethylnicotinonitrile (0.27 g, 1.6 mmol), 3-hydroxy-2-methoxybenzaldehyde (0.25 g, 1.6 mmol) and potassium fluoride (0.29 g, 4.9 mmol) were heated with stirring in dry DMF (4 mL) at 120 °C for 6 h, then at 80 °C for 16 h. The reaction mixture was cooled, poured into 1N sodium hydroxide solution and extracted with ethyl acetate. The ethyl acetate layer was separated, washed with 1N sodium hydroxide solution (3x), water (4x), brine (1x), and dried over MgSO₄. After filtration, the solvent was removed in vacuo to yield 6-ethyl-2-(3-formyl-2-methoxy-phenoxy)-nicotinonitrile (0.28 g, 61%) as a yellow oil.

MS (APCI+) 283 [M+1]⁺.

¹H-NMR (300 MHz, CDCl₃): δ 10.40 (1H, s), 7.91 (1H, d), 7.76 (1H, dd), 7.46 (1H, dd), 7.27-7.20 (1H, m), 6.97 (1H, d), 3.98 (3H, s), 2.65 (2H, q), 1.10 (3H, t).

15

b) 6-Ethyl-2-(2-methoxy-3-methylaminomethyl-phenoxy)-nicotinonitrile difumarate

6-Ethyl-2-(3-formyl-2-methoxy-phenoxy)-nicotinonitrile (0.28 g, 1.0 mmol), methylamine (33% in ethanol, 0.8 mL, 6.4 mmol) and sodium cyanoborohydride (80 mg, 1.3 mmol) were stirred at ambient temperature in a 1% acetic acid/methanol solution (60 mL) for 16 h. The solvent was removed *in vacuo*. The residue was treated with 10% sodium carbonate solution and extracted with ethyl acetate. The ethyl acetate layer was separated and fumaric acid (0.12 g, 1.0 mmol) was added. After the solvent was removed *in vacuo*, the residue was triturated with ethyl acetate overnight, collected by filtration, and dried to give 6-ethyl-2-(2-methoxy-3-methylaminomethyl-phenoxy)-nicotinonitrile difumarate (166 mg, 32%) as a beige solid.

MS (APCI+) 298 [M+1]⁺.

¹H-NMR (300 MHz, d₆-DMSO): δ 8.30 (1H, d), 7.36 (1H, br d), 7.26-7.15 (3H, m), 6.47 (4H, s), 3.87 (2H, s), 3.71 (3H, s), 2.59 (2H, q), 2.38 (3H, s), 1.02 (3H, t).

20

25

30

Example 394-Methyl-2-(3-methylaminomethyl-phenoxy)-benzonitrile fumarate

5 a) 2-(3-Formyl-phenoxy)-4-methyl-benzonitrile
4-Methyl-2-nitrobenzonitrile (0.50 g, 3.1 mmol), 3-hydroxybenzaldehyde (0.38 g, 3.1 mmol) and cesium carbonate (1.00 g, 3.1 mmol) were heated with stirring in dry
10 DMF (5 mL) at 80 °C for 28 h. The reaction mixture was cooled, poured into water and
extracted with ethyl acetate. The ethyl acetate layer was separated, washed with 0.1N
sodium hydroxide solution (3x), water (1x), brine (1x), and dried over MgSO₄. After
filtration, the solvent was removed *in vacuo* to yield 2-(3-formyl-phenoxy)-4-methyl-
benzonitrile (0.26 g, 36%) as a brown resin, and was carried forward without further
purification.

15 MS (APCI+) 233 [M+1]⁺.
¹H-NMR (300 MHz, CDCl₃): δ 10.00 (1H, s), 7.71 (1H, br d), 7.62-7.55 (2H, m), 7.53-
7.49 (1H, m), 7.36 (1H, br dd), 7.03 (1H, br d), 6.74 (1H, br s), 2.35 (3H, s).

20 b) 4-Methyl-2-(3-methylaminomethyl-phenoxy)-benzonitrile fumarate
2-(3-Formyl-phenoxy)-4-methyl-benzonitrile (0.26 g, 1.1 mmol), methylamine (2M in
methanol, 2.5 mL, 5.0 mmol) and sodium cyanoborohydride (80 mg, 1.3 mmol) were
stirred at ambient temperature in a 1% acetic acid/methanol solution (30 mL) for 18 h. The
solvent was removed *in vacuo*. The residue was treated with 10% sodium carbonate
25 solution and extracted with ethyl acetate. The ethyl acetate layer was separated and fumaric
acid (0.12 g, 1.1 mmol) was added. After the solvent was removed *in vacuo*, the residue
was triturated with ethyl acetate overnight, collected by filtration, and dried to give
4-methyl-2-(3-methylaminomethyl-phenoxy)-benzonitrile fumarate (78 mg, 20%) as a tan
solid.

30

MS (APCI+) 253 [M+1]⁺.
¹H-NMR (300 MHz, d₆-DMSO): δ 7.89 (1H, d), 7.44 (1H, t), 7.30-7.03 (4H, m), 6.81 (1H, br s), 6.44 (2H, s), 3.86 (2H, s), 2.36 (3H, s), 2.31 (3H, s).

5 Example 40

6-Methyl-2-(3-methylaminomethyl-phenoxy)-nicotinonitrile fumarate

a) 2-(3-Formyl-phenoxy)-6-methyl-nicotinonitrile
10 2-Chloro-6-methylnicotinonitrile (0.50 g, 3.3 mmol), 3-hydroxybenzaldehyde (0.40 g, 3.3 mmol) and potassium fluoride (0.57 g, 9.8 mmol) were heated with stirring in dry DMF (5 mL) at 120 °C for 7 h. The reaction mixture was cooled, poured into water and extracted with ethyl acetate. The ethyl acetate layer was separated, washed with 1N sodium hydroxide solution (4x), water (4x), brine (1x), and dried over MgSO₄. After filtration, the solvent was removed in *vacuo* to yield 2-(3-formyl-phenoxy)-6-methyl-nicotinonitrile (0.77 g, 97%) as a yellow solid.

15 MS (APCI+) 239 [M+1]⁺.
¹H-NMR (300 MHz, CDCl₃): δ 10.03 (1H, s), 7.89 (1H, d), 7.77 (1H, br d), 7.72 (1H, br d), 7.59 (1H, dd), 7.47 (1H, br d), 6.98 (1H, d), 2.41 (3H, s).

b) 6-Methyl-2-(3-methylaminomethyl-phenoxy)-nicotinonitrile fumarate
20 2-(3-Formyl-phenoxy)-6-methyl-nicotinonitrile (0.77 g, 3.2 mmol), methylamine (2M in methanol, 7.0 mL, 14 mmol) and sodium cyanoborohydride (250 mg, 4.0 mmol) were stirred at ambient temperature in a 1% acetic acid/methanol solution (100 mL) for 20 h. The solvent was removed *in vacuo*. The residue was treated with 10% sodium carbonate solution and extracted with ethyl acetate. The ethyl acetate layer was separated and fumaric acid (0.36 g, 3.1 mmol) was added. After the solvent was removed *in vacuo*, the residue was triturated with ethyl acetate overnight, collected by filtration, and dried to give

6-methyl-2-(3-methylaminomethyl-phenoxy)-nicotinonitrile fumarate (650 mg, 55%) as an off-white solid.

MS (APCI+) 255 [M+1]⁺.

¹H-NMR (300 MHz, d₆-DMSO): δ 8.27 (1H, d), 7.44 (1H, br t), 7.30 (1H, br s), 7.19 (1H, br d), 6.47 (2H, s), 3.92 (2H, s), 2.40 (3H, s), 2.35 (3H, s).

Example 41

10 4-Chloro-2-(5-methylamino-5,6,7,8-tetrahydronaphthalen-1-yloxy)-benzonitrile fumarate

a) 4-Chloro-2-(5-oxo-5,6,7,8-tetrahydronaphthalen-1-yloxy)benzonitrile

4-Chloro-2-fluorobenzonitrile (0.30 g, 1.9 mmol), 5-hydroxy-3,4-dihydro-2H-naphthalen-1-one (0.31 g, 1.9 mmol) and cesium carbonate (0.63 g, 1.9 mmol) were heated with stirring in dry DMF (4 mL) at 50 °C for 18 h. The reaction mixture was cooled, poured into 0.1N sodium hydroxide solution and extracted with ethyl acetate. The ethyl acetate layer was separated, washed with 0.1N sodium hydroxide solution (1x), water (3x), brine (1x), and dried over MgSO₄. After filtration, the solvent was removed *in vacuo* to give an amber oil (0.61 g), which was purified by chromatography to yield 4-chloro-2-(5-oxo-5,6,7,8-tetrahydronaphthalen-1-yloxy)benzonitrile (0.22 g, 39%) as a white solid.

MS (APCI+) 298/300 [M+1]⁺.

¹H-NMR (300 MHz, CDCl₃): δ 8.01 (1H, d), 7.62 (1H, d), 7.40 (1H, dd), 7.23 (1H, br d), 7.14 (1H, dd), 6.69 (1H, br d), 2.87 (2H, t), 2.68 (2H, t), 2.19-2.09 (2H, m).

25

b) 4-Chloro-2-(5-methylamino-5,6,7,8-tetrahydronaphthalen-1-yloxy)-benzonitrile fumarate

4-Chloro-2-(5-oxo-5,6,7,8-tetrahydronaphthalen-1-yloxy)benzonitrile (0.22 g, 0.74 mmol), methylamine (33% in ethanol, 0.7 mL, 5.6 mmol) and sodium cyanoborohydride (60 mg, 0.81 mmol) were stirred at ambient temperature in a 1% acetic acid/methanol solution (40

mL) for 6 days. The solvent was removed *in vacuo*. The residue was treated with 10% sodium carbonate solution and extracted with ethyl acetate. The ethyl acetate layer was separated and fumaric acid (70 mg, 0.60 mmol) was added. After the solvent was removed *in vacuo*, the residue was triturated with ethyl acetate overnight, collected by filtration, and dried to give 4-chloro-2-(5-methylamino-5,6,7,8-tetrahydronaphthalen-1-yloxy)benzonitrile fumarate (134 mg, 42%) as a white solid.

5 MS (APCI+) 313/315 [M+1]⁺.

¹H-NMR (300 MHz, d₆-DMSO / d-TFA): δ 7.97 (1H, d), 7.49 (1H, d), 7.45-7.35 (2H, m),

10 7.21 (1H, d), 6.80 (2H, br d), 6.65 (2H, s), 4.53-4.47 (1H, m), 2.66 (3H, s), 2.75-2.55 (2H, m), 2.42-2.35 (2H, m), 2.15-1.95 (2H, m).

Example 42

15 4-Chloro-2-(1-methylaminoindan-4-yloxy)benzonitrile fumarate

a) 4-Chloro-2-(1-oxoindan-4-yloxy)benzonitrile

4-Chloro-2-fluorobenzonitrile (0.30 g, 1.9 mmol), 4-hydroxyindan-1-one (0.29 g, 1.9

mmol) and cesium carbonate (0.63 g, 1.9 mmol) were heated with stirring in dry

20 DMF (4 mL) at 50 °C for 18 h. The reaction mixture was cooled, poured into 0.1N sodium hydroxide solution and extracted with ethyl acetate. The ethyl acetate layer was separated, washed with 0.1N sodium hydroxide solution (1x), water (3x), brine (1x), and dried over MgSO₄. After filtration, the solvent was removed *in vacuo* to give a brown oil (0.27 g), which was purified by chromatography to yield 4-chloro-2-(1-oxoindan-4-

25 yloxy)benzonitrile (0.15 g, 27%) as a white solid.

MS (APCI+) 284/286 [M+1]⁺.

¹H-NMR (300 MHz, CDCl₃): δ 7.70 (1H, d), 7.63 (1H, d), 7.47 (1H, dd), 7.27 (1H, d),

7.18 (1H, dd), 6.81 (1H, d), 3.08-3.01 (2H, m), 2.76-2.70 (2H, m).

b) 4-Chloro-2-(1-methylaminoindan-4-yloxy)benzonitrile fumarate

4-Chloro-2-(1-oxoindan-4-yloxy)benzonitrile (0.12 g, 0.42 mmol), methylamine (33% in ethanol, 1.0 mL, 8.0 mmol) and sodium cyanoborohydride (100 mg, 0.86 mmol) were stirred at ambient temperature in a solution of glacial acetic acid (1.0 mL) in methanol (30 mL) for 5 days. The solvent was removed in *vacuo*. The residue was treated with 10% sodium carbonate solution and extracted with ethyl acetate. The ethyl acetate layer was separated and fumaric acid (40 mg, 0.34 mmol) was added. After the solvent was removed in *vacuo*, the residue was triturated with ethyl acetate overnight, collected by filtration, and dried to give 4-chloro-2-(1-methylaminoindan-4-yloxy)benzonitrile fumarate (111 mg, 63%) as a white solid.

MS (APCI+) 299/301 [M+1]⁺.

¹H-NMR (300 MHz, d₆-DMSO / d-TFA): δ 7.97 (1H, d), 7.56 (1H, d), 7.46 (1H, dd), 7.40 (1H, dd), 7.22 (1H, d), 6.89 (1H, br d), 6.65 (2H, s), 4.87-4.78 (1H, m), 3.03-2.89 (1H, m), 2.84-2.72 (1H, m), 2.64 (3H, s), 2.57-2.43 (1H, m), 2.27-2.13 (1H, m).

Example 43**[2-Methoxy-3-(5-methyl-2-nitrophenoxy)benzyl]methylamine fumarate**

20

a) 2-Methoxy-3-(5-methyl-2-nitrophenoxy)benzaldehyde

2-Fluoro-4-methyl-1-nitrobenzene (0.25 g, 1.6 mmol), 3-hydroxy-2-methoxybenzaldehyde (0.25 g, 1.6 mmol) and cesium carbonate (0.54 g, 1.6 mmol) were heated with stirring in dry DMF (4 mL) at 50 °C for 20 h. The reaction mixture was cooled, poured into 0.1N sodium hydroxide solution and extracted with diethyl ether. The ether layer was separated, washed with 0.1N sodium hydroxide solution (4x), water (4x), brine (1x), and dried over MgSO₄. After filtration, the solvent was removed in *vacuo* to give 2-methoxy-3-(5-methyl-2-nitrophenoxy)benzaldehyde (0.36 g, 77%) as a brown oil, which was used without further purification.

30

¹H-NMR (300 MHz, CDCl₃): δ 10.43 (1H, s), 7.94 (1H, d), 7.71 (1H, dd), 7.24-6.95 (3H, m), 6.66 (1H, br s), 4.04 (3H, s), 2.34 (3H, s).

b) [2-Methoxy-3-(5-methyl-2-nitrophenoxy)benzyl]methylamine fumarate

5 2-Methoxy-3-(5-methyl-2-nitrophenoxy)benzaldehyde (0.36 g, 1.3 mmol), methylamine (2M in methanol, 3.0 mL, 6.0 mmol) and sodium cyanoborohydride (100 mg, 1.6 mmol) were stirred at ambient temperature in a 1% acetic acid/methanol solution (50 mL) for 18 h. The solvent was removed *in vacuo*. The residue was treated with 10% sodium carbonate solution and extracted with ethyl acetate. The ethyl acetate layer was separated and fumaric 10 acid (0.14 g, 1.2 mmol) was added. After the solvent was removed *in vacuo*, the residue was triturated with hot methanol and allowed to cool overnight. The filtrate was collected, the solvent removed *in vacuo*. The residue was triturated with ethyl acetate overnight, collected by filtration, and dried to give [2-methoxy-3-(5-methyl-2-nitrophenoxy)benzyl]methylamine fumarate (195 mg, 38%) as a beige solid.

15 MS (APCI+) 303 [M+1]⁺.

¹H-NMR (300 MHz, d₆-DMSO): δ 7.98 (1H, d), 7.33 (1H, d), 7.20-7.10 (2H, m), 7.03 (1H, dd), 6.75 (1H, br s), 6.48 (2H, s), 3.90 (2H, s), 3.78 (3H, s), 2.42 (3H, s), 2.30 (3H, s).

20 **Example 44**

4-Chloro-2-(3-dimethylaminomethyl-2-ethylphenoxy)benzonitrile fumarate

a) (2-Ethyl-3-methoxybenzyl)dimethylamine

25 (3-Methoxybenzyl)dimethylamine (2.03 mL, 2.00 g, 12.1 mmol) was dissolved in anhydrous THF (20 mL) under nitrogen and cooled to 0 °C with an ice-water bath. Butyllithium (2.5M in hexanes, 5.3 mL, 13.3 mmol) was added dropwise via syringe over 10 min (temperature kept below 5 °C). After stirring at 0 °C for 2 h, iodoethane (1.1 mL, 2.1 g, 13.8 mmol) was added dropwise via syringe over 25 min (temperature kept below 5 30 °C). The reaction mixture was allowed to reach ambient temperature. After 4 h, the

reaction contents were transferred with diethyl ether and adsorbed onto silica gel (3.8 g) upon removal of the solvent *in vacuo*. Chromatography gave (2-ethyl-3-methoxybenzyl)dimethylamine (1.30 g, 56%) as a pale yellow solid.

5 MS (APCI+) 194 [M+1]⁺.
1^H-NMR (300 MHz, CDCl₃): δ 7.11 (1H, dd), 6.92 (1H, d), 6.78 (1H, d), 3.82 (3H, s),
3.39 (2H, s), 2.75 (2H, q), 2.24 (6H, s), 1.10 (3H, t).

b) 3-Dimethylaminomethyl-2-ethylphenol hydrobromide

10 (2-Ethyl-3-methoxybenzyl)dimethylamine (1.30 g, 6.73 mmol) was suspended in 30% hydrogen bromide / acetic acid (10 mL) and heated to reflux with stirring for 21 h. The cooled reaction mixture was triturated and decanted with successive portions of diethyl ether (3x), then triturated with diethyl ether overnight. The solid was collected by filtration, washed with ether and dried to give 3-dimethylaminomethyl-2-ethylphenol hydrobromide
15 (1.37 g, 78%) as a tan solid.

MS (APCI+) 180 [M+1]⁺.
1^H-NMR (300 MHz, d₆-DMSO): δ 9.56 (1H, s), 9.30 (1H, br s), 7.10 (1H, dd), 6.93 (1H, d), 6.89 (1H, d), 4.27 (2H, d), 2.77 (6H, d), 2.67 (2H, q), 1.04 (3H, t).

20 c) 4-Chloro-2-(3-dimethylaminomethyl-2-ethylphenoxy)benzonitrile fumarate
4-Chloro-2-fluorobenzonitrile (0.82 g, 5.27 mmol), 3-dimethylaminomethyl-2-ethylphenol hydrobromide (1.37 g, 5.27 mmol) and cesium carbonate (3.43 g, 10.5 mmol) were heated with stirring in dry DMF (8 mL) at 50 °C for 4 h. The reaction mixture was cooled, poured
25 into 0.1N sodium hydroxide solution and extracted with diethyl ether. The ether layer was separated, washed with 1N sodium hydroxide solution (2x), water (3x), brine (1x), and dried over MgSO₄. After filtration, the solvent was removed in vacuo to give a yellow oil (1.86 g), which was purified by chromatography to yield 4-chloro-2-(3-dimethylaminomethyl-2-ethylphenoxy)benzonitrile (1.29 g, 78%) as a pale yellow oil. A
30 small portion (98 mg) was converted into the fumarate salt (80 mg, 60%).

MS (APCI+) 315 [M+1]⁺.

¹H-NMR (300 MHz, d₆-DMSO): δ 7.96 (1H, d), 7.35 (1H, dd), 7.32-7.23 (2H, m), 7.06 (1H, dd), 6.76 (1H, d), 6.62 (2H, s), 3.49 (2H, s), 2.64 (2H, q), 2.21 (6H, s), 1.08 (3H, t).

5

Example 45

2-(3-Aminomethyl-2-ethyl-phenoxy)-4-chloro-benzonitrile hemifumarate

10 a) 4-Chloro-2-(3-chloromethyl-2-ethyl-phenoxy)-benzonitrile

4-Chloro-2-(3-dimethylaminomethyl-2-ethylphenoxy)benzonitrile (1.18 g, 3.75 mmol) was dissolved in dry toluene (20 mL) and cooled to 0 °C with an ice-water bath. Ethyl chloroformate (1.08 mL, 1.22 g, 11.2 mmol) was added dropwise with stirring over 5 min (a white precipitate formed). The reaction mixture was allowed to reach ambient temperature, stirred for 19 h, poured into water, and extracted with diethyl ether. The ether layer was washed with water (2x), brine (1x), and dried over MgSO₄. After filtration, the solvent was removed *in vacuo* to give a pale yellow oil (0.89 g), which was purified by chromatography to give 4-chloro-2-(3-chloromethyl-2-ethyl-phenoxy)-benzonitrile (0.71 g, 62%) as a colourless oil which later solidified.

20

¹H-NMR (300 MHz, d₆-DMSO): δ 7.98 (1H, d), 7.43-7.30 (3H, m), 7.14 (1H, d), 6.83 (1H, d), 4.87 (2H, s), 2.68 (2H, q), 1.15 (3H, t).

b) 2-(3-Aminomethyl-2-ethyl-phenoxy)-4-chloro-benzonitrile hemifumarate

25 To a solution of 4-chloro-2-(3-chloromethyl-2-ethyl-phenoxy)-benzonitrile (0.16 g, 0.53 mmol) in methanol (10 mL) was added ammonia (7N in methanol, 15 mL, 105 mmol), and the reaction mixture stirred for 4 days at ambient temperature. The solvent was removed *in vacuo*. The residue was treated with 10% sodium carbonate solution and extracted with ethyl acetate. The ethyl acetate layer was separated and a solution of fumaric acid (60 mg, 0.52 mmol) in methanol (3 mL) was added. After the solvent was removed *in vacuo*, the

residue was triturated with diethyl ether overnight, collected by filtration, and dried to give 2-(3-aminomethyl-2-ethyl-phenoxy)-4-chloro-benzonitrile hemifumarate (174 mg, 83%) as a white solid.

5 MS (APCI+) 287/289 [M+1]⁺.
1H-NMR (300 MHz, d₆-DMSO): δ 8.24 (2H, br s), 7.99 (1H, d), 7.47-7.33 (3H, m), 7.19 (1H, br d), 6.76 (1H, s), 6.63 (1H, s), 4.14 (2H, br s), 2.62 (2H, q), 1.08 (3H, t).

Example 46

10 To a solution of 4-chloro-2-(3-chloromethyl-2-ethyl-phenoxy)-benzonitrile (0.39 g, 1.3 mmol) in ethanol (20 mL) was added methylamine (33% in ethanol, 5.0 mL, 40 mmol),
15 and the reaction mixture stirred for 24 h at ambient temperature. The solvent was removed *in vacuo*. The residue was treated with 10% sodium carbonate solution and extracted with ethyl acetate. The ethyl acetate layer was separated and a solution of fumaric acid (148 mg, 1.3 mmol) in methanol (5 mL) was added. After the solvent was removed *in vacuo*, the residue was triturated with diethyl ether overnight, collected by filtration, and dried to give
20 4-chloro-2-(2-ethyl-3-methylaminomethyl-phenoxy)-benzonitrile fumarate (455 mg, 86%) as a white solid.

MS (APCI+) 301/303 [M+1]⁺.
1H-NMR (300 MHz, d₆-DMSO): δ 7.98 (1H, d), 7.43-7.30 (3H, m), 7.12 (1H, d), 6.76 (1H, d), 6.51 (2H, s), 3.97 (2H, s), 2.62 (2H, q), 2.50 (3H, s), 1.07 (3H, t).

Example 47

4-Chloro-2-(3-dimethylaminomethyl-2-propylphenoxy)-benzonitrile fumarate

a) (3-Methoxy-2-propylbenzyl)-dimethylamine

(3-Methoxybenzyl)dimethylamine (2.03 mL, 2.00 g, 12.1 mmol) was dissolved in anhydrous THF (20 mL) under nitrogen and cooled to 0 °C with an ice-water bath. Butyllithium (2.5M in hexanes, 5.1 mL, 12.7 mmol) was added dropwise via syringe over 5 min (temperature kept below 5 °C). After stirring at 0 °C for 2 h, 1-iodopropane (1.25 mL, 2.18 g, 12.8 mmol) was added dropwise via syringe over 15 min (temperature kept below 5 °C). The reaction mixture was allowed to reach ambient temperature. After 23 h, water (~10 mL) was added, and the organic solvent was removed *in vacuo*. The residue was extracted with diethyl ether, washed with water (2x), brine (1x) and dried over 10 MgSO₄. After filtration, the solvent was removed *in vacuo* to give a colourless oil (2.25 g), which was purified by chromatography to give (3-methoxy-2-propylbenzyl)-dimethylamine (1.52 g, 62%) as a colourless oil.

MS (APCI+) 208 [M+1]⁺.

¹H-NMR (300 MHz, CDCl₃): δ 7.10 (1H, dd), 6.92 (1H, d), 6.77 (1H, d), 3.80 (3H, s), 3.38 (2H, s), 2.73-2.64 (2H, m), 2.23 (6H, s), 1.58-1.43 (2H, m), 0.97 (3H, t).

b) 3-Dimethylaminomethyl-2-propylphenol hydrobromide

(3-Methoxy-2-propylbenzyl)-dimethylamine (1.51 g, 7.28 mmol) was suspended in 30% 20 hydrogen bromide / acetic acid (10 mL) and heated to reflux with stirring for 20 h. The cooled reaction mixture was triturated and decanted with successive portions of diethyl ether (4x), then triturated with diethyl ether overnight. The solid was collected by filtration, washed with ether and dried to give 3-dimethylaminomethyl-2-propylphenol hydrobromide (1.58 g, 79%) as a tan solid.

25 MS (APCI+) 194 [M+1]⁺.

¹H-NMR (300 MHz, CDCl₃): δ 9.54 (1H, s), 9.28 (1H, br s), 7.10 (1H, dd), 6.94 (1H, d), 6.89 (1H, d), 4.27 (2H, d), 2.77 (6H, d), 2.66-2.57 (2H, m), 1.51-1.35 (2H, m), 0.93 (3H, t).

30 c) 4-Chloro-2-(3-dimethylaminomethyl-2-propylphenoxy)-benzonitrile fumarate

4-Chloro-2-fluorobenzonitrile (0.90 g, 5.8 mmol), 3-dimethylaminomethyl-2-propylphenol hydrobromide (1.58 g, 5.8 mmol) and cesium carbonate (3.94 g, 12.1 mmol) were heated with stirring in dry DMF (6 mL) at 50 °C for 18 h. The reaction mixture was cooled, poured into 0.1N sodium hydroxide solution and extracted with diethyl ether. The ether layer was separated, washed with 1N sodium hydroxide solution (1x), water (2x), brine (1x), and dried over MgSO₄. After filtration, the solvent was removed *in vacuo* to give a yellow oil (1.77 g), which was purified by chromatography to yield 4-chloro-2-(3-dimethylaminomethyl-2-propylphenoxy)-benzonitrile (1.53 g, 81%) as a pale yellow oil. A small portion (100 mg) was converted into the fumarate salt (63 mg, 47%).

10

MS (APCI+) 329/331 [M+1]⁺.¹H-NMR (300 MHz, d₆-DMSO): δ 7.96 (1H, d), 7.35 (1H, br dd), 7.31-7.24 (2H, m), 7.07 (1H, dd), 6.74 (1H, br d), 6.62 (2H, s), 3.49 (2H, s), 2.62-2.53 (2H, m), 2.22 (6H, s), 1.56-1.41 (2H, m), 0.89 (3H, t).

15

Example 482-(3-Aminomethyl-2-propyl-phenoxy)-4-chloro-benzonitrile hemifumarate20 a) 4-Chloro-2-(3-chloromethyl-2-propylphenoxy)-benzonitrile

4-Chloro-2-(3-dimethylaminomethyl-2-propylphenoxy)-benzonitrile (1.40 g, 4.26 mmol) was dissolved in dry toluene (20 mL) and cooled to 0 °C with an ice-water bath. Ethyl chloroformate (1.25 mL, 1.42 g, 13.1 mmol) was added dropwise with stirring over 5 min (a white precipitate formed). The reaction mixture was allowed to reach ambient temperature, stirred 18 h, poured into water, and extracted with diethyl ether. The ether layer was washed with water (2x), brine (1x), and dried over MgSO₄. After filtration, the solvent was removed *in vacuo* to give a pale yellow oil (1.05 g), which was purified by chromatography to give 4-chloro-2-(3-chloromethyl-2-propylphenoxy)-benzonitrile (0.83 g, 61%) as a white solid.

30

¹H-NMR (300 MHz, CDCl₃): δ 7.60 (1H, d), 7.34-7.22 (2H, m), 7.11 (1H, dd), 6.97 (1H, dd), 6.74 (1H, d), 4.66 (2H, s), 2.70-2.62 (2H, m), 1.69-1.55 (2H, m), 0.99 (3H, t).

b) 2-(3-Aminomethyl-2-propyl-phenoxy)-4-chloro-benzonitrile hemifumarate

5 4-Chloro-2-(3-chloromethyl-2-propylphenoxy)-benzonitrile (0.16 g, 0.50 mmol) in ammonia (7N in methanol, 25 mL, 175 mmol) was stirred for 65 h at ambient temperature. The solvent was removed *in vacuo*. The residue was treated with 10% sodium carbonate solution and extracted with ethyl acetate. The ethyl acetate layer was separated and a solution of fumaric acid (58 mg, 0.50 mmol) in methanol (3 mL) was added. After the 10 solvent was removed *in vacuo*, the residue was triturated with diethyl ether overnight, collected by filtration, and dried to give 2-(3-aminomethyl-2-propyl-phenoxy)-4-chloro-benzonitrile hemifumarate (200 mg, 96%) as a white solid.

MS (APCI+) 301/303 [M+1]⁺.

15 ¹H-NMR (300 MHz, d₆-DMSO): δ 8.23 (2H, br s), 7.99 (1H, d), 7.47-7.34 (3H, m), 7.21 (1H, br d), 6.74 (1H, s), 6.63 (1H, s), 4.13 (2H, br s), 2.61-2.52 (2H, m), 1.55-1.40 (2H, m), 0.91 (3H, t).

Example 49

20

4-Chloro-2-(3-methylaminomethyl-2-propyl-phenoxy)-benzonitrile fumarate

To a solution of 4-chloro-2-(3-chloromethyl-2-propylphenoxy)-benzonitrile (0.35 g, 1.1 mmol) in ethanol (20 mL) was added methylamine (33% in ethanol, 9.0 mL, 72 mmol), 25 and the reaction mixture stirred 18 h at ambient temperature. The solvent was removed *in vacuo*. The residue was treated with 10% sodium carbonate solution and extracted with ethyl acetate. The ethyl acetate layer was separated and a solution of fumaric acid (127 mg, 1.1 mmol) in methanol (5 mL) was added. After the solvent was removed *in vacuo*, the residue was triturated with diethyl ether overnight, collected by filtration, and dried to give

4-chloro-2-(3-methylaminomethyl-2-propyl-phenoxy)-benzonitrile fumarate (354 mg, 75%) as a white solid.

MS (APCI+) 315/317 [M+1]⁺.

¹H-NMR (300 MHz, d₆-DMSO): δ 7.97 (1H, d), 7.43-7.29 (3H, m), 7.11 (1H, d), 6.73 (1H, br s), 6.50 (2H, s), 3.91 (2H, s), 2.60-2.51 (2H, m), 2.46 (3H, s), 1.54-1.39 (2H, m), 0.89 (3H, t).

Example 50

10

2-(2-Allyl-4-methylaminomethyl-phenoxy)-4-chlorobenzonitrile fumarate

a) 3-Allyl-4-hydroxybenzaldehyde

4-Allyloxybenzaldehyde (1.16 g, 7.15 mmol) in dry DMF (3 mL) was stirred at 170 °C for 15 30 h. The reaction mixture was cooled, poured into water and extracted with ethyl acetate. The ethyl acetate layer was extracted with 1N sodium hydroxide solution (2x). The basic extracts were combined and acidified by addition of 3N hydrochloric acid, then extracted with ethyl acetate. The ethyl acetate layer was washed with water (2x), brine (1x), and dried over MgSO₄. After filtration, the solvent was removed *in vacuo* to yield 3-allyl-4-20 hydroxybenzaldehyde (0.34 g, 29%) as a yellow oil.

MS (APCI+) 163 [M+1]⁺.

¹H-NMR (300 MHz, CDCl₃): δ 9.85 (1H, s), 7.75-7.67 (2H, m), 6.95 (1H, d), 6.10-5.95 (1H, m), 5.24-5.20 (1H, m), 5.19-5.14 (1H, m), 3.47 (2H, br d).

25

b) 2-(2-Allyl-4-formyl-phenoxy)-4-chlorobenzonitrile

4-Chloro-2-fluorobenzonitrile (0.34 g, 2.2 mmol), 3-allyl-4-hydroxybenzaldehyde (0.34 g, 2.1 mmol) and potassium fluoride (0.37 g, 6.3 mmol) were heated with stirring in dry DMF (4 mL) at 120 °C for 4 h. The reaction mixture was cooled, poured into 0.1N sodium 30 hydroxide solution and extracted with ethyl acetate. The ethyl acetate layer was separated,

washed with 0.1N sodium hydroxide solution (3x), water (2x), brine (1x), and dried over MgSO₄. After filtration, the solvent was removed *in vacuo* and the residue purified by chromatography to give 2-(2-allyl-4-formyl-phenoxy)-4-chlorobenzonitrile (0.09 g, 15%) as a colourless oil.

5

¹H-NMR (300 MHz, CDCl₃): δ 10.00 (1H, s), 7.89 (1H, br d), 7.80 (1H, dd), 7.67-7.56 (1H, m), 7.28 (1H, d), 7.05 (1H, d), 6.84 (1H, d), 6.04-5.88 (1H, m), 5.18-5.06 (2H, m), 3.49 (2H, d).

10 c) 2-(2-Allyl-4-methylaminomethyl-phenoxy)-4-chlorobenzonitrile fumarate
2-(2-Allyl-4-formyl-phenoxy)-4-chlorobenzonitrile (0.09 g, 0.30 mmol), methylamine (33% in ethanol, 0.3 mL, 2.4 mmol) and sodium cyanoborohydride (40 mg, 0.64 mmol) were stirred at ambient temperature in a solution of glacial acetic acid (0.5 mL) in methanol (25 mL) for 20 h. The solvent was removed *in vacuo*. The residue was treated with 10% sodium carbonate solution and extracted with ethyl acetate. The ethyl acetate layer was separated and fumaric acid (36 mg, 0.30 mmol) was added. After the solvent was removed in *vacuo*, the residue was triturated with ethyl acetate overnight, collected by filtration, and dried to give 2-(2-allyl-4-methylaminomethyl-phenoxy)-4-chlorobenzonitrile fumarate (104 mg, 80%) as a white solid.

15

20 MS (APCI+) 313/315 [M+1]⁺.
¹H-NMR (300 MHz, d₆-DMSO): δ 7.97 (1H, d), 7.52 (1H, s), 7.46 (1H, s), 7.38 (1H, d), 7.23 (1H, d), 6.79 (1H, d), 6.65 (2H, s), 5.97-5.85 (1H, m), 5.08-5.02 (2H, m), 4.16 (2H, s), 3.36 (2H, d), 2.60 (3H, s).

25

Example 514-Chloro-2-(3-dimethylaminomethyl-4-fluorophenoxy)benzonitrile

30 a) (2-Fluoro-5-methoxybenzyl)dimethylamine

2-Fluoro-5-methoxybenzaldehyde (2.62 g, 17.0 mmol), dimethylamine (2M in methanol, 17 mL, 34 mmol) and sodium cyanoborohydride (1.17 g, 18.7 mmol) were stirred at ambient temperature in a solution of glacial acetic acid (2 mL) in methanol (100 mL) for 66 h. The solvent was removed *in vacuo*. The residue was treated with 10% sodium carbonate solution and extracted with ethyl acetate. The ethyl acetate layer was washed with water (2x), brine (1x), and dried over MgSO₄. After filtration, the solvent was removed *in vacuo* to give (2-fluoro-5-methoxybenzyl)dimethylamine (3.02 g, 97%) as a yellow oil.

10 MS (APCI+) 184 [M+1]⁺.
¹H-NMR (300 MHz, CDCl₃): δ 6.98-6.86 (2H, m), 6.78-6.71 (1H, m), 3.78 (3H, s), 3.46 (2H, s), 2.27 (6H, s).

15 **b) 3-Dimethylaminomethyl-4-fluorophenol hydrobromide**
(2-Fluoro-5-methoxybenzyl)dimethylamine (1.51 g, 8.24 mmol) was heated to reflux in 30% hydrogen bromide / acetic acid (10 mL) for 17 h. The cooled reaction mixture was triturated and decanted with successive portions of diethyl ether (4x), then triturated with diethyl ether overnight. The solid was collected by filtration, washed with ether and dried to give 3-dimethylaminomethyl-4-fluorophenol hydrobromide (1.43 g, 69%) as a tan solid.

20 MS (APCI+) 170 [M+1]⁺.
¹H-NMR (300 MHz, d₆-DMSO): δ 9.68 (1H, s), 7.18-7.10 (1H, m), 6.98-6.93 (1H, m), 6.92-6.85 (1H, m), 4.26 (2H, s), 2.76 (6H, s).

25 **c) 4-Chloro-2-(3-dimethylaminomethyl-4-fluorophenoxy)benzonitrile**
4-Chloro-2-fluorobenzonitrile (0.48 g, 3.1 mmol), 3-dimethylaminomethyl-4-fluorophenol hydrobromide (0.74 g, 3.0 mmol) and cesium carbonate (2.02 g, 6.2 mmol) were heated with stirring in dry DMF (5 mL) at 50 °C for 18 h. The reaction mixture was cooled, poured into 0.1N sodium hydroxide solution and extracted with diethyl ether. The ether layer was separated, washed with 1N sodium hydroxide solution (2x), water (2x), brine

(1x), and dried over $MgSO_4$. After filtration, the solvent was removed *in vacuo* to give a yellow oil (0.93 g), which was purified by chromatography to yield 4-chloro-2-(3-dimethylaminomethyl-4-fluorophenoxy)benzonitrile (0.68 g, 76%) as a pale yellow oil.

5 MS (APCI+) 305/307 [M+1]⁺.
¹H-NMR (300 MHz, CDCl₃): δ 7.57 (1H, d), 7.21-7.07 (3H, m), 7.02-6.95 (1H, m), 6.75 (1H, br s), 3.50 (2H, s), 2.28 (6H, s).

10 Example 52

4-Chloro-2-(4-fluoro-3-methylaminomethyl-phenoxy)-benzonitrile fumarate

15 a) 4-Chloro-2-(3-chloromethyl-4-fluorophenoxy)-benzonitrile
4-Chloro-2-(3-dimethylaminomethyl-4-fluorophenoxy)benzonitrile (0.56 g, 1.8 mmol) was dissolved in dry toluene (12 mL) and cooled to 0 °C with an ice-water bath. Ethyl 20 chloroformate (0.55 mL, 0.62 g, 5.8 mmol) was added dropwise with stirring over 5 min. The reaction mixture was allowed to reach ambient temperature, stirred 20 h, poured into water, and extracted with diethyl ether. The ether layer was washed with water (2x), brine (1x), and dried over $MgSO_4$. After filtration, the solvent was removed *in vacuo* to give a pale yellow oil (0.39 g), which was purified by chromatography to give 4-chloro-2-(3-chloromethyl-4-fluorophenoxy)-benzonitrile (0.14 g, 26%) as a white solid.

25 ¹H-NMR (300 MHz, CDCl₃): δ 7.60 (1H, d), 7.24-7.12 (3H, m), 7.09-7.02 (1H, m), 6.80 (1H, d), 4.63 (2H, s).

b) 4-Chloro-2-(4-fluoro-3-methylaminomethyl-phenoxy)-benzonitrile fumarate
To a solution of 4-chloro-2-(3-chloromethyl-4-fluorophenoxy)-benzonitrile (0.14 g, 0.47 mmol) in ethanol (15 mL) was added methylamine (33% in ethanol, 4.0 mL, 32 mmol), and the reaction mixture stirred for 10 days at ambient temperature. The solvent was 30 removed *in vacuo*. The residue was treated with 10% sodium carbonate solution and

extracted with ethyl acetate. The ethyl acetate layer was separated and a solution of fumaric acid (50 mg, 0.43 mmol) in methanol (3 mL) was added. After the solvent was removed *in vacuo*, the residue was triturated with diethyl ether overnight, collected by filtration, and dried to give 4-chloro-2-(4-fluoro-3-methylaminomethyl-phenoxy)-benzonitrile fumarate (183 mg, 95%) as a white solid.

5 MS (APCI+) 291/293 [M+1]⁺.

10 ¹H-NMR (300 MHz, d₆-DMSO): δ 7.95 (1H, d), 7.38 (1H, dd), 7.33-7.27 (2H, m), 7.23-7.15 (1H, m), 6.93 (1H, m), 6.45 (1H, s), 3.74 (2H, s), 2.29 (3H, s).

15 Example 53

2-(2-Methoxy-3-methylaminomethyl-phenoxy)-4-trifluoromethyl-benzonitrile fumarate

15 a) 2-(3-Formyl-2-methoxy-phenoxy)-4-trifluoromethyl-benzonitrile

2-Fluoro-4-trifluoromethyl-benzonitrile (0.56 mL, 0.76 g, 4 mmol), 3-hydroxy-2-methoxybenzaldehyde (0.61 g, 4 mmol) and cesium carbonate (1.3 g, 4 mmol) were heated with stirring in dry DMF (4 mL) at 50 °C for 18 h. The reaction mixture was cooled, poured into water and extracted with ethyl acetate. The ethyl acetate layer was separated, washed with water (2x), 10% sodium carbonate solution (2x), water (1x), brine (1x), and dried over MgSO₄. After filtration, the solvent was removed *in vacuo* to yield 2-(3-formyl-2-methoxy-phenoxy)-4-trifluoromethyl-benzonitrile (1.17 g, 91%) as a brown solid.

20 ¹H-NMR (300 MHz, d₆-DMSO): δ 10.30 (1H, s), 8.21 (1H, d), 7.63 (3H, m), 7.39 (1H, m), 7.18 (1H, s), 3.93 (3H, s).

25 b) 2-(2-Methoxy-3-methylaminomethyl-phenoxy)-4-trifluoromethyl-benzonitrile fumarate

2-(3-Formyl-2-methoxy-phenoxy)-4-trifluoromethyl-benzonitrile (0.46 g, 1.43 mmol), 30 methylamine (2M in methanol, 22.2 mL, 4.4 mmol) and sodium cyanoborohydride (0.13 g,

2.1 mmol) were stirred at ambient temperature in a 1% acetic acid/methanol solution (70 mL) for 20 h. The solvent was removed *in vacuo*. The residue was treated with 10% sodium carbonate solution and extracted with ethyl acetate. Fumaric acid (0.15 g, 1.3 mmol) was added to the separated ethyl acetate layer and the solvent removed *in vacuo*.
5 The residue was triturated with diethyl ether overnight, filtered and dried to give 2-(2-methoxy-3-methylaminomethyl-phenoxy)-4-trifluoromethyl-benzonitrile fumarate (179 mg, 28%) as a white solid.

MS (APCI+) 337 [M+1]⁺.
10 ¹H-NMR (300 MHz, d₆-DMSO): δ 8.22 (1H, d), 7.67 (1H, d), 7.43 (1H, d), 7.28 (2H, m), 6.97 (1H, s), 6.51 (2H, s), 3.93 (2H, s), 3.79 (3H, s), 2.42 (3H, s).

Example 54

15 2-(4-methylaminomethyl-3-phenyl-phenoxy)-4-trifluoromethyl-benzonitrile fumarate

a) 2-(3-Bromo-4-formyl-phenoxy)-4-trifluoromethyl-benzonitrile
2-Fluoro-4-trifluoromethyl-benzonitrile (3.1 g, 20 mmol), 2-bromo-4-
hydroxybenzaldehyde (4 g, 20 mmol) and potassium fluoride (3.47 g, 60 mmol) were
20 heated with stirring in dry DMF (20 mL) at 120 °C for 4 h, 80 °C for 16 h, 120 °C for 4 h,
130 °C for 1 h, and then at 140 °C for 16 h. The reaction mixture was cooled, poured onto
1N sodium hydroxide, extracted with ethyl acetate, and then dried over MgSO₄. After
filtration, the solvent was removed *in vacuo* to yield 2-(3-bromo-4-formyl-phenoxy)-4-
trifluoromethyl-benzonitrile (6.38 g, 96%) as a brown oil.

25 b) 2-(4-Formyl-3-phenyl-phenoxy)-4-trifluoromethyl-benzonitrile

Under nitrogen, 2-(3-bromo-4-formyl-phenoxy)-4-trifluoromethyl-benzonitrile (0.87 g, 2.6 mmol), phenylboronic acid (336 mg, 2.7 mmol), 1,1'-bis(diphenyl)phospino-ferrocene
30 palladium (9 mg, 0.13 mmol) and sodium carbonate (331 mg, 3.1 mmol) in

dimethoxyethane:water:ethanol solution (7:3:2, 10 mL) was stirred at 60 °C for 6 h and then at 40 °C for 16 h. The mixture was then poured over water, extracted into ethyl acetate, and dried over MgSO₄. The crude material was chromatographed on an ISCO CombiFlash Chromatography System to yield 2-(4-formyl-2-methoxy-phenoxy)-4-trifluoromethyl-benzonitrile as a clear oil (117 mg, 14%).

c) 2-(4-methylaminomethyl-3-phenyl-phenoxy)-4-trifluoromethyl-benzonitrile fumarate
2-(4-Formyl-3-phenyl-phenoxy)-4-trifluoromethyl-benzonitrile (0.117 g, 0.35 mmol),
methylamine (2M in methanol, 0.233 mL, 1.05 mmol) and sodium cyanoborohydride
10 (0.025 g, 0.39 mmol) were stirred at ambient temperature in a 1% acetic acid/methanol solution for 20 h. The solvent was removed *in vacuo*. The residue was treated with 10% sodium carbonate solution and extracted with ethyl acetate. Fumaric acid (0.032 g, 0.28 mmol) was added to the separated ethyl acetate layer and the solvent removed *in vacuo*. The residue was triturated with ethyl acetate overnight, filtered and dried to give
15 2-(4-methylaminomethyl-3-phenyl-phenoxy)-4-trifluoromethyl-benzonitrile fumarate (75 mg, 61%) as a white solid.

MS (APCI+) 350 [M+1]⁺.
¹H-NMR (300 MHz, d₆-DMSO): δ 7.67 (1H, d), 7.59 (2H, m), 7.51 (2H, m), 7.33 (3H, m),
20 7.09 (1H, dd), 6.68 (2H, s), 6.62 (1H, d), 4.26 (2H, s), 2.77 (3H, s).

Example 55

4-Chloro-2-(3-dimethylaminomethyl-2-methysulfanyl-phenoxy)-benzonitrile fumarate

25 a) (2-Methylsulfanyl-3-methoxybenzyl)-dimethylamine
Under a nitrogen atmosphere, 3-methoxy-N,N-dimethylbenzylamine (2.00 g, 12.1 mmol) was dissolved in anhydrous THF (20 mL) and cooled to 0 °C in an ice bath. 2.5M n-butyl lithium in hexanes (5.3 mL, 13.3 mmol) was added slowly, maintaining the temperature to
30 below 5 °C. The reaction was stirred at 0 °C for 2 h, then dimethyldisulfide (1.59 g, 13

mmol) was slowly added over 90 min, maintaining the temperature to below 5 °C. The reaction mixture was stirred for 17 h, during which time the temperature was allowed to reach room temperature. Water (20 mL) and diethyl ether (30 mL) were added and the organic layer was separated and dried with MgSO₄. After filtration, the crude solution was dissolved in ethyl acetate and absorbed *in vacuo* onto silica gel (1.5 g). This material was chromatographed on an ISCO CombiFlash Chromatography System to yield (2-methylsulfanyl-3-methoxybenzyl)-dimethyl-amine as a yellow oil (1.47 g, 57%).

MS (APCI+) 212 [M+1]⁺.
1¹H-NMR (300MHz, CDCl₃): δ 7.25 (1H, dd), 7.05 (1H, d), 6.80 (1H, d), 3.91 (3H, s), 3.70 (2H, s), 2.32 (3H, s), 2.26 (6H, s).

b) 3-Dimethylaminomethyl-2-methylsulfanyl-phenol hydrobromide
30% Hydrogen bromide in acetic acid (7 mL, 34 mmol) was added to (2-methylsulfanyl-3-methoxybenzyl)-dimethylamine (1.44 g, 6.8 mmol) and heated with stirring at 100 °C. After 17 h, the reaction was complete by LC/MS analysis and was then allowed to cool to room temperature. Diethyl ether (100 mL) was added with stirring. After 20 min, the orange diethyl ether solution was decanted off. This was repeated until a tan solid precipitated. 3-Dimethylaminomethyl-2-methylsulfanyl-phenol hydrobromide (1.74 g, 90%) was filtered off as a brown solid.

MS (APCI+) 198 [M+1]⁺.
1¹H-NMR (300MHz, CDCl₃): δ 10.18 (1H, s), 9.16 (1H, s), 7.28 (1H, t), 7.03 (2H, m), 4.48 (2H, d), 2.77 (6H, d), 2.30 (3H, s).

c) 4-Chloro-2-(3-dimethylaminomethyl-2-methylsulfanyl-phenoxy)-benzonitrile fumarate
4-Chloro-2-fluorobenzonitrile (0.974 g, 6.26 mmol), 3-dimethylaminomethyl-2-methylsulfanyl-phenol hydrobromide (1.74 g, 6.26 mmol) and cesium carbonate (4.08 g, 12.5 mmol) were heated with stirring in dry DMF (4 mL) at 50 °C for 17 h. The reaction was complete by LC/MS analysis. The reaction mixture was cooled, poured into water and

extracted with ethyl acetate. The ethyl acetate layer was separated, washed with water (1x), 10% sodium carbonate solution (2x), water (2x), brine (1x), and dried over $MgSO_4$. After filtration, the solvent was removed *in vacuo* to yield 4-chloro-2-(3-dimethylaminomethyl-2-methylsulfanyl-phenoxy)-benzonitrile (1.2 g, 58%) as a yellow oil. Fumaric acid (92 mg, 0.3 mmol) in methanol (5 mL) was added to 4-chloro-2-(3-dimethylaminomethyl-2-methylsulfanyl-phenoxy)-benzonitrile (91 mg, 0.26 mmol). The solvent was removed *in vacuo* and diethyl ether (20 mL) was added with stirring. After 17 h, 4-chloro-2-(3-dimethylaminomethyl-2-methylsulfanyl-phenoxy)-benzonitrile fumarate (63.2 mg, 47%) was filtered off as a white solid.

10

MS (APCI+) 334 $[M+1]^{+}$. 1H -NMR (300MHz, d_6 -DMSO): δ 7.95 (1H, d), 7.43 (2H, m), 7.36 (1H, dd), 7.23 (1H, dd), 6.67 (1H, d), 6.61 (2H, s), 3.71 (2H, s), 2.32 (3H, s), 2.23 (6H, s).

15

Example 564-Chloro-2-(3-aminomethyl-2-methylsulfanyl-phenoxy)-benzonitrile fumaratea) 4-Chloro-2-(3-chloromethyl-2-methylsulfanyl-phenoxy)-benzonitrile

20 Under a nitrogen atmosphere, 4-chloro-2-(3-dimethylaminomethyl-2-methylsulfanyl-phenoxy)-benzonitrile (1.02 g, 3.06 mmol) was dissolved in anhydrous toluene (10 mL). The solution was cooled to 0 °C and ethyl chloroformate (900 μ L, 9.2 mmol) was slowly added. The reaction mixture was stirred for 17 h, allowing it to reach room temperature. Water (5 mL) and diethyl ether (5mL) were added and the organic layer was separated and 25 dried with $MgSO_4$. After filtration, the solution was absorbed onto silica gel (1.5 g) and the solvent was removed *in vacuo*. This material was chromatographed on an ISCO CombiFlash Chromatography System to yield 4-chloro-2-(3-chloromethyl-2-methylsulfanyl-phenoxy)-benzonitrile as a clear oil (800 mg, 81%).

¹H-NMR (300MHz, CDCl₃): δ 7.59 (1H, s), 7.45 (2H, m), 7.13 (2H, m), 6.59 (1H, d), 4.93 (2H, s), 2.48 (3H, s).

b) 4-Chloro-2-(3-aminomethyl-2-methylsulfanyl-phenoxy)-benzonitrile fumarate

5 7N Ammonia in methanol (30 mL, 210 mmol) was added to 4-chloro-2-(3-chloromethyl-2-methylsulfanyl-phenoxy)-benzonitrile (240 mg, 0.8 mmol). After stirring for 17 h, TLC still showed some 4-chloro-2-(3-chloromethyl-2-methylsulfanyl-phenoxy)-benzonitrile. The reaction mixture was concentrated to about 10 mL by evaporation *in vacuo*, concentrated ammonia (7 mL) was added and the mixture was heated with stirring at 60 °C

10 for 17 h. Sodium carbonate solution (4 mL) and ethyl acetate (6 mL) were added and the organic layer was separated and dried with MgSO₄. To this, was added fumaric acid (84 mg, 0.64 mmol) in methanol (3 mL). Immediately, the solvent was removed *in vacuo* and diethyl ether (40 mL) was added to the residue. After stirring for 17 h, 4-chloro-2-(3-aminomethyl-2-methylsulfanyl-phenoxy)-benzonitrile fumarate (134.7 mg, 53%) was

15 filtered off as a white solid.

MS (APCI+) 305 [M+1]⁺.

¹H-NMR (300MHz, d₆-DMSO): δ 7.95 (1H, d), 7.53 (2H, d), 7.34 (1H, dd), 7.25 (2H, t), 6.68 (1H, d), 6.43 (2H, s), 4.15 (2H, s), 2.5 (6H, m), 2.35 (3H, s).

20

Example 57

4-Chloro-2-(2-methylsulfanyl-3-methylaminomethyl-phenoxy)-benzonitrile fumarate

25 33% Methylamine in ethanol (6 mL, 48 mmol) was added to 4-chloro-2-(3-chloromethyl-2-methylsulfanyl-phenoxy)-benzonitrile (256 mg, 0.8 mmol). After stirring the solution for 17 h, the solvent was removed *in vacuo*. Sodium carbonate solution (4 mL) and ethyl acetate (6 mL) were added and the organic layer was separated and dried with MgSO₄. To this, was added fumaric acid (74 mg, 0.64 mmol) in methanol (3 mL). Immediately, the solvent was removed *in vacuo* and diethyl ether (40 mL) was added to the crude material.

After stirring for 17 h, 4-chloro-2-(2-methylsulfanyl-3-methylaminomethyl-phenoxy)-benzonitrile fumarate (253 mg, 0.581 mmol, 73%) was filtered off as a white solid.

¹H-NMR (300MHz, d-DMSO): δ 7.96 (1H, d), 7.51 (2H, d), 7.26 (2H, m), 6.99 (1H, s),
6.52 (2H, s), 4.12 (2H, s), 2.45 (3H, s), 2.34 (3H, s).

Example 58

4-Chloro-2-(3-dimethylaminomethyl-2-ethylsulfanyl-phenoxy)-benzonitrile fumarate

a) 3-Dimethylaminomethyl-2-ethylsulfanyl-phenol hydrobromide
30% Hydrogen bromide in acetic acid (3.6 mL, 18.05 mmol) was added to
(2-ethylsulfanyl-3-methoxybenzyl)-dimethylamine (800 mg, 3.55 mmol) and the reaction
mixture was heated with stirring at 100 °C. After 17 h, the reaction was complete by
LC/MS analysis and was then allowed to cool to room temperature. Diethyl ether (100 mL)
was added with stirring and after 20 min the orange diethyl ether solution was decanted
off. This procedure was repeated until a tan solid precipitated. 3-Dimethylaminomethyl-2-
ethylsulfanyl-phenol hydrobromide (770 mg, 100%) was filtered off as a tan solid.

¹H-NMR (300MHz, CDCl₃): δ 10.16 (1H, s), 7.30 (1H, t) 7.03 (2H, m), 4.48 (2H, d), 2.80
(2H m), 2.76 (6H, d) 1.05 (3H, t).

b) 4-Chloro-2-(3-dimethylaminomethyl-2-ethylsulfanyl-phenoxy)-benzonitrile fumarate
4-Chloro-2-fluorobenzonitrile (0.567 g, 3.6 mmol), 3-dimethylaminomethyl-2-
ethylsulfanyl-phenol hydrobromide (0.77 g, 2.6 mmol) and cesium carbonate (1.19 g, 3.6
mmol) were heated with stirring in dry DMF (4 mL) at 50 °C for 17 h. More cesium
carbonate (1.19 g, 3.6 mmol) was added. After 1 h, the reaction was complete by LC/MS
analysis. The reaction mixture was cooled, poured into water and extracted with ethyl
acetate. The ethyl acetate layer was separated, washed with water (1x), 10% sodium
carbonate solution (2x), water (2x), brine (1x), and dried over MgSO₄. After filtration, the

solvent was removed *in vacuo* to yield 4-chloro-2-(3-dimethylaminomethyl-2-ethylsulfanyl-phenoxy)-benzonitrile (662 mg, 52%) as a clear oil. Fumaric acid (30 mg, 0.26 mmol) in methanol (5 mL) was added to 4-chloro-2-(3-dimethylaminomethyl-2-ethylsulfanyl-phenoxy)-benzonitrile (91 mg, 0.26 mmol). The solvent was removed *in vacuo* and diethyl ether (20 mL) was added with stirring. After 17 h, 4-chloro-2-(3-dimethylaminomethyl-2-ethylsulfanyl-phenoxy)-benzonitrile fumarate (41.4 mg, 34%) was filtered off as a white solid.

MS (APCI+) 348 [M+I]⁺.

¹H-NMR (300MHz, d₆-DMSO): δ 7.94 (1H, d), 7.50 (2H, m), 7.23 (2H, dd), 6.61 (1H, s), 6.61 (2H, s), 3.71 (2H, s), 2.79 (3H, q), 2.22 (6H, s), 1.07 (3H, t).

Example 59

15 4-Chloro-2-(3-aminomethyl-2-ethylsulfanyl-phenoxy)-benzonitrile fumarate

a) 4-Chloro-2-(3-chloromethyl-2-ethylsulfanyl-phenoxy)-benzonitrile

Under a nitrogen atmosphere, 4-chloro-2-(3-dimethylaminomethyl-2-ethylsulfanyl-phenoxy)-benzonitrile (570 mg, 1.64 mmol) was dissolved in anhydrous toluene (10 mL).

20 The solution was cooled to 0 °C and ethyl chloroformate (480 μL, 5 mmol) was slowly added. The reaction mixture was stirred for 17 h, allowing it to reach room temperature. Water (5 mL) and diethyl ether (5 mL) were added and the organic layer was separated and dried with MgSO₄. After filtration, the solvent was removed *in vacuo* to yield crude material (340 mg) that was then dissolved in ethyl acetate and absorbed *in vacuo* onto 25 silica gel (1.5 g). This material was chromatographed on an ISCO CombiFlash Chromatography System to yield 4-chloro-2-(3-chloromethyl-2-ethylsulfanyl-phenoxy)-benzonitrile as a clear oil (240 mg, 43%).

¹H-NMR (300MHz, CDCl₃): δ 7.58 (1H, d), 7.45 (2H, m), 7.11 (2H, m), 6.57 (1H, d), 4.94

30 (2H, s) 2.96 (2H, q), 1.22 (3H, t)

b) 4-Chloro-2-(3-aminomethyl-2-ethylsulfanyl-phenoxy)-benzonitrile fumarate

7N Ammonia in methanol (12 mL, 84 mmol) was added to 4-chloro-2-(3-chloromethyl-2-ethylsulfanyl-phenoxy)-benzonitrile (80 mg, 0.24 mmol). After stirring for 17 h, the solvent was removed *in vacuo*. Sodium carbonate solution (4 mL) and ethyl acetate (6 mL) were added and the organic layer was separated and dried with MgSO₄. To this, was added fumaric acid (22 mg, 0.19 mmol) in methanol (3 mL). Immediately, the solvent was removed *in vacuo* and diethyl ether (40 mL) was added to the crude material. After stirring for 17 h, 4-chloro-2-(3-aminomethyl-2-ethylsulfanyl-phenoxy)-benzonitrile fumarate (54.6 mg, 0.126 mmol, 53%) was filtered off as a white solid.

10 MS (APCI+) 320 [M+1]⁺.

¹H-NMR (300MHz, d₆-DMSO): δ 7.94 (1H, d), 7.49 (2H, m), 7.32 (1H, m), 7.21 (1H, dd), 6.60 (1H, m), 6.37 (1H, s), 4.01 (2H, s), 2.78 (2H, m), 1.06 (3H, t).

15

Example 604-Chloro-2-(2-ethylsulfanyl-3-methylaminomethyl-phenoxy)-benzonitrile fumarate

20 2M Methylamine in methanol (14 mL, 28 mmol) was added to 4-chloro-2-(3-chloromethyl-2-ethylsulfanyl-phenoxy)-benzonitrile (160 mg, 0.47 mmol). After stirring the solution for 17 h, the solvent was removed *in vacuo*. Sodium carbonate solution (4 mL) and ethyl acetate (6 mL) were added and the organic layer was separated and dried with MgSO₄. To this, was added fumaric acid (44 mg, 37.6 mmol) in methanol (3 mL).

25 The solvent was immediately removed *in vacuo* and diethyl ether (40 mL) was added to the crude material. After stirring 17 h, 4-chloro-2-(2-ethylsulfanyl-3-methylaminomethyl-phenoxy)-benzonitrile fumarate (66.3 mg, 0.148 mmol, 31%) was filtered off as a white solid.

30 MS (APCI+) 334 [M+1]⁺.

¹H-NMR (300MHz, d₆-DMSO): δ 8.52 (1H, d), 7.95 (1H, d), 7.88 (1H, s), 7.5 (1H, m), 7.32 (1H, dd), 6.61 (1H d), 6.45 (2H, s), 3.99 (3H, s), 2.78 (2H, m), 2.36 (3H, s), 1.08 (3H, m).

5

Screens

The pharmacological activity of compounds according to the invention was tested in the
10 following screens.

Screen 1

The activity of compounds of formula (I), or a pharmaceutically acceptable salt, may be
15 screened for nitric oxide synthase inhibiting activity by a procedure based on that of
Förstermann *et al.*, Eur. J. Pharm., 1992, 225, 161-165. Nitric oxide synthase converts
³H-L-arginine into ³H-L-citrulline which can be separated by cation exchange chromatography
and quantified by liquid scintillation counting.

20 Enzyme is prepared, after induction, from the cultured murine macrophage cell line J774A-1
(obtained from the laboratories of the Imperial Cancer Research Fund). J774A-1 cells are
cultured in Dulbeccos Modified Eagles Medium (DMEM) supplemented with 10% foetal
bovine serum, 4 mM L-glutamine and antibiotics (100 units/ml penicillin G, 100 mg/ml
streptomycin & 0.25 mg/ml amphotericin B). Cells are routinely grown in 225 cm³ flasks
25 containing 35 ml medium kept at 37 °C and in a humidified atmosphere containing 5% CO₂.

Nitric oxide synthase is produced by cells in response to interferon- γ (IFNg) and
lipopolysaccharide (LPS). The medium from confluent culture flasks is removed and replaced
30 with 25 ml (per flask) of fresh medium containing 1 mg/ml LPS and 10 units/ml IFNg. After
a period of 17-20 hours in culture, harvesting of cells is accomplished by scraping the cell
sheet from the flask surface into the culture medium. Cells are collected by centrifugation
(1000 g for 10 minutes) and lysate prepared by adding to the cell pellet a solution containing

50 mM Tris-HCl (pH 7.5 at 20 °C), 10% (v/v) glycerol, 0.1% (v/v) Triton-X-100, 0.1 mM dithiothreitol and a cocktail of protease inhibitors comprising leupeptin (2 mg/ml), soya bean trypsin inhibitor (10 mg/ml), aprotinin (5 mg/ml) and phenylmethylsulphonyl fluoride (50 mg/ml).

5 For the assay, 25 µl of substrate cocktail (50 mM Tris-HCl (pH 7.5 at 20 °C), 400 µM NADPH, 20 µM flavin adenine dinucleotide, 20 µM flavin mononucleotide, 4 µM tetrahydrobiopterin, 12 µM L-arginine and 0.025 mCi L-[³H] arginine) is added to wells of a 10 96 well filter plate (0.45 µM pore size) containing 25 µl of a solution of test compound in 50 mM Tris-HCl. The reaction is started by adding 50 µl of cell lysate (prepared as above) and after incubation for 1 hour at room temperature is terminated by addition of 50 µl of an aqueous solution of 3 mM nitroarginine and 21 mM EDTA.

15 Labelled L-citrulline is separated from labelled L-arginine using Dowex AG-50W. 150 µl of a 25% aqueous slurry of Dowex 50W (Na⁺ form) is added to the assay after which the whole is filtered into 96 well plates. 75 µl of filtrate is sampled and added to wells of 96 well plates containing solid scintillant. After allowing the samples to dry the L-citrulline is quantified by scintillation counting.

20 In a typical experiment basal activity is 300 dpm per 75 µl sample which is increased to 1900 dpm in the reagent controls. Compound activity is expressed as IC₅₀ (the concentration of drug substance which gives 50% enzyme inhibition in the assay) and aminoguanidine, which gives an IC₅₀ (50% inhibitory concentration) of 10 µM, is tested as a standard to verify the procedure. Compounds are tested at a range of concentrations and from the inhibitions 25 obtained IC₅₀ values are calculated. Compounds that inhibit the enzyme by at least 25% at 100 µM are classed as being active and are subjected to at least one retest.

Screen 2

30 Recombinant human NO synthases (iNOS, eNOS & nNOS) were expressed in *E. coli* and lysates were prepared in Hepes buffer (pH 7.4) containing co-factors (FAD, FMN, H₄B),

protease inhibitors, lysozyme and the detergent, CHAPS. These preparations were used, at suitable dilution, to assess inhibition of the various isoforms. Inhibition of NOS was determined by measuring the formation of L-[³H]citrulline from L-[³H]arginine using an adaptation of the method of Förstermann *et al.* Enzyme assays were performed in the presence of 3 μ M [³H]arginine, 1 mM NADPH and other co-factors required to support NOS activity (FAD, FMN, H₄B, calmodulin, Ca²⁺). Since various NOS inhibitors have been reported to exhibit slow binding kinetics, or to inactivate the enzyme in a time dependent manner, enzyme and inhibitor were pre-incubated for 60 min in the presence of NADPH before addition of arginine to initiate the reaction. Incubations continued for a further 60 min before the assays were quenched and [³H]citrulline separated from unreacted substrate by chromatography on Dowex-50W resin in a 96-well format.

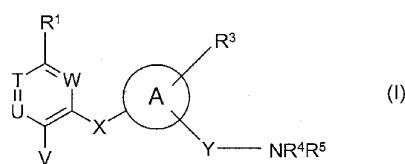
In the above screen, the compounds of Examples 1 to 60 were tested and gave IC₅₀ values of less than 10 μ M against the iNOS and nNOS enzymes, and showed good selectivity with respect to the inhibition of eNOS, indicating that they are expected to show useful therapeutic activity. Specimen results are shown in the following Table:

Compound	IC ₅₀ (μ M)		
	nNOS	eNOS	iNOS
Example 10	0.0048	0.34	0.0029
Example 24	0.039	5.4	0.16
Example 25	0.20	44	0.09

20 Screen 3

Compounds also show activity against the human form of induced nitric oxide synthase as can be demonstrated in the following assay.

The human colorectal carcinoma cell line, DLD-1 (obtained from the European Collection of Animal Cell Culture - cell line number 90102540) was routinely grown in RPMI 1640 supplemented with 10%(v/v) foetal bovine serum, and 2mM L-glutamine, at 37 °C in 5% CO₂.


5 Nitric oxide synthase was induced in cells by addition of medium containing human recombinant gamma-IFN (1000 units/ml), TNF-alpha (200 U/ml), IL-6 (200 U/ml) and IL-1-beta (250 U/ml). After incubation for 18 hours at 37 °C, the medium was removed and the cells washed with warm phosphate buffered saline. Cells were incubated for a
10 further 5 hours at 37 °C / 5% CO₂ in RPMI 1640 containing 100µM L-arginine and 100µM verapamil-HCl in the presence and absence of test compounds.

15 Nitrite accumulation was determined by mixing an equal volume of culture media with Griess reagent (10 mg/ml sulphanilamide, 1 mg *N*-(1-naphthyl)ethylenediamine in 1 ml 2.5% (v/v) phosphoric acid). Inhibition in the presence of compounds was calculated relative to the nitrite levels produced by untreated cells. IC₅₀ values were estimated from a semi-log plot of % inhibition versus concentration of compound.

CLAIMS:

1. A compound of formula (I)

5

wherein:

10 A represents a phenyl ring or A represents a C8 to 10 aromatic or partially aromatic bicyclic ring system;

15 R^1 represents C1 to 6 alkyl, C1 to 6 alkoxy, halogen, hydroxy, cyano, trifluoromethyl or NR^6R^7 ;

20 R^3 represents hydrogen, C1 to 6 alkyl, C2 to 6 alkenyl, C3 to 6 cycloalkyl, C1 to 6 alkylthio, C1 to 6 alkoxy, halogen, hydroxy, cyano, trifluoromethyl or NR^8R^9 ; said alkoxy group being optionally further substituted by hydroxy or by one or more fluorine atoms.

25 or R^3 represents phenyl or a five or six membered aromatic heterocyclic ring containing 1 to 3 heteroatoms independently selected from O, S and N; said phenyl or aromatic heterocyclic ring being optionally substituted by one or more substituents selected independently from halogen, C1 to 4 alkyl, C1 to 4 alkoxy, hydroxy, cyano or NR^8R^9 ; said alkyl or alkoxy group being optionally further substituted by one or more fluorine atoms;

WO 03/029185

PCT/SE02/01803

90

R^4 and R^5 independently represent hydrogen or C1 to 6 alkyl; said alkyl group being optionally substituted by OH, C1 to 6 alkoxy, $NR^{10}R^{11}$ or phenyl; said phenyl group being optionally further substituted by C1 to 6 alkyl, C1 to 6 alkoxy, halogen, hydroxy, cyano or $NR^{12}R^{13}$;

5

$R^6, R^7, R^8, R^9, R^{10}, R^{11}, R^{12}$ and R^{13} independently represent hydrogen or C1 to 6 alkyl; said alkyl group being optionally substituted by OH or C1 to 6 alkoxy;

or the groups NR^4R^5 , NR^6R^7 and NR^8R^9 independently represent a 4 to 7 membered

10 saturated azacyclic ring optionally incorporating one further heteroatom selected from O or N; said ring being optionally substituted by OH, C1 to 3 hydroxyalkyl or C1 to 3 alkoxy;

V represents cyano or nitro;

15 X represents O or $S(O)_n$;

n represents an integer 0, 1 or 2;

Y represents C1 to 6 alkyl;

20

Either one of T, U and W represents N and the other two independently represent CR^2 ; or each of T, U and W represents CR^2 ; and each R^2 group independently represents hydrogen, C1 to 3 alkyl, C1 to 3 alkoxy or halogen;

25

or a pharmaceutically acceptable salt thereof;

with the proviso that when A represents phenyl, V represents nitro, Y represents CH_2 , X represents S, each of T, U and W represents CR^2 and the group $Y-NR^4R^5$ is bonded to the phenyl ring ortho to X, then R^4 and R^5 do not both represent CH_3 .

2. A compound of formula (I), according to Claim 1, wherein A represents phenyl.
3. A compound of formula (I), according to Claim 1 or Claim 2, wherein Y represents
5 CH₂.
4. A compound of formula (I), according to any one of Claims 1 to 3, wherein R⁴ and R⁵ independently represent hydrogen or methyl.
- 10 5. A compound of formula (I), according to Claim 1, which is:
3-(5-methoxy-2-nitrophenoxy)benzenemethanamine;
3-(5-methyl-2-nitrophenoxy)benzenemethanamine;
3-(5-chloro-2-nitrophenoxy)benzenemethanamine;
3-(5-fluoro-2-nitrophenoxy)benzenemethanamine;
15 3-(5-methylamino-2-nitrophenoxy)benzenemethanamine;
3-(5-methyl-2-nitrophenylthio)benzenemethanamine;
2-[3-(aminomethyl)phenoxy]-4-chlorobenzonitrile;
4-chloro-2-[3-hydroxy-5-[(methylamino)methyl]phenoxy]benzonitrile;
4-chloro-2-[3-methoxy-5-[(methylamino)methyl]phenoxy]benzonitrile;
20 4-chloro-2-(3-methylaminomethyl-phenoxy)-benzonitrile;
4-chloro-2-(4-methoxy-3-methylaminomethyl-phenoxy)-benzonitrile;
4-chloro-2-(2-methoxy-3-methylaminomethyl-phenoxy)-benzonitrile;
4-chloro-2-(2-methoxy-4-methylaminomethyl-phenoxy)-benzonitrile;
4-chloro-2-(3-methoxy-4-methylaminomethyl-phenoxy)-benzonitrile;
25 2-(4-bromo-3-methylaminomethyl-phenoxy)-4-trifluoromethyl-benzonitrile;
2-(2-methylaminomethyl-biphenyl-4-yloxy)-4-trifluoromethyl-benzonitrile;
4-chloro-2-[2-hydroxy-3-(methylaminomethyl)phenoxy]benzonitrile;
4-chloro-2-[2-ethoxy-3-(methylaminomethyl)phenoxy]benzonitrile;
4-chloro-2-[2-(2-fluoroethoxy)-3-(methylaminomethyl)phenoxy]benzonitrile;
30 4-chloro-2-[3-methylaminomethyl-2-(2,2,2-trifluoroethoxy)phenoxy]-benzonitrile;
4-chloro-2-(3-methylaminomethyl-2-propoxyphenoxy)benzonitrile;

4-chloro-2-[2-(2-hydroxyethoxy)-3-(methylaminomethyl)phenoxy]-benzonitrile;
4-chloro-2-[2-ethoxy-4-(methylaminomethyl)phenoxy]benzonitrile;
4-chloro-2-[4-(methylaminomethyl)naphthalen-1-yloxy]benzonitrile;
4-chloro-2-[3-(dimethylaminomethyl)phenoxy]benzonitrile;
5 4-chloro-2-{3-[(2-hydroxyethyl)amino)methyl]phenoxy}benzonitrile;
4-chloro-2-{3-[(2-methoxyethylamino)methyl]phenoxy}benzonitrile;
4-chloro-2-[3-(propylaminomethyl)phenoxy]benzonitrile;
4-chloro-2-{3-[(2-dimethylaminoethylamino)methyl]phenoxy}benzonitrile;
4-chloro-2-{3-[(3-hydroxypropylamino)methyl]phenoxy}benzonitrile;
10 4-chloro-2-[3-(pyrrolidin-1-ylmethyl)phenoxy]benzonitrile;
4-chloro-5-fluoro-2-(2-methoxy-3-methylaminomethylphenoxy)benzonitrile;
4-bromo-2-(2-methoxy-3-methylaminomethyl-phenoxy)-benzonitrile;
2-(2-methoxy-3-methylaminomethyl-phenoxy)-6-trifluoromethyl-nicotinonitrile;
4-methoxy-2-(2-methoxy-3-methylaminomethyl-phenoxy)-benzonitrile;
15 3-fluoro-2-(2-methoxy-3-(methylaminomethyl)phenoxy)-4-methyl-benzonitrile;
2-(2-methoxy-3-methylaminomethyl-phenoxy)-6-methyl-nicotinonitrile;
6-ethyl-2-(2-methoxy-3-methylaminomethyl-phenoxy)-nicotinonitrile;
4-methyl-2-(3-methylaminomethyl-phenoxy)-benzonitrile;
6-methyl-2-(3-methylaminomethyl-phenoxy)-nicotinonitrile;
20 4-chloro-2-(5-methylamino-5,6,7,8-tetrahydronaphthalen-1-yloxy)-benzonitrile;
4-chloro-2-(1-methylaminoindan-4-yloxy)benzonitrile;
[2-methoxy-3-(5-methyl-2-nitrophenoxy)benzyl]methylamine;
4-chloro-2-(3-dimethylaminomethyl-2-ethylphenoxy)benzonitrile;
2-(3-aminomethyl-2-ethyl-phenoxy)-4-chloro-benzonitrile;
25 4-chloro-2-(2-ethyl-3-methylaminomethyl-phenoxy)-benzonitrile;
4-chloro-2-(3-dimethylaminomethyl-2-propylphenoxy)-benzonitrile;
2-(3-aminomethyl-2-propyl-phenoxy)-4-chloro-benzonitrile;
4-chloro-2-(3-methylaminomethyl-2-propyl-phenoxy)-benzonitrile;
2-(2-allyl-4-methylaminomethyl-phenoxy)-4-chlorobenzonitrile;
30 4-chloro-2-(3-dimethylaminomethyl-4-fluorophenoxy)benzonitrile;
4-chloro-2-(4-fluoro-3-methylaminomethyl-phenoxy)-benzonitrile;
2-(2-methoxy-3-methylaminomethyl-phenoxy)-4-trifluoromethyl-benzonitrile;

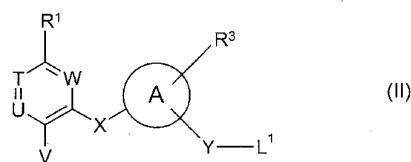
2-(4-methylaminomethyl-3-phenyl-phenoxy)-4-trifluoromethyl-benzonitrile;
4-chloro-2-(3-dimethylaminomethyl-2-methysulfanyl-phenoxy)-benzonitrile;
4-chloro-2-(3-aminomethyl-2-methysulfanyl-phenoxy)-benzonitrile;
4-chloro-2-(2-methysulfanyl-3-methylaminomethyl-phenoxy)-benzonitrile;
5 4-chloro-2-(3-dimethylaminomethyl-2-ethylsulfanyl-phenoxy)-benzonitrile;
4-chloro-2-(3-aminomethyl-2-ethylsulfanyl-phenoxy)-benzonitrile;
4-chloro-2-(2-ethylsulfanyl-3-methylaminomethyl-phenoxy)-benzonitrile;
or a pharmaceutically acceptable salt thereof.

10 6. A compound of formula (I), according to any one of Claims 1 to 5, or a
pharmaceutically acceptable salt thereof, for use as a medicament.

7. A pharmaceutical composition comprising a compound of formula (I) according to any
one of Claims 1 to 5, or a pharmaceutically acceptable salt thereof, in admixture with a
15 pharmaceutically acceptable adjuvant, diluent or carrier.

8. The use of a compound of formula (I) according to any one of Claims 1 to 5, or a
pharmaceutically acceptable salt thereof, in the manufacture of a medicament for the
treatment or prophylaxis of human diseases or conditions in which inhibition of nitric oxide
20 synthase activity is beneficial.

9. The use of a compound of formula (I) as defined in any one of Claims 1 to 5, or a
pharmaceutically acceptable salt thereof, in the manufacture of a medicament, for the
treatment or prophylaxis of inflammatory diseases.

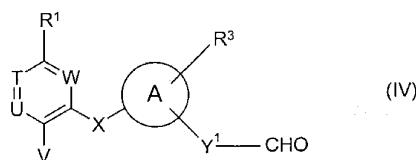

25 10. The use of a compound of formula (I) as defined in any one of Claims 1 to 5, or a
pharmaceutically acceptable salt thereof, in the manufacture of a medicament, for the
treatment or prophylaxis of CNS diseases.

30 11. The use as claimed in Claim 9 wherein the disease is rheumatoid arthritis or
osteoarthritis.

12. The use of a compound of formula (I) as defined in any one of Claims 1 to 5, or a pharmaceutically acceptable salt thereof, in the manufacture of a medicament, for the treatment or prophylaxis of pain.
- 5 13. The use as claimed in Claim 10 wherein the disease is migraine.
14. A method of treating, or reducing the risk of, human diseases or conditions in which inhibition of nitric oxide synthase activity is beneficial which comprises administering a therapeutically effective amount of a compound of formula (I), as defined in any one of
- 10 Claims 1 to 5, or a pharmaceutically acceptable salt thereof, to a person suffering from, or at increased risk of, such diseases or conditions.
15. A method of treating, or reducing the risk of, inflammatory disease in a person suffering from, or at risk of, said disease, wherein the method comprises administering to the person a therapeutically effective amount of a compound of formula (I), as defined in any one of
- 15 Claims 1 to 5, or a pharmaceutically acceptable salt thereof.
16. A method of treating, or reducing the risk of, CNS disease in a person suffering from, or at risk of, said disease, wherein the method comprises administering to the person a therapeutically effective amount of a compound of formula (I), as defined in any one of
- 20 Claims 1 to 5, or a pharmaceutically acceptable salt thereof.
17. The method of treatment as claimed in Claim 16 wherein the disease is migraine.
- 25 18. A method of treating, or reducing the risk of, pain in a person suffering from, or at risk of, said condition, wherein the method comprises administering to the person a therapeutically effective amount of a compound of formula (I), as defined in any one of Claims 1 to 5, or a pharmaceutically acceptable salt thereof.

19. A process for the preparation of a compound of formula (I), as defined in any one of Claims 1 to 5, or a pharmaceutically acceptable salt, enantiomer or racemate thereof, wherein the process comprises:

(a) reaction of a compound of formula (II)


wherein A, R¹, R³, T, U, V, W, X and Y are as defined in Claim 1 and L¹ is a leaving group,

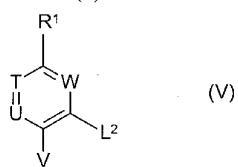
10 with a compound of formula (III)

wherein R⁴ and R⁵ are as defined in Claim 1; or

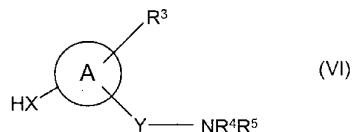
15 (b) reductive amination of a compound of formula (IV)

wherein A, R¹, R³, T, U, V, W and X are as defined in Claim 1 and Y¹-CH₂ represents Y

20 as defined in Claim 1,

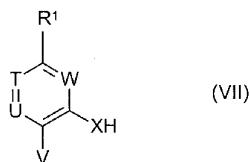

with a compound of formula (III)

wherein R^4 and R^5 are as defined in Claim 1; or

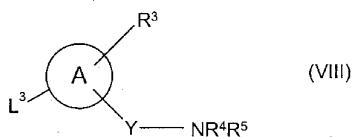

5

(c) reaction of a compound of formula (V)

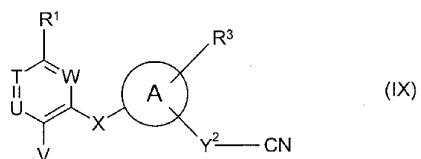
wherein R^1 , T , U , V and W are as defined in Claim 1 and L^2 is a leaving group;


10 with a compound of formula (VI)

wherein A, R^3 , R^4 , R^5 and Y are as defined in Claim 1 and X is O or S; or


15

(d) reaction of a compound of formula (VII)


wherein R¹, T, U, V and W are as defined in Claim 1 and X represents O or S,
with a compound of formula (VIII)

5

wherein A, R³, R⁴, R⁵ and Y are as defined in Claim 1 and L³ is a leaving group; or

10 (e) preparing a compound of formula (I) wherein R⁴ and R⁵ each represent hydrogen, by
reduction of a compound of formula (IX)

15 wherein A, R¹, R³, T, U, V, W and X are as defined in Claim 1 and the group (-Y²-CH₂-)
represents Y as defined in formula (I);

and where desired or necessary converting the resultant compound of formula (I), or another salt thereof, into a pharmaceutically acceptable salt thereof; or converting one compound of formula (I) into another compound of formula (I); and where desired converting the resultant compound of formula (I) into an optical isomer thereof.

【国際調査報告】

INTERNATIONAL SEARCH REPORT		International application No. PCT/SE 02/01803
A. CLASSIFICATION OF SUBJECT MATTER		
IPC7: C07C 217/56, C07C 323/32, C07C 255/54, C07D 213/62, C07D 213/84, C07D 295/08, A61K 31/135, A61K 31/4412, A61P 29/00, 25/00, 19/02 According to International Patent Classification (IPC) or to both national classification and IPC		
B. FIELDS SEARCHED		
Minimum documentation searched (classification system followed by classification symbols)		
IPC7: C07C, C07D, A61K		
Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched		
SE, DK, FI, NO classes as above		
Electronic data base consulted during the international search (name of data base and, where practicable, search terms used)		
CHEM.ABS.DATA		
C. DOCUMENTS CONSIDERED TO BE RELEVANT		
Category*	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.
X	STN International, File HCAPLUS, HCAPLUS accession no. 1992:105741, Document no. 116:105741, Kmonicek, Vojtech et al: "Potential antidepressants: 2-(fluoro-, chloro-, bromo- and cyanophenylthio)benzylamines as inhibitors of 5-hydroxytryptamine and noradrenaline re-uptake in brain"; & Collect. Czech. Chem. Commun. (1991), 56(11A), 2468-81	1-19
X	WO 9717325 A1 (FARMAK A.S.), 15 May 1997 (15.05.97), see particularly the claims	1-19
X	GB 1264340 A (ELI LILLY AND COMPANY), 23 February 1972 (23.02.72), see claims and page 2, line 39 - line 44	1-19
--		
<input checked="" type="checkbox"/> Further documents are listed in the continuation of Box C. <input checked="" type="checkbox"/> See patent family annex.		
<p>* Special categories of cited documents</p> <p>*A* document defining the general state of the art which is not considered to be of particular relevance</p> <p>*B* document or publication or patent but published on or after the international filing date</p> <p>*L* document which may throw doubt on priority claim(s) or which is cited to establish the publication date of another citation or other special reason (as specified)</p> <p>*O* document referring to an oral disclosure, use, exhibition or other means</p> <p>*P* document published prior to the international filing date but later than the priority date claimed</p> <p>*T* later document published after the international filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the invention</p> <p>*X* document of particular relevance, the claimed invention cannot be considered novel or cannot be considered to involve an inventive step when the document is taken alone</p> <p>*Y* document of particular relevance, the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such documents, such combination being obvious to a person skilled in the art</p> <p>*&* document member of the same patent family</p>		
Date of the actual completion of the international search	Date of mailing of the international search report	
15 January 2003	16-01-2003	
Name and mailing address of the ISA/ Swedish Patent Office Box 5055, S-102 42 STOCKHOLM Facsimile No. +46 8 666 02 86	Authorized officer NEBIL GECER/BS Telephone No. +46 8 782 25 00	

Form PCT/ISA/210 (second sheet) (July 1998)

INTERNATIONAL SEARCH REPORT		International application No. PCT/SE 02/01803
C (Continuation). DOCUMENTS CONSIDERED TO BE RELEVANT		
Category	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.
X	WO 9402448 A1 (THE WELLCOME FOUNDATION LIMITED), 3 February 1994 (03.02.94), see claims and page 9 --	1-19
X	STN International, file CAPLUS, CAPLUS accession no. 2000:277959, Document no. 132:321662, Takeda Chemical Industries, Ltd.: "Preparation of aromatic amine derivatives and agents containing the same"; & WO,A1,2000023420, 20000427, see CAS registry no. 266369-70-4 --	1,2,4,19
A	EP 0262870 A2 (SUMITOMO CHEMICAL COMPANY, LIMITED), 6 April 1988 (06.04.88) --	1-19
A	Nuclear Medicine & Biology, Vol. 27, 2000, Shunichi Oya et al: "2-((2-((Dimethylamino)methyl)phenyl)thio)-5-iodophenylamine (ADAM): An Improved Serotonin Transporter Ligand", see page 251, compound 4 -----	1

Form PCT/ISA/210 (continuation of record sheet) (July 1998)

INTERNATIONAL SEARCH REPORT

Ir application No.
PCT/SE02/01803

Box I Observations where certain claims were found unsearchable (Continuation of item 1 of first sheet)

This international search report has not been established in respect of certain claims under Article 17(2)(a) for the following reasons:

1. Claims Nos.: **14-18**
because they relate to subject matter not required to be searched by this Authority, namely:
see next sheet
2. Claims Nos.:
because they relate to parts of the international application that do not comply with the prescribed requirements to such an extent that no meaningful international search can be carried out, specifically:
3. Claims Nos.:
because they are dependent claims and are not drafted in accordance with the second and third sentences of Rule 6.4(a).

Box II Observations where unity of invention is lacking (Continuation of item 2 of first sheet)

This International Searching Authority found multiple inventions in this international application, as follows:

1. As all required additional search fees were timely paid by the applicant, this international search report covers all searchable claims.
2. As all searchable claims could be searched without effort justifying an additional fee, this Authority did not invite payment of any additional fee.
3. As only some of the required additional search fees were timely paid by the applicant, this international search report covers only those claims for which fees were paid, specifically claims Nos.:
4. No required additional search fees were timely paid by the applicant. Consequently, this international search report is restricted to the invention first mentioned in the claims; it is covered by claims Nos.:

Remark on Protest

The additional search fees were accompanied by the applicant's protest.
 No protest accompanied the payment of additional search fees.

INTERNATIONAL SEARCH REPORT	Inte PCT/SE02/01803
<p>Claims 14-18 relate to methods of treatment of the human or animal body by surgery or by therapy/diagnostic methods practised on the human or animal body/Rule. 39.1.(iv)). Nevertheless, a search has been executed for these claims. The search has been based on the alleged effects of the compounds/compositions.</p>	

Form PCT/I/ISA/210 (extra sheet) (July 1998)

INTERNATIONAL SEARCH REPORT		International application No. PCT/SE 02/01803	
Patent document cited in search report	Publication date	Patent family member(s)	Publication date
GB 1264340 A	23/02/72	AR 197075 A	15/03/74
		AT 299170 B	12/06/72
		AT 308726 B	25/07/73
		BE 737417 A	13/02/70
		BR 6911565 D	00/00/00
		CH 527155 A	31/08/72
		CH 537354 A	31/05/73
		CY 743 A	30/04/74
		DE 1941625 A,B,C	19/11/70
		DK 141439 B,C	17/03/80
		DK 144760 B,C	01/06/82
		DK 145778 B,C	28/02/83
		DK 240477 A	01/06/77
		DK 240577 A	01/06/77
		DK 240677 A	01/06/77
		ES 370540 A	01/07/71
		ES 390805 A	16/03/74
		FI 54099 B,C	30/06/78
		FI 57592 B,C	30/05/80
		FI 63928 B,C	31/05/83
		FI 762250 A	05/08/76
		FI 780846 A	17/03/78
		FR 2015728 A,B	30/04/70
		IE 33573 B,L	21/08/74
		IL 32825 A	30/03/73
		JP 51044938 B	01/12/76
		JP 51045586 B	04/12/76
		LU 59302 A	18/05/70
		MY 13274 A	31/12/74
		NL 155820 B	15/02/78
		NL 161433 B,C	17/09/79
		NL 165147 B,C	15/10/80
		NL 6912504 A	17/02/70
		NL 7506127 A	29/08/75
		NL 7506128 A	29/08/75
		NL 7905644 A	30/11/79
		NO 132689 B,C	08/09/75
		NO 137824 B,C	23/01/78
		NO 139127 B,C	02/10/78
		NO 773495 A	16/02/70
		SE 363818 B	04/02/74
		SE 398639 B,C	09/01/78
		US 3649679 A	14/03/72
		ZA 6905611 A	31/03/71
		US 3853905 A	10/12/74
		US 3890377 A	17/06/75
		PH 9478 A	23/12/75
		PH 9579 A	19/01/76
		US 3600437 A	17/08/71
		US 3972934 A	03/08/76
		US 4001322 A	04/01/77
		US 4062895 A	13/12/77

Form PCT/ISA/210 (patent family annex) (July 1998)

INTERNATIONAL SEARCH REPORT			International application No. PCT/SE 02/01803
Patent document cited in search report	Publication date	Patent family member(s)	Publication date
WO 9402448 A1 03/02/94		AU 672810 B 17/10/96 AU 4717093 A 14/02/94 CA 2141214 A 03/02/94 EP 0652864 A 17/05/95 GB 9215921 D 00/00/00 IL 106472 D 00/00/00 JP 7509462 T 19/10/95 MX 9304503 A 29/04/94 ZA 9305378 A 26/01/95	
EP 0262870 A2 06/04/88		SE 0262870 T3 AU 600031 B 02/08/90 AU 7888487 A 14/04/88 BR 8704886 A 17/05/88 DE 3770739 D 00/00/00 DK 499987 A 25/03/88 ES 2028877 T 16/07/92 FI 874121 A 25/03/88 NO 168175 B,C 14/10/91 NO 168301 B,C 28/10/91 NO 873990 A 25/03/88 NO 881806 A 25/03/88 PL 150050 B 30/04/90 PL 267892 A 18/08/88 US 4837236 A 06/06/89 JP 64000070 A 05/01/89 TR 23640 A 22/05/90	

Form PCT/JSA/210 (patent family annex) (July 1998)

INTERNATIONAL SEARCH REPORT			International application No. PCT/SE 02/01803	
Patent document cited in search report	Publication date	Patent family member(s)	Publication date	
WO 9717325 A1 15/05/97		CZ 9502935 A EP 0859757 A HU 9901136 A SK 46798 A	15/12/99 26/08/98 30/08/99 09/09/98	

Form PCT/ISA/210 (patent family annex) (July 1998)

フロントページの続き

(51)Int.Cl. ⁷	F I	テーマコード(参考)
A 6 1 P 25/00	A 6 1 P 25/00	
A 6 1 P 25/04	A 6 1 P 25/04	
A 6 1 P 25/06	A 6 1 P 25/06	
A 6 1 P 29/00	A 6 1 P 29/00	
A 6 1 P 43/00	A 6 1 P 29/00 101	
C 0 7 C 209/00	A 6 1 P 43/00 111	
C 0 7 C 209/48	C 0 7 C 209/00	
C 0 7 C 209/50	C 0 7 C 209/48	
C 0 7 C 217/90	C 0 7 C 209/50	
C 0 7 C 253/30	C 0 7 C 217/90	
C 0 7 C 255/54	C 0 7 C 253/30	
C 0 7 C 319/20	C 0 7 C 255/54	
C 0 7 C 323/32	C 0 7 C 319/20	
C 0 7 D 213/85	C 0 7 C 323/32	
	C 0 7 D 213/85	

(81)指定国 AP(GH,GM,KE,LS,MW,MZ,SD,SL,SZ,TZ,UG,ZM,ZW),EA(AM,AZ,BY,KG,KZ,MD,RU,TJ,TM),EP(AT,BE,BG,CH,CY,CZ,DE,DK,EE,ES,FI,FR,GB,GR,IE,IT,LU,MC,NL,PT,SE,SK,TR),OA(BF,BJ,CF,CG,CI,CM,GA,GN,GQ,GW,ML,MR,NE,SN,TD,TG),AE,AG,AL,AM,AT,AU,AZ,BA,BB,BG,BR,BY,BZ,CA,CH,CN,CO,CR,CU,CZ,DE,DK,DM,DZ,EC,EE,ES,FI,GB,GD,GE,GH,GM,HR,HU,ID,IL,IN,IS,JP,KE,KG,KP,KR,KZ,LC,LK,LR,LS,LT,LU,LV,MA,MD,MG,MK,MN,MW,MX,MZ,N,0,NZ,OM,PH,PL,PT,RO,RU,SD,SE,SG,SI,SK,SL,TJ,TM,TN,TR,TT,TZ,UA,UG,US,UZ,VC,VN,YU,ZA,ZM,ZW

(72)発明者 スティーヴン・コナリー

イギリス国レスター・シア州 L E 1 1 5 R H . ラフバラ . ベイクウェルロード . アストラゼネカ・
アール・アンド・ディー・チャーンウッド

(72)発明者 グレン・アーネスト

アメリカ合衆国デラウェア州 1 9 8 5 0 - 5 4 3 7 . ウィルミントン . ピー・オー・ボックス 1 5
4 3 7 . アストラゼネカ・ウィルミントン

F ターム(参考) 4C055 AA01 BA03 BA06 BA13 BA42 BB04 BB10 CA02 CA07 CA59
DA01
4C086 AA01 AA02 AA03 AA04 BC17 MA01 MA04 NA14 ZA02 ZA08
ZA96 ZB11 ZB15 ZC20
4C206 AA01 AA02 AA03 AA04 FA21 HA14 JA41 MA01 MA04 NA14
ZA02 ZA08 ZA96 ZB11 ZB15 ZC20
4H006 AA01 AA02 AC52 AC80 BB11 BB12 BB14 BB15 BB17 BB20
BB21 BB25 BB31 BE10 BE12 BE15 BE23 BE51 BJ50 BP30
TA04