wO 2019/068037 A1 | 000V 00000 010 0 0

(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

J

=

(19) World Intellectual Property
Organization
International Bureau

(43) International Publication Date
04 April 2019 (04.04.2019)

‘O 0000 000 0
(10) International Publication Number

WO 2019/068037 Al

WIPO I PCT

(51) International Patent Classification:

GOG6F 11/36 (2006.01) GOGF 9/50 (2006.01)
GOG6F 8/60 (2018.01)
(21) International Application Number:
PCT/US2018/053628
(22) International Filing Date:
28 September 2018 (28.09.2018)
(25) Filing Language: English
(26) Publication Language: English

(30) Priority Data:
62/566,351 30 September 2017 (30.09.2017) US
(71) Applicant: ORACLE INTERNATIONAL CORPO-

RATION [US/US]; 500 Oracle Parkway M/S SOP7, Red-
wood Shores, California 94065 (US).

(72) Inventors: CALDATO, Claudio; 21926 NE 20th Way,
Sammamish, Washington 98074 (US). SCHOLL, Boris;
8530 NE 128th Street, Kirkland, Washington 98034 (US).

Agent: BERGSTROM, James T. et al.; 1100 Peachtree
Street NE, Suite 2800, Mailstop: [P Docketing - 22, Atlanta,
Georgia 30309 (US).

(74)

(81) Designated States (unless otherwise indicated, for every
kind of national protection available). AE, AG, AL, AM,
AO, AT, AU, AZ, BA, BB, BG, BH, BN, BR, BW, BY, BZ,
CA, CH, CL, CN, CO, CR, CU, CZ,DE, DJ, DK, DM, DO,
DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, GT, HN,
HR, HU, ID, IL, IN, IR, IS, JO, JP, KE, KG, KH, KN, KP,
KR,KW,KZ,LA,LC,LK,LR,LS,LU,LY, MA, MD, ME,
MG, MK, MN, MW, MX, MY, MZ, NA, NG, NI, NO, NZ,
OM, PA, PE, PG, PH, PL, PT, QA, RO, RS, RU, RW, SA,
SC, SD, SE, SG, SK, SL, SM, ST, SV, SY, TH, TJ, TM, TN,
TR, TT, TZ, UA, UG, US, UZ, VC, VN, ZA, ZM, ZW.

(54) Title: REAL-TIME DEBUGGING INSTANCES IN A DEPLOYED CONTAINER PLATFORM

2202 2204 2206
S = S
Client Client Client
2208
N y
Load Balancer
404 l l l
[
APl Registry < > Service Mesh
,A
2210
A A i
_fl L.oad Balancer |
2212
-_— ) )
=55 B &
2214 2218 2218

(57) Abstract: A method may include receiving a request for a service at a container environment. The container environment may
include a service mesh and a plurality of services encapsulated in a plurality of containers. The service may be encapsulated in first
one or more containers. The method may also include determining that the request should be routed to a debug instance of the service;
and instantiating the debug instance of the service. The debug instance may be encapsulated in second one or more containers and
may include code implementing the service and one or more debugging utilities. The method may additionally include routing, by the

service mesh, the request to the debug instance.

[Continued on next page]



WO 2019/068037 A1 |11} 00P 000 0000 O TS0 O

(84) Designated States (unless otherwise indicated, for every
kind of regional protection available): ARIPO (BW, GH,
GM, KE, LR, LS, MW, MZ, NA, RW, SD, SL, ST, SZ, TZ,
UG, ZM, ZW), Eurasian (AM, AZ, BY, KG, KZ, RU, TJ,
TM), European (AL, AT, BE, BG, CH, CY, CZ, DE, DK,
EE, ES, FL, FR, GB, GR, HR, HU, IE, IS, IT, LT, LU, LV,
MC, MK, MT, NL, NO, PL, PT, RO, RS, SE, SI, SK, SM,
TR), OAPI (BF, BJ, CF, CG, CI, CM, GA, GN, GQ, GW,
KM, ML, MR, NE, SN, TD, TG).

Published:
—  with international search report (Art. 21(3))



10

15

20

25

30

WO 2019/068037 PCT/US2018/053628

[0001]

REAL-TIME DEBUGGING INSTANCES IN A DEPLOYED CONTAINER

PLATFORM

CROSS-REFERENCES TO RELATED APPLICATIONS

This application claims the benefit of U.S. Provisional Application No. 62/566,351

filed on September 30, 2017, which is incorporated herein by reference. This application is also

related to the following commonly assigned applications filed on the same day as this

application, each of which is also incorporated herein by reference:

[0002]

U.S. Patent Application No. /| filed on September , 2018, titled API

REGISTRY IN A CONTAINER PLATFORM FOR AUTOMATICALLY
GENERATING CLIENT CODE LIBRARIES (Attorney Docket No. 088325-1090745);

U.S. Patent Application No. /| filed on September , 2018, titled API

REGISTRY IN A CONTAINER PLATFORM PROVIDING PROPERTY-BASED API
FUNCTIONALITY (Attorney Docket No. 088325-1090746);

U.S. Patent Application No. /| filed on September , 2018, titled DYNAMIC

NODE REBALANCING BETWEEN CONTAINER PLATFORMS (Attorney Docket
No. 088325-1090747);

U.S. Patent Application No. / ,  filed on September , 2018, titled
OPTIMIZING REDEPLOYMENT OF FUNCTIONS AND SERVICES ACROSS
MULTIPLE CONTAINER PLATFORMS AND INSTALLATIONS (Attorney Docket

No. 088325-1090748);

BACKGROUND

In the abstract, containers in any form represent a standardized method of packaging

and interacting with information. Containers can be isolated from each other and used in parallel

without any risk of cross-contamination. In the modern software world, the term “container” has

gained a specific meaning. A software container, such as a Docker® container, is a software

construct the logically encapsulates and defines a piece of software. The most common type of

software to be encapsulated in the container is an application, service, or microservice. Modern



10

15

20

25

30

WO 2019/068037 PCT/US2018/053628

containers also include all of the software support required for the application/service to operate,
such as an operating system, libraries, storage volumes, configuration files, application binaries,
and other parts of a technology stack that would be found in a typical computing environment.
This container environment can then be used to create multiple containers that each run their
own services in any environment. Containers can be deployed in a production data center, an on-
premises data center, a cloud computing platform, and so forth without any changes. Spinning

up a container on the cloud is the same as spinning up a container on a local workstation.

[0003] Modern service-oriented architectures and cloud computing platforms break up large
tasks into many small, specific tasks. Containers can be instantiated to focus on individual
specific tasks, and multiple containers can then work in concert to implement sophisticated
applications. This may be referred to as a microservice architecture, and each container can use
different versions of programming languages and libraries that can be upgraded independently.
The isolated nature of the processing within containers allows them to be upgraded and replaced
with little effort or risk compared to changes that will be made to a larger, more monolithic
architectures. Container platforms are much more efficient than traditional virtual machines in
running this microservice architecture, although virtual machines can be used to run a container

platform.

BRIEF SUMMARY
[0004] In some embodiments, a method of providing runtime debugging for containerized
services in container environments may include receiving a request for a service at a container
environment. The container environment may include a service mesh and a plurality of services
encapsulated in a plurality of containers. The service may be encapsulated in first one or more
containers. The method may also include determining that the request should be routed to a
debug instance of the service; and instantiating the debug instance of the service. The debug
instance may be encapsulated in second one or more containers and may include code
implementing the service and one or more debugging utilities. The method may additionally

include routing, by the service mesh, the request to the debug instance.

[0005] In some embodiments, a non-transitory, computer-readable medium may include

instructions that, when executed by one or more processors, causes the one or more processors to

2



10

15

20

25

30

WO 2019/068037 PCT/US2018/053628

perform operations including receiving a request for a service at a container environment. The
container environment may include a service mesh and a plurality of services encapsulated in a
plurality of containers. The service may be encapsulated in first one or more containers. The
operations may also include determining that the request should be routed to a debug instance of
the service; and instantiating the debug instance of the service. The debug instance may be
encapsulated in second one or more containers and may include code implementing the service
and one or more debugging utilities. The operations may additionally include routing, by the

service mesh, the request to the debug instance.

[0006] In some embodiments, a system may include one or more processors and one or more
memory devices comprising instructions that, when executed by the one or more processors,
cause the one or more processors to perform operations including receiving a request for a
service at a container environment. The container environment may include a service mesh and
a plurality of services encapsulated in a plurality of containers. The service may be encapsulated
in first one or more containers. The operations may also include determining that the request
should be routed to a debug instance of the service; and instantiating the debug instance of the
service. The debug instance may be encapsulated in second one or more containers and may
include code implementing the service and one or more debugging utilities. The operations may

additionally include routing, by the service mesh, the request to the debug instance.

[0007] In any embodiments, any or all of the following features may be included in any
combination and without limitation. The first one or more containers may be organized into a
container pod. The container environment may include an orchestrated container platform
comprising a container scheduler. The container scheduler may cause the debug instance of the
service to be instantiated. The container environment may include an Application Programming
Interface (API) registry that causes the debug instance of the service to be instantiated. The API
registry may receive a registration for the debug instance of the service and makes an HTTP
endpoint of the debug instance of the service available through an API function call. The API
registry may receive a registration for the service comprising a property indicating that the debug
instance of the service should be instantiated. The service may be encapsulated in a single
container. The single container may also include the one or more debugging utilities. The one
or more debugging utilities may be encapsulated in at least one container other than the single

container. The one or more debugging utilities may include a process for monitoring memory

3



10

15

20

25

WO 2019/068037 PCT/US2018/053628

usage or processor usage. The one or more debugging utilities may include a debug daemon.
The code implementing the service may include a debug build of the service. The debug
instance of the service may be instantiated prior to receiving the request. The debug instance of
the service may be instantiated in response to receiving the request. Determining that the request
should be routed to the debug instance of the service may include identifying a source of the
request. Determining that the request should be routed to the debug instance of the service may
include recognizing a header in the request that designates the request as a debug request. The
request may be forwarded to the debug instance of the service without interrupting the routing of

other requests to the service.

BRIEF DESCRIPTION OF THE DRAWINGS
[0008] A further understanding of the nature and advantages of the present invention may be
realized by reference to the remaining portions of the specification and the drawings, wherein
like reference numerals are used throughout the several drawings to refer to similar components.
In some instances, a sub-label is associated with a reference numeral to denote one of multiple
similar components. When reference is made to a reference numeral without specification to an

existing sub-label, it is intended to refer to all such multiple similar components.

[0009] FIG. 1 illustrates a software structure and logical arrangement of development and

runtime environments for services in a container platform, according to some embodiments.

[0010] FIG. 2 illustrates a specialized computer hardware system that is specifically designed

to run the embodiments described herein.

[0011] FIG. 3 illustrates a data organization that may be specific to the container platform

used by some of the embodiments described herein.

[0012] FIG. 4 illustrates an API registry that can be deployed to the IDE and the

production/runtime environment, according to some embodiments.

[0013] FIG. S illustrates the deployment of the API registry for use with the container

platform at runtime, according to some embodiments.



10

15

20

25

WO 2019/068037 PCT/US2018/053628

[0014] FIG. 6A illustrates a flowchart of a method for deploying the API registry, according to

some embodiments.

[0015] FIG. 6B illustrates a software structure of a container platform when the API registry is

deployed using the flowchart in FIG. 6A, according to some embodiments.

[0016] FIG. 7A illustrates a flowchart of a method for registering a service with the API

registry, according to some embodiments.

[0017] FIG. 7B illustrates a hardware/software diagram of the steps for registering an API

with the API registry, according to some embodiments.

[0018] FIG. 8 illustrates examples of a graphical interface and a command line interface for
browsing and selecting APIs that are registered with the API registry, according to some

embodiments.

[0019] FIG. 9 illustrates a flowchart of a method for using a service and its corresponding

function registered with the API registry, according to some embodiments.

[0020] FIG. 10 illustrates how a selection may be received by the API registry through the

graphical interface of the CreateUser( ) function.

[0021] FIG. 11 illustrates an example of a client library generated automatically for a service

by the API registry, according to some embodiments.

[0022] FIG. 12 illustrates an embodiment of a client library that accommodates dynamic

binding between service endpoints and API functions, according to some embodiments.

[0023] FIG. 13 illustrates an embodiment of a client library that can marshal additional data to

complete an input data set for a service call, according to some embodiments.

[0024] FIG. 14 illustrates a client library that can handle retries when calling a service,

according to some embodiments.

[0025] FIG. 15A illustrates a method of providing API properties to the API registry,

according to some embodiments.

[0026] FIG. 15B illustrates a hardware/software diagram of how a service can provide API

properties to the API registry, according to some embodiments.

5



10

15

20

25

WO 2019/068037 PCT/US2018/053628

[0027] FIG. 16 illustrates a hardware/software diagram where a property is used by the API

registry to deploy a service with high availability, according to some embodiments.

[0028] FIG. 17 illustrates a hardware/software diagram of a property that enforces end-to-end

encryption through the API registry, according to some embodiments.

[0029] FIG. 18 illustrates a property for an API registry to implement usage logging for a

service 1808, according to some embodiments.

[0030] FIG. 19 illustrates a hardware/software diagram of a property that can enforce an

authentication protocol for a service, according to some embodiments.

[0031] FIG. 20 illustrates a hardware/software diagram for a property that enables runtime

instantiation of a service, according to some embodiments.

[0032] FIG. 21 illustrates a hardware/software diagram of a property that implements a rate

limiting function for a service, according to some embodiments.

[0033] FIG. 22 illustrates a block diagram of a portion of the cloud computing platform for

receiving service requests, according to some embodiments.

[0034] FIG. 23 illustrates a debug build of a service encapsulated in a pod, according to some

embodiments.

[0035] FIG. 24 illustrates an alternative pod for a debug build of a service, according to some

embodiments.

[0036] FIG. 25 illustrates a block diagram of a system for instantiating a debug instance of a

service, according to some embodiments.

[0037] FIG. 26 illustrates a block diagram of the container platform routing debug requests to

the debug instance of the service, according to some embodiments.

[0038] FIG. 27 illustrates a block diagram of a cloud computing platform that clones requests,

according to some embodiments.

[0039] FIG. 28 illustrates a block diagram of cloned requests being forwarded to a debug

instance of the service, according to some embodiments.



10

15

20

25

WO 2019/068037 PCT/US2018/053628

[0040] FIG. 29 illustrates a flowchart of a method for providing runtime debugging for

containerized services in container environments.

[0041] FIG. 30 illustrates a simplified block diagram of a distributed system for implementing

some of the embodiments.

[0042] FIG. 31 illustrates a simplified block diagram of components of a system environment
by which services provided by the components of an embodiment system may be offered as

cloud services.

[0043] FIG. 32 illustrates an exemplary computer system, in which various embodiments may

be implemented.

DETAILED DESCRIPTION
[0044] Described herein, are embodiments for an Application Programming Interface (API)
registry that is part of an Integrated Development Environment (IDE) that allows developers to
register services during development and make those services available to other services both
during and after deployment. The API registry can be deployed as part of an orchestrated
container platform, operating as a containerized application on the container platform. As
services or microservices are developed and deployed into containers on the container platform,
the API registry can execute a discovery process to locate available endpoints (e.g., IP addresses
and port numbers) within the container platform that correspond to available services. The API
registry can also accept an upload of an API definition file that can be used to turn the raw
service endpoint into an API function made available through the API registry. The API registry
can dynamically bind the discovered endpoint to an API function that be kept up-to-date and
made available to other services in the container platform. This provides a stable endpoint that
other services can statically call while the API registry manages any changes to the binding
between the API function in the service endpoint. This also simplifies the process for using
services in the container platform. Instead of writing code for an HTTP call, new services can

simply use the API interface to access registered services.

[0045] In some embodiments, the IDE can provide a navigation/browse interface for

developers to locate services that are available in the container platform and registered with the



10

15

20

25

30

WO 2019/068037 PCT/US2018/053628

APIregistry. When calls to existing services are created by the API registry for new services
under development, the API registry can automatically generate a set of client libraries that
include all the necessary functionality to interact with the registered service. For example, some
embodiments may generate an object class that includes member functions corresponding to API
calls. During development, new services can simply instantiate these objects and/or use their
member functions to make a call to the corresponding API. The code in the client libraries
governs a direct connection between the calling service and the endpoint of the registered service
and may include code that handles all the functionality necessary for this interaction. For
example, the automatically generated client libraries may include: code for packaging and
formatting parameters from the API call into an HTTP call to the service endpoint, code for
marshaling data to complete parameter sets for the call, code for packaging information into a
compatible packet (JSON, XML, etc.), code for receiving and parsing result packets, code for
handling retries and error conditions, and so forth. From the calling service’s perspective, the
code to handle all of this functionality is automatically generated by the API registry and
therefore abstracts and encapsulates the details of the service call into the client library object.
All that is required of the calling service is to execute a member function of the client library

object created by the API registry.

[0046] In some embodiments, the API registry can also accept an upload of a set of properties
that may define the runtime execution of the registered service. This set of properties can be
uploaded during development along with the API definition file. These properties can define
runtime characteristics, such as end-to-end encryption, usage/logging requirements, user
authentication, on-demand service instantiation, multiple service deployment instances for high
availability, rate/usage limiting, and other runtime characteristics. The API registry can ensure
that these properties are met by interacting with the container environment during development,
during deployment, and during runtime. During development, the automatically generated client
libraries for calling services can include code that may be required to execute these properties,
such as encryption code, usage logging code, and/or interaction with a user authentication
service. When a registered service is being deployed, the API registry can instruct the container
platform to instantiate multiple instances of the service and/or additional load-balancing modules

to ensure high reliability of the service during runtime. During runtime when a service is called,



10

15

20

25

30

WO 2019/068037 PCT/US2018/053628

the API registry can cause the service to be instantiated for on-demand instantiation, limit the

number of API calls that can be made to throttle usage, and perform other runtime functions.

[0047] FIG. 1 illustrates a software structure and logical arrangement of development and
runtime environments for services in a container platform, according to some embodiments. The
environments may include an IDE 102 that may be used to develop services and microservices to
be deployed on a container platform. An IDE is a software suite that consolidates and provides
all of the basic tools that service developers can use to write and test new services. The IDE 102
may include a source code editor 106 with a graphical user interface (GUI), code completion
functions, and navigate/browse interfaces that allow a developer to write, navigate, integrate, and
visualize the source-code-writing process. The IDE 102 may also include a debugger 110 that
includes variable interfaces, immediate variable interfaces, expression evaluation interfaces,
memory content interfaces, breakpoint visualization and functionality, and other debugging
functions. The IDE 102 may also include a compiler and/or interpreter 108 for compiling and
running compiled machine code or interpreted byte code. The compiler/interpreter 108 can
include build tools that allow developers to use/generate makefiles another build automation
constructs. Some embodiments of the IDE 102 may include code libraries 112 that include
common code functions, objects, interfaces, and/or other structures that can be linked into a

service under development and reused across multiple developments.

[0048] Services can be developed and thoroughly tested within the IDE 102 until they are
ready for deployment. The services can then be deployed to a production/deployment
environment 104. The production/development environment 104 may include many different
hardware and/or software structures, including dedicated hardware, virtual machines, and
containerized platforms. Prior to this disclosure, when a service 114 was deployed into the
production/deployment environment 104, the service 114 would no longer have runtime access
to many of the tools used in the IDE 102. Any functionality needed by the service 114 to run in
the production/development environment 104 needed to be packaged from the code libraries 112
and deployed with the service 114 into the production/deployment environment 104.
Additionally, the service 114 would typically be deployed without any of the functionality for
the debugger 110 or a copy of the source code from the source code editor 106. Essentially, the

service 114 would be deployed to the production/deployment environment 104 with all of the



10

15

20

25

WO 2019/068037 PCT/US2018/053628

functionality required for runtime operation, but would be stripped of the information that was

only used during development.

[0049] FIG. 2 illustrates a specialized computer hardware system that is specifically designed
to run the embodiments described herein. By way of example, the service 114 can be deployed
into an Infrastructure as a Service (IaaS) cloud computing environment 202. This is a form of
cloud computing that provides virtualized or shared computing resources over a network. The
[aaS cloud computing environment 202 may also include or be coupled with other cloud
computing environments arranged as Software as a Service (SaaS) and/or Platform as a Service
(PaaS) architetures. In this environment, the cloud provider can host an infrastructure of
hardware and/or software components that were traditionally present in an on-premises data
center. This hardware may include servers, storage, networking hardware, disk arrays, software
libraries, and virtualization utilities such as a hypervisor layer. The IaaS environment 202 can be
provided by a commercial source, such as Oracle® or other publicly available cloud platforms.
The [aaS environment 202 may also be deployed as a private cloud using a private infrastructure

of hardware and software.

[0050] Regardless of the type of cloud environment, the service 114 can be deployed onto a
number of different types of hardware/software systems. For example, the service 114 can be
deployed to dedicated hardware 206. The dedicated hardware 206 may include hardware
resources, such as servers, disks, operating systems, software packages, and so forth, that are
specifically assigned to the service 114. For example, a specific server may be allocated to

handle traffic flowing to and from the service 114.

[0051] In another example, the service 114 can be deployed to hardware/software that is
operated as one or more virtual machines 208. A virtual machine is an emulation of a computer
system that provides the functionality of the dedicated computer hardware 206. However,
instead of being dedicated to a specific function, the physical hardware can be shared by number
of different virtual machines. Each virtual machine can provide all the functionality needed to
execute including a complete operating system. This allows virtual machines having different
operating systems to run on the same physical hardware and allows multiple services to share a

single piece of hardware.

10



10

15

20

25

30

WO 2019/068037 PCT/US2018/053628

[0052] In a another example, the service 114 can be deployed to a container platform 210. The
container platform differs from the virtual machines 208 in a number of important ways. First,
the container platform 210 packages individual services into containers as described in greater
detail below in FIG. 3. Each container shares a host operating system kernel, and they also share
binaries, libraries, and other read-only components. This allows containers to be exceptionally
light — often only a few megabytes in size. Additionally, a lightweight container is very
efficient, taking just seconds to start versus the minutes required to boot up a virtual machine.
Containers also reduce management overhead by sharing the operating system and other libraries
that can be maintained together for the entire set of containers in the container platform 210.
Even though containers share the same operating system, they provide an isolated platform, as
the operating system provides virtual-memory support for isolation. Container technologies may
include Docker® containers, the Linux Libcontainer®, the Open Container Initiative (OCI),
Kubernetes®, CoeOS, Apache® Mesos, along with others. These containers can be deployed to
a container orchestration platform, which may be referred to herein as simply the “container
platform™” 210. A container platform manages the automated arrangement, coordination, and
management of deployed software containers. The container platform 210 can provide service
discovery, load-balancing, health checks, multiple deployments, and so forth. The container
platform 210 may be implemented by any publicly available container platform, such as

Kubernetes, that runs containers organized in nodes and pods.

[0053] Regardless of the platform 206, 208, 210 on which the service 114 is deployed, each of
the platforms 206, 208, 210 can provide service endpoints 212, 214, 216 that provide public
access for calling the service 114. Generally, these endpoints can be accessed through an HTTP
call and are associated with an IP address and a port number. By connecting to the correct IP
address and port number, other services can call services deployed to any of the platforms 206,
208, 210 when they are made publicly available. Each service, such as service 114, may include
its own proprietary formats and data requirements for calling the service. Similarly, each service
may return results that are specific in format and data type to that service 114. In addition to the
service-specific requirements, the particular deployment platform 206, 208, 210 may also include
additional requirements for interacting with the service 114, such as programming languages,
package formats (JSON, XML, etc.) that need to be complied with to properly interact with the

service, and so forth.

11



10

15

20

25

30

WO 2019/068037 PCT/US2018/053628

[0054] Although the examples above allow the service 114 to be deployed to any of the
described platforms 206, 208, 210, the embodiments described herein are specifically designed
for the container platform 210 described above. Thus, embodiments that are specifically recited
to be deployed in a “container platform” can be distinguished from other embodiments that are
specifically recited to be deployed in a virtual machine platform, on the server or dedicated

hardware platform, or generally in an TaaS environment.

[0055] FIG. 3 illustrates a data organization that may be specific to the container platform 210
used by some of the embodiments described herein. Generally, any deployment of a service to
the container platform will be deployed to a pod 304, 306. A pod is an abstraction that
represents a group of one or more application containers (e.g., Docker or rtkt). A pod may also
include some shared resources that are commonly available to all of the containers within the
pod. For example, pod 304 includes container 310 and container 312. Pod 304 also includes a
shared resource 308. The resource may include a storage volume or other information about how
containers are run or connected within the pod 304. The pod 304 can model an application-
specific logical host that contains different service containers 310, 312 that are relatively tightly
coupled. For example, service 326 in container 310 can utilize the resource 308 and call service
320 in container 312. Service 320 can also call service 322, which in turn calls service 324, each
of which are deployed to container 312. The output of service 324 can be provided to a network
IP address and port 318, which is another common resource shared by the pod 304. Thus, the
services 320, 322, 324, 326 all work together with the shared resource 308 to provide a single
service that can be accessed by the IP address and port numbe 318 by services run in other
containers. The service can also be accessed through the IP address and port 318 by computer
systems that are external to the container platform, such as a workstation, a laptop computer, a
smart phone, or other computing device that is not part of the container platform or IaaS

environment.

[0056] In the simplest deployment, each container may include a single service, and each pod
may include a single container that encapsulates the service. For example, pod 306 includes only
a single container 314 with a single service 328. The single service is accessible through the IP
address and port number 316 of the pod 306. Typically, when a service is deployed to the
container platform, a container and a pod will be instantiated to hold the service. A number of

different pods can be deployed to a container node 302. Generally, pods run within nodes. A

12



10

15

20

25

30

WO 2019/068037 PCT/US2018/053628

node represents a worker machine (either virtual or physical) in the container platform. Each
node is managed by a “master” that automatically handles scheduling pods within each of the
nodes. Each node can run a process that is responsible for communication between the master
and the node and for managing the pods in containers on the machine represented by the node.
Each node may also include a container runtime responsible for pulling a container image from a

registry, unpacking the container, and running the service.

[0057] FIG. 4 illustrates an API registry 404 that can be deployed to the IDE 102 and the
production/runtime environment 104, according to some embodiments. As described above, a
technical problem exists wherein when the service 114 is deployed from the IDE 102 to the
production/deployment environment 104, the service 114 loses runtime access to information
that is exclusively available in the IDE 102. The API registry 404 is accessible by the service
114 while it is deployed and operating during runtime in the production/development
environment 104. The previous technical problem that isolated development functions from
runtime functions is overcome by the API registry 404 by the registration of services with the
API registry 404 during development and providing an API definition and/or API properties to
the APIregistry 404. The information defining the API can be used by new services in
development in the IDE 102 as well as services that have been deployed to the
production/deployment environment 104. After this registration process is complete, the service
114 can operate using client libraries that access the API registry 404 during runtime to ensure
that the API functions are correctly bound to the current IP address and port number of the
corresponding service. The API registry 404 represents a new data structure and processing unit

that was specifically designed to solve these technical problems.

[0058] Another technical problem that existed in the art was implementing service properties
as they are deployed to the production/development environment 104. For example, if a service
was to be deployed with high availability, the developer would need to build container
deployment files that specifically instantiated multiple instances of the service in the container
platform and balanced traffic in such a way that the service was always available. Service
developers did not always have this expertise, nor were they often able to manage the
deployment of their service. As described below, the API registry 404 allows a service to simply

select properties, such as high availability, that can then be implemented automatically by the

13



10

15

20

25

30

WO 2019/068037 PCT/US2018/053628

API registry 404. This technical solution is possible because the API registry 404 bridges the
gap between the IDE 102 and the production/deployment environment 104.

[0059] FIG. S illustrates the deployment of the API registry 404 for use with the container
platform 210 at runtime, according to some embodiments. One of the technical solutions and
improvements to the existing technology offered by the API registry 404 is the maintenance of
stable endpoints for service calls, as well as the simplification and automatic code generation for
accessing the service calls. Prior to this disclosure, calls between services were point-to-point
connections using, for example, an HTTP call to an IP address and port number. As services are
updated, replaced, relocated, and redeployed in the container platform 210, the IP address and
port number may change frequently. This required all services that called an updated service to
update their IP address and port numbers in the actual code that called that service. The API
registry 404 solves this technical problem by providing a dynamic binding between the IP
address and port number of a service and an API function that is made available through the API
registry. The client libraries that are automatically generated by the API registry 404 can include
a function that accesses the API registry 404 to retrieve and/or verify a current IP address and
port number for a particular service. Thus, a first service connecting to a second service need
only perform a one-time generation of a client library to provide a lifetime-stable connection to

the second service.

[0060] Another technical problem solved by the API registry 404 is the automatic generation
of client libraries. Prior to this disclosure, a first service accessing a second service required the
developer to write custom code for accessing the second service. Because this code could
change over time, incompatibilities would a rise between the first and second services that
required updates to both services. The API registry 404 solves this technical problem by
uploading an API definition file that is used to automatically generate client libraries for calling
services. Therefore, a service can specify specifically how the calling code in any other service
should operate, which guarantees compatibility. These client libraries also greatly simplify and
encapsulate the code for calling the service. As described below, a complicated HTTP call using
IP address and a port numbers can be replaced with a simple member function call in a language
that is specific to the calling service (e.g., Java, C#, etc.). This allows a calling service to select
an API function from the API registry 404, and the code that implements at function can be

downloaded to the calling service as a client library.

14



10

15

20

25

30

WO 2019/068037 PCT/US2018/053628

[0061] FIG. 6A illustrates a flowchart of a method for deploying the API registry 404,
according to some embodiments. The method may include deploying the API registry service to
the container environment (601). The API registry can be implemented as a service operating in
the container environment within the container. Thus, the API registry can be actively running
after services are deployed within the container environment such that it can be accessed at run
time. The APIregistry can also be linked to the existing IDE described above. The method may
further include discovering ports for available services in the container platform (603). As
services are deployed to the container platform, the API registry can launch a discovery process
that sequentially traverses each of the services deployed to the container platform. For each
service, the API registry can detect and record an IP address and a port number. The listing of IP
address and port numbers discovered by this process can be stored in a data structure, such as a
table associated with the API registry. Each IP address and port number can also be stored with
a name for the service or other identifier that uniquely identifies the service on the container
platform. These initial steps shown in flowchart in FIG. 6A provide a starting point for the API
registry to begin operating in the runtime environment of the container platform and to be

available to services under development in the IDE.

[0062] FIG. 6B illustrates a software structure of the container platform 210 when the API
registry is deployed using the flowchart in FIG. 6A, according to some embodiments. As
described above, the API registry 404 can be deployed to a container 620 in the container
platform 210. The container 620 can operate within one or more pods and within a node as
described above in FIG. 3. The API registry 404 can be made privately available to any of the
other containers in the container platform 210. In some embodiments, the API registry 404 can
also be made publicly available to other devices that are not part of the container platform 210.
As a containerized service, the API registry 404 may have an IP address and port number that are
available to other services. However, the IP address and port number of the API registry 404
would only be used by the code that is automatically generated in client libraries, therefore some
embodiments do not need to publish the IP address and port number for the API registry 404.
Instead, the client libraries in the IDE itself can maintain an up-to-date listing of the IP address
and port number for the API registry 404 such that it can be contacted during development,

deployment, and runtime of other services.

15



10

15

20

25

30

WO 2019/068037 PCT/US2018/053628

[0063] After deploying the API registry 404 to the container 620, the API registry 404 can
execute a discovery process. The discovery process can use a directory listing for nodes in the
container platform to identify pods that implement services with an IP address and port number.
The API registry 404 can then access a unique identifier, such as a number or name for each
available service, and store an identifier with each IP address and port number in the container
platform 210. This discovery process can be periodically executed to detect new services that
are added to the container platform 210, as well as to identify existing services that are removed
from the container platform 210. As described below, this discovery process can also be used to
detect when an IP address and port number change for an existing service. For example, the API
registry 404 can discover services having endpoints 602, 604, 606, 608. In the process described
below, the API registry 404 can bind each of these endpoints 602, 604, 606, 608 to an API
function that is registered with the API registry 404. At some point after this initial discovery,
the IP address and/or port number for endpoint 602 may be changed when the service associated
with endpoint 602 is replaced, updated, or revised. The API registry 404 can detect this change
to endpoint 602 and update a binding to an existing API function provided by the API registry
44,

[0064] Similarly, the API registry 404 can use the discovery process to detect when endpoints
are no longer available, and then remove the API functions associated with the service. In some
embodiments, when a service has been registered with the API registry 404, but the
corresponding API functions are not currently bound to a valid endpoint, the API registry 404
can provide a mock response to any service calling the corresponding API functions. For
example, if an API has been registered for the service corresponding to endpoint 604, but
endpoint 604 is not currently available, the API registry 404 can intercept a call made to
endpoint 604 and provide default or dummy data in response. This allows services that call the
service associated with endpoint 604 to maintain functionality and/or continue the design process
without “breaking” the connection to this particular service. Mock/testing data scenarios will be

described in greater detail below.

[0065] FIG. 7A illustrates a flowchart of a method for registering a service with the API
registry 404, according to some embodiments. The method may include receiving an upload of
an API definition (701). The API definition may be provided in the form of a data packet, file,

or a link to an information repository. The API definition may include any information that can

16



10

15

20

25

30

WO 2019/068037 PCT/US2018/053628

be used to identify and define API functions that should be bound to endpoints associated with
the service. For example, some embodiments of the API definition may include the following
data: a service name or other unique identifier; function names corresponding to service
endpoints and calls, data inputs required to call the service with corresponding descriptions and
data types; result data formats and data types; a current IP address and/or port number;
documentation that describes the functionality of the API functions that will be associated with
the endpoint; default or dummy data values that should be returned during mock/test scenarios;
and any other information that may be used by the API registry 404 to translate the HTTP
request received by the endpoint into a client library that uses API function calls of class data

objects.

[0066] The method may also include creating corresponding API functions based on the
uploaded API definitions (703). These API functions can be generated automatically based on
the API definition. Each endpoint for a service may be associated with a plurality of different
API functions. For example, an endpoint implementing a RESTful interface may receive HTTP
calls for POST, GET, PUT, and DELETE functions at the same IP address and port number.
This may result in, for example, for different API functions. For example, if the interface
represents a list of users, this can correspond to at least four different API functions, such as
GetUser( ), AddUser( ), RemoveUser( ), and UpdateUser( ). Additionally, each API function
may include a number of different parameter lists, such as UpdateUser(id), UpdateUser(name),
UpdateUser(firstname, lastname), and so forth. These API functions can be generated and made
available to other services through the API registry. As will be described in greater detail below,
it should be noted that services are not required to call these functions through the API registry.
Instead, these functions are made available to browse in the API registry, and when selected, the

API registry can generate client libraries that implement these functions in the calling service.

[0067] The method may additionally include creating a binding in the API registry between the
API function and the corresponding endpoint of the service (705). Based on the discovery
process described above and the registration process of steps 701, the API registry can now
create a dynamic binding between an endpoint for a service in the container platform and the API
function created by the API registry. In the data structure formed above when discovering
available endpoints and services, the API registry can now store a corresponding function or set

of functions for each endpoint. As described above, this binding can be constantly updated as

17



10

15

20

25

30

WO 2019/068037 PCT/US2018/053628

the discovery process determines when services are updated, moved, replaced, or added to the
container platform. This allows the client libraries created in a calling service to first check with

the API registry to verify or receive a current IP address and port number for the service.

[0068] FIG. 7B illustrates a hardware/software diagram of the steps for registering an API
with the API registry 404, according to some embodiments. As described above, the API
registry 404 can be instantiated and running in a container 620 in the container platform 210.
Even though the container platform 210 represents a production/deployment environment, the
API registry 404 can still be accessed by the IDE 102 used to develop the service. Thus, the IDE
102 can provide a mechanism for uploading the API definition files 702 to the API registry 404.
Specifically, the user interface of the IDE 102 may include a window or interface that allows the
developer to define and/or populate fields for the API definition files 702. This information
described above may include function names, parameter lists, data types, field lengths, object
class definitions, an IP address and port number, a service name or other unique identifier, and so
forth. This information can be uploaded to the API registry 404 and linked in a dynamic binding
to a particular IP address and port number for the endpoint 602. Finally, the API registry 404
can generate one or more API functions 704 that can be made available through the API registry

404.

[0069] After registering a service with the API registry 404 and generating one or more API
functions, the API registry can then make those functions available for developers as they design
services. FIG. 8 illustrates examples of a graphical interface 802 and a command line interface
804 for browsing and selecting APIs that are registered with the API registry 804, according to
some embodiments. When programming and developing a new service for the container
platform, the developer can access the graphical interface 802 to browse and select API functions
that can be used in their service. This graphical interface 802 is merely an example and not
meant to be limiting of the types of graphical interfaces that can be used to browse and select

API functions.

[0070] In this embodiment, the IDE 102 can summon the graphical interface 802 to provide a
list of APIs that are registered with the API registry. In this embodiment, the APIs are
categorized based on endpoint. For example, one endpoint corresponding to a service may offer

a RESTful interface for storing user records (e.g., “UserStorage”). The graphical interface 802

18



10

15

20

25

30

WO 2019/068037 PCT/US2018/053628

can display all of the API functions (e.g., “CreateUser”, “DeleteUser”, “UpdateUser”, etc.) that
are available through the selected endpoint. Other embodiments may group functions based on
the overall service in cases where the service offers multiple endpoints. The graphical interface
802 can receive a selection of one or more API functions to be used in a calling the service. The
API registry can then provide documentation that illustrates how to use the API function,
including required parameters and return values. One having ordinary skill in the art will
understand that the command line interface 804 can provide similar information and can receive

similar inputs as the graphical interface 802.

[0071] The interfaces 802, 804 illustrated in FIG. 8 provide a number of technical benefits.
First, these interfaces 802, 804 provide an up-to-date listing of all APIs that are registered with
the APIregistry. This corresponds to a list of all services currently available in the container
platform. Instead of being required to look up documentation, contact a service developer,
and/or perform other inefficient tasks for locating a list of available services, a service developer
can retrieve and display this information in real-time. Additionally, as services are updated, the
API definition files can be updated in a corresponding fashion. This then updates the display

illustrated in FIG. 8 to provide up-to-date availability information for each API function.

[0072] FIG. 9 illustrates a flowchart of a method for using a service and its corresponding
function registered with the API registry, according to some embodiments. The method may
include providing a listing of registered APIs (901). This step may be omitted in cases where the
desired service is already known. However, generally the services can be displayed for browsing
and navigation using the interfaces described above in FIG. 8. The method may also include
receiving a selection of an API function (901). This selection may be received by the API
registry from a developer of the service. For example, a developer may decide to update a
database of user records using the CreateUser( ) function described above. FIG. 10 illustrates
how a selection 1002 may be received by the API registry through the graphical interface 802 for
the CreateUser( ) function. Other embodiments may receive the selection through the command

line interface or through other input methods provided by the IDE.

[0073] Referring back to FIG. 9, once the selection of an API function is received, the API
registry can generate one or more client libraries for the calling service (905). Generating client

libraries may provide the calling service with the service endpoint that is dynamically bound to

19



10

15

20

25

WO 2019/068037 PCT/US2018/053628

the API function. Specifically, the IDE can generate a set of class objects in the IDE that
encapsulate the functionality required to interface directly with the service endpoint in the
container platform. In some embodiments, client libraries may include object classes that can be
instantiated or used to call member functions that embody the code required to communicate

with the service. Examples of these client libraries will be described in greater detail below.

[0074] The method may additionally include providing test data (907). When a service is
registered with the API registry, it need not be complete. Instead, the service can indicate to the
API registry that it is not yet ready to provide functional responses to calling services. In some
embodiments, the API definition file that is uploaded to the API registry can include a
specification of the type of information that should be returned before the service is functional.
When the calling service calls the API function, the client library generated by the API registry
can route requests to the API registry instead of the service endpoint. The API registry can then
provide a response using dummy, null, or default values. Alternatively, the code within the

client libraries themselves can generate the default data to be returned to the calling service.

[0075] It should be appreciated that the specific steps illustrated in FIG. 9 provide particular
methods of using an API registry according to various embodiments of the present invention.
Other sequences of steps may also be performed according to alternative embodiments. For
example, alternative embodiments of the present invention may perform the steps outlined above
in a different order. Moreover, the individual steps illustrated in FIG. 9 may include multiple
sub-steps that may be performed in various sequences as appropriate to the individual step.
Furthermore, additional steps may be added or removed depending on the particular applications.

One of ordinary skill in the art would recognize many variations, modifications, and alternatives.

[0076] FIG. 11 illustrates an example of a client library generated for a service automatically
by the API registry, according to some embodiments. This client library 1102 may correspond to
a service that stores user records. This client library 1102 and the corresponding class and
service are provided merely by way of example and not meant to be limiting. As described
above, each API function and service can specify how client libraries should be generated by
virtue of the API definition file uploaded to the API registry. Therefore, the principles described

below in relation to the “User” service may be applied to other services.

20



10

15

20

25

30

WO 2019/068037 PCT/US2018/053628

[0077] To represent the User service, the API registry can generate a class for a User. When
the calling service requests client libraries to be generated by the API registry, the calling service
can specify a programming language being used by the calling service. For example, if the
calling service is being written in Java in the IDE, then the API registry can generate class
libraries in the Java programming language. Alternatively, if the calling service is being written
in C#, then the API registry can generate class libraries in the C# programming language. The
User class can be generated to have member functions that correspond to different operations
that may be performed through the service endpoint. These member functions can be static such
that they do not require an instantiated instance of the User class, or they may be used with

instantiated User objects.

[0078] In this example, the User service may use a RESTful interface to edit individual user
records that are stored by the service. For example, the API registry can generate the
CreateUser( ) function to implement a POST call to the User service. One of the functions that
can be performed by the class library is to parse, filter, and format data provided as parameters to
the API function to be sent as a data packet directly to the service. In this example, the
CreateUser( ) function can accept parameters that are formatted for the convenience of the
calling service. For example, the calling service may separately store strings for the user first
name and the user last. However, the POST command may require a concatenated string of the
first name in the last name together. In order to accommodate a user-friendly set of parameters,
the client library 1102 can perform a set operations that format the data received as parameters to
the function into a format that is compatible with the service endpoint. This may include
generating header information, altering the format of certain data fields, concatenating data
fields, requesting addional data from other sources, performing calculations or data transforms,
and so forth. This may also include packaging the reformatted parameters into a format, such as

JSON, XML, etc.

[0079] Once the parameters are correctly formatted into a package for the service endpoint, the
client library 1102 can also handle the POST call to the service. When the client library is
generated, the IP address and port number for the service can be inserted into the CreateUser( )
function to be used in an HTTP request to the service. Note that the details of the HTTP request
are encapsulated in the CreateUser( ) function. When a developer for a calling service wants to

use the POST function made available by the service, instead of writing the code in the library

21



10

15

20

25

30

WO 2019/068037 PCT/US2018/053628

1102 themselves, they can instead select the User service from the API registry. The API
registry will then automatically generate the client library 1102 that includes the User class.
Then, to use the POST function, the service developer can simply use the

User.CreateUser(“John”, “Smith”, 2112) function to add the user John Smith to the service.

[0080] FIG. 12 illustrates an embodiment of a client library 1202 that accommodates dynamic
binding between service endpoints and API functions, according to some embodiments. In this
example, when the API registry generates the client library 1202, the CreateUser( ) function can
include code 1204 that dynamically retrieves the IP address and port number for the service. The
calling service 114 can use the GetIPPort( ) function to send a request to the API registry 404 at
run time when the calling service 114 is operating in the production/deployment environment
104, such as the container platform. The API registry 404 can access its internal table that is
consistently updated to maintain up-to-date bindings between the API functions and the service
endpoints. The API registry 404 can then return a current IP address and port number to the
calling service 114. The client library 1202 can then insert the IP address and port number into
the HTTP POST code that connects to the service. Because the API registry 404 can be accessed
at run time by any calling service in the container platform, none of these services need to be
updated or patched when the IP address for port number for the service being called changes.
Instead, the API registry 404 can provide up-to-date information every time a service is called.

In some embodiments, the GetIPPort( ) function may only need to call the API registry 404 once
an hour, once a day, once a week, and so forth, to minimize the number of function calls made
outside of the container for the service 114 under the assumption that the service endpoints do

not change frequently in the production environment.

[0081] FIG. 13 illustrates an embodiment of a client library 1302 that can marshal additional
data to complete an input data set for a service call, according to some embodiments. To
simplify using the client library 1302, the client library 1302 may minimize the number of
parameters required from the service developer. Additional data that may be required to make
the service call can be retrieved from other sources and thus may be omitted from the parameter
list. These additional parameters can instead be retrieved directly by the client library 1302 from
these other sources. For example, creating a new user may include specifying a user role for the
user. Instead of requiring the service developer to provide a user role as one of the parameters,

the client library 1302 can instead include code 1304 that automatically retrieves a role for the

22



10

15

20

25

WO 2019/068037 PCT/US2018/053628

user from some other source. In this example, the user role can be retrieved from a database,
from another service in the container platform, or from another class storing user roles within the
calling service. In any of these cases, the code 1304 can automatically retrieve the user role and

package it as part of the input data for the HTTP POST command sent to the service.

[0082] In addition to marshaling and formatting data for inputs to the service, the client library
1302 can also parse and return data received from the service and handle error conditions. In this
example, the POST command may return a data packet into the Result variable. Often times, a
service may return a data packet that includes more information than the calling service needs.
Therefore, the client library 1302 can parse the data fields in the Result variable and extract,
format, and package data from the Result variable into a format that is more usable and expected
by the User class. In this example, the code 1306 can extract fields from the Result variable and
use them to create a new User object that is returned from the API function. In another example
using a GET command, individual API functions can be generated in the User class that extract
different fields from the Result variable from the GET command. For example, the User class
could provide a GetFirstName(id) function, a GetLastName(id) function, a GetRole(id) function,
and so forth. Each of these functions may include very similar code while returning different

fields from the Result variable.

[0083] In addition to parsing results, the client library 1302 may also generate code 1308 that
handles error conditions associated with using the service. In this example, the code 1308 can
test a status field in the Result variable to determine whether the POST command was successful.
If the command was successful, then the CreateUser( ) function can return a new User object. In
cases where the Post command failed, the function can instead return a null object and/or retry

the call to the service.

[0084] FIG. 14 illustrates a client library 1402 that can handle retries when calling a service,
according to some embodiments. Like the example of FIG. 13, the client library 1402 uses a

status in a Result variable populated by the POST HTTP call to determine whether the call was
successful or not. While the result is unsuccessful, the client library 1402 can continue to retry
until the call is successful. Some embodiments may use a counter or other mechanism to limit

the number of retries or add a wait time between retries.

23



10

15

20

25

WO 2019/068037 PCT/US2018/053628

[0085] As described above, some embodiments may also upload a set of API properties to the
API registry along with the API definition. FIG. 15A illustrates a method of providing API
properties to the API registry, according to some embodiments. The method may include
receiving an upload of an API definition (1501). The method may also include receiving an
upload of API properties (1503). The upload of properties may be part of the same transmission
as the upload of the API definition. In some embodiments, the API properties may be part of the
API definition. In some embodiments, the API properties may be one or more flags or
predefined data fields that are checked to indicate that property should be set by the API registry.
In some embodiments, the API properties need not conform to any pre-structured format, but can
instead be represented by instruction code that causes the API registry to implement the features
described below, such as authentication, encryption, and so forth. The API properties can be

stored along with the API definition for each service.

[0086] The method may additionally include creating the API binding between the service and
the API (1505). This operation may be performed as described in detail above. Additionally, the
method may include using the API properties to perform one or more operations associated with
the service (1507). The API properties may be used at different phases during the lifecycle of
the service. Generally, this may be described as using the API properties to to implement a
function associated with the property during the deployment of a service, when generating client
libraries for service, and/or when calling service. Examples of each of these functions will be

described below in greater detail.

[0087] It should be appreciated that the specific steps illustrated in FIG. 15A provide particular
methods of providing API properties to an API registry according to various embodiments of the
present invention. Other sequences of steps may also be performed according to alternative
embodiments. For example, alternative embodiments of the present invention may perform the
steps outlined above in a different order. Moreover, the individual steps illustrated in FIG. 15A
may include multiple sub-steps that may be performed in various sequences as appropriate to the
individual step. Furthermore, additional steps may be added or removed depending on the
particular applications. One of ordinary skill in the art would recognize many variations,

modifications, and alternatives.

24



10

15

20

25

30

WO 2019/068037 PCT/US2018/053628

[0088] FIG. 15B illustrates a hardware/software diagram of how a service can provide API
properties to the API registry, according to some embodiments. While developing a service in
the IDE 102, a service developer can provide the API definition file 1502 and one or more
properties 1504 to the API registry 404. Because the API registry 404 is accessible in both the
IDE 102 and the container platform at runtime, the API registry 404 can store the properties
1504 and use them to affect how a service is deployed, called, and/or used to generate client

libraries during both development and runtime scenarios.

[0089] FIG. 16 illustrates a hardware/software diagram where a property is used by the API
registry to deploy a service with high availability, according to some embodiments. In addition
to the API definition file 1505 for a particular service, the API registry 404 may receive a
property 1602 indicating that the service should be deployed to be very resilient, or have high
availability. This property 1602 may be received as a set of instructions that are executed by the
API registry 404 to deploy the service to have high availability. This option allows the
developer to define what it means to be “high-availability” for this service. For example, the
property 1602 may include instructions that cause the API registry 404 to deploy multiple
instances 602, 604 of the service to the container platform 210. By executing these instructions,
the API registry 404 does not need to make any decisions or determinations on its own, but can

instead simply execute the deployment code provided as part of the property 1602.

[0090] The property 1602 may also be received as a flag or setting that indicates to the API
registry 404 an option to execute existing instructions at the API registry 404 for deploying the
service with high availability. With this option, the API registry 404 need not receive any code
to be executed as the property 1602. Rather, the API registry 404 can recognize the high-
availability property 1602 and execute code that is maintained in the API registry 404 to deploy
multiple instances 602, 604 of the service. This allows the API registry 404 to define what it
means to be “high-availability” for the deployment of any service that is registered with the API
registry 404.

[0091] Because the APIregistry 404 is connected to the runtime environment of the container
platform 210, the API registry 404 can interact with the container platform 210 to deploy the
instances 602, 604 that determine the runtime availability of the service. Note that the two

instances 602, 604 of the service illustrated in FIG. 16 are provided merely as an example and

25



10

15

20

25

30

WO 2019/068037 PCT/US2018/053628

not meant to be limiting. A high-availability service may include more than two redundant

instances of a service being deployed to the container platform.

[0092] Some embodiments may include code in the API registry 404 that can be executed as a
default. If the property 602 includes only a simple indication that high availability is desired, the
API registry 404 can execute its own code. If the property 602 includes deployment code for
deploying the service, the API registry 404 can instead execute the code of the property 1602. In
some cases, the property 1602 may include only a portion of the code needed to deploy the
service with high-availability. The API registry 404 can execute the portions of the code that are
provided by the property 1602, then execute any code not provided by the property 1602 using
the code at the API registry 404. This allows developers to overwrite an existing definition of
how to execute a property, such as high-availability, at the API registry 404, while still allowing
the API registry 404 to provide a uniform definition for executing properties that can be used by

registered services.

[0093] In some embodiments, a high-availability property may also cause the container
platform 210 to deploy a load balancing service 606 that distributes requests to the multiple
instances 602, 604 of the service. The endpoint of the load balancing service 606 can be
registered with the API registry 404 and made available to other services. Alternatively or
additionally, each of the multiple instances of the service 602, 604 may be registered with the
API registry 404 as service endpoints.

[0094] In each of the examples described below, the same principles discussed in relation to
FIG. 16 may apply. For example, any property described below may be accompanied with code
that may be received by the API registry 404 and used to overrule code that would otherwise be
executed by the API registry 404. Prior to this disclosure, no method existed for creating a
uniform default for executing properties while simultaneously allowing service developers to
overrule those properties if needed. Therefore, the API registry 404 solves a technical problem
by allowing code to be executed at the API registry 404 as a default while still allowing that code

to be overruled by a property 1602 received from a developer.

[0095] FIG. 17 illustrates a hardware/software diagram of a property that enforces end-to-end
encryption through the API registry, according to some embodiments. Along with the API
definition file 1505, the API registry 404 may receive a property 1704 that indicates, or includes

26



10

15

20

25

30

WO 2019/068037 PCT/US2018/053628

code that generates, end-to-end encryption for calling the service 1708. During development, the
service 1708 can include its own decryption/encryption code 1710 that causes packets received
by the service 1708 to be decrypted and packets returned by the service 1708 to be encrypted.
Prior to this disclosure, the developer would need to provide a specification that indicated users
of the service 1708 needed to provide encryption to be compatible with the service 1708. This
embodiment solves a technical problem by allowing the service 1708 to dictate how the client
libraries are generated in a calling service 1706, which ensures compatibility with the encryption

of the service 1708.

[0096] In some embodiments, the developer of the service 1708 need not include the
encryption/decryption code 1710 in the service 1708. Instead, the property 1704 can simply
instruct the API registry 404 to enforce end-to-end encryption for the service 1708. When the
service 1708 is deployed to the container platform 210, the API registry 404 can cause the
encryption/decryption code 1710 to be inserted into the service 1708 when it is deployed. This
allows the developer to select between different encryption regimes based on the property 1704

and/or to allow the API registry 404 to select a preferred encryption regime as a default.

[0097] End-to-end encryption requires not only the encryption/decryption code 1710 to be
inserted into the service 1708 when it is deployed or during development, but it also requires that
a calling service 1706 also includes compatible encryption/decryption code. As described above,
when the calling service 1706 needs to use the service 1708, the API registry 404 can generate
one or more client libraries 1702 that completely implement the code needed to interact with the
service 1708 in a simple and efficient manner. When this client library 1702 is generated, the
API registry 404 can analyze the property 1704 to determine an encryption regime used by the
service 1708. Then, based on that property 1704, the API registry 404 can cause a compatible
encryption/decryption code to be added to the client library 1702 for the calling service 1706.
Thus, when the calling service 1706 sends a request to the service 1708, the information may be
encrypted at the calling service 1706 and decrypted once received by the service 1708.

Similarly, the service 1708 can encrypt a response before it is sent to the calling service 1706,
which can then decrypt the response before passing the response outside of the client library
1702. This causes the entire encryption process to be entirely transparent to a developer of the
calling service 1706. Instead of being required to implement a compatible encryption/decryption

regime when calling the service 1706, the property 1704 may ensure that the API registry 404

27



10

15

20

25

30

WO 2019/068037 PCT/US2018/053628

has already generated the encryption/decryption code in the client library 1702 to be compatible

and implement the end-to-end encryption property.

[0098] FIG. 18 illustrates a property 1804 for an API registry to implement usage logging for
a service 1808, according to some embodiments. Prior to this disclosure, to monitor and log the
frequency, source, success rate, etc., of requests to a service, the service itself had to log this
information. Alternatively, the container environment had to monitor the service and log its
usage information. Logging information at the service 1808 itself is terribly inefficient, and
slows down the throughput for every request handled by the service. Similarly, the overhead of
requiring the container platform to monitor and log all the calls made to particular services also
represents a tremendous overhead to the scheduling and orchestration of container services. This
embodiment solves this technical problem by inserting code directly into client libraries for
services that call the service 1808. This allows the usage of the service 1808 to be logged and
monitored without affecting the performance of the service 1808 at all in terms of memory usage

or CPU usage.

[0099] In addition to the API definition file 1505, the API registry 404 can receive a property
1804 that indicates, or includes code that implements, usage logging 1804. When a developer of
a calling service 1806 desires to submit requests to the service 1808, the API registry 404 can
automatically generate a client library 1802 that includes code for logging activity related to the
service 1808. As described above, this code can be generated based on default code maintained
and executed by the API registry 404, or can be generated by code received with the property
1804 and executed by the API registry 404.

[0100] The code for logging activity in the client library 1802 may include counters that are
incremented every time the service 1808 is called, functions that cause activity to be logged to a
log file when the service 1808 is called, and other functions that monitor and record
characteristics of the requests sent to the service 1808 and responses received from the service
1808. Depending on the particular embodiment, this code may monitor many different types of
characteristics associated with requests made of the service 1808. For example, some
embodiments may log the total number of calls made to the service 1808. Some embodiments
may log a success rate for responses received from the service 1808. Some embodiments may

log types of data that are sent in requests to the service 1808. Some embodiments may log times

28



10

15

20

25

30

WO 2019/068037 PCT/US2018/053628

of day or other external information for when the service 1808 is called. Some embodiments
may log input and output packets to/from the service 1808 that can be used for debugging the
service 1808. Some embodiments may log any or all of these characteristics in any combination

and without limitation.

[0101] FIG. 19 illustrates a hardware/software diagram of a property 1904 that can enforce an
authentication protocol for a service 1908, according to some embodiments. Some services may
require that a user identity be authenticated and that the user be authorized to use the service
before responding to a request. Prior to this disclosure, a technical problem existed where the
authentication and authorization procedures took place at the service 1908 itself. This added
overhead in terms of memory usage and CPU usage for every call received by the service 1908,
and increased the latency of the service in response. This in turn decreased throughput, and
limited the number of requests that could be processed by the service 1908 during any given time
interval. These embodiments solve this technical problem by moving
authentication/authorization code to the client library 1902 that is automatically generated by the

API registry 1404.

[0102] When a calling service 1906 wants to use the service 1908, the API registry 404 can
generate the client library 1902 that includes code for performing the authorization
and/authentication. In some embodiments, this may include contacting external
authentication/authorization services 1920 that specifically verify user identities and/or
determine whether a user is authorized to use the service 1908. The external
authentication/authorization services 1920 may include an access manager, a Lightweight
Directory Access Protocol (LDAP) manager, an Access Control List (ACL), a network
authentication protocol manager, and so forth. The code in the client library 1902 can then send

the call to the service 1908 when the authentication/authorization procedure is successful.

[0103] By offloading the authentication/authorization enforcement to the API registry 404 and
the client library 1902, this code can be completely eliminated from the service 1908. Because
significant delays may often accompany interacting with the external
authentication/authorization services 1920, this delay can be removed from the service 1908 to
increase throughput. Additionally, rather than hard coding the authentication/authorization

enforcement into the service 1908, the developer of the service 1908 can instead simply select a

29



10

15

20

25

30

WO 2019/068037 PCT/US2018/053628

predefined authentication/authorization regime using the property 1904 that is sent to the API
registry 404. The API registry 404 can maintain a predefined list of authorization/authentication
with the accompanying implementation code for the client library 1902. This also prevents the
calling service 1906 from sending requests to the service 1908 that cannot be authorized and/or
authenticated. Instead, if the authentication and/or authorization routine is unsuccessful, the call
can be aborted at the client library 1902. This ensures that the service 1908 only receives

requests that are authenticated and/or authorized.

[0104] Another technical improvement provided by the API registry 404 is the ability to
upgrade any of the functionality provided by the properties 1904 without being required to
change any of the code of any registered services. For example, because the
authentication/authorization code has been offloaded to the client library 1902 generated by the
API registry 1404, the client library 1902 can be updated to change the
authentication/authorization regime. None of the code in the calling service 1906 or the service
1908 needs to be modified. Because code is only changed in a single place, this greatly reduces
the probability of code integration errors that would otherwise accompany distributed patches

sent out to every individual service.

[0105] FIG. 20 illustrates a hardware/software diagram for a property 2004 that enables
runtime instantiation of a service, according to some embodiments. Some services may be rarely
used or only used during predefined time intervals. Therefore, deploying a service to the
container platform need not always result in actually instantiating an instance of the service in a
container that is immediately available. In contrast to virtual machines, containers can be
instantiated and activated very quickly. Therefore, a service developer may desire to only have
the service instantiated when it is called. A service developer may also desire to only have the
service instantiated within a predefined time interval. Similarly, the service developer may

specify that the service instance should be deleted after a predefined time interval of inactivity.

[0106] In addition to receiving the API definition file 1505, the API registry 404 can receive a
property 2004 that specifies run-time instantiation or other instantiation parameters. For
example, the property may include a specification of one or more time intervals during which the
service 2008 should be instantiated after deployment. In another example, the property may

include an indication that the service 2008 should only be instantiated on demand. In another

30



10

15

20

25

30

WO 2019/068037 PCT/US2018/053628

example, the property may specify a timeout interval after which the instantiated service 2008

should be deleted from the container platform.

[0107] When a calling service 2006 wants to use the service 2008, the API registry 404 can
generate code in the client library 2002 that handles the run-time instantiation of the service
2008. For example, the Createlnstance( ) function call in the client library 2002 can create a call
to the API registry 404. The API registry can then interact with the container platform 210 to
determine whether an operating instance of the service 2008 is available. If not, the API registry
404 can instruct the container platform 210 to instantiate an instance of the service 2008 in a
container in the container platform 2010. The container platform 210 can then return the
endpoint (e.g., IP address and port number) to the API registry 404. The API registry 404 can
then create a binding between that endpoint and the API function call created in the client library
2002. API registry 404 can then return the endpoint to the client library 2002 which can be used
to create the direct connection between the calling service 2006 and the newly instantiated

service 2008.

[0108] For services that should only be instantiated during predefined time intervals, the API
registry 404 may establish a table of instantiation and deletion times for certain services. Based
on these stored instantiation/deletion times, the API registry 404 can instruct the container
platform 210 to instantiate or delete instances of the service 2008. The API registry 404 can also
specify a number of instances that should be instantiated during these predefined intervals. For
example, from 5:00 PM to 10:00 PM the property 2004 may specify that at least 10 instances of
the service 2008 are active on the container platform 210. When this time interval occurs, the

API registry 404 can instruct the container platform 210 to create the additional instances.

[0109] FIG. 21 illustrates a hardware/software diagram of a property 2104 that implements a
rate limiting function for a service 2108, according to some embodiments. Some services may
need to limit the rate at which requests are received. Other services may need to limit requests
from certain senders or types of services. Prior to this disclosure, this function had to be
performed by the service itself by determining a source for each request, comparing the source to
a whitelist/blacklist, and throttling the rate at which it serviced these requests. As with most of
the examples described above, placing this overhead in the service itself increase the amount of

memory and CPU power used by the service and limited the throughput of the service. These

31



10

15

20

25

30

WO 2019/068037 PCT/US2018/053628

embodiments solve this technical problem by automatically generating the rate limiting code in
the client library generated by the API registry. This allows the service to specify rate limiting
by virtue of the property 2104 without requiring the service 2108 to implement that functionality

with all of its associated overhead.

[0110] When a calling service 2106 wants to send requests to the service 2108, the API
registry 404 can automatically generate the client library 2102 that includes rate limiting code.
When the client library 2102 is generated, the API registry 404 can determine whether the
particular service 2106 should be rate limited. If not, the client library 2102 can be generated as
usual. If the API registry 404 determines that the calling service 2106 should be rate limited
(e.g., by comparison to a whitelist/blacklist), then the API registry 404 can insert code in the
client library 2102 that adds delays, adds counters, and/or otherwise implements the rate limiting
function to ensure that a predefined maximum number of requests are made by the calling
service 2106 in any given time interval according to a predefined rate. This code may also
implement time windows during which the rate limiting function will be active. This allows the

service 2108 to enforce rate limiting during high-traffic intervals automatically.

[0111] As described above, the system may include an IDE 102 and a production/deployment
environment 104. The production/deployment environment 104 may include a cloud computing
platform 202. Applications and services can be developed in the IDE 102 and deployed to the
cloud computing platform 202. Typically, the IDE 102 will include a debugger 110. A
debugger 110 is a software program that is specifically designed to test for errors and locate bugs
in services or applications as they are being developed. Debuggers may use instruction-set
simulators or may run a program directly on the underlying hardware/processor to achieve a high
level of control over the execution of the program instructions. Most importantly, the debugger
allows the developer to stop or halt program execution according to specific conditions
represented by breakpoints. While the program execution is stopped, the developer can examine
variable values, program execution flows, and/or other characteristics of the state of the

application or service.

[0112] While a debugger 110 is particularly useful during the development process in the IDE
102, it is typically not deployed with the service into the cloud computing platform 202.

Deploying a debug version of the service would introduce technical problems that would prevent

32



10

15

20

25

30

WO 2019/068037 PCT/US2018/053628

the efficient use of the cloud computing platform 202. For example, a version of the service that
is compatible with the debugger, referred to herein as a “debug build” typically includes
unnecessary overhead and additional instructions that are required for compatibility with the
debugger 110, but which are not required for regular execution. These additional
instructions/overhead cause the debug build of the service to take longer to run, which increases
latency, reduces throughput, and uses more processing resources of the cloud computing
platform 202. Additionally, the debug build would need to be deployed with the debugger 110
software. Deploying a version of the debugger 110 with every instance of the service would add
a tremendous amount of additional memory usage for each instance of the service, which can in

turn reduce the available memory resources of the cloud computing platform 202.

[0113] Because the debugger 110 is not deployed into the production/deployment environment
104, troubleshooting errors that are uncovered after deployment is particularly difficult. Prior to
this disclosure, a debug build of the service with the debugger 110 would be run in the IDE using
dummy data or preconfigured inputs to try and simulate the real-world flow of request traffic that
the service receives in the production/deployment environment 104. However, this prevents the
service from using real-time, live data that may be optimal for re-creating errors and determining
whether fixes/patches for these errors work properly without interfering with the expected

operation of the service.

[0114] The embodiments described herein make changes to the cloud computing platform 202
such that a debug build of the service can be deployed with a debugger in the
production/deployment environment 104 to receive real-time, live data from actual request
traffic. In some embodiments, a debug client can send specific debug requests that are routed
through a load balancer and directed by a service mesh to a debug instance of the service. This
allows requests from other clients to pass through the same load balancer and service mesh while
continuing to be routed directly to normal instances of the service. In some embodiments, the
service mesh can receive requests from any client and clone the requests to be sent to the debug
instance of the service. These embodiments allow a debug instance of the service to operate in
the cloud computing platform 202 of the production/deployment environment 104 alongside the
normal instances of the service. These embodiments also solve the technical problems described
above by routing real-time, live requests to the debug instance of the service without interrupting

the normal operations of other service instances.

33



10

15

20

25

30

WO 2019/068037 PCT/US2018/053628

[0115] FIG. 22 illustrates a block diagram of a portion of the cloud computing platform 202
for receiving service requests, according to some embodiments. As described above, some
embodiments may include an API registry 404 that can govern how services are deployed and
operated within the cloud computing platform 202. The API registry 404 can be
communicatively coupled to a service mesh 2210. A service mesh 2210 is a configurable
infrastructure layer for a microservice or service-oriented environment that allows
communication between service instances to be flexible, reliable, and fast. In some
embodiments, the service mesh 2210 may provide service discovery, load-balancing, encryption,
authentication/authorization, and other capabilities. In the cloud computing platform 202, as
more containers are added to the infrastructure, the service mesh 2210 routes requests from
clients to specific instances of each service. Note that the API registry 404 is not required in all
embodiments. In some embodiments, the functions described below may also be performed by a

scheduler or other component of a container orchestration layer.

[0116] In some embodiments, the service mesh 2210 may provide its own load-balancing
operations. For clarity, FIG. 22 exclusively illustrates a load balancer 2208 which may be part of
the service mesh 2210 or may be a separate component. The load balancer 2208 can be used to
route requests from a plurality of clients 2202, 2204, 2206 to different service instances. The
different service instances may reside in different operating environments, different container
nodes, and/or on different hardware devices. Additionally, a load balancer 2212 may be
associated with a specific service. A single service may have a plurality of service instances
2214, 2216, 2218 that are available for servicing requests. The load balancer 2212 can receive
requests from the service mesh and route request traffic to specific service instances 2214, 2016,
2218 such that the service requests are evenly distributed amongst the service instances 2214,

2016, 2218.

[0117] In the example of FIG. 22, each of the service instances 2214, 2016, 2218 has been
deployed to the cloud computing platform 202 as a production version of the service. These may
be referred to herein as “production services” or “normal services,” and they may be
distinguished from debug instances of the service in that the containers/pods for the service
instances 2214, 2016, 2218 do not include debug builds of the services or debuggers. Instead,

the these “normal” service instances 2214, 2016, 2218 have been compiled and deployed in a

34



10

15

20

25

WO 2019/068037 PCT/US2018/053628

streamlined format that allows them to quickly and efficiently service requests without the

overhead associated with debugging operations.

[0118] FIG. 23 illustrates a debug build of a service encapsulated in a pod 2300, according to
some embodiments. The pod 2300 is similar to the pod illustrated in FIG. 3. For example, the
overall service is available through an endpoint 318, and the service is constructed using a
plurality of microservices or services 320, 322, 324, 326. These services may be packaged in a
plurality of containers 310, 312 and may make use of a common resource 308, such as a storage

volume, a lookup table, a database, or other resource.

[0119] However, in contrast to the pod 304 in FIG. 3, this debug build of the service
encapsulated in pod 2300 includes additional debugging utilities. For example, the pod 2300
includes an additional container 2302 that includes a debug daemon 2304. In general, a daemon
is a computer program that runs as a background process rather than being under the direct
control of an interactive user. In this specific container environment, the debug daemon 2304
comprises a background process that runs outside of the control of the service itself and is
configured to interface with the service instance. In addition to the debug daemon, the container
2302 may include a debug log in service 2308 that allows an administrator to login to the pod
2300 and perform debugging operations while it is operating. The container 2302 may also
include additional debug utilities 2006, such as utilities that track memory usage, processor
usage, bandwidth usage, and other computing characteristics while the service receives real-time,

live data requests.

[0120] In addition to the container 2302, the pod 2300 may include a specific debug build of
the service itself. For example, one or more of the services 320, 322, 324, 326 may be built or
compiled using a debug configuration such that the source code of the services 320, 322, 324,
326 includes interfaces for a debugger process 2310 to operate with the debug build of the
service. One or more of the services 320, 322, 324, 326 would thus be able to provide variable
values and pause execution based on interactions with the debugger 2310. The operation of the
service itself may be considered a clone of the other normal instances of the service 2214, 2216,
2218 from FIG. 22. Thus, the debug build of the service illustrated in the pod 2300 of FIG. 23
can be used to reliably debug the normal instances of the service 2214, 2216, 2218 from FIG. 22.

35



10

15

20

25

30

WO 2019/068037 PCT/US2018/053628

[0121] FIG. 24 illustrates an alternative pod 2400 for a debug build of a service, according to
some embodiments. Pod 2400 is similar to pod 306 in FIG. 3. Specifically, pod 2400 includes a
single container 314 with a service 328 provided through an endpoint 316. However, the
container 314 may also be loaded with the debugging utilities needed to provide for a debug
build of the overall service. Specifically, the service 328 can be compiled using a debug
configuration and loaded into the container 314. Additionally, the debug daemon 2304, debug
login 2308, debugger 2310, and/or additional debug utilities 2306 may also be included in the
container 314 in any combination and without limitation. It will be understood that none of these
debug utilities is required for a specific embodiment, and therefore some embodiments may omit

any of the debug utilities described above.

[0122] In the description below, the debug instances of the service described above in FIG. 23
in FIG. 24 can be instantiated in the production/deployment environment 104 during operation.
For example, after the normal service instances 2214, 2016, 2218 have been instantiated and
operated in the cloud computing platform 202, a debug instance of the service may also be
instantiated and loaded into the cloud computing platform 202. The debug instance of the
service may receive regular and/or specialized request traffic in a manner similar to that of the
normal service instances 2214, 2216, 2218. This allows real transactions to be debugged in a
production environment in real-time without interrupting the regular operation of the normal

service instances 2214, 2216, 2218.

[0123] FIG. 25 illustrates a block diagram of a system for instantiating a debug instance of a
service 2502, according to some embodiments. The cloud computing platform 202 can receive
normal requests from regular clients 2204, 2206. These normal requests can be routed through
the load balancer 2208 and the service mesh 2210 to a particular service. That service may have
multiple instances 2214, 2216, 2218, and a load balancer 2212 for that service can route requests

such that the load at each service instance is balanced.

[0124] In addition to receiving normal requests from the regular clients 2204, 2206, some
embodiments may also receive debug request 2506 from a debug client 2504. The debug client
2504 may be identical to the regular clients 2204, 2206, and thus may comprise a desktop
computer, laptop computer, workstation, server, mobile computing device, smart phone, PDA,

tablet computer, laptop computer, smart watch, and so forth. However, the debug client 2504

36



10

15

20

25

WO 2019/068037 PCT/US2018/053628

may be specifically identified as a client device that provides debug messages to the cloud
computing platform 202. A debug request 2506 may be identical to normal requests sent from
the regular clients 2204, 2206. However the debug request 2506 may be specifically provided by
the debug client 2504 to go to a debugging instance of the service rather than the normal

instances of the service 2214, 2216, 2218.

[0125] When the service mesh 2210 receives the debug request 2506, it can determine whether
or not a debugging instance of the service is currently operating in the container platform 210. If
there is no debug instance of the service currently operating on the container platform 210, the
service mesh 2210 can send a message to the API registry 404 to generate alternatively, the
service mesh 2210 can initiate a message to a scheduler for the cloud computing platform 202 to
generate a debugging instance of the service in embodiments that do not use the API registry

404.

[0126] As described above, registering the service with the API registry 404 can be
accomplished by providing an API definition file 1505 for the service. The API definition file
1505 can also be accompanied by one or more properties that characterize how a service should
be deployed and/or how client libraries should be generated for calling services. In this case, the
one or more properties may include a dynamic debugging property 2510 that specifies to the API
registry 404 that a debug instance of the service should be generated on demand when a debug
request 2506 is recognized or identified by the service mesh 2210. Normal instances of the
service 2214, 2216, 2218 can be deployed without being affected by the dynamic debugging
property 2510. Prior to receiving the debug request 2506, no debug instances of the service need

to be instantiated or operated on the container platform 210.

[0127] After deployment of the normal instances of the service 2214, 2216, 2218, and in
response to receiving the debug request 2506, the API registry 404 can cause a debugging
instance of the service 2502 to be deployed in the cloud computing platform 202. The debug
instance 2502 can be a single container instance as illustrated in FIG. 24 or may be a multi-
container instance as illustrated in FIG. 23. In either embodiment, the debug instance may
include a debug build of the service, a debugger, a debug login, a debug daemon, and/or any

other debugging utilities in any combination and without limitation.

37



10

15

20

25

30

WO 2019/068037 PCT/US2018/053628

[0128] As with any service that is deployed to the cloud computing platform 202, the debug
instance of the service 2502 can be registered with the API registry 404. This may include
providing an endpoint (e.g., an IP address and port number) to the API registry 404. The API
registry 404 can then provide a set of API functions that can be used to call the debug instance of
the service 2502 as described above. Alternatively or additionally, the debug instance of the
service 2502 need not provide its own API definition file or properties to the API registry 404
since the API registry 404 has deployed the debug instance of the service 2502. Instead, the API
registry 404 may provide the endpoint to the service mesh 2210. The service mesh 2210 can
then use the endpoint to route the debug message 2506 to the debug instance of the service 2502.
This endpoint does not need to be published because only the service mesh 2210 needs to send
any messages to the debug instance. However, some embodiments may make this endpoint

available to other services that access the debug information during runtime.

[0129] FIG. 26 illustrates a block diagram of the container platform 210 routing debug
requests to the debug instance of the service 2502, according to some embodiments. When the
debug request 2506 is received by the service mesh 2210, the service mesh 2210 can identify the
debug request 2506. The debug request 2506 may be distinguished from normal requests from
the regular clients 2204, 2206 in a number of different ways. For example, the service mesh
2210 can identify the debug request 2506 by virtue of a sender, namely the debug client 2504.
When the service mesh 2210 recognizes an address of the debug client 2504, the service mesh
2210 can designate the request as a debug request 2506. This allows the service mesh 2210 to

identify debug requests by virtue of their source.

[0130] In some embodiments, the service mesh 2210 can identify the debug request 2506 using
any information embedded within the debug request 2506. For example, the debug request 2506
may have unique header information or one or more flag settings within the debug request 2506
that identify it as a debug request. In another example, the debug request 2506 may include a
payload within the request that includes a predetermined value that is only used by debug

requests.

[0131] When the service mesh identifies the debug request 2506, it can change the normal
routing of the debug request. Whereas normal requests can be sent to the load balancer 2212

and/or the normal instances of the service 2214, 2216, 2218, the debug request 2506 can be

38



10

15

20

25

30

WO 2019/068037 PCT/US2018/053628

specially routed to the debug instance of the service 2502. For example, the debug request 2506
from FIG. 25 can be used first to trigger the instantiation of the debug instance of the service
2502. When the service mesh 2210 receives a notification from the API registry 404 that the
debug instance of the service 2502 is operational, the service mesh 2210 can then route the
debug request 2506 to the debug instance of the service 2502. When future debug requests are
received from the debug client 2504 or other clients designated as debug clients, the service
mesh 2210 can also route these requests to the debug instance of the service 2502. Requests may
thus be routed without additional participation from the API registry 404 because the debug

instance of the service 2502 is already operational.

[0132] In some embodiments, the debug instance of the service 2502 can remain instantiated
for a predetermined time limit. For example, the debug instance of the service 2502 can include
a default time limit (e.g., 24 hours), after which the API registry 404 and/or the scheduler can
delete the debug instance of the service 2502. In some embodiments, the dynamic debugging
property 2510 can also specify a time interval that is tailored specifically for that service. For
example, a service developer may determine that one week is a more appropriate debugging
interval for a particular service, and a seven-day interval can then be provided as part of the
dynamic debugging property 2510 to override any default time interval that would otherwise be
applied by the API registry 404. In some embodiments, the time limit may be absolute such that
it begins with instantiation. In some embodiments the time limit may be relative, such that it is

reset each time a new debug request 2506 is received by the debug instance of the service 2502.

[0133] FIG. 27 illustrates a block diagram of a cloud computing platform 202 that clones
requests, according to some embodiments. In contrast to the embodiments described above,
these embodiments do not require a special request source to provide debug requests to a debug
instance of the service. Instead, the service mesh 210 can receive normal requests from regular
clients 2202, 2204, 2206. Instead of routing special debug messages to the debug instance of the
service in real time alongside the live data, these embodiments can use the live data itself and
route cloned copies of the requests to the debug service without disrupting the normal operation

of the normal instances of the service 2214, 2216, 2218.

[0134] As described above, the service itself can register with the API registry 404 by
uploading an API definition file 1505. Along with the API definition file 1505, the API registry

39



10

15

20

25

30

WO 2019/068037 PCT/US2018/053628

404 can receive an upload of a clone debugging property 2710. The clone debugging property
2710 can indicate to the API registry 404 that a debug instance of the service 2502 should be
instantiated in the cloud computing platform 202. The API registry 404 and/or the scheduler can
deploy the debug instance of the service 2502 when the normal instances of the service 2214,
2216, 2218 are deployed. Alternatively or additionally, the debug instance of the service 2502
can be deployed in response to receiving a request from a client that is sent to the service. For
embodiments that use the API registry 404, the API registry can provide the endpoint for the

debug instance of the service 2502 to the service mesh 2210.

[0135] The API registry 404 and/or the scheduler can also provide an indication 2702 to the
service mesh 2210 indicating that requests sent to the service should be cloned and also sent to
the debug instance of the service 2502. The indication 2702 may indicate that all requests should
be cloned and sent to the debug instance of the service 2502. In some embodiments, the
indication 2702 may indicate that a certain percentage of requests should be cloned for the debug

instance of the service 2502 (e.g., every other request, every third request, and so forth).

[0136] FIG. 28 illustrates a block diagram of cloned requests being forwarded to a debug
instance of the service 2502, according to some embodiments. When a normal request 2806 is
sent from a regular client 2202, the normal request 2806 can go through the load balancer 2208
and be identified by the service mesh 2210. The service mesh 2210 can identify the normal
request 2806 as being addressed to the service. Based on the indication 2702 and/or this
identification, the service mesh 2010 can then generate a cloned request 2808. In some
embodiments, the cloned request 2808 may be a complete copy of the normal request 2006. In
some embodiments, the cloned request 2808 may include additional information that is inserted
by the service mesh 2210 that may be useful in the debugging process (e.g., timestamps, or other

diagnostic information that may be useful in a debugging scenario).

[0137] The cloned request 2808 can then be forwarded to the debug instance of the service
2502. This can be done in parallel with the normal request 2806 being forwarded to a normal
instance of the service 2214, 2216, 2218. Thus, this cloning process can operate without
affecting the throughput of the normal instances of the service 2214, 2016, 2218. This also
allows the debug instance of the service 2502 to use real-time, live data for the debugging

process. Thus, any error that occurs in the normal instances of the service 2214, 2216, 2218 will

40



10

15

20

25

30

WO 2019/068037 PCT/US2018/053628

also be captured by the output of the debug instance of the service 2502. This provides the
unique technical advantage that allows problems to be isolated in real time as they occur using
live debug data without the overhead that would normally accompany processing the normal

request 2806 by a debug instance of the service exclusively.

[0138] FIG. 29 illustrates a flowchart of a method for providing runtime debugging for
containerized services in container environments. The method may include receiving a request
for service at a container environment (2902). The container environment may include a service
mesh and a plurality of services encapsulated in a plurality of containers. The service may also
be encapsulated in a first one or more containers in the container environment. The container
environment may include the container platform 210 described above. The request may be a
debug request or a normal request from a regular client device. The first one or more containers
may be organized into a container pod, which may include one or more microservices that form
the service. The container environment may include an orchestrated container platform with a

container scheduler. The container environment may also include an API registry.

[0139] The method may also include determining that a request should be routed to a
debugging instance of the service (2904). This determination may be made based on a number
of different factors, including a source of the request, a header in the request, values in the
payload of the request, a flag in the request, timing of the receipt of the request, and/or any other
characteristic of the request. If the request is not a debug request, then the method may include

routing the request to a normal instance of the service (2908).

[0140] If the request is identified as a debug request, then the method may further include
determining whether a debug instance of the service is available (2906). If the debug instance is
available, then the method may include routing the request to the debug instance of the service
(2912). If the debug instance is not available, then the method may also include instantiating the
debug instance of the service (2910), and routing the request to the newly instantiated debug

instance of the service (2912).

[0141] It should be appreciated that the specific steps illustrated in FIG. 29 provide particular
methods of enabling live debugging in a container environment according to various
embodiments of the present invention. Other sequences of steps may also be performed

according to alternative embodiments. For example, alternative embodiments of the present

41



10

15

20

25

30

WO 2019/068037 PCT/US2018/053628

invention may perform the steps outlined above in a different order. Moreover, the individual
steps illustrated in FIG. 29 may include multiple sub-steps that may be performed in various
sequences as appropriate to the individual step. Furthermore, additional steps may be added or
removed depending on the particular applications. One of ordinary skill in the art would

recognize many variations, modifications, and alternatives.

[0142] Each of the methods described herein may be implemented by a specialized computer
system. Each step of these methods may be executed automatically by the computer system,
and/or may be provided with inputs/outputs involving a user. For example, a user may provide
inputs for each step in a method, and each of these inputs may be in response to a specific output
requesting such an input, wherein the output is generated by the computer system. Each input
may be received in response to a corresponding requesting output. Furthermore, inputs may be
received from a user, from another computer system as a data stream, retrieved from a memory
location, retrieved over a network, requested from a web service, and/or the like. Likewise,
outputs may be provided to a user, to another computer system as a data stream, saved in a
memory location, sent over a network, provided to a web service, and/or the like. In short, each
step of the methods described herein may be performed by a computer system, and may involve
any number of inputs, outputs, and/or requests to and from the computer system which may or
may not involve a user. Those steps not involving a user may be said to be performed
automatically by the computer system without human intervention. Therefore, it will be
understood in light of this disclosure, that each step of each method described herein may be
altered to include an input and output to and from a user, or may be done automatically by a
computer system without human intervention where any determinations are made by a processor.
Furthermore, some embodiments of each of the methods described herein may be implemented
as a set of instructions stored on a tangible, non-transitory storage medium to form a tangible

software product.

[0143] FIG. 30 depicts a simplified diagram of a distributed system 3000 that may interact
with any of the embodiments described above. In the illustrated embodiment, distributed system
3000 includes one or more client computing devices 3002, 3004, 3006, and 3008, which are
configured to execute and operate a client application such as a web browser, proprietary client

(e.g., Oracle Forms), or the like over one or more network(s) 3010. Server 3012 may be

42



10

15

20

25

30

WO 2019/068037 PCT/US2018/053628

communicatively coupled with remote client computing devices 3002, 3004, 3006, and 3008 via

network 3010.

[0144] In various embodiments, server 3012 may be adapted to run one or more services or
software applications provided by one or more of the components of the system. In some
embodiments, these services may be offered as web-based or cloud services or under a Software
as a Service (SaaS) model to the users of client computing devices 3002, 3004, 3006, and/or
3008. Users operating client computing devices 3002, 3004, 3006, and/or 3008 may in turn
utilize one or more client applications to interact with server 3012 to utilize the services provided

by these components.

[0145] In the configuration depicted in the figure, the software components 3018, 3020 and
3022 of system 3000 are shown as being implemented on server 3012. In other embodiments,
one or more of the components of system 3000 and/or the services provided by these
components may also be implemented by one or more of the client computing devices 3002,
3004, 3006, and/or 3008. Users operating the client computing devices may then utilize one or
more client applications to use the services provided by these components. These components
may be implemented in hardware, firmware, software, or combinations thereof. It should be
appreciated that various different system configurations are possible, which may be different
from distributed system 3000. The embodiment shown in the figure is thus one example of a

distributed system for implementing an embodiment system and is not intended to be limiting.

[0146] Client computing devices 3002, 3004, 3006, and/or 3008 may be portable handheld
devices (e.g., an iPhone®, cellular telephone, an iPad®, computing tablet, a personal digital
assistant (PDA)) or wearable devices (e.g., a Google Glass® head mounted display), running
software such as Microsoft Windows Mobile®, and/or a variety of mobile operating systems
such as 10S, Windows Phone, Android, BlackBerry 10, Palm OS, and the like, and being
Internet, e-mail, short message service (SMS), Blackberry®, or other communication protocol
enabled. The client computing devices can be general purpose personal computers including, by
way of example, personal computers and/or laptop computers running various versions of
Microsoft Windows®, Apple Macintosh®, and/or Linux operating systems. The client
computing devices can be workstation computers running any of a variety of commercially-

available UNIX® or UNIX-like operating systems, including without limitation the variety of

43



10

15

20

25

30

WO 2019/068037 PCT/US2018/053628

GNU/Linux operating systems, such as for example, Google Chrome OS. Alternatively, or in
addition, client computing devices 3002, 3004, 3006, and 3008 may be any other electronic
device, such as a thin-client computer, an Internet-enabled gaming system (e.g., a Microsoft
Xbox gaming console with or without a Kinect® gesture input device), and/or a personal

messaging device, capable of communicating over network(s) 3010.

[0147] Although exemplary distributed system 3000 is shown with four client computing
devices, any number of client computing devices may be supported. Other devices, such as

devices with sensors, etc., may interact with server 3012.

[0148] Network(s) 3010 in distributed system 3000 may be any type of network familiar to
those skilled in the art that can support data communications using any of a variety of
commercially-available protocols, including without limitation TCP/IP (transmission control
protocol/Internet protocol), SNA (systems network architecture), IPX (Internet packet exchange),
AppleTalk, and the like. Merely by way of example, network(s) 3010 can be a local area network
(LAN), such as one based on Ethernet, Token-Ring and/or the like. Network(s) 3010 can be a
wide-area network and the Internet. It can include a virtual network, including without limitation
a virtual private network (VPN), an intranet, an extranet, a public switched telephone network
(PSTN), an infra-red network, a wireless network (e.g., a network operating under any of the
Institute of Electrical and Electronics (IEEE) 802.11 suite of protocols, Bluetooth®, and/or any

other wireless protocol); and/or any combination of these and/or other networks.

[0149] Server 3012 may be composed of one or more general purpose computers, specialized
server computers (including, by way of example, PC (personal computer) servers, UNIX®
servers, mid-range servers, mainframe computers, rack-mounted servers, etc.), server farms,
server clusters, or any other appropriate arrangement and/or combination. In various
embodiments, server 3012 may be adapted to run one or more services or software applications
described in the foregoing disclosure. For example, server 3012 may correspond to a server for

performing processing described above according to an embodiment of the present disclosure.

[0150] Server 3012 may run an operating system including any of those discussed above, as
well as any commercially available server operating system. Server 3012 may also run any of a
variety of additional server applications and/or mid-tier applications, including HTTP (hypertext

transport protocol) servers, FTP (file transfer protocol) servers, CGI (common gateway interface)

44



10

15

20

25

30

WO 2019/068037 PCT/US2018/053628

servers, JAVA® servers, database servers, and the like. Exemplary database servers include
without limitation those commercially available from Oracle, Microsoft, Sybase, IBM

(International Business Machines), and the like.

[0151] In some implementations, server 3012 may include one or more applications to analyze
and consolidate data feeds and/or event updates received from users of client computing devices
3002, 3004, 3006, and 3008. As an example, data feeds and/or event updates may include, but
are not limited to, Twitter® feeds, Facebook® updates or real-time updates received from one or
more third party information sources and continuous data streams, which may include real-time
events related to sensor data applications, financial tickers, network performance measuring tools
(e.g., network monitoring and traffic management applications), clickstream analysis tools,
automobile traffic monitoring, and the like. Server 3012 may also include one or more
applications to display the data feeds and/or real-time events via one or more display devices of

client computing devices 3002, 3004, 3006, and 3008.

[0152] Distributed system 3000 may also include one or more databases 3014 and 3016.
Databases 3014 and 3016 may reside in a variety of locations. By way of example, one or more
of databases 3014 and 3016 may reside on a non-transitory storage medium local to (and/or
resident in) server 3012. Alternatively, databases 3014 and 3016 may be remote from server
3012 and in communication with server 3012 via a network-based or dedicated connection. In
one set of embodiments, databases 3014 and 3016 may reside in a storage-area network (SAN).
Similarly, any necessary files for performing the functions attributed to server 3012 may be
stored locally on server 3012 and/or remotely, as appropriate. In one set of embodiments,
databases 3014 and 3016 may include relational databases, such as databases provided by
Oracle, that are adapted to store, update, and retrieve data in response to SQL-formatted

commands.

[0153] FIG. 31 is a simplified block diagram of one or more components of a system
environment 3100 by which services provided by one or more components of an embodiment
system may be offered as cloud services, in accordance with an embodiment of the present
disclosure. In the illustrated embodiment, system environment 3100 includes one or more client
computing devices 3104, 3106, and 3108 that may be used by users to interact with a cloud

infrastructure system 3102 that provides cloud services. The client computing devices may be

45



10

15

20

25

WO 2019/068037 PCT/US2018/053628

configured to operate a client application such as a web browser, a proprietary client application
(e.g., Oracle Forms), or some other application, which may be used by a user of the client
computing device to interact with cloud infrastructure system 3102 to use services provided by

cloud infrastructure system 3102.

[0154] It should be appreciated that cloud infrastructure system 3102 depicted in the figure
may have other components than those depicted. Further, the embodiment shown in the figure is
only one example of a cloud infrastructure system that may incorporate an embodiment of the
invention. In some other embodiments, cloud infrastructure system 3102 may have more or
fewer components than shown in the figure, may combine two or more components, or may have

a different configuration or arrangement of components.

[0155] Client computing devices 3104, 3106, and 3108 may be devices similar to those
described above for 3002, 3004, 3006, and 3008.

[0156] Although exemplary system environment 3100 is shown with three client computing
devices, any number of client computing devices may be supported. Other devices such as

devices with sensors, etc. may interact with cloud infrastructure system 3102.

[0157] Network(s) 3110 may facilitate communications and exchange of data between clients
3104, 3106, and 3108 and cloud infrastructure system 3102. Each network may be any type of
network familiar to those skilled in the art that can support data communications using any of a
variety of commercially-available protocols, including those described above for network(s)

3010.

[0158] Cloud infrastructure system 3102 may comprise one or more computers and/or servers

that may include those described above for server 3012.

[0159] In certain embodiments, services provided by the cloud infrastructure system may
include a host of services that are made available to users of the cloud infrastructure system on
demand, such as online data storage and backup solutions, Web-based e-mail services, hosted
office suites and document collaboration services, database processing, managed technical
support services, and the like. Services provided by the cloud infrastructure system can
dynamically scale to meet the needs of its users. A specific instantiation of a service provided by

cloud infrastructure system is referred to herein as a “service instance.” In general, any service

46



10

15

20

25

30

WO 2019/068037 PCT/US2018/053628

made available to a user via a communication network, such as the Internet, from a cloud service
provider's system is referred to as a “cloud service.” Typically, in a public cloud environment,
servers and systems that make up the cloud service provider's system are different from the
customer's own on-premises servers and systems. For example, a cloud service provider's
system may host an application, and a user may, via a communication network such as the

Internet, on demand, order and use the application.

[0160] In some examples, a service in a computer network cloud infrastructure may include
protected computer network access to storage, a hosted database, a hosted web server, a software
application, or other service provided by a cloud vendor to a user, or as otherwise known in the
art. For example, a service can include password-protected access to remote storage on the cloud
through the Internet. As another example, a service can include a web service-based hosted
relational database and a script-language middleware engine for private use by a networked
developer. As another example, a service can include access to an email software application

hosted on a cloud vendor's web site.

[0161] In certain embodiments, cloud infrastructure system 3102 may include a suite of
applications, middleware, and database service offerings that are delivered to a customer in a
self-service, subscription-based, elastically scalable, reliable, highly available, and secure
manner. An example of such a cloud infrastructure system is the Oracle Public Cloud provided

by the present assignee.

[0162] In various embodiments, cloud infrastructure system 3102 may be adapted to
automatically provision, manage and track a customer’s subscription to services offered by cloud
infrastructure system 3102. Cloud infrastructure system 3102 may provide the cloud services via
different deployment models. For example, services may be provided under a public cloud
model in which cloud infrastructure system 3102 is owned by an organization selling cloud
services (e.g., owned by Oracle) and the services are made available to the general public or
different industry enterprises. As another example, services may be provided under a private
cloud model in which cloud infrastructure system 3102 is operated solely for a single
organization and may provide services for one or more entities within the organization. The
cloud services may also be provided under a community cloud model in which cloud

infrastructure system 3102 and the services provided by cloud infrastructure system 3102 are

47



10

15

20

25

WO 2019/068037 PCT/US2018/053628

shared by several organizations in a related community. The cloud services may also be

provided under a hybrid cloud model, which is a combination of two or more different models.

[0163] In some embodiments, the services provided by cloud infrastructure system 3102 may
include one or more services provided under Software as a Service (SaaS) category, Platform as
a Service (PaaS) category, Infrastructure as a Service (IaaS) category, or other categories of
services including hybrid services. A customer, via a subscription order, may order one or more
services provided by cloud infrastructure system 3102. Cloud infrastructure system 3102 then

performs processing to provide the services in the customer’s subscription order.

[0164] In some embodiments, the services provided by cloud infrastructure system 3102 may
include, without limitation, application services, platform services and infrastructure services. In
some examples, application services may be provided by the cloud infrastructure system via a
SaaS platform. The SaaS platform may be configured to provide cloud services that fall under
the SaaS category. For example, the SaaS platform may provide capabilities to build and deliver
a suite of on-demand applications on an integrated development and deployment platform. The
SaaS platform may manage and control the underlying software and infrastructure for providing
the SaaS services. By utilizing the services provided by the SaaS platform, customers can utilize
applications executing on the cloud infrastructure system. Customers can acquire the application
services without the need for customers to purchase separate licenses and support. Various
different SaaS services may be provided. Examples include, without limitation, services that
provide solutions for sales performance management, enterprise integration, and business

flexibility for large organizations.

[0165] In some embodiments, platform services may be provided by the cloud infrastructure
system via a PaaS platform. The PaaS platform may be configured to provide cloud services that
fall under the PaaS category. Examples of platform services may include without limitation
services that enable organizations (such as Oracle) to consolidate existing applications on a
shared, common architecture, as well as the ability to build new applications that leverage the
shared services provided by the platform. The PaaS platform may manage and control the
underlying software and infrastructure for providing the PaaS services. Customers can acquire

the PaaS services provided by the cloud infrastructure system without the need for customers to

48



10

15

20

25

30

WO 2019/068037 PCT/US2018/053628

purchase separate licenses and support. Examples of platform services include, without

limitation, Oracle Java Cloud Service (JCS), Oracle Database Cloud Service (DBCS), and others.

[0166] By utilizing the services provided by the PaaS platform, customers can employ
programming languages and tools supported by the cloud infrastructure system and also control
the deployed services. In some embodiments, platform services provided by the cloud
infrastructure system may include database cloud services, middleware cloud services (e.g.,
Oracle Fusion Middleware services), and Java cloud services. In one embodiment, database
cloud services may support shared service deployment models that enable organizations to pool
database resources and offer customers a Database as a Service in the form of a database cloud.
Middleware cloud services may provide a platform for customers to develop and deploy various
business applications, and Java cloud services may provide a platform for customers to deploy

Java applications, in the cloud infrastructure system.

[0167] Various different infrastructure services may be provided by an IaaS platform in the
cloud infrastructure system. The infrastructure services facilitate the management and control of
the underlying computing resources, such as storage, networks, and other fundamental
computing resources for customers utilizing services provided by the SaaS platform and the PaaS

platform.

[0168] In certain embodiments, cloud infrastructure system 3102 may also include
infrastructure resources 3 130 for providing the resources used to provide various services to
customers of the cloud infrastructure system. In one embodiment, infrastructure resources 3130
may include pre-integrated and optimized combinations of hardware, such as servers, storage,
and networking resources to execute the services provided by the PaaS platform and the SaaS

platform.

[0169] In some embodiments, resources in cloud infrastructure system 3102 may be shared by
multiple users and dynamically re-allocated per demand. Additionally, resources may be
allocated to users in different time zones. For example, cloud infrastructure system 3130 may
enable a first set of users in a first time zone to utilize resources of the cloud infrastructure
system for a specified number of hours and then enable the re-allocation of the same resources to
another set of users located in a different time zone, thereby maximizing the utilization of

resources.

49



10

15

20

25

30

WO 2019/068037 PCT/US2018/053628

[0170] In certain embodiments, a number of internal shared services 3132 may be provided
that are shared by different components or modules of cloud infrastructure system 3102 and by
the services provided by cloud infrastructure system 3102. These internal shared services may
include, without limitation, a security and identity service, an integration service, an enterprise
repository service, an enterprise manager service, a virus scanning and white list service, a high
availability, backup and recovery service, service for enabling cloud support, an email service, a

notification service, a file transfer service, and the like.

[0171] In certain embodiments, cloud infrastructure system 3102 may provide comprehensive
management of cloud services (e.g., SaaS, PaaS, and IaaS services) in the cloud infrastructure
system. In one embodiment, cloud management functionality may include capabilities for
provisioning, managing and tracking a customer’s subscription received by cloud infrastructure

system 3102, and the like.

[0172] In one embodiment, as depicted in the figure, cloud management functionality may be
provided by one or more modules, such as an order management module 3120, an order
orchestration module 3122, an order provisioning module 3124, an order management and
monitoring module 3126, and an identity management module 3128. These modules may
include or be provided using one or more computers and/or servers, which may be general
purpose computers, specialized server computers, server farms, server clusters, or any other

appropriate arrangement and/or combination.

[0173] In exemplary operation 3134, a customer using a client device, such as client device
3104, 3106 or 3108, may interact with cloud infrastructure system 3102 by requesting one or
more services provided by cloud infrastructure system 3102 and placing an order for a
subscription for one or more services offered by cloud infrastructure system 3102. In certain
embodiments, the customer may access a cloud User Interface (UI), cloud UI 3112, cloud Ul
3114 and/or cloud UI 3116 and place a subscription order via these Uls. The order information
received by cloud infrastructure system 3102 in response to the customer placing an order may
include information identifying the customer and one or more services offered by the cloud

infrastructure system 3102 that the customer intends to subscribe to.

[0174] After an order has been placed by the customer, the order information is received via

the cloud Uls, 3112, 3114 and/or 3116.

50



10

15

20

25

30

WO 2019/068037 PCT/US2018/053628

[0175] At operation 3136, the order is stored in order database 3118. Order database 3118 can
be one of several databases operated by cloud infrastructure system 3118 and operated in

conjunction with other system elements.

[0176] At operation 3138, the order information is forwarded to an order management module
3120. In some instances, order management module 3120 may be configured to perform billing
and accounting functions related to the order, such as verifying the order, and upon verification,

booking the order.

[0177] At operation 3140, information regarding the order is communicated to an order
orchestration module 3122. Order orchestration module 3122 may utilize the order information
to orchestrate the provisioning of services and resources for the order placed by the customer. In
some instances, order orchestration module 3122 may orchestrate the provisioning of resources

to support the subscribed services using the services of order provisioning module 3124,

[0178] In certain embodiments, order orchestration module 3122 enables the management of
business processes associated with each order and applies business logic to determine whether an
order should proceed to provisioning. At operation 3142, upon receiving an order for a new
subscription, order orchestration module 3122 sends a request to order provisioning module 3124
to allocate resources and configure those resources needed to fulfill the subscription order.

Order provisioning module 3124 enables the allocation of resources for the services ordered by
the customer. Order provisioning module 3124 provides a level of abstraction between the cloud
services provided by cloud infrastructure system 3100 and the physical implementation layer that
is used to provision the resources for providing the requested services. Order orchestration
module 3122 may thus be isolated from implementation details, such as whether or not services
and resources are actually provisioned on the fly or pre-provisioned and only allocated/assigned

upon request.

[0179] At operation 3144, once the services and resources are provisioned, a notification of the
provided service may be sent to customers on client devices 3104, 3106 and/or 3108 by order

provisioning module 3124 of cloud infrastructure system 3102.

[0180] At operation 3146, the customer’s subscription order may be managed and tracked by
an order management and monitoring module 3126. In some instances, order management and

monitoring module 3126 may be configured to collect usage statistics for the services in the

51



10

15

20

25

WO 2019/068037 PCT/US2018/053628

subscription order, such as the amount of storage used, the amount data transferred, the number

of users, and the amount of system up time and system down time.

[0181] In certain embodiments, cloud infrastructure system 3100 may include an identity
management module 3128. Identity management module 3128 may be configured to provide
identity services, such as access management and authorization services in cloud infrastructure
system 3100. In some embodiments, identity management module 3128 may control
information about customers who wish to utilize the services provided by cloud infrastructure
system 3102. Such information can include information that authenticates the identities of such
customers and information that describes which actions those customers are authorized to
perform relative to various system resources (e.g., files, directories, applications, communication
ports, memory segments, etc.) Identity management module 3128 may also include the
management of descriptive information about each customer and about how and by whom that

descriptive information can be accessed and modified.

[0182] FIG. 32 illustrates an exemplary computer system 3200, in which various embodiments
of the present invention may be implemented. The system 3200 may be used to implement any
of the computer systems described above. As shown in the figure, computer system 3200
includes a processing unit 3204 that communicates with a number of peripheral subsystems via a
bus subsystem 3202. These peripheral subsystems may include a processing acceleration unit
3206, an I/O subsystem 3208, a storage subsystem 3218 and a communications subsystem 3224,
Storage subsystem 3218 includes tangible computer-readable storage media 3222 and a system

memory 3210.

[0183] Bus subsystem 3202 provides a mechanism for letting the various components and
subsystems of computer system 3200 communicate with each other as intended. Although bus
subsystem 3202 is shown schematically as a single bus, alternative embodiments of the bus
subsystem may utilize multiple buses. Bus subsystem 3202 may be any of several types of bus
structures including a memory bus or memory controller, a peripheral bus, and a local bus using
any of a variety of bus architectures. For example, such architectures may include an Industry
Standard Architecture (ISA) bus, Micro Channel Architecture (MCA) bus, Enhanced ISA
(EISA) bus, Video Electronics Standards Association (VESA) local bus, and Peripheral

52



10

15

20

25

WO 2019/068037 PCT/US2018/053628

Component Interconnect (PCI) bus, which can be implemented as a Mezzanine bus

manufactured to the IEEE P1386.1 standard.

[0184] Processing unit 3204, which can be implemented as one or more integrated circuits
(e.g., a conventional microprocessor or microcontroller), controls the operation of computer
system 3200. One or more processors may be included in processing unit 3204. These
processors may include single core or multicore processors. In certain embodiments, processing
unit 3204 may be implemented as one or more independent processing units 3232 and/or 3234
with single or multicore processors included in each processing unit. In other embodiments,
processing unit 3204 may also be implemented as a quad-core processing unit formed by

integrating two dual-core processors into a single chip.

[0185] In various embodiments, processing unit 3204 can execute a variety of programs in
response to program code and can maintain multiple concurrently executing programs or
processes. At any given time, some or all of the program code to be executed can be resident in
processor(s) 3204 and/or in storage subsystem 3218. Through suitable programming,
processor(s) 3204 can provide various functionalities described above. Computer system 3200
may additionally include a processing acceleration unit 3206, which can include a digital signal

processor (DSP), a special-purpose processor, and/or the like.

[0186] I/O subsystem 3208 may include user interface input devices and user interface output
devices. User interface input devices may include a keyboard, pointing devices such as a mouse
or trackball, a touchpad or touch screen incorporated into a display, a scroll wheel, a click wheel,
a dial, a button, a switch, a keypad, audio input devices with voice command recognition
systems, microphones, and other types of input devices. User interface input devices may
include, for example, motion sensing and/or gesture recognition devices such as the Microsoft
Kinect® motion sensor that enables users to control and interact with an input device, such as the
Microsoft Xbox® 360 game controller, through a natural user interface using gestures and
spoken commands. User interface input devices may also include eye gesture recognition
devices such as the Google Glass® blink detector that detects eye activity (e.g., ‘blinking’ while
taking pictures and/or making a menu selection) from users and transforms the eye gestures as

input into an input device (e.g., Google Glass®). Additionally, user interface input devices may

53



10

15

20

25

30

WO 2019/068037 PCT/US2018/053628

include voice recognition sensing devices that enable users to interact with voice recognition

systems (e.g., Siri® navigator), through voice commands.

[0187] User interface input devices may also include, without limitation, three dimensional
(3D) mice, joysticks or pointing sticks, gamepads and graphic tablets, and audio/visual devices
such as speakers, digital cameras, digital camcorders, portable media players, webcams, image
scanners, fingerprint scanners, barcode reader 3D scanners, 3D printers, laser rangefinders, and
eye gaze tracking devices. Additionally, user interface input devices may include, for example,
medical imaging input devices such as computed tomography, magnetic resonance imaging,
position emission tomography, medical ultrasonography devices. User interface input devices
may also include, for example, audio input devices such as MIDI keyboards, digital musical

instruments and the like.

[0188] User interface output devices may include a display subsystem, indicator lights, or non-
visual displays such as audio output devices, etc. The display subsystem may be a cathode ray
tube (CRT), a flat-panel device, such as that using a liquid crystal display (LCD) or plasma
display, a projection device, a touch screen, and the like. In general, use of the term "output
device" is intended to include all possible types of devices and mechanisms for outputting
information from computer system 3200 to a user or other computer. For example, user interface
output devices may include, without limitation, a variety of display devices that visually convey
text, graphics and audio/video information such as monitors, printers, speakers, headphones,

automotive navigation systems, plotters, voice output devices, and modems.

[0189] Computer system 3200 may comprise a storage subsystem 3218 that comprises
software elements, shown as being currently located within a system memory 3210. System
memory 3210 may store program instructions that are loadable and executable on processing unit

3204, as well as data generated during the execution of these programs.

[0190] Depending on the configuration and type of computer system 3200, system memory
3210 may be volatile (such as random access memory (RAM)) and/or non-volatile (such as read-
only memory (ROM), flash memory, etc.) The RAM typically contains data and/or program
modules that are immediately accessible to and/or presently being operated and executed by
processing unit 3204. In some implementations, system memory 3210 may include multiple

different types of memory, such as static random access memory (SRAM) or dynamic random

54



10

15

20

25

30

WO 2019/068037 PCT/US2018/053628

access memory (DRAM). In some implementations, a basic input/output system (BIOS),
containing the basic routines that help to transfer information between elements within computer
system 3200, such as during start-up, may typically be stored in the ROM. By way of example,
and not limitation, system memory 3210 also illustrates application programs 3212, which may
include client applications, Web browsers, mid-tier applications, relational database management
systems (RDBMS), etc., program data 3214, and an operating system 3216. By way of example,
operating system 3216 may include various versions of Microsoft Windows®, Apple
Macintosh®, and/or Linux operating systems, a variety of commercially-available UNIX® or
UNIX-like operating systems (including without limitation the variety of GNU/Linux operating
systems, the Google Chrome® OS, and the like) and/or mobile operating systems such as 108,
Windows® Phone, Android® OS, BlackBerry® 10 OS, and Palm® OS operating systems.

[0191] Storage subsystem 3218 may also provide a tangible computer-readable storage
medium for storing the basic programming and data constructs that provide the functionality of
some embodiments. Software (programs, code modules, instructions) that when executed by a
processor provide the functionality described above may be stored in storage subsystem 3218.
These software modules or instructions may be executed by processing unit 3204. Storage
subsystem 3218 may also provide a repository for storing data used in accordance with the

present invention.

[0192] Storage subsystem 3200 may also include a computer-readable storage media reader
3220 that can further be connected to computer-readable storage media 3222. Together and,
optionally, in combination with system memory 3210, computer-readable storage media 3222
may comprehensively represent remote, local, fixed, and/or removable storage devices plus
storage media for temporarily and/or more permanently containing, storing, transmitting, and

retrieving computer-readable information.

[0193] Computer-readable storage media 3222 containing code, or portions of code, can also
include any appropriate media known or used in the art, including storage media and
communication media, such as but not limited to, volatile and non-volatile, removable and non-
removable media implemented in any method or technology for storage and/or transmission of
information. This can include tangible computer-readable storage media such as RAM, ROM,

electronically erasable programmable ROM (EEPROM), flash memory or other memory

55



10

15

20

25

30

WO 2019/068037 PCT/US2018/053628

technology, CD-ROM, digital versatile disk (DVD), or other optical storage, magnetic cassettes,
magnetic tape, magnetic disk storage or other magnetic storage devices, or other tangible
computer readable media. This can also include nontangible computer-readable media, such as
data signals, data transmissions, or any other medium which can be used to transmit the desired

information and which can be accessed by computing system 3200.

[0194] By way of example, computer-readable storage media 3222 may include a hard disk
drive that reads from or writes to non-removable, nonvolatile magnetic media, a magnetic disk
drive that reads from or writes to a removable, nonvolatile magnetic disk, and an optical disk
drive that reads from or writes to a removable, nonvolatile optical disk such as a CD ROM,
DVD, and Blu-Ray® disk, or other optical media. Computer-readable storage media 3222 may
include, but is not limited to, Zip® drives, flash memory cards, universal serial bus (USB) flash
drives, secure digital (SD) cards, DVD disks, digital video tape, and the like. Computer-readable
storage media 3222 may also include, solid-state drives (SSD) based on non-volatile memory
such as flash-memory based SSDs, enterprise flash drives, solid state ROM, and the like, SSDs
based on volatile memory such as solid state RAM, dynamic RAM, static RAM, DRAM-based
SSDs, magnetoresistive RAM (MRAM) SSDs, and hybrid SSDs that use a combination of
DRAM and flash memory based SSDs. The disk drives and their associated computer-readable
media may provide non-volatile storage of computer-readable instructions, data structures,

program modules, and other data for computer system 3200.

[0195] Communications subsystem 3224 provides an interface to other computer systems and
networks. Communications subsystem 3224 serves as an interface for receiving data from and
transmitting data to other systems from computer system 3200. For example, communications
subsystem 3224 may enable computer system 3200 to connect to one or more devices via the
Internet. In some embodiments communications subsystem 3224 can include radio frequency
(RF) transceiver components for accessing wireless voice and/or data networks (e.g., using
cellular telephone technology, advanced data network technology, such as 3G, 4G or EDGE
(enhanced data rates for global evolution), WiFi (IEEE 802.11 family standards, or other mobile
communication technologies, or any combination thereof), global positioning system (GPS)
receiver components, and/or other components. In some embodiments communications
subsystem 3224 can provide wired network connectivity (e.g., Ethernet) in addition to or instead

of a wireless interface.

56



10

15

20

25

WO 2019/068037 PCT/US2018/053628

[0196] In some embodiments, communications subsystem 3224 may also receive input
communication in the form of structured and/or unstructured data feeds 3226, event streams
3228, event updates 3230, and the like on behalf of one or more users who may use computer

system 3200.

[0197] By way of example, communications subsystem 3224 may be configured to receive
data feeds 3226 in real-time from users of social networks and/or other communication services
such as Twitter® feeds, Facebook® updates, web feeds such as Rich Site Summary (RSS) feeds,

and/or real-time updates from one or more third party information sources.

[0198] Additionally, communications subsystem 3224 may also be configured to receive data
in the form of continuous data streams, which may include event streams 3228 of real-time
events and/or event updates 3230, that may be continuous or unbounded in nature with no
explicit end. Examples of applications that generate continuous data may include, for example,
sensor data applications, financial tickers, network performance measuring tools (e.g. network
monitoring and traffic management applications), clickstream analysis tools, automobile traffic

monitoring, and the like.

[0199] Communications subsystem 3224 may also be configured to output the structured
and/or unstructured data feeds 3226, event streams 3228, event updates 3230, and the like to one
or more databases that may be in communication with one or more streaming data source

computers coupled to computer system 3200.

[0200] Computer system 3200 can be one of various types, including a handheld portable
device (e.g., an iPhone® cellular phone, an iPad® computing tablet, a PDA), a wearable device
(e.g., a Google Glass® head mounted display), a PC, a workstation, a mainframe, a kiosk, a

server rack, or any other data processing system.

[0201] Due to the ever-changing nature of computers and networks, the description of
computer system 3200 depicted in the figure is intended only as a specific example. Many other
configurations having more or fewer components than the system depicted in the figure are
possible. For example, customized hardware might also be used and/or particular elements
might be implemented in hardware, firmware, software (including applets), or a combination.

Further, connection to other computing devices, such as network input/output devices, may be

57



10

15

20

25

WO 2019/068037 PCT/US2018/053628

employed. Based on the disclosure and teachings provided herein, a person of ordinary skill in

the art will appreciate other ways and/or methods to implement the various embodiments.

[0202] In the foregoing description, for the purposes of explanation, numerous specific details
were set forth in order to provide a thorough understanding of various embodiments of the
present invention. It will be apparent, however, to one skilled in the art that embodiments of the
present invention may be practiced without some of these specific details. In other instances,

well-known structures and devices are shown in block diagram form.

[0203] The foregoing description provides exemplary embodiments only, and is not intended
to limit the scope, applicability, or configuration of the disclosure. Rather, the foregoing
description of the exemplary embodiments will provide those skilled in the art with an enabling
description for implementing an exemplary embodiment. It should be understood that various
changes may be made in the function and arrangement of elements without departing from the

spirit and scope of the invention as set forth in the appended claims.

[0204] Specific details are given in the foregoing description to provide a thorough
understanding of the embodiments. However, it will be understood by one of ordinary skill in
the art that the embodiments may be practiced without these specific details. For example,
circuits, systems, networks, processes, and other components may have been shown as
components in block diagram form in order not to obscure the embodiments in unnecessary
detail. In other instances, well-known circuits, processes, algorithms, structures, and techniques

may have been shown without unnecessary detail in order to avoid obscuring the embodiments.

[0205] Also, it is noted that individual embodiments may have beeen described as a process
which is depicted as a flowchart, a flow diagram, a data flow diagram, a structure diagram, or a
block diagram. Although a flowchart may have described the operations as a sequential process,
many of the operations can be performed in parallel or concurrently. In addition, the order of the
operations may be re-arranged. A process is terminated when its operations are completed, but
could have additional steps not included in a figure. A process may correspond to a method, a
function, a procedure, a subroutine, a subprogram, etc. When a process corresponds to a
function, its termination can correspond to a return of the function to the calling function or the

main function.

58



10

15

20

25

30

WO 2019/068037 PCT/US2018/053628

[0206] The term “computer-readable medium” includes, but is not limited to portable or fixed
storage devices, optical storage devices, wireless channels and various other mediums capable of
storing, containing, or carrying instruction(s) and/or data. A code segment or machine-
executable instructions may represent a procedure, a function, a subprogram, a program, a
routine, a subroutine, a module, a software package, a class, or any combination of instructions,
data structures, or program statements. A code segment may be coupled to another code
segment or a hardware circuit by passing and/or receiving information, data, arguments,
parameters, or memory contents. Information, arguments, parameters, data, etc., may be passed,
forwarded, or transmitted via any suitable means including memory sharing, message passing,

token passing, network transmission, etc.

[0207] Furthermore, embodiments may be implemented by hardware, software, firmware,
middleware, microcode, hardware description languages, or any combination thereof. When
implemented in software, firmware, middleware or microcode, the program code or code
segments to perform the necessary tasks may be stored in a machine readable medium. A

processor(s) may perform the necessary tasks.

[0208] In the foregoing specification, aspects of the invention are described with reference to
specific embodiments thereof, but those skilled in the art will recognize that the invention is not
limited thereto. Various features and aspects of the above-described invention may be used
individually or jointly. Further, embodiments can be utilized in any number of environments and
applications beyond those described herein without departing from the broader spirit and scope
of the specification. The specification and drawings are, accordingly, to be regarded as

illustrative rather than restrictive.

[0209] Additionally, for the purposes of illustration, methods were described in a particular
order. It should be appreciated that in alternate embodiments, the methods may be performed in
a different order than that described. It should also be appreciated that the methods described
above may be performed by hardware components or may be embodied in sequences of
machine-executable instructions, which may be used to cause a machine, such as a general-
purpose or special-purpose processor or logic circuits programmed with the instructions to
perform the methods. These machine-executable instructions may be stored on one or more

machine readable mediums, such as CD-ROMs or other type of optical disks, floppy diskettes,

59



WO 2019/068037 PCT/US2018/053628

ROMs, RAMs, EPROMs, EEPROMs, magnetic or optical cards, flash memory, or other types of
machine-readable mediums suitable for storing electronic instructions. Alternatively, the

methods may be performed by a combination of hardware and software.

60



WO 2019/068037 PCT/US2018/053628

WHAT IS CLAIMED IS:

1. A method of providing runtime debugging for containerized services in
container environments, the method comprising:
receiving a request for a service at a container environment, wherein:
5 the container environment comprises a service mesh and a plurality of
services encapsulated in a plurality of containers; and
the service is encapsulated in first one or more containers;
determining that the request should be routed to a debug instance of the service;
instantiating the debug instance of the service, wherein the debug instance is
10 encapsulated in second one or more containers and comprises:
code implementing the service; and
one or more debugging utilities;

routing, by the service mesh, the request to the debug instance.

2. The method of claim 1, wherein the first one or more containers are

15  organized into a container pod.

3. The method of claim 1, wherein the container environment comprises an

orchestrated container platform comprising a container scheduler.

4. The method of claim 3, wherein the container scheduler causes the debug

instance of the service to be instantiated.

20 5. The method of claim 1, wherein the container environment comprises an
Application Programming Interface (API) registry that causes the debug instance of the service

to be instantiated.

6. The method of claim 5, wherein the API registry receives a registration for
the debug instance of the service and makes an HTTP endpoint of the debug instance of the

25  service available through an API function call.

61



10

15

20

25

WO 2019/068037 PCT/US2018/053628

7. The method of claim 5, wherein the API registry receives a registration for
the service comprising a property indicating that the debug instance of the service should be

instantiated.

8. A non-transitory, computer-readable medium comprising instructions that,
when executed by one or more processors, causes the one or more processors to perform
operations comprising:

receiving a request for a service at a container environment, wherein:

the container environment comprises a service mesh and a plurality of
services encapsulated in a plurality of containers; and
the service is encapsulated in first one or more containers;

determining that the request should be routed to a debug instance of the service;

instantiating the debug instance of the service, wherein the debug instance is
encapsulated in second one or more containers and comprises:

code implementing the service; and
one or more debugging utilities;

routing, by the service mesh, the request to the debug instance.

9. The non-transitory computer-readable medium according to claim 8

wherein the service is encapsulated in a single container.

10. The non-transitory computer-readable medium according to claim 9

wherein the single container also comprises the one or more debugging utilities.

11. The non-transitory computer-readable medium according to claim 9
wherein the one or more debugging utilities are encapsulated in at least one container other than

the single container.

12. The non-transitory computer-readable medium according to claim 9
wherein the one or more debugging utilities comprise a process for monitoring memory usage or

processor usage.

13. The non-transitory computer-readable medium according to claim 9
wherein the one or more debugging utilities comprise a debug daemon.

62



WO 2019/068037 PCT/US2018/053628

14. The non-transitory computer-readable medium according to claim 9

wherein the code implementing the service comprises a debug build of the service.

15. A system comprising;
one or more processors; and
5 one or more memory devices comprising instructions that, when executed by the
one or more processors, cause the one or more processors to perform operations comprising:
receiving a request for a service at a container environment, wherein:
the container environment comprises a service mesh and a plurality
of services encapsulated in a plurality of containers; and
10 the service is encapsulated in first one or more containers;
determining that the request should be routed to a debug instance of the
service;
instantiating the debug instance of the service, wherein the debug instance
is encapsulated in second one or more containers and comprises:
15 code implementing the service; and
one or more debugging utilities;

routing, by the service mesh, the request to the debug instance.

16.  The system of claim 15, wherein the debug instance of the service is

instantiated prior to receiving the request.

20 17.  The system of claim 15, wherein the debug instance of the service is

instantiated in response to receiving the request.

18. The system of claim 15, wherein determining that the request should be

routed to the debug instance of the service comprises identifying a source of the request.

19. The system of claim 15, wherein determining that the request should be
25  routed to the debug instance of the service comprises recognizing a header in the request that

designates the request as a debug request.

20. The system of claim 15, wherein the request is forwarded to the debug
instance of the service without interrupting the routing of other requests to the service.

63



PCT/US2018/053628

WO 2019/068037

1/35

I "Old

saueiq]
Jebbnge
apo7 ged
S S
SONSS |4 AN oLt
104di0)y Joup3
S /erdwod 3P0y
vil /piing 82.n0g
S S
801 904
UBWILOIIAUTY JuswAojdaguononpold JuswiuonAuy e wdojpaaq pajesbouy
S <
1441 201




PCT/US2018/053628

WO 2019/068037

2135

¢ Ol

AV
O
Seegj —————— B0INIBG
fJ
144"
1z 0z 0z
wioge|d suyoBp\
JBUIRIUOD |enLIA SIEMPIEH
|
===
| ¥ ¥ |
Ll
74 ie X
000¢ di 0009 -di 0008 -di




PCT/US2018/053628

WO 2019/068037

3/35

€ "Old

8ce

Hod-dl

ofe CRoueiuod

pPod

90¢

142>

BOIMBG
1
20IAI9S

HOd di

8l¢

B0INDG

ozs| @0inosay

|

JeueIu0)

A%

BOIMIBS

Jaueiuo)d

SPON JBuIRIuoD




PCT/US2018/053628

WO 2019/068037

4/35

¥ "Old

seleIg]
1abbngs
apo0 gad
S <
SoINOS | i oLl
8|00 | Joup3
= uolBWOINY 2pon
Pil ping 82.In0g
> S
801 a0l

Ansibey idv

JuawuosALg JuBwWAodequononpold

S
YoV

f
144

JuswiuonAuy e wdojpaaq pajesbouy

S
¢01




PCT/US2018/053628

WO 2019/068037

5/35

202
f
Seg| ——————— ERIIVETS
f
il
\/A& 0c 0z
wiopeld auIyoe
Jauigjuo) [eNUIA 2iempieH
I
00 FIFFT 595
[ il (! |
(N S
912 vz zie
o Ve v
000¢€ :di 0009 di 0008 :di
AnsiBey 1dv |/ ¥Or
@ [ ]
(Mesnelepdn ()lesnaieai)d
®

(Mesnarepa .




WO 2019/068037

601

603

6/35

Deploy APIregistry service

Discover ports for available
services m the platform

FIG. 6A

PCT/US2018/053628



PCT/US2018/053628

WO 2019/068037

7135

g9 'Old

wuogeld

lauleuo)
IIIIIIIIIIIIIII _— = —
_ 09 | 1909 09 |
_ pod:di HOd:dl pod:d pod:dt |
_

_ SOOIABG/SIUIOdpUT Bjge|IRAY JSA0ISI(] ANV

]
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
|

d

Ansibey dV

uuole|d Jsuieiuon o) Ansibay |dvy Aojdeq (1) I



WO 2019/068037 PCT/US2018/053628

8/35

701
Receive upload of API definition
703
Create API functions
705

Create API binding between the
service and the APL

FIG. 7A



PCT/US2018/053628

WO 2019/068037

9/35

3q) eones .
JETEN Vol
< A ¢9
— = = /|
v _
IIIIII - 8_ 09
| _ . e
_ | Hod:di uod:di Hod-di E_o%cm_
204 0} |dV
| - |
| syl |
| | vomugeq jav | | o
_ |
_ o114 uopLEQ | S Ausibey Idv

a. "Old




PCT/US2018/053628

WO 2019/068037

10/35

8 'Ol

©uswabeusyAiciusauy
{pihpeoouiniey Aousodayioeon

( ysqiensuisy Aloysodayioeiuos

(- ‘s0i ‘pHIssnalepdn obeioigiasn
(priesneleieq obeioigiasn

(pt ‘sweu ise] ‘Bwiey 1sH)iesneeRl ) 9beiolgiasn

B- Asibey idY 1ISM\D

XE0

TUSWU OLHAUT JusdofoAsg palesdanyl XQ0 0O

-
$08

208
[

wLmEOmmmcms_%E
uawAedssa20i4 @

Juswsbeuepfiojusaui@

(PIOBIUODUINIOY —;

( )sqiensuiey —
Asoysodeyoriuong

(- - ‘ejo1 ‘pryesneiepdn —
(pesnalePRQ—

(pt ‘aweu 1SB| ‘OweU Jsiy)lasnaieal) —
abelojgesNg

uonound idv 1ses

Sldv
paJalsiBay

L%

DB x 0 (L))

dioH sjo0) Syieunoog A0S MAIA P33l

X8~

TUSWL OHAUT JusdofoAag palesdanyl Xa0 o)




WO 2019/068037 PCT/US2018/053628

11/35

901
I I
: Provide a listing of registered APIs :
I I
e e o — e — — — — — |
903
Receive a selection of an API
QC&
Generate client libraries
907

FIG. 9



PCT/US2018/053628

WO 2019/068037

12/35

0L "Old

c08
o

c001
-

.&mEOmmmcmS_mﬂ
JuUsWARHSS990IJ
JuswobeuenAlousAuiEH B
(PIOBIODUINY —

( )sQiensiey —
Aioyisodayioriuong

(- ‘ol01 ‘pi)sosneIEpd —
(pnJesnsepQ—

(p! ‘eweu jsE| ‘aweu Isiy)esnN8leal)

abelo)SIesNg
ToRouNS IV 19195

Sidv
paJa1sidoy

DD x 0 )

disy sjoop  SsyaeW00g  AIOISIH

MSIA NPT alid

Judwiuonaug uawdosasg pareidsiy Xao O




PCT/US2018/053628

WO 2019/068037

13/35

L1 "Old

A

{
<Ejep>/818810/48sN/LA/0008/001 2’891 'Z61//-dny LSOd

= JopeaH
pi = @aiesn
swieu jse| + sweu 181l = SWENJOSN

} (prut ‘aweu ISe) JIS ‘alieU IS} SHBsSN8)BALD JBSN oland

} 19sn ssen




PCT/US2018/053628

WO 2019/068037

14/35

¢l "Old

AVAS

vii
f
QIAIOG
?on_%mo
Ansibay idv
S
1403%
JUaLuUOHAUT JUSWIUONAUT
wawhojda Juswidojeaa(]
JUORONPOLd pajesbojuy
,J
12012 N,Jo L

{

<ejep>/a}eaid/1asn/ L AHoddl///dRy 1S0d
a\ (1osnajeald iasn)Hoddiien = Hoddl
= JopesH

pt=qapesn

sweu 1Se| + SWRU1SH) = SWENJSS(

(p! ‘oweu S| ‘sWBU JSIY)IasnviealD) 1BsN
}(ptiul ‘euwieuIse| JIS ‘BliRU IS0l 4S)I98Na1ealN JBsN olignd

} 198 ssen




PCT/US2018/053628

WO 2019/068037

15/35

€L 'Old

Z0cL
.
{
{
—— * fIlOHNSOY ‘AU lINSAN IS Mau uinjal
ger jorynsey Hnsayiesn }
uays (MO == smejsnsay)
gocT
<BJep>/0)eald/19sn/ L AJ0008/00L 2’89126 L//-dRY 1S0d = }insey
T = J9peaH
pl = Quesn

socT./ (SWeNJasn)aloYIen = sjoyasN

suwieu ise| + sWeu 1s1y = SWENJIOSN

} (prul ‘aweu)se} A4S ‘awiey ISl s)iasnsealD Jesn olgnd

} 1osn ssen




PCT/US2018/053628

WO 2019/068037

16/35

i1 "Old

covi

<BJep>/2)eaIdIasn/LAI0008/001'Z 891 Z61//:0BY 1SOd = }Insay
vorT-

(MO =i 3insay) apym

MOION = shiejsynsey

1 = lepeeH

P! = quesn

BWBU 1SB| + SWEBU 1SIY = SWeNIesN

Y (piul ‘ewieu” ISk ;1S ‘swBy ISdif ASasNaIBaI) PSN 2lignd

} 1esn ssen




WO 2019/068037 PCT/US2018/053628

17/35

1501

Receive upload of API definition

1503
Receive upload of API properties

1505

A
Create API binding between the

service and the API.
1507

Use the properties to generate client
libraries, deploy the service, and/or
handle service calls.

FIG. 15A



PCT/US2018/053628

WO 2019/068037

18/35

3Q) 998G

¢0l

S
uoniuleq |dv
. z

c0Gi y0Gi
ali4 uoniuyag Idv peojdn

asl "Old

HOd- di

09

wuope|d
lsuigluon

aaaaaaaaaaan

09 O\Nom

0\@0@

HOd-di

HOd-di

yod:d|

Ansibey |dv

=
14034
(Jesneyepdn (Jiesnajearn
°

(Hesneserq




PCT/US2018/053628

19/35

WO 2019/068037

91 'Old

wioeld
JauileoD

r——1——" r—
_ | |
09 | v\wow ||
Hod: df | wodidl | | ¥odd
_ mc_ocm_mm_ peo| _ S90UB)SU| m_aa_:_z
=
¥0¥ £3a
R Knysiboy |dv T =
Z S
uoniugsq idv
SN
c09l G0G1L
o

30IAI5G € bulAojdaq




PCT/US2018/053628

WO 2019/068037

20/35

T T s T S
_ | 80IAI0G pol)siBoy |
| | | |
| | | |
_ _ Y
_ _ _ Sﬂ ) _
" { _ _ WdFeq | ||
_ (" JdAioug 1 Hod ] 104 | sones I
J8poo _ | _
_ Wz A *X) | oung qrpusyn _ _ i
| soueIqI] SO _ _ N~ |
_ T | |
L e e e e e e e = _——
_ —
“ _ 80/1
_
| - —e— e—— e e e e e e— ——
T,
Q0.1
s
D =
AisiBay o
IV ‘ 58
g ¢ o|id
0 L0
uoniuyaq idvy
S S
S ¥0LL gogl
1401%




PCT/US2018/053628

WO 2019/068037

21/35

aomeg buyr)d

(VAapoy6o

++I9JUN0D
L 8p0oo

Kz A ’x)pound arpusyd
saueIqIt JuSiOD

A 2
c081

.Inﬂllll ||||||
9081

Ansibey
IdV

Usage
Logging

uoiueqd Idv

Siid

Y081

f

qogl

aolAJag pelg)siBey

AN

_
_
nod | 104 | somies | |
_
_




PCT/US2018/053628

WO 2019/068037

22/35

20INIRg
uonesRUBLINY
/ dvai

_IlldgﬁgylllJ - —
_
_ _ _
_ _ _
_ _ _
_ [
| (Jeowuagiien usy !
«——1—> (ereopusuny < oG
Lapoo _ _
| Kz A x)Lound qrpuaid _ _
| seueIqIT WalD _ _
_ 1 DY |
_ 2061 | L
_
_ _
_
= -_——e—_—e—_,e_—,ere——— e —
T,
9061
[
S
8
Ansibay =
etV m a4
X | uonueq dv
S S
~ ¥061 GOG1L
vOv

UonEonuauINy — SaueIqr | uai)) bUuneiauat)

B2INISG pRldIsIboy

AN

_
_
p{Uod | somisg | |
_
_




PCT/US2018/053628

23/35

WO 2019/068037

T T s T S
_ | 80IAI0G pol)siBoy |
| | | |
| | | |
| _ _ Y
| | _ |
_ _
_ | I
| | Osoueisumeain = i DL uod | Hod | someg | ||
J8poo _ | _
_ Wz A *X) | oung qrpusyn _ _ i
_ seweIqr] UKD _ _ N~ |
~ _
| 1 2002 " L o ~— I_
_ | H 8002
_
| - — e e e e——— —— —— —— —
T,
900¢
Y UOd:d| UINa. pue ajepue)su ULOHEld Lz
< . : loulejuon \o
Ansibey c
o .2
idV £®
«—S5 &
X o SHE
S = | uonuyeq 1dv
1401% I I
Y002 GogGlL

UOTENUBISU| PUBUB(-UQ) — JJED) 90IASS aWnuny



PCT/US2018/053628

WO 2019/068037

24/35

1Z "Old

aomeg buyr)d

Crzeldy
uayl ()jjeomoly H
L8p00
Hz A x)pound grus)
sauelqi us|d

I
1 AV %4

[ —_—een e e e —————— -
T,
9012

Ansibey
IdV

SHE |
uoniuyeQd Idv

I

y0Le Gogl

f Rate Limiting

™7 “oomeg posaisiboy |

_

_

_

_

_ _

_ _
i pod = P IESES R

_ _

_ _

_

_

_

_

bUNWIT 818y — [[eD 8JAI9S swiuny

AT




PCT/US2018/053628

WO 2019/068037

25/35

lsouejeg pro

1

ysopy eoInBeg

y Y

A

ﬁ

Jsouejeg peo

WSO

S
902¢

A

WD

f
y0cc

80¢¢

Jualo

<
¢0ce

Ansibey I1dv

S
12017




PCT/US2018/053628

WO 2019/068037

26/35

TN
\ 2oIMBS M

ST VETS
1

S0IMBS

/

Hod:dl T IBUIRILOD) )

8L€

~—

43

B0INIBG

Jauieiuocd

113%

€¢ Old

B 74>
44>

/

I~

ozs| 8ounosay

80¢€

)

Bngeq

wbon

Bnga(
Bupjoes ]
drijuey
uowee(

Bngeq

8 8 €

)

lauiejuon

{

c0ee

NOLES
MOEZ

NO0EC

MOEC




PCT/US2018/053628

27/35

WO 2019/068037

¥¢ "Old

bngaq v
ubon
bngeq |T80€C
Bupjoed |
drijwepy fT90€2
Hod dl
= uowaeq
ale Bbngaqg [WOEC
™~ ooineg | 4—8CE
T IBuIBIUOD Y

pie

pod 00%Z




PCT/US2018/053628

WO 2019/068037

28/35

lsouejeg peo

11

Ansibey I1dv
f
2014
Q
£9
o 0
.W,e
;e alld
uoniuyeQ Idv
S5
0152 GOS 1

o,ez vt _
-
ysop 9oneg 905¢~ | bay BngaQ
x y ¥ ﬁ
Joduejeyg peoT}
A ~
8022
bay Bngeq
\
obsz  N\L
T
udKD walD Bngeq
= ~
9022 w02z vose




PCT/US2018/053628

WO 2019/068037

29/35

20G¢ 7 Pod

Bngeq 8122

= o)) o]

oomm/ bay bngsq

N\

9¢ 'Old

0122 viee

-]

lsouejeg peo

\\NvNN

11

0Lcc
pe

ysopy eoInBeg

D —

X 7'y

ﬁ

Ansibey I1dv

Jsouejeg peo

/'Y 2

8022

bay Bngeq

\
905z /////

sl
walD weiD Bngeq
< ~
9022 022 r0se

S
12017




PCT/US2018/053628

WO 2019/068037

30/35

lsouejeg peo

11

Ansibey I1dv
f
2014
()]
o &
c O
2 2
00 ol
uontuya( Idv
SN
0142 GOS1L

oz ! ____
-
ysoy sames SO\ [oio boy
y Y A %
Jsouejeg peo
A ~
8022
Wl WD D
S S
902z b0z coce




PCT/US2018/053628

WO 2019/068037

31/35

8¢

Old

2052 /" Fod 122
Reed 8122 9122
L ) (] ]
<>
eiee
Jsouejeg peo
808z~ | 1sonbey
aUO
= T o
\ -
ysopy eaming O\ [Giop boy | fe——> AnsiBoy |y
y Y A S
ﬁ O
Jsdueleg peo
¥ <
8022
1sanbay
\
obez  \L
Wl WD D
S S
9022 02z 2022




WO 2019/068037

2902

32/35

Receive a request for a service
at a container environment

2004 Y.

" Debug .._No

PCT/US2018/053628

“w_request? -

o

Yes

2906

TN
e .
e .
- ~.
~.
~

" Debug ™

2910
y

Instantiate the
debug instance of
the service

No -.instance? -~

Yes

2912

Route request to
the debug
instance of the
service

FIG. 29

2908
Y

Route request to
service




WO 2019/068037 PCT/US2018/053628

33/35

N

DATABASE
3014

3000

DATABASE
3016

COMPONENT COMPONENT
3018 3020

COMPONENT
3022

SERVER
3012

NETWORK(S)

FIG. 30



PCT/US2018/053628

WO 2019/068037

34/35

00Le

L€ "Old

Pric

- I0INYIS
SIOINGIS AFUVHS TYNUALN] ) HaNoEd / 801¢€
§ 30IN3Q
T / LINTD
SADUNOSTY FUNLONY LSVHAN] | (lvm T 4
YA ™ JAAEIS
LNIWIOYNYIN ALILNIQ] ]
4% (%
ONIMOLINOW ANV (SPHIYOMLIN
LNIWIOVNYIN W30
Al O ric
orig .\% eVl
k4% oma_>oma/ A01¢
NOLLYHLSIHOHO 30IA3Q
HITHO oZ_zQwSoma ¥3IQNO INAND
o LE \% crie wwdm 1s3N03ay
aTT ADINYAS
széwg\z/ﬁ HIAHO Svaviva ¥dddo rrle
geLe ESEL
9cLe a3qino¥d 701E
] 30\3Q
viie 49%3 (N Zog A INFO
in n_:oJo N anoo N ano 153N03Y
e ElNELS

WILSAS FEALONYLSYHANI ANOTD




PCT/US2018/053628

35/35

WO 2019/068037

¢¢ "Old

INILSASENS JOVHOLS
Yo d4y
STz VIQ3WN IOVEOL
WILSAS ONILYHIJO mﬁ<mﬁm ’
(%49 (7449 922¢ “HILNINOD
savadn | {snwvadls 80334 AR
AN3AT ANAAT vivQ V1Y WYe90Hd
(44
« « & {4243 HIAVIY VI3

SWYHDONd NOWYOITddY JOVHOLS

Otzc TiEvavay

 TAAS H3ALNAWOD

“ WILSASENS SNOLLYIINNIANOD AHONIN WILSAS
f ]
PAVTAY p—
[IsY45 veee FAX4S
B07C UNQ LN LINN
W3LSASENS O/ NOLLYY T1I00V HNISSIVOU 8NS DNISSIDON €9NS
ONISSINOH]
T AHOVD 3HOVYD IHOVD
. 400 HOD MO0
ooee P0ce
e LINN ONISSTD0Yd




INTERNATIONAL SEARCH REPORT

International application No

PCT/US2018/053628

A. CLASSIFICATION OF SUBJECT MATTER

INV. GO6F11/36 GO6F8/60
ADD.

GO6F9/50

According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

GO6F

Minimum documentation searched (classification system followed by classification symbols)

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

EPO-Internal, WPI Data, INSPEC

Electronic data base consulted during the international search (name of data base and, where practicable, search terms used)

C. DOCUMENTS CONSIDERED TO BE RELEVANT

Development Environment for
Microservices",

SERVICES COMPUTING (SCC)

XP032953859,

DOI: 10.1109/SCC.2016.112
[retrieved on 2016-08-31]
the whole document

2016 IEEE INTERNATIONAL CONFERENCE ON
, 1EEE,
27 June 2016 (2016-06-27), pages 808-812,

Category™ | Citation of document, with indication, where appropriate, of the relevant passages Relevant to claim No.
A US 2017/046146 Al (JAMJOOM HANI T [US] ET 1-20

AL) 16 February 2017 (2017-02-16)

abstract

paragraph [0062] - paragraph [0081]
A LIU DESHENG ET AL: "CIDE: An Integrated 1-20

Further documents are listed in the continuation of Box C.

See patent family annex.

* Special categories of cited documents :

"A" document defining the general state of the art which is not considered
to be of particular relevance

"E" earlier application or patent but published on or after the international
filing date

"L" document which may throw doubts on priority claim(s) or which is
cited to establish the publication date of another citation or other
special reason (as specified)

"O" document referring to an oral disclosure, use, exhibition or other
means

"P" document published prior to the international filing date but later than
the priority date claimed

"T" later document published after the international filing date or priority
date and not in conflict with the application but cited to understand
the principle or theory underlying the invention

"X" document of particular relevance; the claimed invention cannot be
considered novel or cannot be considered to involve an inventive
step when the document is taken alone

"Y" document of particular relevance; the claimed invention cannot be
considered to involve an inventive step when the document is
combined with one or more other such documents, such combination
being obvious to a person skilled in the art

"&" document member of the same patent family

Date of the actual completion of the international search

3 January 2019

Date of mailing of the international search report

10/01/2019

Name and mailing address of the ISA/

European Patent Office, P.B. 5818 Patentlaan 2
NL - 2280 HV Rijswijk

Tel. (+31-70) 340-2040,

Fax: (+31-70) 340-3016

Authorized officer

Renault, Sophie

Form PCT/ISA/210 (second sheet) (April 2005)

page 1 of 2




INTERNATIONAL SEARCH REPORT

International application No

PCT/US2018/053628
C(Continuation). DOCUMENTS CONSIDERED TO BE RELEVANT
Category™ | Citation of document, with indication, where appropriate, of the relevant passages Relevant to claim No.
A KANG HUI ET AL: "Container and 1-20

Microservice Driven Design for Cloud
Infrastructure DevOps",

2016 TEEE INTERNATIONAL CONFERENCE ON
CLOUD ENGINEERING (IC2E), IEEE,

4 April 2016 (2016-04-04), pages 202-211,
XP032908141,

DOI: 10.1109/IC2E.2016.26

[retrieved on 2016-06-01]

the whole document

Form PCT/ISA/210 (continuation of second sheet) (April 2005)

page 2 of 2



INTERNATIONAL SEARCH REPORT

International application No
Information on patent family members

PCT/US2018/053628
Patent document Publication Patent family Publication
cited in search report date member(s) date

US 2017046146 Al 16-02-2017  NONE

Form PCT/ISA/210 (patent family annex) (April 2005)



	Page 1 - front-page
	Page 2 - front-page
	Page 3 - description
	Page 4 - description
	Page 5 - description
	Page 6 - description
	Page 7 - description
	Page 8 - description
	Page 9 - description
	Page 10 - description
	Page 11 - description
	Page 12 - description
	Page 13 - description
	Page 14 - description
	Page 15 - description
	Page 16 - description
	Page 17 - description
	Page 18 - description
	Page 19 - description
	Page 20 - description
	Page 21 - description
	Page 22 - description
	Page 23 - description
	Page 24 - description
	Page 25 - description
	Page 26 - description
	Page 27 - description
	Page 28 - description
	Page 29 - description
	Page 30 - description
	Page 31 - description
	Page 32 - description
	Page 33 - description
	Page 34 - description
	Page 35 - description
	Page 36 - description
	Page 37 - description
	Page 38 - description
	Page 39 - description
	Page 40 - description
	Page 41 - description
	Page 42 - description
	Page 43 - description
	Page 44 - description
	Page 45 - description
	Page 46 - description
	Page 47 - description
	Page 48 - description
	Page 49 - description
	Page 50 - description
	Page 51 - description
	Page 52 - description
	Page 53 - description
	Page 54 - description
	Page 55 - description
	Page 56 - description
	Page 57 - description
	Page 58 - description
	Page 59 - description
	Page 60 - description
	Page 61 - description
	Page 62 - description
	Page 63 - claims
	Page 64 - claims
	Page 65 - claims
	Page 66 - drawings
	Page 67 - drawings
	Page 68 - drawings
	Page 69 - drawings
	Page 70 - drawings
	Page 71 - drawings
	Page 72 - drawings
	Page 73 - drawings
	Page 74 - drawings
	Page 75 - drawings
	Page 76 - drawings
	Page 77 - drawings
	Page 78 - drawings
	Page 79 - drawings
	Page 80 - drawings
	Page 81 - drawings
	Page 82 - drawings
	Page 83 - drawings
	Page 84 - drawings
	Page 85 - drawings
	Page 86 - drawings
	Page 87 - drawings
	Page 88 - drawings
	Page 89 - drawings
	Page 90 - drawings
	Page 91 - drawings
	Page 92 - drawings
	Page 93 - drawings
	Page 94 - drawings
	Page 95 - drawings
	Page 96 - drawings
	Page 97 - drawings
	Page 98 - drawings
	Page 99 - drawings
	Page 100 - drawings
	Page 101 - wo-search-report
	Page 102 - wo-search-report
	Page 103 - wo-search-report

