

Office de la Propriété

Intellectuelle
du Canada

Un organisme
d'Industrie Canada

Canadian
Intellectual Property
Office

An agency of
Industry Canada

CA 2413576 C 2012/11/13

(11)(21) **2 413 576**

(12) **BREVET CANADIEN**
CANADIAN PATENT

(13) **C**

(86) Date de dépôt PCT/PCT Filing Date: 2001/07/06
(87) Date publication PCT/PCT Publication Date: 2002/01/17
(45) Date de délivrance/Issue Date: 2012/11/13
(85) Entrée phase nationale/National Entry: 2002/12/20
(86) N° demande PCT/PCT Application No.: CA 2001/001001
(87) N° publication PCT/PCT Publication No.: 2002/004495
(30) Priorité/Priority: 2000/07/06 (US60/216,465)

(51) Cl.Int./Int.Cl. *C12N 15/31*(2006.01),
A61K 39/09(2006.01), *C07K 14/315*(2006.01),
C12N 15/63(2006.01), *A61K 39/00*(2006.01)

(72) Inventeurs/Inventors:

MARTIN, DENIS, CA;
HAMEL, JOSEE, CA;
BRODEUR, BERNARD, CA;
RIOUX, STEPHANE, CA;
BOYER, MARTINE, CA

(73) Propriétaire/Owner:

ID BIOMEDICAL CORPORATION OF QUEBEC, CA

(74) Agent: NORTON ROSE CANADA
S.E.N.C.R.L.,S.R.L./LLP

(54) Titre : ANTIGENES DE STREPTOCOCCUS PYOGENES

(54) Title: STREPTOCOCCUS PYOGENES ANTIGENS

(57) Abrégé/Abstract:

The present invention relates to an antigen of Streptococcus pyogenes (also called group A Streptococcus (GAS)), which is useful as vaccine component for therapy and/or prophylaxis.

(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(19) World Intellectual Property Organization
International Bureau(43) International Publication Date
17 January 2002 (17.01.2002)

PCT

(10) International Publication Number
WO 02/04495 A3(51) International Patent Classification⁷: 15/63, C07K 14/315, A61K 39/09**C12N 15/31**,

(81) Designated States (national): AE, AG, AL, AM, AT, AU, AZ, BA, BB, BG, BR, BY, BZ, CA, CH, CN, CO, CR, CU, CZ, DE, DK, DM, DZ, EC, EE, ES, FI, GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MA, MD, MG, MK, MN, MW, MX, MZ, NO, NZ, PL, PT, RO, RU, SD, SE, SG, SI, SK, SL, TJ, TM, TR, TT, TZ, UA, UG, US, UZ, VN, YU, ZA, ZW.

(21) International Application Number: PCT/CA01/01001

(22) International Filing Date: 6 July 2001 (06.07.2001)

(25) Filing Language: English

(26) Publication Language: English

(30) Priority Data: 60/216,465 6 July 2000 (06.07.2000) US

(71) Applicant (for all designated States except US): **SHIRE BIOCHEM INC.** [CA/CA]; Intellectual Property Department, 275 Armand Frappier Boulevard, Laval, Québec H7V 4A7 (CA).

(72) Inventors; and

(75) Inventors/Applicants (for US only): **MARTIN, Denis** [CA/CA]; 4728-G Gaboury, St-Augustin, Québec G3A 1E9 (CA). **HAMEL, Josée** [CA/CA]; 2401 Mauritan, Sillery, Québec G1T 1N6 (CA). **BRODEUR, Bernard** [CA/CA]; 2401 Mauritan, Sillery, Québec G1T 1N6 (CA).(74) Agents: **CAWTHORN, Christian** et al.; Swabey Ogilvy Renault, Suite 1600, 1981 McGill College Avenue, Montreal, Québec H3A 2Y3 (CA).

(84) Designated States (regional): ARIPO patent (GH, GM, KE, LS, MW, MZ, SD, SL, SZ, TZ, UG, ZW), Eurasian patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), European patent (AT, BE, CH, CY, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE, TR), OAPI patent (BF, BJ, CF, CG, CI, CM, GA, GN, GW, ML, MR, NE, SN, TD, TG).

Published:

- with international search report
- before the expiration of the time limit for amending the claims and to be republished in the event of receipt of amendments

(88) Date of publication of the international search report:

13 June 2002

For two-letter codes and other abbreviations, refer to the "Guidance Notes on Codes and Abbreviations" appearing at the beginning of each regular issue of the PCT Gazette.

WO 02/04495 A3

(54) Title: STREPTOCOCCUS PYOGENES ANTIGEN

(57) Abstract: The present invention relates to an antigen of Streptococcus pyogenes (also called group A Streptococcus (GAS)), which is useful as vaccine component for therapy and/or prophylaxis.

STREPTOCOCCUS PYOGENES ANTIGENS5 FIELD OF THE INVENTION

The present invention is related to antigens, more particularly a polypeptide antigen of Streptococcus pyogenes (also called group A Streptococcus (GAS)) bacterial pathogen which may be useful for prophylaxis, diagnostic and/or therapy of 10 streptococcal infection.

BACKGROUND OF THE INVENTION

Streptococci are gram (+) bacteria which are differentiated by group specific carbohydrate antigens A through O which are found 15 at the cell surface. Streptococcus pyogenes isolates are further distinguished by type-specific M protein antigens. M proteins are important virulence factors which are highly variable both in molecular weights and in sequences. Indeed, more than 80-M protein types have been identified on the basis of antigenic 20 differences.

Streptococcus pyogenes is responsible for many diverse infection types, including pharyngitis, erysipelas and impetigo, scarlet fever, and invasive diseases such as bacteremia and necrotizing 25 fasciitis and also toxic shock. A resurgence of invasive disease in recent years has been documented in many countries, including those in North America and Europe. Although the organism is sensitive to antibiotics, the high attack rate and rapid onset of sepsis results in high morbidity and mortality.

30

To develop a vaccine that will protect individuals from Streptococcus pyogenes infection, efforts have concentrated on virulence factors such as the type-specific M proteins. However, the amino-terminal portion of M proteins was found to induce 35 cross-reactive antibodies which reacted with human myocardium, tropomyosin, myosin, and vimentin, which might be implicated in

autoimmune diseases. Others have used recombinant techniques to produce complex hybrid proteins containing amino-terminal peptides of M proteins from different serotypes. However, a safe vaccine containing all Streptococcus pyogenes serotypes will be 5 highly complex to produce and standardize.

In addition to the serotype-specific antigens, other Streptococcus pyogenes proteins have generated interest as potential vaccine candidates. The C5a peptidase, which is 10 expressed by at least Streptococcus pyogenes 40 serotypes, was shown to be immunogenic in mice, but its capacity to reduce the level of nasopharyngeal colonization was limited. Other investigators have also focused on the streptococcal pyrogenic exotoxins which appear to play an important role in pathogenesis 15 of infection. Immunization with these proteins prevented the deadly symptoms of toxic shock, but did not prevent colonization.

Therefore there remains an unmet need for *Streptococcus pyogenes* 20 antigens that may be used vaccine components for prophylaxis, diagnostic and/or therapy of *Streptococcus* infection.

SUMMARY OF THE INVENTION

According to one aspect, the present invention provides an 25 isolated polynucleotide encoding a polypeptide having at least 70% identity to a second polypeptide comprising a sequence chosen from SEQ ID NOS: 2, 4, 6, 8, 10, 12, 14, 16, 20 or fragments, analogues or derivatives thereof.

30 According to one aspect, the present invention provides an isolated polynucleotide encoding a polypeptide having at least 95% identity to a second polypeptide comprising a sequence chosen from SEQ ID NOS: 2, 4, 6, 8, 10, 12, 14, 16, 20 or fragments, analogues or derivatives thereof.

35

In other aspects, there are provided novel polypeptides encoded

by polynucleotides of the invention, vectors comprising polynucleotides of the invention operably linked to an expression control region, as well as host cells transfected with said vectors, pharmaceutical or vaccine compositions and 5 methods of producing polypeptides comprising culturing said host cells under conditions suitable for expression.

BRIEF DESCRIPTION OF THE DRAWINGS

10

Figure 1 is the DNA sequence of BVH-P1 gene from serotype 3 S. pyogenes strain ATCC12384 with a secretion signal at position 1 to 75; **SEQ ID NO:1**.

15

Figure 2 is the amino acid sequence BVH-P1 protein from serotype 3 S. pyogenes strain ATCC12384 with a secretion signal at position 1 to 25; **SEQ ID NO:2**.

20

Figure 3 is the DNA sequence of BVH-P1 gene from S. pyogenes strain LSPQ2699(ATCC19615) with a secretion signal at position 1 to 75; **SEQ ID NO:3**.

25

Figure 4 is the amino acid sequence BVH-P1 protein from S. pyogenes strain LSPQ2699(ATCC19615) with a secretion signal at position 1 to 25; **SEQ ID NO:4**.

30

Figure 5 is the DNA sequence of BVH-P1 gene from S. pyogenes strain SPY57 with a secretion signal at position 1 to 75; **SEQ ID NO:5**.

Figure 6 is the amino acid sequence BVH-P1 protein from S. pyogenes strain SPY57 with a secretion signal at position 1 to 25; **SEQ ID NO:6**.

Figure 7 is the DNA sequence of BVH-P1 gene from S. pyogenes strain B514 with a secretion signal at position 1 to 75; **SEQ ID NO:7.**

5 Figure 8 is the amino acid sequence BVH-P1 protein from S. pyogenes strain B514 with a secretion signal at position 1 to 25; **SEQ ID NO:8.**

10 Figure 9 is the DNA sequence BVH-P1 gene without a secretion signal from serotype 3 S.pyogenes strain ATCC12384 ; **SEQ ID NO:9.**

15 Figure 10 is the amino acid sequence BVH-P1 protein without a secretion signal from serotype 3 S.pyogenes strain ATCC12384 ; **SEQ ID NO:10.**

Figure 11 is the DNA sequence BVH-P1 gene without a secretion signal from serotype 3 S.pyogenes strain LSPQ2699 (ATCC19615) ; **SEQ ID NO:11.**

20 Figure 12 is the amino acid sequence BVH-P1 protein without a secretion signal from serotype 3 S.pyogenes strain LSPQ2699 (ATCC19615) ; **SEQ ID NO:12.**

25 Figure 13 is the DNA sequence BVH-P1 gene without a secretion signal from serotype 3 S.pyogenes strain SPY57 ; **SEQ ID NO:13.**

Figure 14 is the amino acid sequence BVH-P1 protein without a secretion signal from serotype 3 S.pyogenes strain SPY57 ; **SEQ ID NO:14.**

Figure 15 is the DNA sequence BVH-P1 gene without a secretion signal from serotype 3 S.pyogenes strain B514 ; **SEQ ID NO:15.**

Figure 16 is the amino acid sequence BVH-P1 protein without a secretion signal from serotype 3 S.pyogenes strain B514 ; **SEQ ID NO:16.**

5 Figure 17 depicts the comparison of the nucleotide sequences of the BVH-P1 genes from ATCC12384, LSPQ2699(ATCC19615), SPY57, B514, ATCC 70029 (Oklahoma) and T28/51/4 (U09352) S. pyogenes strains by using the program Clustal W from MacVector sequence analysis software (version 6.5). Underneath the alignment, there
10 is a consensus line. Shaded nucleotides are identical between every sequences and gaps in the sequence introduced by alignment are indicated by hyphens.

Figure 18 depicts the comparison of the predicted amino acid
15 sequences of the BVH-P1 open reading frames from ATCC12384, LSPQ2699(ATCC19615), SPY57, B514, ATCC 70029 (Oklahoma) and T28/51/4 (U09352) S. pyogenes strains by using the program Clustal W from MacVector sequence analysis software (version 6.5). Underneath the alignment, there is a consensus
20 line. Shaded amino acid residues are identical between every sequences and gaps in the sequence introduced by alignment are indicated by hyphens.

Figure 19 is the DNA sequence of a gene from S. pneumonia; **SEQ
25 ID NO:17.**

Figure 20 is the amino acid sequence of a protein from S. pneumonia; **SEQ ID NO:18.**

30

DETAILED DESCRIPTION OF THE INVENTION

According to one aspect, the present invention provides an isolated polynucleotide encoding a polypeptide having at least 70% identity to a second polypeptide comprising a sequence
35 chosen from **SEQ ID NOS: 2, 4, 6, 8, 10, 12, 14, 16, 20** or fragments, analogues or derivatives thereof.

According to one aspect, the present invention provides an isolated polynucleotide encoding a polypeptide having at least 95% identity to a second polypeptide comprising a sequence chosen from **SEQ ID NOS: 2, 4, 6, 8, 10, 12, 14, 16, 20** or fragments, analogues or derivatives thereof.

According to one aspect, the present invention relates to polypeptides characterized by the amino acid sequence comprising **SEQ ID NOS: 2, 4, 6, 8, 10, 12, 14, 16, 20** or fragments, analogues or derivatives thereof.

According to one aspect, the present invention provides an isolated polynucleotide encoding a polypeptide capable of generating antibodies having binding specificity for a polypeptide comprising a sequence chosen from **SEQ ID NOS: 2, 4, 6, 8, 10, 12, 14, 16, 20** or fragments, analogues or derivatives thereof.

20 In accordance with the present invention, there is provided, a consensus nucleotide sequence depicted in Figure 17. As can be seen by the alignment, the polynucleotide encoding the polypeptide of the invention is well conserved. Without restricting the scope of the invention, the following table 1 shows the possible modifications. SEQ ID NO:19 covers the consensus nucleotide sequence depicted in Figure 17 with the modifications illustrated in Table 1:

Position on alignment in Figure 17	Possible nucleotide
21	C or T
53	C or T
69	G or A
103	G or C
149	C or T

150	A or T
195	G or A
244	T or C
273	A or C
282	T or C
302	C or A
318	A or G
334	G or T
394	C or T
400	G or A
415	C or T
428-448	[CTGATGTCCCAACGACACCAT] or none
450	C or A
473	C or T
501	G or A
527	T or C
572	T or A
573	T or A
595	A or C
596	C or G
597	G or C
630	A or G
632	A or C
633	C or T
634	C or T
665	A or G
666	G or A
683	T or C
708	C or T
733	[CAGATGTTAACT] or none
798	T or C
883	G or none
927	T or A

930	T or C
943	T or none
952	T or A
955	G or A
964	T or C
973	G or A
976	T or G
978	A or T
979	A or T
981	A or G
982	T or C
986	G or A
988	T or G
1033	G or C
1034	C or G
1102	C or T
1143	A or T
1144	A or T
1145	A or T
1146	A or T

In accordance with the present invention, there is provided a consensus amino acid sequence depicted in Figure 18. As can be seen by the alignment, the polypeptide of the invention is well 5 conserved. Without restricting the scope of the invention, the following table 2 shows the possible modifications. SEQ ID NO:20 covers the consensus nucleotide sequence depicted in Figure 18 with the modifications illustrated in Table 2:

Position on alignment in Figure 18	Possible amino acid
18	A or V
35	E or Q
50	T or I
101	T or N
112	A or S
132	P or S
134	V or I
139	S or P
143 to 149	SDVPTTP or none
150	F or L
158	S or F
176	L or S
191	V or E
199	T or P or S
211	D or A
212	P or S
222	E or G
228	V or A
242 to 245	ETSQ or none
246	E or M
247	T or L
248	S or T
295	A or L
296	S or L
297	A or P
298	F or L
299	G or V
300	I or L
301	T or R
302	S or H
303	F or L

304	S or V
305	G or V
306	Y or T
307	R or V
308	P or Q
309	G or E
310	D or I
311	P or Q
312	G or E
313	D or I
314	H or I
326	E or V
327	N or S
329	A or T
344	E or D
345	R or G
380	E or V
381	N or F

In accordance with the present invention, all polynucleotides encoding polypeptides are within the scope of the present 5 invention.

In a further embodiment, the polypeptides in accordance with the present invention are antigenic.

10 In a further embodiment, the polypeptides in accordance with the present invention are immunogenic.

15 In a further embodiment, the polypeptides in accordance with the present invention can elicit an immune response in an individual.

In a further embodiment, the present invention also relates to

polypeptides which are able to raise antibodies having binding specificity to the polypeptides of the present invention as defined above.

5 An antibody that "has binding specificity" is an antibody that recognizes and binds the selected polypeptide but which does not substantially recognize and bind other molecules in a sample, e.g., a biological sample. Specific binding can be measured using an ELISA assay in which the selected polypeptide is used
10 as an antigen.

In accordance with the present invention, "protection" in the biological studies is defined by a significant increase in the survival curve, rate or period. Statistical analysis using the
15 Log rank test to compare survival curves, and Fisher exact test to compare survival rates and numbers of days to death, respectively, might be useful to calculate P values and determine whether the difference between the two groups is statistically significant. P values of 0.05 are regarded as not
20 significant.

As used herein, "fragments", "analogues" or "derivatives" of the polypeptides of the invention include those polypeptides in which one or more of the amino acid residues are substituted
25 with a conserved or non-conserved amino acid residue (preferably conserved) and which may be natural or unnatural. In one embodiment, derivatives and analogues of polypeptides of the invention will have about 70% identity with those sequences illustrated in the figures or fragments thereof. That is, 70%
30 of the residues are the same. In a further embodiment, polypeptides will have greater than 75% homology. In a further embodiment, polypeptides will have greater than 80% homology. In a further embodiment, polypeptides will have greater than 85% homology. In a further embodiment, polypeptides will have greater than 90% homology. In a further embodiment, polypeptides will have greater than 95% homology. In a further embodiment,

polypeptides will have greater than 99% homology. In a further embodiment, derivatives and analogues of polypeptides of the invention will have less than about 20 amino acid residue substitutions, modifications or deletions and more preferably 5 less than 10. Preferred substitutions are those known in the art as conserved i.e. the substituted residues share physical or chemical properties such as hydrophobicity, size, charge or functional groups.

10 The skilled person will appreciate that fragments, analogues or derivatives of the proteins or polypeptides of the invention will also find use in the context of the present invention, i.e. as antigenic/immunogenic material. Thus, for instance proteins or polypeptides which include one or more additions, deletions, 15 substitutions or the like are encompassed by the present invention. In addition, it may be possible to replace one amino acid with another of similar "type". For instance replacing one hydrophobic amino acid with another hydrophobic amino acid.

20 One can use a program such as the CLUSTAL program to compare amino acid sequences. This program compares amino acid sequences and finds the optimal alignment by inserting spaces in either sequence as appropriate. It is possible to calculate amino acid identity or similarity (identity plus conservation of 25 amino acid type) for an optimal alignment. A program like BLASTx will align the longest stretch of similar sequences and assign a value to the fit. It is thus possible to obtain a comparison where several regions of similarity are found, each having a different score. Both types of identity analysis are 30 contemplated in the present invention.

In an alternative approach, the analogues or derivatives could be fusion proteins, incorporating moieties which render purification easier, for example by effectively tagging the 35 desired protein or polypeptide, it may be necessary to remove

the "tag" or it may be the case that the fusion protein itself retains sufficient antigenicity to be useful.

5 In an additional aspect of the invention there are provided antigenic/immunogenic fragments of the proteins or polypeptides of the invention, or of analogues or derivatives thereof.

10 The fragments of the present invention should include one or more epitopic regions or be sufficiently similar to such regions to retain their antigenic/immunogenic properties. Thus, for fragments according to the present invention the degree of identity is perhaps irrelevant, since they may be 100% identical to a particular part of a protein or polypeptide, homologue or derivative as described herein. The key issue, once again, is 15 that the fragment retains the antigenic/immunogenic properties.

20 Thus, what is important for analogues, derivatives and fragments is that they possess at least a degree of the antigenicity/immunogenic of the protein or polypeptide from which they are derived.

Also included are polypeptides which have fused thereto other compounds which alter the polypeptides biological or pharmacological properties i.e. polyethylene glycol (PEG) to 25 increase half-life; leader or secretory amino acid sequences for ease of purification; prepro- and pro- sequences; and (poly)saccharides.

30 Furthermore, in those situations where amino acid regions are found to be polymorphic, it may be desirable to vary one or more particular amino acids to more effectively mimic the different epitopes of the different streptococcus strains.

35 Moreover, the polypeptides of the present invention can be modified by terminal -NH₂ acylation (eg. by acetylation, or

thioglycolic acid amidation, terminal carbosy amidation, e.g. with ammonia or methylamine) to provide stability, increased hydrophobicity for linking or binding to a support or other molecule.

5

Also contemplated are hetero and homo polypeptide multimers of the polypeptide fragments, analogues and derivatives. These polymeric forms include, for example, one or more polypeptides that have been cross-linked with cross-linkers such as 10 avidin/biotin, gluteraldehyde or dimethylsulfoxide. Such polymeric forms also include polypeptides containing two or more tandem or inverted contiguous sequences, produced from multicistronic mRNAs generated by recombinant DNA technology.

15 Preferably, a fragment, analog or derivative of a polypeptide of the invention will comprise at least one antigenic region i.e. at least one epitope.

In order to achieve the formation of antigenic polymers (i.e. 20 synthetic multimers), polypeptides may be utilized having bishaloacetyl groups, nitroarylhalides, or the like, where the reagents being specific for thio groups. Therefore, the link between two mercapto groups of the different peptides may be a single bond or may be composed of a linking group of at least 25 two, typically at least four, and not more than 16, but usually not more than about 14 carbon atoms.

In a particular embodiment, polypeptide fragments, analogues and derivatives of the invention do not contain a methionine (Met) 30 starting residue. Preferably, polypeptides will not incorporate a leader or secretory sequence (signal sequence). The signal portion of a polypeptide of the invention may be determined according to established molecular biological techniques. In general, the polypeptide of interest may be isolated from a 35 streptococcal culture and subsequently sequenced to determine the initial residue of the mature protein and therefore the

sequence of the mature polypeptide.

According to another aspect, there are provided vaccine compositions comprising one or more streptococcal polypeptides of the invention in admixture with a pharmaceutically acceptable carrier diluent or adjuvant. Suitable adjuvants include oils i.e. Freund's complete or incomplete adjuvant; salts i.e. $\text{AlK}(\text{SO}_4)_2$, $\text{AlNa}(\text{SO}_4)_2$, $\text{AlNH}_4(\text{SO}_4)_2$, silica, kaolin, carbon polynucleotides i.e. poly IC and poly AU. Preferred adjuvants include QuilA and Alhydrogel. Vaccines of the invention may be administered parenterally by injection, rapid infusion, nasopharyngeal absorption, dermoabsorption, or bucal or oral. Pharmaceutically acceptable carriers also include tetanus toxoid.

15

The term vaccine is also meant to include antibodies. In accordance with the present invention, there is also provided the use of one or more antibodies having binding specificity for the polypeptides of the present invention for the treatment or prophylaxis of streptococcus infection and/or diseases and symptoms mediated by streptococcus infection.

Vaccine compositions of the invention are used for the treatment or prophylaxis of streptococcal infection and/or diseases and symptoms mediated by streptococcal infection As described in P.R. Murray (Ed, in chief), E.J. Baron, M.A. Pfaffer, F.C. Tenover and R.H. Yolken. Manual of Clinical Microbiology, ASM Press, Washington, D.C. sixth edition, 1995, 1482p which are herein incorporated by reference. In one embodiment, vaccine compositions of the present invention are used for the prophylaxis or treatment of pharyngitis, erysipelas and impetigo, scarlet fever, and invasive diseases such as bacteremia and necrotizing fasciitis and also toxic shock. In one embodiment, vaccine compositions of the invention are used for the prophylaxis or treatment of *streptococcus* infection and/or diseases and symptoms mediated by *streptococcus*

infection, in particular group A *streptococcus* (*pyogenes*), group B *streptococcus* (GBS or *agalactiae*), *S.pneumoniae*, *dysgalactiae*, *uberis*, *nocardia* as well as *Staphylococcus aureus*. In a further embodiment, the streptococcus infection is Streptococcus 5 pyogenes.

In a particular embodiment, vaccines are administered to those individuals at risk of streptococcus infection such as infants, elderly and immunocompromised individuals.

10

As used in the present application, the term "individuals" include mammals. In a further embodiment, the mammal is human.

15

Vaccine compositions are preferably in unit dosage form of about 0.001 to 100 μ g/kg (antigen/body weight) and more preferably 0.01 to 10 μ g/kg and most preferably 0.1 to 1 μ g/kg 1 to 3 times with an interval of about 1 to 6 week intervals between immunizations.

20

Vaccine compositions are preferably in unit dosage form of about 0.1 μ g to 10 mg and more preferably 1 μ g to 1 mg and most preferably 10 to 100 μ g 1 to 3 times with an interval of about 1 to 6 week intervals between immunizations.

25

According to another aspect, there are provided polynucleotides encoding polypeptides characterized by the amino acid sequence chosen from SEQ ID NOS: 2, 4, 6, 8, 10, 12, 14, 16, 20 or fragments, analogues or derivatives thereof.

30

In one embodiment, polynucleotides are those illustrated in SEQ ID NOS: 1, 3, 5, 7, 9, 11, 13, 15, 19 which may include the open reading frames (ORF), encoding polypeptides of the invention.

35

It will be appreciated that the polynucleotide sequences illustrated in the figures may be altered with degenerate codons

yet still encode the polypeptides of the invention. Accordingly the present invention further provides polynucleotides which hybridize to the polynucleotide sequences herein above described (or the complement sequences thereof) having 50% identity 5 between sequences. In one embodiment, at least 70% identity between sequences. In one embodiment, at least 75% identity between sequences. In one embodiment, at least 80% identity between sequences. In one embodiment, at least 85% identity between sequences. In one embodiment, at least 90% identity 10 between sequences. In a further embodiment, polynucleotides are hybridizable under stringent conditions i.e. having at least 95% identity. In a further embodiment, more than 97% identity.

Suitable stringent conditions for hybridation can be readily 15 determined by one of skilled in the art (see for example Sambrook et al., (1989) Molecular cloning : A Laboratory Manual, 2nd ed, Cold Spring Harbor, N.Y.; Current Protocols in Molecular Biology, (1999) Edited by Ausubel F.M. et al., John Wiley & Sons, Inc., N.Y.).

20

In a further embodiment, the present invention provides polynucleotides that hybridise under stringent conditions to either

(a) a DNA sequence encoding a polypeptide or
25 (b) the complement of a DNA sequence encoding a polypeptide;
wherein said polypeptide comprising a sequence chosen from **SEQ ID NOS: 2, 4, 6, 8, 10, 12, 14, 16, 20** or fragments or analogues thereof.

30 In a further embodiment, the present invention provides polynucleotides that hybridise under stringent conditions to either

(a) a DNA sequence encoding a polypeptide or
35 (b) the complement of a DNA sequence encoding a polypeptide;
wherein said polypeptide comprises at least 10 contiguous amino acid residues from a polypeptide comprising a sequence chosen from

SEQ ID NOS: 2, 4, 6, 8, 10, 12, 14, 16, 20 or fragments or analogues thereof.

In a further embodiment, polynucleotides are those encoding 5 polypeptides of the invention illustrated in SEQ ID NOS: 2, 4, 6, 8, 10, 12, 14, 16, 20.

In a further embodiment, polynucleotides are those illustrated 10 in SEQ ID NOS : 1, 3, 5, 7, 9, 11, 13, 15, 19 encoding polypeptides of the invention.

As will be readily appreciated by one skilled in the art, polynucleotides include both DNA and RNA.

15 The present invention also includes polynucleotides complementary to the polynucleotides described in the present application.

In a further aspect, polynucleotides encoding polypeptides of 20 the invention, or fragments, analogues or derivatives thereof, may be used in a DNA immunization method. That is, they can be incorporated into a vector which is replicable and expressible upon injection thereby producing the antigenic polypeptide in vivo. For example polynucleotides may be incorporated into a 25 plasmid vector under the control of the CMV promoter which is functional in eukaryotic cells. Preferably the vector is injected intramuscularly.

According to another aspect, there is provided a process for 30 producing polypeptides of the invention by recombinant techniques by expressing a polynucleotide encoding said polypeptide in a host cell and recovering the expressed polypeptide product. Alternatively, the polypeptides can be produced according to established synthetic chemical techniques 35 i.e. solution phase or solid phase synthesis of oligopeptides which are ligated to produce the full polypeptide (block

ligation).

General methods for obtention and evaluation of polynucleotides and polypeptides are described in the following references:

5 Sambrook et al, Molecular Cloning: A Laboratory Manual, 2nd ed, Cold Spring Harbor, N.Y., 1989; Current Protocols in Molecular Biology, Edited by Ausubel F.M. et al., John Wiley and Sons, Inc. New York; PCR Cloning Protocols, from Molecular Cloning to Genetic Engineering, Edited by White B.A., Humana Press, Totowa, 10 New Jersey, 1997, 490 pages; Protein Purification, Principles and Practices, Scopes R.K., Springer-Verlag, New York, 3rd Edition, 1993, 380 pages; Current Protocols in Immunology, Edited by Coligan J.E. et al., John Wiley & Sons Inc., New York.

15

For recombinant production, host cells are transfected with vectors which encode the polypeptide, and then cultured in a nutrient media modified as appropriate for activating promoters, selecting transformants or amplifying the genes. Suitable 20 vectors are those that are viable and replicable in the chosen host and include chromosomal, non-chromosomal and synthetic DNA sequences e.g. bacterial plasmids, phage DNA, baculovirus, yeast plasmids, vectors derived from combinations of plasmids and phage DNA. The polypeptide sequence may be incorporated in the 25 vector at the appropriate site using restriction enzymes such that it is operably linked to an expression control region comprising a promoter, ribosome binding site (consensus region or Shine-Dalgarno sequence), and optionally an operator (control element). One can select individual components of the 30 expression control region that are appropriate for a given host and vector according to established molecular biology principles (Sambrook et al, Molecular Cloning: A Laboratory Manual, 2nd ed, Cold Spring Harbor, N.Y., 1989; Current Protocols in Molecular Biology, Edited by Ausubel F.M. et al., John Wiley and Sons, Inc. New York. Suitable 35 promoters include but are not limited to LTR or SV40 promoter,

E.coli lac, tac or trp promoters and the phage lambda P_L promoter. Vectors will preferably incorporate an origin of replication as well as selection markers i.e. ampicillin resistance gene. Suitable bacterial vectors include pET, pQE70, 5 pQE60, pQE-9, pbs, pD10 phagescript, psiX174, pbluescript SK, pbsks, pNH8A, pNH16a, pNH18A, pNH46A, ptrc99a, pKK223-3, pKK233-3, pDR540, pRIT5 and eukaryotic vectors pBlueBacIII, pWLNEO, pSV2CAT, pOG44, pXT1, pSG, pSVK3, pBPV, pMSG and pSVL. Host cells may be bacterial i.e. E.coli, Bacillus subtilis, 10 Streptomyces; fungal i.e. Aspergillus niger, Aspergillus nidulans; yeast i.e. Saccharomyces or eukaryotic i.e. CHO, COS.

Upon expression of the polypeptide in culture, cells are typically harvested by centrifugation then disrupted by physical 15 or chemical means (if the expressed polypeptide is not secreted into the media) and the resulting crude extract retained to isolate the polypeptide of interest. Purification of the polypeptide from culture media or lysate may be achieved by established techniques depending on the properties of the 20 polypeptide i.e. using ammonium sulfate or ethanol precipitation, acid extraction, anion or cation exchange chromatography, phosphocellulose chromatography, hydrophobic interaction chromatography, hydroxylapatite chromatography and lectin chromatography. Final purification may be achieved using 25 HPLC.

The polypeptide may be expressed with or without a leader or secretion sequence. In the former case the leader may be removed using post-translational processing (see US 4,431,739; 30 US 4,425,437; and US 4,338,397 or be chemically removed subsequent to purifying the expressed polypeptide.

According to a further aspect, the streptococcal polypeptides of 35 the invention may be used in a diagnostic test for streptococcus infection, in particular Streptococcus pyogenes infection.

Several diagnostic methods are possible, for example detecting streptococcus organism in a biological sample, the following procedure may be followed:

- a) obtaining a biological sample from an individual;
- 5 b) incubating an antibody or fragment thereof reactive with a streptococcus polypeptide of the invention with the biological sample to form a mixture; and
- c) detecting specifically bound antibody or bound fragment in the mixture which indicates the presence of streptococcus.

10

Alternatively, a method for the detection of antibody specific to a streptococcus antigen in a biological sample containing or suspected of containing said antibody may be performed as follows:

- 15 a) obtaining a biological sample from an individual;
- b) incubating one or more streptococcus polypeptides of the invention or fragments thereof with the biological sample to form a mixture; and
- c) detecting specifically bound antigen or bound fragment in

20 the mixture which indicates the presence of antibody specific to streptococcus.

One of skill in the art will recognize that this diagnostic test may take several forms, including an immunological test such as

25 an enzyme-linked immunosorbent assay (ELISA), a radioimmunoassay or a latex agglutination assay, essentially to determine whether antibodies specific for the protein are present in an individual.

30 The DNA sequences encoding polypeptides of the invention may also be used to design DNA probes for use in detecting the presence of streptococcus in a biological sample suspected of containing such bacteria. The detection method of this invention comprises:

- 35 a) obtaining the biological sample from an individual;
- b) incubating one or more DNA probes having a DNA sequence

encoding a polypeptide of the invention or fragments thereof with the biological sample to form a mixture; and

c) detecting specifically bound DNA probe in the mixture which indicates the presence of streptococcus bacteria.

5

The DNA probes of this invention may also be used for detecting circulating streptococcus i.e. Streptococcus pyogenes nucleic acids in a sample, for example using a polymerase chain reaction, as a method of diagnosing streptococcus infections.

10 The probe may be synthesized using conventional techniques and may be immobilized on a solid phase, or may be labelled with a detectable label. A preferred DNA probe for this application is an oligomer having a sequence complementary to at least about 6 contiguous nucleotides of the Streptococcus pyogenes

15 polypeptides of the invention.

Another diagnostic method for the detection of streptococcus in an individual comprises:

a) labelling an antibody reactive with a polypeptide of the invention or fragment thereof with a detectable label;

20 b) administering the labelled antibody or labelled fragment to the patient; and

c) detecting specifically bound labelled antibody or labelled fragment in the patient which indicates the presence of

25 streptococcus.

A further aspect of the invention is the use of the streptococcus polypeptides of the invention as immunogens for the production of specific antibodies for the diagnosis and in particular the treatment of streptococcus infection. Suitable antibodies may be determined using appropriate screening methods, for example by measuring the ability of a particular antibody to passively protect against streptococcus infection in a test model. One example of an animal model is the mouse model described in the examples herein. The antibody may be a whole antibody or an antigen-binding fragment thereof and may belong

to any immunoglobulin class. The antibody or fragment may be of animal origin, specifically of mammalian origin and more specifically of murine, rat or human origin. It may be a natural antibody or a fragment thereof, or if desired, a recombinant antibody or antibody fragment. The term recombinant antibody or antibody fragment means antibody or antibody fragment which was produced using molecular biology techniques. The antibody or antibody fragments may be polyclonal, or preferably monoclonal. It may be specific for a number of epitopes associated with the *Streptococcus pyogenes* polypeptides but is preferably specific for one.

A further aspect of the invention is the use of the antibodies directed to the *streptococcus* polypeptides of the invention for passive immunization. One could use the antibodies described in the present application. Suitable antibodies may be determined using appropriate screening methods, for example by measuring the ability of a particular antibody to passively protect against *streptococcus* infection in a test model. One example of an animal model is the mouse model described in the examples herein. The antibody may be a whole antibody or an antigen-binding fragment thereof and may belong to any immunoglobulin class. The antibody or fragment may be of animal origin, specifically of mammalian origin and more specifically of murine, rat or human origin. It may be a natural antibody or a fragment thereof, or if desired, a recombinant antibody or antibody fragment. The term recombinant antibody or antibody fragment means antibody or antibody fragment which was produced using molecular biology techniques. The antibody or antibody fragments may be polyclonal, or preferably monoclonal. It may be specific for a number of epitopes associated with the *streptococcus pneumoniae* polypeptides but is preferably specific for one.

Unless otherwise defined, all technical and scientific terms used herein have the same meaning as commonly understood by one

of ordinary skill in the art to which this invention belongs. All publications, patent applications, patents, and other references mentioned herein are incorporated by reference in their entirety. In case of conflict, the present specification, including definitions, will control. In addition, the materials, methods, and examples are illustrative only and not intended to be limiting.

10

EXAMPLE 1

This example illustrates the cloning of S. pyogenes gene.

The coding region of S. pyogenes gene BVH-P1 (SEQ ID NO:1) was 15 amplified by PCR (DNA Thermal Cycler GeneAmp PCR system 2400 Perkin Elmer, San Jose, CA) from genomic DNA of serotype 3 S. pyogenes strain ATCC12384 using the following oligos that contained base extensions for the addition of restriction sites NcoI (CCATGG) and XhoI (CTCGAG) : DMAR16 (5'- 20 CAGGCCATGGAGTGGACACCACGATCGGTAC-3') ; DMAR17 (5'- GCCGCTCGAGAGCATTAAGGAGACATGAACATGATC-3'). PCR products were purified from agarose gel using a QIAquick gel extraction kit from QIAGen following the manufacturer's instructions (Chatsworth, CA), and digested with NcoI and XhoI (Pharmacia 25 Canada Inc, Baie d'Urfé, Canada). The pET-21d(+) vector (Novagen, Madison, WI) was digested with NcoI and XhoI and purified from agarose gel using a QIAquick gel extraction kit from QIAGen (Chatsworth, CA). The NcoI-XhoI PCR products were ligated to the NcoI-XhoI pET-21d(+) expression vector. The 30 ligated products were transformed into E. coli strain E. coli strain DH5 α [ϕ 80dlacZ Δ M15 Δ (lacZYA-argF)U169 endA1 recA1 hsdR17(r_K-m_K+) deoR thi-1 supE44 λ -gyrA96 relA1] (Gibco BRL, Gaithersburg, MD) according to the method of Simanis (Hanahan, D. DNA Cloning, 1985, D.M. Glover (ed), pp. 109-135). 35 Recombinant pET-21d(+) plasmid (rpET21d(+)) containing BVH-P1

gene was purified using a QIAgen plasmid kit (Chatsworth, CA) and DNA insert was sequenced (Taq Dye Deoxy Terminator Cycle Sequencing kit, ABI, Foster City, CA).

5 It was determined that the open reading frame (ORF) which codes for BVH-P1 contains 1170-bp and encodes a 389 amino acid residues polypeptide with a predicted pI of 4.37 and a predicted molecular mass of 41054 Da.

Analysis of the predicted amino acid residues sequence (SEQ ID 10 NO:2) using the Spscan software (Wisconsin Sequence Analysis Package; Genetics Computer Group) suggested the existence of a 25 amino acid residues signal peptide (MIITKKSLFVTSVALSLAPLATAQA), which ends with a cleavage site situated between an alanine and a glutamine residues. Analysis 15 of this ORF did not revealed the presence of repetitive structures, cell wall anchoring motif (LPXTG), or IgA binding motif (MLKKIE).

An ORF which shares 62% with the S. pyogenes BVH-P1 gene was 20 initially presented in the patent application PCT/CA99/00114 which described Group B streptococcus antigens. BVH-P1 gene was also found to share homology (62% identity) with an ORF present in the genome of S. pneumoniae (The Institute for Genomic Research).

25

EXAMPLE 2

This example describes the PCR amplification and sequencing of BVH-P1 gene from other S. pyogenes strains and the evaluation of the level of molecular conservation of this gene.

30

Lancefield's serogroup A S. pyogenes LSPQ2296 (ATCC 19615) was provided by the laboratoire de la santé publique du Québec, Sainte-Anne-de-Bellevue; serotype 1 S. pyogenes SPY57 clinical isolate was provided by the centre de recherche en infectiologie 35 du centre hospitalier de l'université Laval, Sainte-Foy; and S. pyogenes strain B514 which was initially isolated from a mouse

was provided by Susan Hollingshead, from University of Alabama, Birmingham. The respective coding region of S. pyogenes gene BVH-P1 from strains ATCC 12384 (SEQ ID NO:1), LSPQ2699(ATCC19615) (SEQ ID NO:3), SPY57 (SEQ ID NO:5), and B514 5 (SEQ ID NO:7) were amplified by PCR (DNA Thermal Cycler GeneAmp PCR system 2400 Perkin Elmer, San Jose, CA) from bacterial cell lysates using the following oligos DMAR69 (5'-CTGGGAAGATTATCTAGCACATTAATAC-3'); DMAR72 (5'-CATAACGTTAAACTGTCTAAAGGG-3'). PCR products were purified from 10 agarose gel using a QIAquick gel extraction kit from QIAGen following the manufacturer's instructions (Chatsworth, CA) and the DNA insert were sequenced (Taq Dye Deoxy Terminator Cycle Sequencing kit, ABI, Foster City, CA). The predicted amino acid sequences from strains ATCC12384 (SEQ ID NO:2), 15 LSPQ2699(ATCC19615) (SEQ ID NO:4), SPY57 (SEQ ID NO:6), and B514 (SEQ ID NO:8) were respectively presented in the following figures 2, 4, 6, and 8.

The figures 17 and 18 respectively depict the consensus 20 nucleotide and predicted amino acid sequences established for S. pyogenes BVH-P1. In addition to the sequences presented herewith, the BVH-P1 gene sequences from the genome sequencing project at the University of Oklahoma (serotype M1 S. pyogenes strain ATCC 70029) and 25 from (Kil et al. 1994. Infect. Immun. 62 :2440-2449 : GenBank accession number U09352) were also included. No function or role in the pathogenesis of the bacteria or protection against infection was described by Kil et al. for the sequence with GenBank accession number U09352. This latter sequence presented 30 by Kil et al. was shown to be located upstream of a S.pyogenes 67kDa myosin-cross-reactive antigen.

Pairwise comparison of the BVH-P1 predicted protein sequences revealed between 95 to 100% identity with the exception of the 35 BVH-P1 sequence obtained from GenBank under the accession number U09352. Pairwise comparison of that particular sequence

with the other five BVH-P1 sequences indicated identity between 87 to 91%. This lower homology can be explained by the presence of two regions (119-124 and 262-281) which are more divergent comparatively to the other BVH-P1 gene sequences. Beside these 5 two regions in the BVH-P1 sequence obtained from GenBank under the accession number U09352, the BVH-P1 genes showed great similarity in overall organization.

10 EXAMPLE 3

This example illustrates the cloning of S. pyogenes protein gene in CMV plasmid pCMV-GH.

15 The DNA coding region of a S. pyogenes protein was inserted in phase downstream of a human growth hormone (hGH) gene which was under the transcriptional control of the cytomegalovirus (CMV) promotor in the plasmid vector pCMV-GH (Tang et al., Nature, 1992, 356 :152). The CMV promotor is a non functional plasmid in E. coli cells but is active upon administration of the 20 plasmid in eukaryotic cells. The vector also incorporated the ampicillin resistance gene.

25 The coding region of BVH-P1 gene (SEQ ID NO:9) without its leader peptide region was amplified by PCR (DNA Thermal Cycler GeneAmp PCR system 2400 Perkin Elmer, San Jose, CA) from genomic DNA of serotype 3 S. pyogenes strain ATCC12384 using the following oligos that contained base extensions for the addition of restriction sites *Bam*HI (GGATCC) and *Sal*I (GTCTGAC) : DMAR24 (5'-TACCCGGATCCCCAAGAGTGGACACCACGATCGG-3') ; DMAR25 (5'-30 GCGCTCGTCGACGCGTATCTCAGCCTCTTATAGGGC-3'). The PCR product was purified from agarose gel using a QIAquick gel extraction kit from QIAGen (Chatsworth, CA), digested with restriction enzymes (Pharmacia Canada Inc, Baie d'Urfe, Canada). The pCMV-GH vector (Laboratory of Dr. Stephen A. Johnston, Department of 35 Biochemistry, The University of Texas, Dallas, Texas) was digested with *Bam*HI and *Sal*I and purified from agarose gel using

the QIAquick gel extraction kit from QIAGen (Chatsworth, CA). The *Bam*H-*Sall* DNA fragments were ligated to the *Bam*H-*Sall* pCMV-GH vector to create the hGH-BVH-P1 fusion protein under the control of the CMV promoter. The ligated products were 5 transformed into *E. coli* strain DH5 α [ϕ 80dlacZ Δ M15 Δ (lacZYA-argF)U169 *end*A1 *rec*A1 *hsd*R17(r_K-m_K⁺) *deo*R *thi*-1 *sup*E44 λ -*gyr*A96 *rel*A1] (Gibco BRL, Gaithersburg, MD) according to the method of Simanis (Hanahan, D. DNA Cloning, 1985, D.M. Glover (ed), pp. 109-135). The recombinant pCMV plasmid was purified using a 10 QIAGen plasmid kit (Chatsworth, CA) and the nucleotide sequence of the DNA insert was verified by DNA sequencing.

EXAMPLE 4

15 This example illustrates the use of DNA to elicit an immune response to *S. pyogenes* antigens.

A group of 8 female BALB/c mice (Charles River, St-Constant, Québec, Canada) were immunized by intramuscular injection of 100 20 μ l three times at two- or three-week intervals with 50 μ g of recombinant pCMV-GH encoding BVH-P1 gene in presence of 50 μ g of granulocyte-macrophage colony-stimulating factor (GM-CSF) - expressing plasmid pCMV-GH-GM-CSF (Laboratory of Dr. Stephen A. Johnston, Department of Biochemistry, The University of Texas, 25 Dallas, Texas). As control, a group of mice were injected with 50 μ g of pCMV-GH in presence of 50 μ g of pCMV-GH-GM-CSF. Blood samples were collected from the orbital sinus prior to each immunization and seven days following the third injection and serum antibody responses were determined by ELISA using purified 30 BVH-P1-His•Tag from SEQ ID NO:11 *S. pyogenes* recombinant protein as coating antigen.

EXAMPLE 5

This example illustrates the production and purification of recombinant S. pyogenes BVH-P1 protein.

5 The recombinant pET-21d(+)plasmid with BVH-P1 gene corresponding to the SEQ ID NO:9 was used to transform by electroporation (Gene Pulser II apparatus, BIO-RAD Labs, Mississauga, Canada) E. coli strain BL21(DE3) (F⁻ompT hsdS_B (r⁻Bm⁻B) gal dcm (DE3)) (Novagen, Madison, WI). In this strain of E. coli, the T7 10 promotor controlling expression of the recombinant protein is specifically recognized by the T7 RNA polymerase (present on the λDE3 prophage) whose gene is under the control of the lac promotor which is inducible by isopropyl-β-d-thio-galactopyranoside (IPTG). The transformant BL21(DE3)/rpET was 15 grown at 37°C with agitation at 250 rpm in LB broth (peptone 10g/L, yeast extract 5g/L, NaCl 10g/L) containing 100 µg of carbenicillin (Sigma-Aldrich Canada Ltd., Oakville, Canada) per ml until the A₆₀₀ reached a value of 0.6. In order to induce the production of S. pyogenes BVH-P1-His•Tag recombinant protein 20 (from SEQ ID NO:10), the cells were incubated for 3 additional hours in the presence of IPTG at a final concentration of 1 mM. Induced cells from a 500 ml culture were pelleted by centrifugation and frozen at -70°C.

25 The purification of the recombinant proteins from the soluble cytoplasmic fraction of IPTG-induced BL21(DE3)/rpET21b(+) was done by affinity chromatography based on the properties of the His•Tag sequence (6 consecutive histidine residues) to bind to divalent cations (Ni²⁺) immobilized on the His•Bind metal 30 chelation resin. Briefly, the pelleted cells obtained from a 500 mL culture induced with IPTG was resuspended in lysis buffer (20 mM Tris, 500 mM NaCl, 10 mM imidazole, pH 7.9) containing 1mM PMSF, sonicated and centrifuged at 12,000 X g for 20 min to remove debris. The supernatant was deposited on a Ni-NTA 35 agarose column (Qiagen, Mississauga, Ontario, Canada). The S.

pyogenes BVH-P1-His•Tag recombinant protein (from SEQ ID NO:10) was eluted with 250 mM imidazole-500mM NaCl-20 mM Tris pH 7.9. The removal of the salt and imidazole from the sample was done by dialysis against PBS at 4°C. The quantities of recombinant 5 protein obtained from the soluble fraction of E. coli was estimated by MicroBCA (Pierce, Rockford, Illinois).

EXAMPLE 6

10 This example illustrates the accessibility to antibodies of the BVH-P1 protein at the surface of S. pyogenes strain.

Bacteria were grown in Tood Hewitt (TH) broth (Difco Laboratories, Detroit MI) with 0.5% Yeast extract (Difco 15 Laboratories) and 0.5% peptone extract (Merck, Darmstadt, Germany) at 37°C in a 8% CO₂ atmosphere to give an OD_{490nm} of 0.600 (~10⁸ CFU/ml). Dilutions of anti-BVH-P1 or control sera were then added and allowed to bind to the cells, which were incubated for 2 h at 4°C. Samples were washed 4 times in blocking buffer 20 [phosphate-buffered saline (PBS) containing 2% bovine serum albumin (BSA)], and then 1 ml of goat fluorescein (FITC)-conjugated anti-mouse IgG + IgM diluted in blocking buffer was added. After an additional incubation of 60 min at room temperature, samples were washed 4 times in blocking buffer and 25 fixed with 0.25 % formaldehyde in PBS buffer for 18-24 h at 4°C. Cells were washed 2 times in PBS buffer and resuspended in 500 µl of PBS buffer. Cells were kept in the dark at 4°C until analyzed by flow cytometry (Epics® XL; Beckman Coulter, Inc.). Flow cytometric analysis revealed that BVH-P1-specific 30 antibodies efficiently recognized their corresponding surface exposed epitopes on both the homologous (ATCC12384; serotype3) and the heterologous (SPY57; seotype 1) S. pyogenes strains tested. It was determined that more than 90 % of the 10,000 S. pyogenes cells analyzed were labeled with the antobodies present 35 in the BVH-MC1 specific anti-sera. These observations clearly

demonstrate that the BVH-P1 protein is accessible at the surface where it can be easily recognized by antibodies. Anti- S. pyogenes antibodies were shown to play an important role in the protection against S. pyogenes infection.

5

EXAMPLE 7

This example illustrates the protection against fatal S. pyogenes infection induced by passive immunization of mice with 10 rabbit hyper-immune sera.

New Zealand rabbits (Charles River laboratories, Montreal, Canada) were injected subcutaneously at multiple sites with approximately 50 µg and 100 µg of BVH-P1-His•Tag protein (from SEQ ID NO:10) that was produced and purified as described in Example 5 and adsorbed to Alhydrogel adjuvant (Superfos Biosector a/s). Rabbits were immunized three times at three-week intervals with the BVH-P1-His•Tag protein (from SEQ ID NO:10). Blood samples were collected three weeks after the third injection. The antibodies present in the serum were purified by precipitation using 40% saturated ammonium sulfate. Groups of 10 female CD-1 mice (Charles River) were injected intravenously with 500 µl of purified serum collected either from BVH-P1-His•Tag (from SEQ ID NO:10) immunized rabbits or 25 rabbits immunized with an unrelated control recombinant protein. Eighteen hours later the mice were challenged with approximately 2x10⁷ CFU of the type 3 S. pyogenes strain ATCC12384. Samples of the S. pyogenes challenge inoculum were plated on blood agar plates to determine the CFU and to verify the challenge dose. 30 Deaths were recorded for a period of 5 days.

EXAMPLE 8

This example illustrates the protection of mice against fatal S. pyogenes infection induced by immunization with BVH-P1 protein.

Groups of 8 female CD-1 mice (Charles River) were immunized subcutaneously three times at three-week intervals with 20 μ g of affinity purified S. pyogenes BVH-P1-His•Tag recombinant protein (from SEQ ID NO:10) in presence of 10 μ g of QuilA adjuvant (Cedarlane Laboratories Ltd, Hornby, Canada). or, as control, with QuilA adjuvant alone in PBS. Blood samples were collected from the orbital sinus on day 1, 22 and 43 prior to each immunization and seven days (day 50) following the third injection. Analysis by ELISA using purified recombinant BVH-P1 protein (from SEQ ID NO:10) clearly indicated that this protein is highly immunogenic in animals. Indeed reciprocal ELISA titers higher than 10^6 were determined for the mice immunized with this recombinant protein. Two weeks later the mice were challenged with approximately 2×10^7 CFU of the type 3 S. pyogenes strain ATCC12384. Samples of the S. pyogenes challenge inoculum were plated on blood agar plates to determine the CFU and to verify the challenge dose. Deaths were recorded for a period of 5 days. Five out of the 8 (62%) mice immunized with three injections of 20 μ g of purified recombinant BVH-P1 (from SEQ ID NO:10) and QuilA adjuvant survived the bacterial challenge to only 2/7 (28%) in the control group.

Table 3. Immunization of CD-1 mice with purified recombinant BVH-P1 protein confers protection against subsequent challenge with S. pyogenes strain ATCC 12384

Groups	Survival of the mice challenged with <u>S. pyogenes</u> strain ATCC 12384 (Day after challenge: number of survivors/total number of mice challenged)				
	1	2	3	4	5
20 μ g of BVH-P1-His•Tag	8/8	8/8	7/8	6/8	5/8
Control	7/7	6/7	3/7	2/7	2/7

SEQUENCE LISTING

<110> SHIRE BIOCHEM INC.

<120> STREPTOCOCCUS PYOGENES ANTIGENS

<130> 12806-20CA

<150> PCT/CA01/01001

<151> 2001-07-06

<150> US 60/216,465

<151> 2000-07-06

<160> 29

<170> FastSEQ for Windows Version 4.0

<210> 1

<211> 1170

<212> DNA

<213> S. pyogenes

<400> 1

atgattatta ctaaaaagag cttatttg acaagtgtcg ctttgcgtt agcacctttg 60
gcgacagcac aggcacaaga gtggacacca cgatcggtta cagaaatcaa gtctgaactc 120
gtcctagttg ataatgttt tacttatact gtaaaatacg gtgacacttt aagcacaatt 180

gctgaagcaa	tggaaattga	tgtgcattgtc	ttaggagata	ttaatcatat	tgctaatttt	240
gacttaattt	ttccagacac	gatcctaaca	gccactaca	accaacacgg	tcaggcaacg	300
actttgacgg	ttcaagcgcc	tgcttctagt	ccagctagcg	ttagtcatgt	acctagcagt	360
gagccattac	cccaagcatc	tgccacctct	caatcgactg	ttcctatggc	accatctgcg	420
acaccatctg	atgtcccaac	gacaccattc	gcatctgcaa	agccagatag	ttctgtgaca	480
gcgtcatctg	agctcacatc	gtcaacgaat	gatgttcga	ctgagttgtc	tagcgaatca	540
caaaagcagc	cagaagtacc	acaagaagca	gttccaactc	ctaaaggcagc	tgaaacgact	600
gaagtcgaac	ctaagacaga	catctcagag	gattcaactt	cagctaatacg	gcctgtaccc	660
aacgagagtg	cttcagaaga	agtttcttct	gccccccag	cacaagcccc	agcagaaaaaa	720
gaagaaacct	ctgcgccagc	agcacaaaaaa	gctgtagctg	acaccacaag	tgttgcaacc	780
tcaaattggcc	tttcttacgc	tccaaaccat	gcctacaatc	aatgaatgc	agggcttcaa	840
ccacaaacag	cagccttcaa	agaagaagtg	gcttctgcct	ttggattac	gtcatttagt	900
ggttaccgtc	caggtgatcc	aggagatcat	gtaaagggtt	tggcattga	tttatggtg	960
cctgaaaatt	ctgctttgg	tgtcaagtt	gctcaatatg	ccattgacca	tatggcagag	1020
cgtggattt	catacgttat	ttggaaacag	cgattctatg	cgccatttgc	aagtatttac	1080
ggaccagcct	acacatggaa	ccccatgcca	gatcgccggca	gtattacaga	aaaccattat	1140
gatcatgttc	atgttcctt	taatgcttaa				1170

<210> 2

<211> 389

<212> PRT

<213> S. pyogenes

<400> 2

Met Ile Ile Thr Lys Lys Ser Leu Phe Val Thr Ser Val Ala Leu Ser

1 5 10 15

Leu Ala Pro Leu Ala Thr Ala Gln Ala Gln Glu Trp Thr Pro Arg Ser

20 25 30

Val Thr Glu Ile Lys Ser Glu Leu Val Leu Val Asp Asn Val Phe Thr

35	40	45
Tyr Thr Val Lys Tyr Gly Asp Thr Leu Ser Thr Ile Ala Glu Ala Met		
50	55	60
Gly Ile Asp Val His Val Leu Gly Asp Ile Asn His Ile Ala Asn Ile		
65	70	75
Asp Leu Ile Phe Pro Asp Thr Ile Leu Thr Ala Asn Tyr Asn Gln His		
85	90	95
Gly Gln Ala Thr Thr Leu Thr Val Gln Ala Pro Ala Ser Ser Pro Ala		
100	105	110
Ser Val Ser His Val Pro Ser Ser Glu Pro Leu Pro Gln Ala Ser Ala		
115	120	125
Thr Ser Gln Ser Thr Val Pro Met Ala Pro Ser Ala Thr Pro Ser Asp		
130	135	140
Val Pro Thr Thr Pro Phe Ala Ser Ala Lys Pro Asp Ser Ser Val Thr		
145	150	155
160		
Ala Ser Ser Glu Leu Thr Ser Ser Thr Asn Asp Val Ser Thr Glu Leu		
165	170	175
Ser Ser Glu Ser Gln Lys Gln Pro Glu Val Pro Gln Glu Ala Val Pro		
180	185	190
Thr Pro Lys Ala Ala Glu Thr Thr Glu Val Glu Pro Lys Thr Asp Ile		
195	200	205
Ser Glu Asp Ser Thr Ser Ala Asn Arg Pro Val Pro Asn Glu Ser Ala		
210	215	220
Ser Glu Glu Val Ser Ser Ala Ala Pro Ala Gln Ala Pro Ala Glu Lys		
225	230	235
240		
Glu Glu Thr Ser Ala Pro Ala Ala Gln Lys Ala Val Ala Asp Thr Thr		
245	250	255
Ser Val Ala Thr Ser Asn Gly Leu Ser Tyr Ala Pro Asn His Ala Tyr		
260	265	270

Asn Pro Met Asn Ala Gly Leu Gln Pro Gln Thr Ala Ala Phe Lys Glu

275 280 285

Glu Val Ala Ser Ala Phe Gly Ile Thr Ser Phe Ser Gly Tyr Arg Pro

290 295 300

Gly Asp Pro Gly Asp His Gly Lys Gly Leu Ala Ile Asp Phe Met Val

305 310 315 320

Pro Glu Asn Ser Ala Leu Gly Asp Gln Val Ala Gln Tyr Ala Ile Asp

325 330 335

His Met Ala Glu Arg Gly Ile Ser Tyr Val Ile Trp Lys Gln Arg Phe

340 345 350

Tyr Ala Pro Phe Ala Ser Ile Tyr Gly Pro Ala Tyr Thr Trp Asn Pro

355 360 365

Met Pro Asp Arg Gly Ser Ile Thr Glu Asn His Tyr Asp His Val His

370 375 380

Val Ser Phe Asn Ala

385

<210> 3

<211> 1182

<212> DNA

<213> S. pyogenes

<400> 3

atgattatta ctaaaaagag cttatttgtg acaagtgtcg ctgggtcggtt agcaccccttg 60

gcgacagcgc aggcacaaga gtggacacca cgatcggtta cagaaatcaa gtctgaactc 120

gtcctagttt ataatgtttt tacttatata gtaaaatacg gtgacacttt aagcacaatt 180

gctgaagcaa tggggattga tgtgcatttc ttaggagata ttaatcatat tgctaatatt 240

gacttaattt ttccagacac gatcctaaca gcaaactaca accaacacgg tcaggcaacg 300

actttgacgg ttcaagcacc tgcttctagt ccatctagcg ttagtcatgt accttagcgt 360

gagccattac cccaaagcatc tgccacacct caaccgactg ttccttatggc accatctg 420
 acaccatctg atgtcccaac gacaccattc gcatctgcaa agccagatag ttctgtgaca 480
 gcgtcatctg agctcacatc gtcaacgaat gatgttcga ctgagttgtc taggaatca 540
 caaaaagcagc cagaagtacc acaagaagca gttccaaactc ctaaaggcagc tgaaccgact 600
 gaagtgcgaac ctaagacaga catctcagaa gacccaactt cagctaata ggcctgtac 660
 aacgagagtg cttcagaaga agcttcttct gcggcccccag cacaagctcc agcagaaaaa 720
 gaagaaacct ctcagatgtt aactgcgcca gcagcacaaa aagctgttagc tgacaccaca 780
 agtgttgcaa cctcaaacgg cctttttac gctccaaacc atgcctacaa tccaatgaat 840
 gcagggcttc aaccacaaac agcagccttc aaagaagaag tggcttctgc ctttggatt 900
 acgtcattta gtggttaccg tccaggagat ccaggagatc atggtaaagg attagccatt 960
 gactttatgg taccggtag ctctacgctt ggtgatcaag ttgctcaata tgccattgac 1020
 catatggcag agcgtggat ttcatacgtt atttgaaac agcgattcta tgccgcattt 1080
 gcaagtattt acggaccagc ctacacatgg aacccatgc cagatgcgg cagtattaca 1140
 gaaaaccatt atgatcatgt tcatgtctcc tttaatgctt aa 1182

<210> 4

<211> 393

<212> PRT

<213> *S. pyogenes*

<400> 4

Met Ile Ile Thr Lys Lys Ser Leu Phe Val Thr Ser Val Ala Leu Ser

1 5 10 15

Leu Ala Pro Leu Ala Thr Ala Gln Ala Gln Glu Trp Thr Pro Arg Ser

20 25 30

Val Thr Glu Ile Lys Ser Glu Leu Val Leu Val Asp Asn Val Phe Thr

35 40 45

Tyr Ile Val Lys Tyr Gly Asp Thr Leu Ser Thr Ile Ala Glu Ala Met

50 55 60

Gly Ile Asp Val His Val Leu Gly Asp Ile Asn His Ile Ala Asn Ile
 65 70 75 80
 Asp Leu Ile Phe Pro Asp Thr Ile Leu Thr Ala Asn Tyr Asn Gln His
 85 90 95
 Gly Gln Ala Thr Thr Leu Thr Val Gln Ala Pro Ala Ser Ser Pro Ser
 100 105 110
 Ser Val Ser His Val Pro Ser Ser Glu Pro Leu Pro Gln Ala Ser Ala
 115 120 125
 Thr Ser Gln Pro Thr Val Pro Met Ala Pro Ser Ala Thr Pro Ser Asp
 130 135 140
 Val Pro Thr Thr Pro Phe Ala Ser Ala Lys Pro Asp Ser Ser Val Thr
 145 150 155 160
 Ala Ser Ser Glu Leu Thr Ser Ser Thr Asn Asp Val Ser Thr Glu Leu
 165 170 175
 Ser Ser Glu Ser Gln Lys Gln Pro Glu Val Pro Gln Glu Ala Val Pro
 180 185 190
 Thr Pro Lys Ala Ala Glu Pro Thr Glu Val Glu Pro Lys Thr Asp Ile
 195 200 205
 Ser Glu Asp Pro Thr Ser Ala Asn Arg Pro Val Pro Asn Glu Ser Ala
 210 215 220
 Ser Glu Glu Ala Ser Ser Ala Ala Pro Ala Gln Ala Pro Ala Glu Lys
 225 230 235 240
 Glu Glu Thr Ser Gln Met Leu Thr Ala Pro Ala Ala Gln Lys Ala Val
 245 250 255
 Ala Asp Thr Thr Ser Val Ala Thr Ser Asn Gly Leu Ser Tyr Ala Pro
 260 265 270
 Asn His Ala Tyr Asn Pro Met Asn Ala Gly Leu Gln Pro Gln Thr Ala
 275 280 285
 Ala Phe Lys Glu Glu Val Ala Ser Ala Phe Gly Ile Thr Ser Phe Ser

290	295	300	
Gly Tyr Arg Pro Gly Asp Pro Gly Asp His Gly Lys Gly Leu Ala Ile			
305	310	315	320
Asp Phe Met Val Pro Val Ser Ser Thr Leu Gly Asp Gln Val Ala Gln			
325	330	335	
Tyr Ala Ile Asp His Met Ala Glu Arg Gly Ile Ser Tyr Val Ile Trp			
340	345	350	
Lys Gln Arg Phe Tyr Ala Pro Phe Ala Ser Ile Tyr Gly Pro Ala Tyr			
355	360	365	
Thr Trp Asn Pro Met Pro Asp Arg Gly Ser Ile Thr Glu Asn His Tyr			
370	375	380	
Asp His Val His Val Ser Phe Asn Ala			
385	390		

<210> 5

<211> 1170

<212> DNA

<213> S. pyogenes

<400> 5

atgattatta	ctaaaaagag	cttatttgtg	acaagtgtcg	ctttgtcggt	agtacctttg	60
gcgacagcgc	aggcacaaga	gtggacacca	cgatcggtt	cagaaatcaa	gtctgaactc	120
gtcctagttg	ataatgtttt	tacttatact	gtaaaatacg	gtgacacttt	aagcacaatt	180
gctgaagcaa	tggggattga	tgtgcattgc	ttaggagata	ttaatcatat	tgctaatttt	240
gacctaattt	ttccagacac	gatcctaaca	gcaaactaca	atcaacacgg	tcaggcaacg	300
aatttgacgg	ttcaagcacc	tgcttctagt	ccagctagcg	ttagtcatgt	acctagcagt	360
gagccattac	cccaaggcatc	tgccacctct	caaccgactg	ttccatatggc	accacctgog	420
acaccatctg	atgtcccaac	gacaccattc	gcatctgcaa	agccagatag	ttctgtgaca	480
gcgtcatctg	agtcacatc	gtcaacgaat	gatgttcga	ctgagttgtc	tagcaatca	540

caaaagcagc cagaagtacc acaagaagca gttccaaactc ctaaagcagc tgaaacgact 600
 gaagtcgaac ctaagacaga catctcagaa gccccaactt cagctaatacg gcctgtacct 660
 aacgagagtg cttcagaaga agtttcttct gcggcccccag cacaagcccc agcagaaaaa 720
 gaagaaacct ctgcgccagc agcacaaaaa gctgtagctg acaccacaag tggcaacc 780
 tcaaatggcc tttcttacgc tccaaaccat gcctacaatc caatgaatgc agggcttcaa 840
 ccacaaacag cagccttcaa agaagaagtg gcttctgcct ttggattac gtcatttagt 900
 ggttaccgtc caggtgatcc aggagatcat ggtaaagggtt tggccattga ttttatggtg 960
 cctgaaaatt ctgctttgg tggatcaagtt gctcaatatg ccattgacca tatggcagag 1020
 cgtggattt catacgttat ttggaaacag cgattctatg cgccatttgc aagtatttac 1080
 ggaccagcct acacatggaa cccatgcca gatcgccggca gtattacaga aaaccattat 1140
 gatcatgttc atgttcctt taatgcttaa 1170

<210> 6

<211> 389

<212> PRT

<213> *S. pyogenes*

<400> 6

Met Ile Ile Thr Lys Lys Ser Leu Phe Val Thr Ser Val Ala Leu Ser

1	5	10	15
---	---	----	----

Leu Val Pro Leu Ala Thr Ala Gln Ala Gln Glu Trp Thr Pro Arg Ser

20	25	30
----	----	----

Val Thr Glu Ile Lys Ser Glu Leu Val Leu Val Asp Asn Val Phe Thr

35	40	45
----	----	----

Tyr Thr Val Lys Tyr Gly Asp Thr Leu Ser Thr Ile Ala Glu Ala Met

50	55	60
----	----	----

Gly Ile Asp Val His Val Leu Gly Asp Ile Asn His Ile Ala Asn Ile

65	70	75	80
----	----	----	----

Asp Leu Ile Phe Pro Asp Thr Ile Leu Thr Ala Asn Tyr Asn Gln His

85	90	95
Gly Gln Ala Thr Asn Leu Thr Val Gln Ala Pro Ala Ser Ser Pro Ala		
100	105	110
Ser Val Ser His Val Pro Ser Ser Glu Pro Leu Pro Gln Ala Ser Ala		
115	120	125
Thr Ser Gln Pro Thr Val Pro Met Ala Pro Pro Ala Thr Pro Ser Asp		
130	135	140
Val Pro Thr Thr Pro Phe Ala Ser Ala Lys Pro Asp Ser Ser Val Thr		
145	150	155
Ala Ser Ser Glu Leu Thr Ser Ser Thr Asn Asp Val Ser Thr Glu Leu		
165	170	175
Ser Ser Glu Ser Gln Lys Gln Pro Glu Val Pro Gln Glu Ala Val Pro		
180	185	190
Thr Pro Lys Ala Ala Glu Thr Thr Glu Val Glu Pro Lys Thr Asp Ile		
195	200	205
Ser Glu Ala Pro Thr Ser Ala Asn Arg Pro Val Pro Asn Glu Ser Ala		
210	215	220
Ser Glu Glu Val Ser Ser Ala Ala Pro Ala Gln Ala Pro Ala Glu Lys		
225	230	235
Glu Glu Thr Ser Ala Pro Ala Ala Gln Lys Ala Val Ala Asp Thr Thr		
245	250	255
Ser Val Ala Thr Ser Asn Gly Leu Ser Tyr Ala Pro Asn His Ala Tyr		
260	265	270
Asn Pro Met Asn Ala Gly Leu Gln Pro Gln Thr Ala Ala Phe Lys Glu		
275	280	285
Glu Val Ala Ser Ala Phe Gly Ile Thr Ser Phe Ser Gly Tyr Arg Pro		
290	295	300
Gly Asp Pro Gly Asp His Gly Lys Gly Leu Ala Ile Asp Phe Met Val		
305	310	315
320		

Pro Glu Asn Ser Ala Leu Gly Asp Gln Val Ala Gln Tyr Ala Ile Asp

325

330

335

His Met Ala Glu Arg Gly Ile Ser Tyr Val Ile Trp Lys Gln Arg Phe

340

345

350

Tyr Ala Pro Phe Ala Ser Ile Tyr Gly Pro Ala Tyr Thr Trp Asn Pro

355

360

365

Met Pro Asp Arg Gly Ser Ile Thr Glu Asn His Tyr Asp His Val His

370

375

380

Val Ser Phe Asn Ala

385

<210> 7

<211> 1149

<212> DNA

<213> S. pyogenes

<400> 7

atgattatta ctaaaaagag cttatttgtg acaagtgtcg ctttgcgtt agcaccttg	60
gcgacagcgc aggcacaaga gtggacacca cgatcggtt cagaaatcaa gtctgaactc	120
gtcctagttg ataatgttt tacttataca gtaaaatacg gtgacacttt aagcacaatt	180
gctgaagcaa tggggattga tgtgcattgc ttaggagata ttaatcatat tgctaatttt	240
gacttaattt ttccagacac gatcctaaca gcaaactaca atcaacacgg tcaggcaacg	300
actttgacgg ttcaaggcacc tgcttctagt ccagctagcg ttagtcatgt accttagcgt	360
gagccattac cccaaagcatc tgccacctct caaccgactg ttcctatggc accatctgcg	420
acaccattag catctgcaaa gccagatagt tctgtgacag cgtcatctga gctcacatcg	480
tcaacgaatg atgttcgac tgagtcgtct agcgaatcac aaaagcagcc agaagtacca	540
caagaaggcag ttccaactcc taaaggcagct gaaacgactg aagtcgaacc taagacagac	600
atctcagaag acccaacttc agctaataagg cctgtaccta acgagagtgc ttcagaagaa	660
gtttcttctg cggccccagc acaagccccca gcagaaaaag aagaaacctc tgcgccagca	720

gcacaaaaag ctgttagctga caccacaagt gttgcaacct caaacggcct ttcttacgct 780
 ccaaaccatg cctacaatcc aatgaatgca gggcttcaac cacaaacagc agccttcaaa 840
 gaagaagtgg cttctgcctt tggtattacg tcatttagtg gttaccgtcc aggtgaccct 900
 ggagatcatg gtaaagggtt ggccattgat tttatggtgc ctgaaaattc tgctcttgg 960
 gatcaagttg ctcaatatgc cattgaccat atggcagagc gtggtatttc atacgttatt 1020
 tggaaacagc gattctatgc gccatttgca agtatttacg gaccagctt cacatggaac 1080
 cccatgccag atcgccggcag tattacagaa aaccattatg atcatgttca tgtctcctt 1140
 aatgcttaa 1149

<210> 8

<211> 382

<212> PRT

<213> *S. pyogenes*

<400> 8

Met Ile Ile Thr Lys Lys Ser Leu Phe Val Thr Ser Val Ala Leu Ser

1 5 10 15

Leu Ala Pro Leu Ala Thr Ala Gln Ala Gln Glu Trp Thr Pro Arg Ser

20 25 30

Val Thr Glu Ile Lys Ser Glu Leu Val Leu Val Asp Asn Val Phe Thr

35 40 45

Tyr Thr Val Lys Tyr Gly Asp Thr Leu Ser Thr Ile Ala Glu Ala Met

50 55 60

Gly Ile Asp Val His Val Leu Gly Asp Ile Asn His Ile Ala Asn Ile

65 70 75 80

Asp Leu Ile Phe Pro Asp Thr Ile Leu Thr Ala Asn Tyr Asn Gln His

85 90 95

Gly Gln Ala Thr Thr Leu Thr Val Gln Ala Pro Ala Ser Ser Pro Ala

100 105 110

Ser Val Ser His Val Pro Ser Ser Glu Pro Leu Pro Gln Ala Ser Ala
 115 120 125
 Thr Ser Gln Pro Thr Val Pro Met Ala Pro Ser Ala Thr Pro Leu Ala
 130 135 140
 Ser Ala Lys Pro Asp Ser Ser Val Thr Ala Ser Ser Glu Leu Thr Ser
 145 150 155 160
 Ser Thr Asn Asp Val Ser Thr Glu Ser Ser Ser Glu Ser Gln Lys Gln
 165 170 175
 Pro Glu Val Pro Gln Glu Ala Val Pro Thr Pro Lys Ala Ala Glu Thr
 180 185 190
 Thr Glu Val Glu Pro Lys Thr Asp Ile Ser Glu Asp Pro Thr Ser Ala
 195 200 205
 Asn Arg Pro Val Pro Asn Glu Ser Ala Ser Glu Glu Val Ser Ser Ala
 210 215 220
 Ala Pro Ala Gln Ala Pro Ala Glu Lys Glu Glu Thr Ser Ala Pro Ala
 225 230 235 240
 Ala Gln Lys Ala Val Ala Asp Thr Thr Ser Val Ala Thr Ser Asn Gly
 245 250 255
 Leu Ser Tyr Ala Pro Asn His Ala Tyr Asn Pro Met Asn Ala Gly Leu
 260 265 270
 Gln Pro Gln Thr Ala Ala Phe Lys Glu Glu Val Ala Ser Ala Phe Gly
 275 280 285
 Ile Thr Ser Phe Ser Gly Tyr Arg Pro Gly Asp Pro Gly Asp His Gly
 290 295 300
 Lys Gly Leu Ala Ile Asp Phe Met Val Pro Glu Asn Ser Ala Leu Gly
 305 310 315 320
 Asp Gln Val Ala Gln Tyr Ala Ile Asp His Met Ala Glu Arg Gly Ile
 325 330 335
 Ser Tyr Val Ile Trp Lys Gln Arg Phe Tyr Ala Pro Phe Ala Ser Ile

340

345

350

Tyr Gly Pro Ala Tyr Thr Trp Asn Pro Met Pro Asp Arg Gly Ser Ile

355

360

365

Thr Glu Asn His Tyr Asp His Val His Val Ser Phe Asn Ala

370

375

380

<210> 9

<211> 1095

<212> DNA

<213> S. pyogenes

<400> 9

caagagtgg a caccacgatc ggttacagaa atcaagtctg aactcgtcct agttgataat	60
gtttttactt atactgtaaa atacggtgac actttaagca caattgctga agcaatggga	120
attgatgtgc atgtcttagg agatattaat catattgcta atattgactt aatttttcca	180
gacacgatcc taacagccaa ctacaaccaa cacggtcagg caacgacttt gacggttcaa	240
gcgcctgctt ctagtccagc tagcgttagt catgtaccta gcagtgagcc attaccccaa	300
gcatctgcca cctctcaatc gactgttcct atggcaccat ctgcgacacc atctgatgtc	360
ccaacgacac cattcgcatc tgcaaagcca gatagttctg tgacagcgtc atctgagctc	420
acatcgtaa cgaatgatgt ttcgactgag ttgtctagcg aatcacaaaa gcagccagaa	480
gtaccacaag aagcagttcc aactcctaaa gcagctgaaa cgactgaagt cgaacctaaag	540
acagacatct cagaggattc aacttcagct aataggcctg tacctaacga gagtgcttca	600
gaagaagttt cttctgcggc cccagcacaa gccccagcag aaaaagaaga aacctctgcg	660
ccagcagcac aaaaagctgt agctgacacc acaagtgttg caacctcaaa tggcctttct	720
tacgctccaa accatgccta caatccaaatg aatgcagggc ttcaaccaca aacagcagcc	780
ttcaaaagaag aagtggcttc tgccttttgtt attacgtcat ttagtggta ccgtccaggt	840
gatccaggag atcatggtaa aggtttggcc attgatttta tggcctgctga aaattctgct	900
cttggtgatc aagttgctca atatgccatt gaccatatgg cagagcgtgg tatttcatac	960
gttatttgga aacagcgatt ctatgcgcca tttgcaagta tttacggacc agcctacaca	1020

tggaaacccca tgccagatcg cggcagtatt acagaaaacc attatgatca tgttcatgtc 1080
 tcctttaatg cttaa 1095

<210> 10

<211> 364

<212> PRT

<213> S. pyogenes

<400> 10

Gln Glu Trp Thr Pro Arg Ser Val Thr Glu Ile Lys Ser Glu Leu Val

1 5 10 15

Leu Val Asp Asn Val Phe Thr Tyr Thr Val Lys Tyr Gly Asp Thr Leu

20 25 30

Ser Thr Ile Ala Glu Ala Met Gly Ile Asp Val His Val Leu Gly Asp

35 40 45

Ile Asn His Ile Ala Asn Ile Asp Leu Ile Phe Pro Asp Thr Ile Leu

50 55 60

Thr Ala Asn Tyr Asn Gln His Gly Gln Ala Thr Thr Leu Thr Val Gln

65 70 75 80

Ala Pro Ala Ser Ser Pro Ala Ser Val Ser His Val Pro Ser Ser Glu

85 90 95

Pro Leu Pro Gln Ala Ser Ala Thr Ser Gln Ser Thr Val Pro Met Ala

100 105 110

Pro Ser Ala Thr Pro Ser Asp Val Pro Thr Thr Pro Phe Ala Ser Ala

115 120 125

Lys Pro Asp Ser Ser Val Thr Ala Ser Ser Glu Leu Thr Ser Ser Thr

130 135 140

Asn Asp Val Ser Thr Glu Leu Ser Ser Glu Ser Gln Gln Pro Glu

145 150 155 160

Val Pro Gln Glu Ala Val Pro Thr Pro Lys Ala Ala Glu Thr Thr Glu
 165 170 175
 Val Glu Pro Lys Thr Asp Ile Ser Glu Asp Ser Thr Ser Ala Asn Arg
 180 185 190
 Pro Val Pro Asn Glu Ser Ala Ser Glu Glu Val Ser Ser Ala Ala Pro
 195 200 205
 Ala Gln Ala Pro Ala Glu Lys Glu Glu Thr Ser Ala Pro Ala Ala Gln
 210 215 220
 Lys Ala Val Ala Asp Thr Thr Ser Val Ala Thr Ser Asn Gly Leu Ser
 225 230 235 240
 Tyr Ala Pro Asn His Ala Tyr Asn Pro Met Asn Ala Gly Leu Gln Pro
 245 250 255
 Gln Thr Ala Ala Phe Lys Glu Glu Val Ala Ser Ala Phe Gly Ile Thr
 260 265 270
 Ser Phe Ser Gly Tyr Arg Pro Gly Asp Pro Gly Asp His Gly Lys Gly
 275 280 285
 Leu Ala Ile Asp Phe Met Val Pro Glu Asn Ser Ala Leu Gly Asp Gln
 290 295 300
 Val Ala Gln Tyr Ala Ile Asp His Met Ala Glu Arg Gly Ile Ser Tyr
 305 310 315 320
 Val Ile Trp Lys Gln Arg Phe Tyr Ala Pro Phe Ala Ser Ile Tyr Gly
 325 330 335
 Pro Ala Tyr Thr Trp Asn Pro Met Pro Asp Arg Gly Ser Ile Thr Glu
 340 345 350
 Asn His Tyr Asp His Val His Val Ser Phe Asn Ala
 355 360

<210> 11

<211> 1106

<212> DNA

<213> S. pyogenes

<400> 11

caagagtgg	caccacgatc	ggttacagaa	atcaagtctg	aactcgctt	agttgataat	60
gtttttactt	atatagtaaa	atacggtgac	actttaagca	caattgctga	agcaatgggg	120
attgatgtgc	atgtcttagg	agatattaat	catattgcta	atattgactt	aatttttcca	180
gacacgatcc	taacagcaaa	ctacaaccaa	cacggtcagg	caacgacttt	gacggttcaa	240
gcacctgctt	ctagtccatc	tagcgttagt	catgtaccta	gcagtgagcc	attaccccaa	300
gcatctgcca	cctctcaacc	gactgttcct	atggcaccat	ctgcgacacc	atctgatgtc	360
ccaacgacac	cattcgcac	tgcaaagcca	gatagttctg	tgacagcgtc	atctgagctc	420
acatcgtaa	cgaatgatgt	ttcgactgag	ttgtctagcg	aatcacaaaa	gcagccagaa	480
gtaccacaag	aagcagttcc	aactcctaaa	gcagctgaac	cgactgaagt	cgaacctaag	540
acagacatct	cagaagaccc	aacttcagct	aataggcctg	acctaacgag	agtgcttcag	600
aagaagcttc	ttctgcggcc	ccagcacaag	ctccagcaga	aaaagaagaa	acctctcaga	660
tgttaactgc	gccagcagca	caaaaagctg	tagctgacac	cacaagtgtt	gcaaccta	720
acggcctttc	ttacgctcca	aaccatgcct	acaatccaa	aatgcaggg	cttcaaccac	780
aaacagcagc	cttcaaagaa	gaagtggctt	ctgcctttgg	tattacgtca	tttagtggtt	840
accgtccagg	agatccagga	gatcatggta	aaggattagc	cattgacttt	atggtaccgg	900
ttagctctac	gcttggtgat	caagttgctc	aatatgccat	tgaccatatg	gcagagcgtg	960
gtatttcata	cgttatttgg	aaacagcgat	tctatgcgcc	atttgcaagt	atttacggac	1020
cagcctacac	atggaacccc	atgccagatc	gcggcagtat	tacagaaaac	cattatgatc	1080
atgttcatgt	ctccttaat	gcttaa				1106

<210> 12

<211> 368

<212> PRT

<213> S. pyogenes

<400> 12

Gln Glu Trp Thr Pro Arg Ser Val Thr Glu Ile Lys Ser Glu Leu Val
 1 5 10 15
 Leu Val Asp Asn Val Phe Thr Tyr Ile Val Lys Tyr Gly Asp Thr Leu
 20 25 30
 Ser Thr Ile Ala Glu Ala Met Gly Ile Asp Val His Val Leu Gly Asp
 35 40 45
 Ile Asn His Ile Ala Asn Ile Asp Leu Ile Phe Pro Asp Thr Ile Leu
 50 55 60
 Thr Ala Asn Tyr Asn Gln His Gly Gln Ala Thr Thr Leu Thr Val Gln
 65 70 75 80
 Ala Pro Ala Ser Ser Pro Ser Ser Val Ser His Val Pro Ser Ser Glu
 85 90 95
 Pro Leu Pro Gln Ala Ser Ala Thr Ser Gln Pro Thr Val Pro Met Ala
 100 105 110
 Pro Ser Ala Thr Pro Ser Asp Val Pro Thr Thr Pro Phe Ala Ser Ala
 115 120 125
 Lys Pro Asp Ser Ser Val Thr Ala Ser Ser Glu Leu Thr Ser Ser Thr
 130 135 140
 Asn Asp Val Ser Thr Glu Leu Ser Ser Glu Ser Gln Lys Gln Pro Glu
 145 150 155 160
 Val Pro Gln Glu Ala Val Pro Thr Pro Lys Ala Ala Glu Pro Thr Glu
 165 170 175
 Val Glu Pro Lys Thr Asp Ile Ser Glu Asp Pro Thr Ser Ala Asn Arg
 180 185 190
 Pro Val Pro Asn Glu Ser Ala Ser Glu Glu Ala Ser Ser Ala Ala Pro
 195 200 205
 Ala Gln Ala Pro Ala Glu Lys Glu Glu Thr Ser Gln Met Leu Thr Ala
 210 215 220

Pro Ala Ala Gln Lys Ala Val Ala Asp Thr Thr Ser Val Ala Thr Ser
 225 230 235 240
 Asn Gly Leu Ser Tyr Ala Pro Asn His Ala Tyr Asn Pro Met Asn Ala
 245 250 255
 Gly Leu Gln Pro Gln Thr Ala Ala Phe Lys Glu Glu Val Ala Ser Ala
 260 265 270
 Phe Gly Ile Thr Ser Phe Ser Gly Tyr Arg Pro Gly Asp Pro Gly Asp
 275 280 285
 His Gly Lys Gly Leu Ala Ile Asp Phe Met Val Pro Val Ser Ser Thr
 290 295 300
 Leu Gly Asp Gln Val Ala Gln Tyr Ala Ile Asp His Met Ala Glu Arg
 305 310 315 320
 Gly Ile Ser Tyr Val Ile Trp Lys Gln Arg Phe Tyr Ala Pro Phe Ala
 325 330 335
 Ser Ile Tyr Gly Pro Ala Tyr Thr Trp Asn Pro Met Pro Asp Arg Gly
 340 345 350
 Ser Ile Thr Glu Asn His Tyr Asp His Val His Val Ser Phe Asn Ala
 355 360 365

<210> 13

<211> 1095

<212> DNA

<213> *S. pyogenes*

<400> 13

caagagtgg a caccacgatc ggttacagaa atcaagtctg aactcgtcct agttgataat	60
gtttttactt atactgtaaa atacggtgac actttaagca caattgctga agcaatgggg	120
attgatgtgc atgtcttagg agatattaaat catattgcta atattgacct aattttcca	180
gacacgatcc taacagcaaa ctacaatcaa cacggtcagg caacgaattt gacggttcaa	240

gcacctgctt ctagtccagc tagcgtagt catgtaccta gcagtgagcc attacccaa	300
gcatctgcca cctctcaacc gactgttcct atggcaccac ctgcgacacc atctgatgtc	360
ccaacgacac cattcgcatc tgcaaagcca gatagttctg tgacagcgtc atctgagctc	420
acatcgtaa cgaatgatgt ttcgactgag ttgtctagcg aatcacaaaa gcagccagaa	480
gtaccacaag aagcagttcc aactcctaaa gcagctgaaa cgactgaagt cgaacctaag	540
acagacatct cagaagcccc aacttcagct aataggcctg tacctaacga gagtgcttca	600
gaagaagttt cttctgcggc cccagcacaa gccccagcag aaaaagaaga aacctctgct	660
ccagcagcac aaaaagctgt agctgacacc acaagtgttgc aacacctaaa tggccttct	720
tacgctccaa accatgccta caatccatg aatgcagggc ttcaaccaca aacagcagcc	780
ttcaaagaag aagtggcttc tgccttggt attacgtcat ttagtggta ccgtccaggt	840
gatccaggag atcatggtaa aggttggcc attgattta tggcctga aaattctgt	900
cttggtgatc aagttgctca atatgccatt gaccatatgg cagagcgtgg tatttcatac	960
gttatttgga aacagcgatt ctatgcgcca tttgcaagta tttacggacc agcctacaca	1020
tggaacccca tgccagatcg cggcagtatt acagaaaacc attatgatca tgttcatgtc	1080
tcctttaatg cttaa	1095

<210> 14

<211> 364

<212> PRT

<213> *S. pyogenes*

<400> 14

Gln Glu Trp Thr Pro Arg Ser Val Thr Glu Ile Lys Ser Glu Leu Val

1	5	10	15
---	---	----	----

Leu Val Asp Asn Val Phe Thr Tyr Thr Val Lys Tyr Gly Asp Thr Leu

20	25	30
----	----	----

Ser Thr Ile Ala Glu Ala Met Gly Ile Asp Val His Val Leu Gly Asp

35	40	45
----	----	----

Ile Asn His Ile Ala Asn Ile Asp Leu Ile Phe Pro Asp Thr Ile Leu

50	55	60	
Thr Ala Asn Tyr Asn Gln His Gly Gln Ala Thr Asn Leu Thr Val Gln			
65	70	75	80
Ala Pro Ala Ser Ser Pro Ala Ser Val Ser His Val Pro Ser Ser Glu			
85	90	95	
Pro Leu Pro Gln Ala Ser Ala Thr Ser Gln Pro Thr Val Pro Met Ala			
100	105	110	
Pro Pro Ala Thr Pro Ser Asp Val Pro Thr Thr Pro Phe Ala Ser Ala			
115	120	125	
Lys Pro Asp Ser Ser Val Thr Ala Ser Ser Glu Leu Thr Ser Ser Thr			
130	135	140	
Asn Asp Val Ser Thr Glu Leu Ser Ser Glu Ser Gln Lys Gln Pro Glu			
145	150	155	160
Val Pro Gln Glu Ala Val Pro Thr Pro Lys Ala Ala Glu Thr Thr Glu			
165	170	175	
Val Glu Pro Lys Thr Asp Ile Ser Glu Ala Pro Thr Ser Ala Asn Arg			
180	185	190	
Pro Val Pro Asn Glu Ser Ala Ser Glu Glu Val Ser Ser Ala Ala Pro			
195	200	205	
Ala Gln Ala Pro Ala Glu Lys Glu Glu Thr Ser Ala Pro Ala Ala Gln			
210	215	220	
Lys Ala Val Ala Asp Thr Thr Ser Val Ala Thr Ser Asn Gly Leu Ser			
225	230	235	240
Tyr Ala Pro Asn His Ala Tyr Asn Pro Met Asn Ala Gly Leu Gln Pro			
245	250	255	
Gln Thr Ala Ala Phe Lys Glu Glu Val Ala Ser Ala Phe Gly Ile Thr			
260	265	270	
Ser Phe Ser Gly Tyr Arg Pro Gly Asp Pro Gly Asp His Gly Lys Gly			
275	280	285	

Leu Ala Ile Asp Phe Met Val Pro Glu Asn Ser Ala Leu Gly Asp Gln

290 295 300

Val Ala Gln Tyr Ala Ile Asp His Met Ala Glu Arg Gly Ile Ser Tyr

305 310 315 320

Val Ile Trp Lys Gln Arg Phe Tyr Ala Pro Phe Ala Ser Ile Tyr Gly

325 330 335

Pro Ala Tyr Thr Trp Asn Pro Met Pro Asp Arg Gly Ser Ile Thr Glu

340 345 350

Asn His Tyr Asp His Val His Val Ser Phe Asn Ala

355 360

<210> 15

<211> 1074

<212> DNA

<213> S. pyogenes

<400> 15

caagagtgg a caccacgatc ggttacagaa atcaagtctg aactcgtcct agttgataat	60
gtttttactt atacagtaaa atacggtgac actttaagca caattgctga agcaatgggg	120
attgatgtgc atgtcttagg agatattaat catattgcta atattgactt aattttcca	180
gacacgatcc taacagcaaa ctacaatcaa cacggtcagg caacgacttt gacggttcaa	240
gcacctgctt ctagtccagc tagcgtagt catgtaccta gcagttagcc attacccaa	300
gcatctgcc a cctctcaacc gactgttcct atggcaccat ctgcgacacc attagcatct	360
gcaaagccag atagttctgt gacagcgtca tctgagctca catcgtaac gaatgatgtt	420
tcgactgagt cgtctagcga atcacaaaag cagccagaag taccacaaga agcagttcca	480
actcctaaag cagctgaaac gactgaagtc gaacctaaaga cagacatctc agaagaccca	540
acttcagcta ataggcctgt acctaacgag agtgcttcag aagaagtttc ttctgcggcc	600
ccagcacaag ccccagcaga aaaagaagaa acctctgcgc cagcagcaca aaaagctgta	660
gctgacacca caagtgtgc aacctcaaac ggcctttctt acgctccaaa ccatgcctac	720

aatccaatga atgcagggct tcaaccacaa acagcagcct tcaaagaaga agtggcttct 780
 gcctttggta ttacgtcatt tagtggttac cgtccaggtg acccaggaga tcatggtaaa 840
 ggtttggcca ttgatttat ggtgcctgaa aattctgctc ttggtgatca agttgctcaa 900
 tatgccattg accatatggc agagcgtggt atttcatacg ttatggaa acagcgattc 960
 tatgcgccat ttgcaagtat ttacggacca gcttacacat ggaaccccat gccagatcgc 1020
 ggcagtatta cagaaaacca ttatgatcat gttcatgtct ccttaatgc ttaa 1074

<210> 16

<211> 357

<212> PRT

<213> *S. pyogenes*

<400> 16

Gln Glu Trp Thr Pro Arg Ser Val Thr Glu Ile Lys Ser Glu Leu Val

1 5 10 15

Leu Val Asp Asn Val Phe Thr Tyr Thr Val Lys Tyr Gly Asp Thr Leu

20 25 30

Ser Thr Ile Ala Glu Ala Met Gly Ile Asp Val His Val Leu Gly Asp

35 40 45

Ile Asn His Ile Ala Asn Ile Asp Leu Ile Phe Pro Asp Thr Ile Leu

50 55 60

Thr Ala Asn Tyr Asn Gln His Gly Gln Ala Thr Thr Leu Thr Val Gln

65 70 75 80

Ala Pro Ala Ser Ser Pro Ala Ser Val Ser His Val Pro Ser Ser Glu

85 90 95

Pro Leu Pro Gln Ala Ser Ala Thr Ser Gln Pro Thr Val Pro Met Ala

100 105 110

Pro Ser Ala Thr Pro Leu Ala Ser Ala Lys Pro Asp Ser Ser Val Thr

115	120	125
Ala Ser Ser Glu Leu Thr Ser Ser Thr Asn Asp Val Ser Thr Glu Ser		
130	135	140
Ser Ser Glu Ser Gln Lys Gln Pro Glu Val Pro Gln Glu Ala Val Pro		
145	150	155
Thr Pro Lys Ala Ala Glu Thr Thr Glu Val Glu Pro Lys Thr Asp Ile		
165	170	175
Ser Glu Asp Pro Thr Ser Ala Asn Arg Pro Val Pro Asn Glu Ser Ala		
180	185	190
Ser Glu Glu Val Ser Ser Ala Ala Pro Ala Gln Ala Pro Ala Glu Lys		
195	200	205
Glu Glu Thr Ser Ala Pro Ala Ala Gln Lys Ala Val Ala Asp Thr Thr		
210	215	220
Ser Val Ala Thr Ser Asn Gly Leu Ser Tyr Ala Pro Asn His Ala Tyr		
225	230	235
Asn Pro Met Asn Ala Gly Leu Gln Pro Gln Thr Ala Ala Phe Lys Glu		
245	250	255
Glu Val Ala Ser Ala Phe Gly Ile Thr Ser Phe Ser Gly Tyr Arg Pro		
260	265	270
Gly Asp Pro Gly Asp His Gly Lys Gly Leu Ala Ile Asp Phe Met Val		
275	280	285
Pro Glu Asn Ser Ala Leu Gly Asp Gln Val Ala Gln Tyr Ala Ile Asp		
290	295	300
His Met Ala Glu Arg Gly Ile Ser Tyr Val Ile Trp Lys Gln Arg Phe		
305	310	315
Tyr Ala Pro Phe Ala Ser Ile Tyr Gly Pro Ala Tyr Thr Trp Asn Pro		
325	330	335
Met Pro Asp Arg Gly Ser Ile Thr Glu Asn His Tyr Asp His Val His		
340	345	350

Val Ser Phe Asn Ala

355

<210> 17

<211> 1113

<212> DNA

<213> S. pneumonia

<400> 17

atgaagaaaa	aatgttatt	agcgtaaca	gtagccttgt	cattgcccc	agtattggca	60
actcaagcag	aagaagttct	ttggactgca	cgtagtgttg	agcaaatcca	aaacgatttg	120
actaaaacgg	acaacaaaac	aagttatacc	gtacagtatg	gtgatacttt	gagcaccatt	180
gcagaagcct	tgggtgtaga	tgtcacagtg	cttgcgaatc	tgaacaaaat	cactaatatg	240
gacttgattt	tcccagaaac	tgtttgaca	acgactgtca	atgaagcaga	agaagtaaca	300
gaagttgaaa	tccaaacacc	tcaagcagac	tctagtgaag	aagtgacaac	tgcgacagca	360
gatttgacca	ctaatacgt	gaccgttcat	gatcaaactg	ttcaggttgc	agacctttct	420
caaccaattt	cagaagttac	aaagacagtg	attgcttctg	aagaagtggc	accatctacg	480
ggcacttctg	tcccagagga	gcaaacgacc	gaaacaactc	gcccggttga	agaagcaact	540
cctcaggaaa	cgactccagc	tgagaagcag	gaaacacaag	caagccctca	agctgcata	600
gcagtggaaag	taactacaac	aagttcagaa	gcaaaagaag	tagcatcatc	aaatggagct	660
acagcagcag	tttctactta	tcaaccagaa	gagacgaaaa	taatttcaac	aacttacgag	720
gctccagctg	cgcggattt	tgctggactt	gcagtagcaa	aatctgaaaa	tgcaggtctt	780
caaccacaaa	cagctgcctt	taaagaagaa	attgctaact	tgttggcat	tacatccttt	840
agtggttatc	gtccaggaga	cagtggagat	cacggaaaag	gtttggctat	cgactttatg	900
gtaccagaac	gttcagaatt	aggggataag	attgcggaaat	atgctattca	aaatatggcc	960
agccgtggca	ttagttacat	catctggaaa	caacgtttct	atgctccatt	cgatagcaaa	1020
tatggccag	ctaacacttg	gaacccaatg	ccagaccgtg	gtagtgtgac	agaaaatcac	1080
tatgatcacg	ttcacgttcc	aatgaatgga	taa			1113

<210> 18

<211> 370

<212> PRT

<213> S. pneumonia

<400> 18

Met Lys Lys Arg Met Leu Leu Ala Ser Thr Val Ala Leu Ser Phe Ala

1 5 10 15

Pro Val Leu Ala Thr Gln Ala Glu Glu Val Leu Trp Thr Ala Arg Ser

20 25 30

Val Glu Gln Ile Gln Asn Asp Leu Thr Lys Thr Asp Asn Lys Thr Ser

35 40 45

Tyr Thr Val Gln Tyr Gly Asp Thr Leu Ser Thr Ile Ala Glu Ala Leu

50 55 60

Gly Val Asp Val Thr Val Leu Ala Asn Leu Asn Lys Ile Thr Asn Met

65 70 75 80

Asp Leu Ile Phe Pro Glu Thr Val Leu Thr Thr Val Asn Glu Ala

85 90 95

Glu Glu Val Thr Glu Val Glu Ile Gln Thr Pro Gln Ala Asp Ser Ser

100 105 110

Glu Glu Val Thr Thr Ala Thr Ala Asp Leu Thr Thr Asn Gln Val Thr

115 120 125

Val Asp Asp Gln Thr Val Gln Val Ala Asp Leu Ser Gln Pro Ile Ala

130 135 140

Glu Val Thr Lys Thr Val Ile Ala Ser Glu Glu Val Ala Pro Ser Thr

145 150 155 160

Gly Thr Ser Val Pro Glu Glu Gln Thr Thr Glu Thr Thr Arg Pro Val

165 170 175

Glu Glu Ala Thr Pro Gln Glu Thr Thr Pro Ala Glu Lys Gln Glu Thr

180	185	190
Gln Ala Ser Pro Gln Ala Ala Ser Ala Val Glu Val Thr Thr Thr Ser		
195	200	205
Ser Glu Ala Lys Glu Val Ala Ser Ser Asn Gly Ala Thr Ala Ala Val		
210	215	220
Ser Thr Tyr Gln Pro Glu Glu Thr Lys Ile Ile Ser Thr Thr Tyr Glu		
225	230	235
Ala Pro Ala Ala Pro Asp Tyr Ala Gly Leu Ala Val Ala Lys Ser Glu		
245	250	255
Asn Ala Gly Leu Gln Pro Gln Thr Ala Ala Phe Lys Glu Glu Ile Ala		
260	265	270
Asn Leu Phe Gly Ile Thr Ser Phe Ser Gly Tyr Arg Pro Gly Asp Ser		
275	280	285
Gly Asp His Gly Lys Gly Leu Ala Ile Asp Phe Met Val Pro Glu Arg		
290	295	300
Ser Glu Leu Gly Asp Lys Ile Ala Glu Tyr Ala Ile Gln Asn Met Ala		
305	310	315
Ser Arg Gly Ile Ser Tyr Ile Ile Trp Lys Gln Arg Phe Tyr Ala Pro		
325	330	335
Phe Asp Ser Lys Tyr Gly Pro Ala Asn Thr Trp Asn Pro Met Pro Asp		
340	345	350
Arg Gly Ser Val Thr Glu Asn His Tyr Asp His Val His Val Ser Met		
355	360	365
Asn Gly		
370		

<210> 19

<211> 1183

<212> DNA

<213> S. pyogenes

<220>

<221> misc_difference

<222> (428) ... (448)

<223> nnnnnnnnnnnnnnnnnnn can be ctgatgtccaaacgacaccat
or absent

<221> misc_difference

<222> (733) ... (744)

<223> nnnnnnnnnnnn can be cagatgttaact or absent

<221> misc_difference

<222> (883) ... (883)

<223> n is g or absent

<221> misc_difference

<222> (943) ... (943)

<223> n is t or absent

<400> 19

atgattatta	ctaaaaagag	yttatttgtg	acaagtgtcg	ctttgtcggt	agyaccttg	60
gcgacagcrc	aggcacaaga	gtggacacca	cgatcggtta	casaaatcaa	gtctgaactc	120
gtcctagttg	ataatgttt	tacttatayw	gtaaaatacg	gtgacacttt	aagcacaatt	180
gctgaagcaa	tgggrattga	tgtgcatgtc	ttaggagata	ttaatcatat	tgctaatttt	240
gacytaattt	ttccagacac	gatcctaaca	gcmaactaca	aycaacacgg	tcaggcaacg	300
amtttgacgg	ttcaagcrcc	tgcttctagt	ccakctagcg	ttagtcatgt	accttagcagt	360
gagccattac	cccaagcatac	tgccacacct	caaycgactr	ttccttatggc	accayctgcg	420

acaccatnnn nnnnnnnnnn nnnnnnnntm gcatctgcaa agccagatag ttytgtgaca	480
gcgtcatctg agctcacatc rtcaacgaat gatgttcga ctgagtygtc tagcaatca	540
caaaagcagc cagaagtacc acaagaagca gwwccaactc ctaaagcagc tgaamssact	600
gaagtcgaac ctaagacaga catctcagar gmyycaactt cagctaatacg gcctgtacct	660
aacgrragtg cttcagaaga agyttttct gcggcccccag cacaagcycc agcagaaaaa	720
gaagaaacct cttnnnnnnn nnnngcgcca gcagcacaaa aagctgttagc tgacaccaca	780
agtgttgc当地 cctcaaaygg ctttcttac gctccaaacc atgcctacaa tccaatgaat	840
gcagggcttc aaccacaaac agcagccttc aaagaagaag tgncttctgc ctttggatt	900
acgtcattta gtggttaccg tccaggwgay ccaggagatc atngttaaag gwttrgccat	960
tgayttatg gtrcckgwwa rytctrckct tggatcaa gttgctcaat atgccattga	1020
ccatatggca gassgtggta tttcatacgt tatttggaaa cagcgattct atgcgccatt	1080
tgcaagtatt tacggaccag cytacacatg gaacccatg ccagatcgcg gcagtattac	1140
agwwwccat tatgatcatg ttcatgtctc cttaatgct taa	1183

<210> 20

<211> 393

<212> PRT

<213> s. pyogenes

<220>

<221> VARIANT

<222> (18)...(18)

<223> Xaa = Ala or Val

<221> VARIANT

<222> (50)...(50)

<223> Xaa = Thr or Ile

<221> VARIANT

<222> (101) ... (101)

<223> Xaa = Thr or Asn

<221> VARIANT

<222> (112) ... (112)

<223> Xaa = Ala or Ser

<221> VARIANT

<222> (132) ... (132)

<223> Xaa = Pro or Ser

<221> VARIANT

<222> (134) ... (134)

<223> Xaa = Val or Ile

<221> VARIANT

<222> (139) ... (139)

<223> Xaa = Ser or Pro

<221> VARIANT

<222> (143) ... (149)

<223> Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa = Ser Asp Val Pro Thr

Thr pro or absent

<221> VARIANT

<222> (150) ... (150)

<223> Xaa = Phe or Leu

<221> VARIANT

<222> (158) ... (158)

<223> Xaa = Ser or Phe

<221> VARIANT

<222> (176) ... (176)

<223> Xaa = Leu or Ser

<221> VARIANT

<222> (191) ... (191)

<223> Xaa = Val or Glu

<221> VARIANT

<222> (199) ... (199)

<223> Xaa = Thr or Pro or Ser

<221> VARIANT

<222> (211) ... (211)

<223> Xaa = Asp or Ala

<221> VARIANT

<222> (212) ... (212)

<223> Xaa = Pro or Ser

<221> VARIANT

<222> (222) ... (222)

<223> Xaa = Glu or Gly

<221> VARIANT

<222> (228) ... (228)

<223> Xaa = Val or Ala

<221> VARIANT

<222> (242) ... (245)

<223> Xaa Xaa Xaa Xaa = Glu thr Ser Gln or absent

<221> VARIANT

<222> (246) ... (246)

<223> Xaa = Glu or Met

<221> VARIANT

<222> (247) ... (247)

<223> Xaa = Thr or Leu

<221> VARIANT

<222> (248) ... (248)

<223> Xaa = Ser or Thr

<221> VARIANT

<222> (295) ... (295)

<223> Xaa = Ala or Leu

<221> VARIANT

<222> (296) ... (296)

<223> Xaa = Ser or Leu

<221> VARIANT

<222> (297) ... (297)

<223> Xaa = Ala or Pro

<221> VARIANT

<222> (298) ... (298)

<223> Xaa = Phe or Leu

<221> VARIANT

<222> (299) ... (299)

<223> Xaa = Gly or Val

<221> VARIANT

<222> (300) ... (300)

<223> Xaa = Ile or Leu

<221> VARIANT

<222> (301) ... (301)

<223> Xaa = Thr or Arg

<221> VARIANT

<222> (302) ... (302)

<223> Xaa = Ser or His

<221> VARIANT

<222> (303) ... (303)

<223> Xaa = Phe or Leu

<221> VARIANT

<222> (304) ... (304)

<223> Xaa = Ser or Val

<221> VARIANT

<222> (305) ... (305)

<223> Xaa = Gly or Val

<221> VARIANT

<222> (306) ... (306)

<223> Xaa = Tyr or Thr

<221> VARIANT

<222> (307) ... (307)

<223> Xaa = Arg or Val

<221> VARIANT

<222> (308) ... (308)

<223> Xaa = Pro or Gln

<221> VARIANT

<222> (309) ... (309)

<223> Xaa = Gly or Glu

<221> VARIANT

<222> (310) ... (310)

<223> Xaa = Asp or Ile

<221> VARIANT

<222> (311) ... (311)

<223> Xaa = Pro or Gln

<221> VARIANT

<222> (312) ... (312)

<223> Xaa = Gly or Glu

<221> VARIANT

<222> (313) ... (313)

<223> Xaa = Asn or Ile

<221> VARIANT

<222> (314) ... (314)

<223> Xaa = His or Ile

<221> VARIANT

<222> (326) ... (326)

<223> Xaa = Glu or Val

<221> VARIANT

<222> (327) ... (327)

<223> Xaa = Asn or Ser

<221> VARIANT

<222> (329) ... (329)

<223> Xaa = Ala or Thr

<221> VARIANT

<222> (344) ... (344)

<223> Xaa = Glu or Asp

<221> VARIANT

<222> (345) ... (345)

<223> Xaa = Arg or Gly

<400> 20

Met Ile Ile Thr Lys Lys Ser Leu Phe Val Thr Ser Val Ala Leu Ser
 1 5 10 15
 Leu Xaa Pro Leu Ala Thr Ala Gln Ala Gln Glu Trp Thr Pro Arg Ser
 20 25 30
 Val Thr Glx Ile Lys Ser Glu Leu Val Leu Val Asp Asn Val Phe Thr
 35 40 45
 Tyr Xaa Val Lys Tyr Gly Asp Thr Leu Ser Thr Ile Ala Glu Ala Met
 50 55 60
 Gly Ile Asp Val His Val Leu Gly Asp Ile Asn His Ile Ala Asn Ile
 65 70 75 80
 Asp Leu Ile Phe Pro Asp Thr Ile Leu Thr Ala Asn Tyr Asn Gln His
 85 90 95
 Gly Gln Ala Thr Xaa Leu Thr Val Gln Ala Pro Ala Ser Ser Pro Xaa
 100 105 110
 Ser Val Ser His Val Pro Ser Ser Glu Pro Leu Pro Gln Ala Ser Ala
 115 120 125
 Thr Ser Gln Xaa Thr Xaa Pro Met Ala Pro Xaa Ala Thr Pro Xaa Xaa
 130 135 140
 Xaa Xaa Xaa Xaa Xaa Xaa Ala Ser Ala Lys Pro Asp Ser Xaa Val Thr
 145 150 155 160
 Ala Ser Ser Glu Leu Thr Ser Ser Thr Asn Asp Val Ser Thr Glu Xaa
 165 170 175
 Ser Ser Glu Ser Gln Lys Gln Pro Glu Val Pro Gln Glu Ala Xaa Pro
 180 185 190
 Thr Pro Lys Ala Ala Glu Xaa Thr Glu Val Glu Pro Lys Thr Asp Ile
 195 200 205

Ser Glu Xaa Xaa Thr Ser Ala Asn Arg Pro Val Pro Asn Xaa Ser Ala
 210 215 220
 Ser Glu Glu Xaa Ser Ser Ala Ala Pro Ala Gln Ala Pro Ala Glu Lys
 225 230 235 240
 Glu Xaa Xaa Xaa Xaa Xaa Xaa Ala Pro Ala Ala Gln Lys Ala Val
 245 250 255
 Ala Asp Thr Thr Ser Val Ala Thr Ser Asn Gly Leu Ser Tyr Ala Pro
 260 265 270
 Asn His Ala Tyr Asn Pro Met Asn Ala Gly Leu Gln Pro Gln Thr Ala
 275 280 285
 Ala Phe Lys Glu Glu Val Xaa
 290 295 300
 Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa Gly Lys Gly Leu Ala Ile
 305 310 315 320
 Asp Phe Met Val Pro Xaa Xaa Ser Xaa Leu Gly Asp Gln Val Ala Gln
 325 330 335
 Tyr Ala Ile Asp His Met Ala Xaa Xaa Gly Ile Ser Tyr Val Ile Trp
 340 345 350
 Lys Gln Arg Phe Tyr Ala Pro Phe Ala Ser Ile Tyr Gly Pro Ala Tyr
 355 360 365
 Thr Trp Asn Pro Met Pro Asp Arg Gly Ser Ile Thr Xaa Xaa His Tyr
 370 375 380
 Asp His Val His Val Ser Phe Asn Ala
 385 390

<210> 21

<211> 32

<212> DNA

<213> Artificial Sequence

<220>

<223> DMAR16 Oligonucleotide

<400> 21

caggccatgg agtggacacc acgatcggtt ac

32

<210> 22

<211> 37

<212> DNA

<213> Artificial Sequence

<220>

<223> DMAR17 Oligonucleotide

<400> 22

gccgctcgag agcattaaag gagacatgaa catgatc

37

<210> 23

<211> 25

<212> PRT

<213> Artificial Sequence

<220>

<223> Signal peptide predicted from analysis of SEQ ID

NO:2

<400> 23

Met Ile Ile Thr Lys Lys Ser Leu Phe Val Thr Ser Val Ala Leu Ser

1 5 10 15

Leu Ala Pro Leu Ala Thr Ala Gln Ala

20 25

<210> 24

<211> 5

<212> PRT

<213> Artificial Sequence

<220>

<221> VARIANT

<222> (3) . . . (3)

<223> Xaa = Any Amino Acid

<223> Cell wall anchoring motif

<400> 24

Leu Pro Xaa Thr Gly

1 5

<210> 25

<211> 6

<212> PRT

<213> Artificial Sequence

<220>

<223> IgA binding motif

<400> 25

Met Leu Lys Lys Ile Glu

1 5

<210> 26

<211> 28

<212> DNA

<213> Artificial Sequence

<220>

<223> DMAR69 oligonucleotide

<400> 26

ctgggaagat tatctagcac attaatac

28

<210> 27

<211> 25

<212> DNA

<213> Artificial Sequence

<220>

<223> DMAR72 oligonucleotide

<400> 27

cataacgtta aaactgtctta aaggg

25

<210> 28

<211> 34

<212> DNA

<213> Artificial Sequence

32mm

<220>

<223> DMAR24 oligonucleotide

<400> 28

tacccggatc cccaaagatg gacaccacga tcgg

34

<210> 29

<211> 36

<212> DNA

<213> Artificial Sequence

<220>

<223> DMAR25 oligonucleotide

<400> 29

gcgcgtcg acgcgtatct cagcctctta tagggc

36

WHAT IS CLAIMED IS:

1. An isolated polynucleotide encoding a polypeptide comprising an amino acid sequence at least 95% identical to the amino acid sequence chosen from SEQ ID NO: 2, 4, 6, 8, 10, 12, 14, and 16, wherein the encoded polypeptide is capable of eliciting an immune response against *Streptococcus pyogenes*, and wherein the encoded polypeptide elicits antibodies that specifically bind to a polypeptide consisting of the amino acid sequence set forth in SEQ ID NO: 2, 4, 6, 8, 10, 12, 14, or 16.
2. The isolated polynucleotide according to claim 1 wherein the polynucleotide encodes a polypeptide that comprises the amino acid sequence chosen from SEQ ID NO: 2, 4, 6, 8, 10, 12, 14, and 16.
3. The polynucleotide according to claim 1, wherein the polynucleotide consists of a nucleotide sequence at least 95% identical to the nucleotide sequence set forth in any one of SEQ ID NOS: 1, 3, 5, 7, 9, 11, 13, and 15.
4. The polynucleotide according to claim 2, wherein the polynucleotide comprises a nucleotide sequence set forth in any one of SEQ ID NOS: 1, 3, 5, 7, 9, 11, 13, and 15.
5. An isolated polynucleotide that is complementary to the polynucleotide as defined in any one of claims 1-4.
6. The isolated polynucleotide according to any one of claims 1-4, wherein the isolated polynucleotide is DNA.
7. The isolated polynucleotide according to any one of claims 1-4, wherein the isolated polynucleotide is RNA.
8. A vector comprising the polynucleotide as defined in any one of claims 1-4, wherein the polynucleotide is operably linked to an expression control region.

9. A host cell transfected with the vector as defined by claim 8.
10. A process for producing a polypeptide encoded by the isolated polynucleotide as defined in any one of claims 1-4, said process comprising culturing the host cell as defined in claim 9 under conditions suitable for expression of said polypeptide.
11. The process according to claim 10 further comprising isolating the polypeptide from the host cell culture.
12. An isolated polypeptide comprising an amino acid sequence at least 95% identical to the amino acid sequence chosen from SEQ ID NO: 2, 4, 6, 8, 10, 12, 14, and 16, wherein the polypeptide is capable of eliciting an immune response against *Streptococcus pyogenes*, and wherein the isolated polypeptide elicits antibodies that specifically bind to a polypeptide consisting of the amino acid sequence set forth in SEQ ID NO: 2, 4, 6, 8, 10, 12, 14, or 16.
13. The isolated polypeptide according to claim 12, wherein the polypeptide comprises the amino acid sequence chosen from SEQ ID NO: 2, 4, 6, 8, 10, 12, 14, and 16.
14. The isolated polypeptide according to claim 12 or claim 13, wherein the N-terminal Met residue of SEQ ID NO: 2, 4, 6, and 8 is deleted.
15. The isolated polypeptide according to claim 12 or claim 13, wherein the secretory amino acid sequence of SEQ ID NO: 2, 4, 6, and 8 is deleted.
16. A vaccine composition comprising the isolated polypeptide as defined in any one of claims 12-15 and a pharmaceutically acceptable carrier, diluent or adjuvant.
17. Use of the polypeptide as defined in any one of claims 12-15 for the manufacture of a medicament for prophylactic or therapeutic treatment of a *Streptococcus pyogenes* infection in an individual susceptible to or infected with *S. pyogenes*.

18. Use of the vaccine composition as defined in claim 16 for the manufacture of a medicament for the prophylactic or therapeutic treatment of a *Streptococcus pyogenes* infection in an individual susceptible to or infected with *S. pyogenes*.

19. Use according to either claim 17 or claim 18 wherein the *S. pyogenes* infection is pharyngitis, erysipelas, impetigo, scarlet fever, bacteremia, necrotizing fasciitis, or toxic shock.

20. Use according to any one of claims 17-19 wherein the individual is a human or non-human mammal.

Figure 1

1 ATGATTATTA CTAAAAGAG CTTATTTGTG ACAAGTGTGG CTTTGTGTT AGCACCTTG
 61 GCGACAGCAC AGGCACAAGA GTGGACACCA CGATCGGTTA CAGAAATCAA GTCTGAAC
 121 GTCCTAGTTG ATAATGTTT TACTTATACT GTAAAATACG GTGACACTTT AAGCACAATT
 181 GCTGAAGCAA TGGGAATTGA TGTGCATGTC TTAGGAGATA TTAATCATAT TGCTAATATT
 241 GACTTAATT TTCCAGACAC GATCCTAACCA GCCAACTACA ACCAACACGG TCAGGCAAC
 301 ACTTTGACGG TTCAAGCGCC TGCTTCTAGT CCAGCTAGCG TTAGTCATGT ACCTAGCAGT
 361 GAGCCATTAC CCCAAGCATTG TGCCACCTCT CAATCGACTG TTCCATGGC ACCATCTGCG
 421 ACACCATTG ATGTCCCAAC GACACCATTG GCATCTGCAA AGCCAGATAG TTCTGTGACA
 481 GCGTCATCTG AGCTCACATC GTCAACGAAT GATGTTCGA CTGAGTTGTC TAGCGAATCA
 541 CAAAAGCAGC CAGAAGTACC ACAAGAAGCA GTTCCAACCTC CTAAAGCAGC TGAAACGACT
 601 GAAGTCGAAC CTAAGACAGA CATCTCAGAG GATTCAACTT CAGCTAATAG GCCTGTACCT
 661 AACGAGAGTG CTTCAGAAGA AGTTTCTTCT GCGGGCCCCAG CACAAGCCCC AGCAGAAAAA
 721 GAAGAAACCT CTGCGCCAGC AGCACAAAAA GCTGTAGCTG ACACCACAAG TGTTGCAACC
 781 TCAAATGGCC TTTCTTACGC TCCAAACCAT GCCTACAATC CAATGAATGC AGGGCTTCAA
 841 CCACAAACAG CAGCCTTCAA AGAAGAAGTG GCTTCTGCCT TTGGTATTAC GTCATTTAGT
 901 GGTTACCGTC CAGGTGATCC AGGAGATCAT GGTAAAGGTT TGGCCATTGA TTTTATGGTG
 961 CCTGAAAATT CTGCTCTTGG TGATCAAGTT GCTCAATATG CCATTGACCA TATGGCAGAG
 1021 CGTGGTATTT CATACTTAT TTGGAAACAG CGATTCTATG CGCCATTGTC AAGTATTTAC
 1081 GGACCAGCCT ACACATGGAA CCCCATGCCA GATCGCGGCA GTATTACAGA AAACCATTAT
 1141 GATCATGTTG ATGTCTCCTT TAATGCTAA (SEQ ID NO:1)

Figure 2

1 MIITKKSLFV TSVALSLAPL ATAQAQEWT P RSVTEIKSEL VLVDNVFTYT VKYGDTLSTI
 61 AEAMGIDVHV LGDINHIANI DLIFPDTILT ANYNQHGQAT TLTVQAPASS PASVSHVPSS
 121 EPLPQASATS QSTVPMAPSA TPSDVPTTPF ASAKPDSSVT ASSELTSSTN DVSTELSS
 181 QKQPEVPQEA VPTPKAAETT EVEPKTDISE DSTSANRPVP NESASEEVSS AAPAQAPAEK
 241 EETSAPAAQK AVADTTSVAT SNGLSYAPNH AYNPMNAGLQ PQTAAFKEEV ASAEGITSFS
 301 GYRPGDPGDH GKGLAIDFMV PENSALGDQV AQYAIIDHMAE RGISYVIWKQ RFYAPFASIY
 361 GPAYTWNPMP DRGSITENHY DHVHVSFNA* (SEQ ID NO:2)

Figure 3

1 ATGATTATTA CTAAGGAGAG CTTATTTGTG ACAAGTGTG CTTTGTGTT AGCACCTTG
 61 GCGACAGCGC AGGCACAAGA GTGGACACCA CGATCGGTTA CAGAAATCAA GTCTGAACTC
 121 GTCCTAGTTG ATAATGTTT TACTTATATA GTAAAATACG GTGACACTTT AAGCACAATT
 181 GCTGAAGCAA TGGGGATTGA TGTGCATGTC TTAGGAGATA TTAATCATAT TGCTAATATT
 241 GACTTAATTT TTCCAGACAC GATCCTAACCA GCAAACACTACA ACCAACACGG TCAGGCAACG
 301 ACTTTGACGG TTCAAGCACC TGCTTCTAGT CCATCTAGCG TTAGTCATGT ACCTAGCAGT
 361 GAGCCATTAC CCCAAGCATC TGCCACCTCT CAACCGACTG TTCCATGGC ACCATCTGCG
 421 ACACCACATCTG ATGTCCCAAC GACACCATTG GCATCTGCAA AGCCAGATAG TTCTGTGACA
 481 GCGTCATCTG AGCTCACATC GTCAACGAAT GATGTTTGA CTGAGTTGTC TAGCGAATCA
 541 CAAAAGCAGC CAGAAGTACC ACAAGAAGCA GTTCCAACTC CTAAAGCAGC TGAACCGACT
 601 GAAGTCGAAC CTAAGACAGA CATCTCAGAA GACCCAACTT CAGCTAATAG GCCTGTACCT
 661 AACGAGAGTG CTTCAGAAGA AGCTTCTTCT GCGGCCCCAG CACAAGCTCC AGCAGAAAAA
 721 GAAGAAACCT CTCAGATGTT AACTGCGCCA GCAGCACAAA AAGCTGTAGC TGACACCACA
 781 AGTGTGCAA CCTCAAACGG CCTTTCTTAC GCTCCAAACC ATGCCTACAA TCCAATGAAT
 841 GCAGGGCTTC AACCAACAAAC AGCAGCCTTC AAAGAAGAAG TGGCTTCTGC CTTTGGTATT
 901 ACGTCATTTA GTGGTTACCG TCCAGGAGAT CCAGGAGATC ATGGTAAAGG ATTAGCCATT
 961 GACTTTATGG TACCGGTTAG CTCTACGCTT GGTGATCAAG TTGCTCAATA TGCCATTGAC
 1021 CATATGGCAG AGCGTGGTAT TTCATACGTT ATTTGGAAAC AGCGATTCTA TGCGCCATT
 1081 GCAAGTATTT ACGGACCAGC CTACACATGG AACCCCATGC CAGATCGCGG CAGTATTACA
 1141 GAAAACCATT ATGATCATGT TCATGTCTCC TTTAATGCTT AA (SEQ ID NO:3)

Figure 4

1 MIITKKSLFV TSVALSLAPL ATAQAQEWT P RSVTEIKSEL VLVDNVFTYI VKYGDTLSTI
 61 AEAMGIDVHV LGDINHIANI DLIFPDILT ANYNQHQQAT TLTIVQAPASS PSSVSHVPSS
 121 EPLPQASATS QPTVPMAPSA TPSDVPTTPF ASAKPDSSVT ASSELTSSTN DVSTELSES
 181 QKQPEVPQEA VPTPKAAEPT EVEPKTDISE DPTSANRPVP NESASEEASS AAPAQAPAEK
 241 EETSQMLTAP AAQKAVADTT SVATSNGLSY APNHAYNPMN AGLQPQTAAF KEEVASAFGI
 301 TSFSGYRPGD PGDHGKGLAI DFMVPVSSTL GDQVAQYAIID HMAERGISYV IWKQRFYAPF
 361 ASIYGPAYTW NPMPDRGSIT ENHYDHVHVS FNA* (SEQ ID NO:4)

Figure 5

1 ATGATTATTA CTAAAAAGAG CTTATTTGTG ACAAGTGTG CTTTGTGTT AGTACCTTG
 61 GCGACAGCGC AGGCACAAGA GTGGACACCA CGATCGGTTA CAGAAATCAA GTCTGAAC
 121 GTCCTAGTTG ATAATGTTT TACTTATACT GTAAAATACG GTGACACTT AAGCACAATT
 181 GCTGAAGCAA TGGGGATTGA TGTGCATGTC TTAGGAGATA TTAATCATAT TGCTAATATT
 241 GACCTAATTG TTCCAGACAC GATCCTAACCA GCAAACATACA ATCAACACGG TCAGGCAAC
 301 AATTGACGG TTCAAGCACC TGCTCTAGT CCAGCTAGCG TTAGTCATGT ACCTAGCAGT
 361 GAGCCATTAC CCCAAGCATC TGCCACCTCT CAACCGACTG TTCCTATGGC ACCACCTGCG
 421 ACACCACATCTG ATGTCCCAAC GACACCATTG GCATCTGCAA AGCCAGATAG TTCTGTGACA
 481 GCGTCATCTG AGCTCACATC GTCAACGAAT GATGTTTCA CTGAGTTGTC TAGCGAATCA
 541 CAAAAGCAGC CAGAAGTACC ACAAGAAGCA GTTCCAACTC CTAAAGCAGC TGAAACGACT
 601 GAAAGTCGAAC CTAAGACAGA CATCTCAGAA GCCCCAACTT CAGCTAATAG GCCTGTACCT
 661 AACGAGAGTG CTTCAGAAGA AGTTTCTTCT GCGGCCCCAG CACAAGCCCC AGCAGAAAAA
 721 GAAGAAACCT CTGCGCCAGC AGCACAAAAA GCTGTAGCTG ACACCACAAAG TGTGCAACC
 781 TCAAATGGCC TTTCTTACGC TCCAAACCAT GCCTACAATC CAATGAATGC AGGGCTTCAA
 841 CCACAAACAG CAGCCTCAA AGAAGAAGTG GCTTCTGCCT TTGGTATTAC GTCATTTAGT
 901 GGTTACCGTC CAGGTGATCC AGGAGATCAT GGTAAAGGTT TGGCCATTGA TTTTATGGTG
 961 CCTGAAAATT CTGCTCTTGG TGATCAAGTT GCTCAATATG CCATTGACCA TATGGCAGAG
 1021 CGTGGTATTG CATACTTAT TTGGAAACAG CGATTCTATG CGCCATTGC AAGTATTTAC
 1081 GGACCAGCCT ACACATGGAA CCCCATGCCA GATCGCGGCA GTATTACAGA AAACCATTAT
 1141 GATCATGTTA ATGTCTCCTT TAATGCTTAA (SEQ ID NO:5)

Figure 6

1 MIITKKSLFV TSVALSLVPL ATAQAQEWT P RSVTEIKSEL VLVDNVFTYT VKYGDTLSTI
 61 AEAMGIDVHV LGDINHIANI DLIFPDILT ANYNQHGQAT NLTVQAPASS PASVSHVPSS
 121 EPLPQASATS QPTVPMAPPA TPSDVPTTPF ASAKPDSSVT ASSELTSSNT DVSTELSS
 181 QKQPEVPQEA VPTPKAAETT EVEPKTDISE APTSANRPVP NESASEEVSS AAPAQAPAEK
 241 EETSAPAAQK AVADTTSVAT SNGLSYAPNH AYNPMNAGLQ PQTAAFKKEV ASAEGITSFS
 301 GYRPGDPGDH GKGLAIDFMV PENSALGDQV AQYAIIDHMAE RGISYVIWKQ RFYAPPASIY
 361 GPAYTWNPMP DRGSITENHY DHVHSFNA* (SEQ ID NO:6)

Figure 7

1 ATGATTATTA CTAAAAAGAG CTTATTTGTG ACAAGTGTG CTTTGTGTT AGCACCTTG
 61 GCGACAGCGC AGGCACAAGA GTGGACACCA CGATCGGTTA CAGAAATCAA GTCTGAAC
 121 GTCCTAGTTG ATAATGTTT TACTTATACA GTAAAATACG GTGACACTT AAGCACAATT
 181 GCTGAAGCAA TGGGGATTGA TGTGCATGTC TTAGGAGATA TTAATCATAT TGCTAATATT
 241 GACTTAATT TTCCAGACAC GATCCTAAC GCAAACATACA ATCAACACGG TCAGGCAAC
 301 ACTTTGACGG TTCAAGCACC TGCTTCTAGT CCAGCTAGCG TTAGTCATGT ACCTAGCAGT
 361 GAGCCATTAC CCCAAGCATC TGCCACCTCT CAACCGACTG TTCCTATGGC ACCATCTGCG
 421 ACACCATTAG CATCTGAAA GCCAGATAGT TCTGTGACAG CGTCATCTGA GCTCACATCG
 481 TCAACGAATG ATGTTTCGAC TGAGTCGTCT AGCGAATCAC AAAAGCAGCC AGAAGTACCA
 541 CAAGAAGCAG TTCCAACCTCC TAAAGCAGCT GAAACGACTG AAGTCGAACC TAAGACAGAC
 601 ATCTCAGAAG ACCCAACTTC AGCTAATAGG CCTGTACCTA ACGAGAGTGC TTCAGAAGAA
 661 GTTTCTTCTG CGGCCCGAGC ACAAGCCCCA GCAGAAAAAG AAGAACCTC TGCGCCAGCA
 721 GCACAAAAAG CTGTAGCTGA CACCACAAGT GTTGCAACCT CAAACGGCCT TTCTTACGCT
 781 CCAAACCATG CCTACAATCC AATGAATGCA GGGCTTCAAC CACAAACAGC AGCCTTCAA
 841 GAAGAAGTGG CTTCTGCCCT TGGTATTACG TCATTTAGTG GTTACCGTCC AGGTGACCCA
 901 GGAGATCATG GTAAAGGTTT GGCCATTGAT TTTATGGTGC CTGAAAATTC TGCTCTGGT
 961 GATCAAGTTG CTCAATATGC CATTGACCAT ATGGCAGAGC GTGGTATTC ATACGTTATT
 1021 TGGAAACAGC GATTCTATGC GCCATTTGCA AGTATTTACG GACCAGCTTA CACATGGAAC
 1081 CCCATGCCAG ATCGCGGCAG TATTACAGAA AACCATTATG ATCATGTTCA TGTCTCCTT
 1141 AATGCTTAA (SEQ ID NO:7)

Figure 8

1 MIITKKSLFV TSVALSLAPL ATAQAQEWT P RSVTEIKSEL VLVDNVFTYT VKYGDTLSTI
 61 AEAMGIDVHV LGDINHIANI DLIFPDTILT ANYNQHGQAT TLTVQAPASS PASVSHVPSS
 121 EPLPQASATS QPTVPMAPSA TPLASAKPDS SVTASSELTS STNDVSTESS SESQKQPEVP
 181 QEAVPTPKAA ETTEVEPKTD ISEDPTSANR PVPNESASEE VSSAAPAQAP AEKEETSAPA
 241 AQKAVADTIS VATSNGLSYA PNHAYNPMNA GLQPQTAASFK EEVASAFGIT SFSGYRPGDP
 301 GDHGKGLAID FMVPENSALG DQVAQYAIIDH MAERGISYVI WKQRFYAPFA SIYGPAYTWN
 361 PMPDRGSITE NHYDHVHVSF NA* (SEQ ID NO:8)

Figure 9

1 CAAGAGTGGA CACCACGATC GGTTACAGAA ATCAAGTCTG AACTCGTCCCT AGTTGATAAT
 61 GTTTTACTT ATACTGTAAA ATACGGTGAC ACTTTAAGCA CAATTGCTGA AGCAATGGGA
 121 ATTGATGTGC ATGTCTTAGG AGATATTAAT CATATTGCTA ATATTGACTT AATTTTCCA
 181 GACACGATCC TAACAGCCAA CTACAACCAA CACGGTCAGG CAACGACTTT GACGGTTCAA
 241 GCGCCTGCTT CTAGTCCAGC TAGCGTTAGT CATGTACCTA GCAGTGAGCC ATTACCCCAA
 301 GCATCTGCCA CCTCTCAATC GACTGTTCCCT ATGGCACCAT CTGCGACACC ATCTGATGTC
 361 CCAACGACAC CATTGCGATC TGCAAAGCCA GATAGTTCTG TGACAGCGTC ATCTGAGCTC
 421 ACATCGTCAA CGAATGATGT TTGACTGAG TTGTCTAGCG AATCACAAAA GCAGCCAGAA
 481 GTACCACAAG AAGCAGTTCC AACTCCTAAA GCAGCTGAAA CGACTGAAGT CGAACCTAAG
 541 ACAGACATCT CAGAGGATTC AACTTCAGCT AATAGGCCTG TACCTAACGA GAGTGCTTCA
 601 GAAGAAGTTT CTTCTGCGGC CCCAGCACAA GCCCCAGCAG AAAAAGAAGA AACCTCTGCG
 661 CCAGCAGCAC AAAAAGCTGT AGCTGACACC ACAAGTGTG CAACCTCAA TGGCCTTCT
 721 TACGCTCCAA ACCATGCCTA CAATCCAATG AATGCAGGGC TTCAACCACA AACAGCAGCC
 781 TTCAAAGAAG AAGTGGCTTC TGCCTTGTT ATTACGTCAT TTAGTGGTTA CCGTCCAGGT
 841 GATCCAGGAG ATCATGGTAA AGGTTGGCC ATTGATTTA TGGTGCCTGA AAATTCTGCT
 901 CTTGGTGATC AAGTTGCTCA ATATGCCATT GACCATATGG CAGAGCGTGG TATTCATAC
 961 GTTATTTGGA AACAGCGATT CTATGCGCCA TTTGCAAGTA TTTACGGACC AGCCTACACA
 1021 TGGAACCCCA TGCCAGATCG CGGCAGTATT ACAGAAAACC ATTATGATCA TGTTCATGTC
 1081 TCCTTTAATG CTAA (SEQ ID NO:9)

Figure 10

1 QEWTPRSVTE IKSELVLVDN VFTYTVKYGD TLSTIAEAMG IDVHVLGDIN HIANIDLIFP
 61 DTILTANYNQ HQQATTLTVQ APASSPASVS HVPSEPLPQ ASATSQSTVP MAPSATPSDV
 121 PTTPFASAKP DSSVTASSEL TSSTNDVSTE LSSESQKQPE VPQEAVPTPK AAETTEVEPK
 181 TDISEDSTSA NRPVPNESAS EEVSSAAPAQ APAEKEETSA PAAQKAVADT TSVATSNGLS
 241 YAPNHAYNPM NAGLQPQTAAG FKEEVASAFG ITSFSGYRPG DPGDHGKGLA IDFMVPENSA
 301 LGDQVAQYAI DHMAERGISY VIWKQRFYAP FASTIYGPAYT WNPMPDRGSI TENHYDHVHV
 361 SFNA* (SEQ ID NO:10)

Figure 11

1 CAAGAGTGG A CACCACGATC G GTTACAGAA ATCAAGTCTG AACTCGCCT AGTGATAAT
 61 GTTTTACTT ATATAGTAAA ATACGGTGAC ACTTTAAGCA CAATTGCTGA AGCAATGGGG
 121 ATTGATGTGC ATGTCTTAGG AGATATTAAT CATATTGCTA ATATTGACTT AATTTTCCA
 181 GACACGATCC TAACAGCAAA CTACAACCAA CACGGTCAGG CAACGACTTT GACGGTTCAA
 241 GCACCTGCTT CTAGTCCATC TAGCGTTAGT CATGTACCTA GCAGTGAGCC ATTACCCAA
 301 GCATCTGCCA CCTCTCAACC GACTGTTCT ATGGCACCAT CTGCGACACC ATCTGATGTC
 361 CCAACGACAC CATTGCGATC TGCAAAGCCA GATA GTTCTG TGACAGCGTC ATCTGAGCTC
 421 ACATCGTCAA CGAATGATGT TTGACTGAG TTGTCTAGCG AATCACAAAA GCAGCCAGAA
 481 GTACCACAAG AAGCAGTTCC AACTCCTAAA GCAGCTGAAC CGACTGAAGT CGAACCTAAG
 541 ACAGACATCT CAGAAGACCC AACTTCAGCT AATAGGCCTG ACCTAACGA GAGTGCTTCA
 601 GAAAGAAGCTT CTTCTGCGGC CCCAGCACAA GCTCCAGCAG AAAAAGAAGA AACCTCTCAG
 661 ATGTTAACTG CGCCAGCAGC ACAAAAAGCT GTAGCTGACA CCACAAGTGT TGCAACCTCA
 721 AACGGCCTTT CTTACGCTCC AAACCATGCC TACAATCCAA TGAATGCAGG GCTCAACCA
 781 CAAACAGCAG CCTTCAAAGA AGAAGTGGCT TCTGCCTTG GTATTACGTC ATTAGTGTT
 841 TACCGTCCAG GAGATCCAGG AGATCATGGT AAAGGATTAG CCATTGACTT TATGGTACCG
 901 GTTAGCTCTA CGCTTGGTGA TCAAGTTGCT CAATATGCCA TTGACCATAT GGCAGAGCGT
 961 GGTATTCAT ACGTTATTIG GAAACAGCGA TTCTATGCGC CATTGCAAG TATTTACGGA
 1021 CCAGCCTACA CATGGAACCC CATGCCAGAT CGCGGCAGTA TTACAGAAAA CCATTATGAT
 1081 CATGTTCATG TCTCCTTAA TGCTTAA (SEQ ID NO:11)

Figure 12

1 QEWTPRSVTE IKSELVLVDN VFTYIVKYGD TLSTIAEAMG IDVHVLGDIN HIANIDLIPP
 61 DTILTANYNQ HQQATTLTVQ APASSPSSVS HVPSSEPLPQ ASATSQPTVP MAPSATPSDV
 121 PTTPFASAKP DSSVTASSEL TSSTNDVSTE LSSESQKQPE VPQEAVPTPK AAEPTEVEPK
 181 TDISEDPTSA NRPVPNESAS EEASSAAPAQ APAEKEETSQ MLTAPAAQKA VADTTSVATS
 241 NGLSYAPNHA YNPMNAGLQP QTAAFKEEVA SAFGITSFSG YRPGDPGDHG KGLAIDFMVP
 301 VSSTLGDQVA QYAIIDHMAER GISYVIWKQR FYAPFASIYG PAYTWNPMRD RGSITENHYD
 361 HVHVSFNA* (SEQ ID NO:12)

Figure 13

1 CAAGAGTGGA CACCACGATC GGTTACAGAA ATCAAGTCTG AACTCGTCCT AGTTGATAAT
 61 GTTTTACTT ATACTGTAAA ATACGGTGAC ACTTTAAGCA CAAITGCTGA AGCAATGGGG
 121 ATTGATGTGC ATGTCTTAGG AGATATTAAT CATATTGCTA ATATTGACCT AATTTCCTA
 181 GACACGATCC TAACAGCAAA CTACAATCAA CACGGTCAGG CAACGAATT GACGGTTCAA
 241 GCACCTGCTT CTAGTCCAGC TAGCGTTAGT CATGTACCTA GCAGTGAGCC ATTACCCAA
 301 GCATCTGCCA CCTCTCAACC GACTGTCCT ATGGCACAC CTGCGACACC ATCTGATGTC
 361 CCAACGACAC CATTGCGATC TGCAAAGCCA GATAAGTCTG TGACAGCGTC ATCTGAGCTC
 421 ACATCGTCAA CGAATGATGT TTGACTGAG TTGTCTAGCG AATCACAAAA GCAGCCAGAA
 481 GTACCACAAG AAGCAGTTCC AACTCCTAAA GCAGCTGAAA CGACTGAAGT CGAACCTAAG
 541 ACAGACATCT CAGAAGCCCC AACTTCAGCT AATAGGCCTG TACCTAACGA GAGTGCTTCA
 601 GAAGAAGTTT CTTCTGCGGC CCCAGCACAA GCCCCAGCAG AAAAAGAAGA AACCTCTGCG
 661 CCAGCAGCAC AAAAAGCTGT AGCTGACACC ACAAGTGTG CAACCTCAA TGGCCTTTCT
 721 TACGCTCCAA ACCATGCCTA CAATCCAATG AATGCAGGGC TTCAACCACA AACAGCAGCC
 781 TTCAAAGAAG AAGTGGCTTC TGCCTTGTT ATTACGTCTT TTAGTGTTA CCGTCCAGGT
 841 GATCCAGGAG ATCATGGTAA AGGTTGGCC ATTGATTTA TGGTGCCTGA AAATTCTGCT
 901 CTTGGTGATC AAGTTGCTCA ATATGCCATT GACCATATGG CAGAGCGTGG TATTCATAC
 961 GTTATTTGGA AACAGCGATT CTATGCGCCA TTTGCAAGTA TTTACGGACC AGCCTACACA
 1021 TGGAACCCCA TGCCAGATCG CGGCAGTATT ACAGAAAACC ATTATGATCA TGTTCATGTC
 1081 TCCTTTAATG CTTAA (SEQ ID NO:13)

Figure 14

1 QEWTPRSVTE IKSELVLVDN VFTYTVKYGD TLSTIAEAMG IDVHVLGDIN HIANIDLIPP
 61 DTILTANYNQ HQQATNLTVQ APASSPASVS HVPSSEPLPQ ASATSQPTVP MAPPATPSDV
 121 PTTTFASAKP DSSVTASSEL TSSTNDVSTE LSSESQKQPE VPQEAVPTPK AAETTEVEPK
 181 TDISEAPTSA NRPVPNESAS EEVSSAAPAQ APAEKEETSA PAAQKAVADT TSVATSNGLS
 241 YAPNHAYNPM NAGLQPQTA FKEEVASAFG ITSFSGYRPG DPGDHGKGLA IDFMVPENSA
 301 LGDQVAQYAI DHMAERGISY VIWKQRFYAP FASIYGPAYT WNPMPDRGSI TENHYDHVHV
 361 SFNA* (SEQ ID NO:14)

Figure 15

1 CAAGAGTGGA CACCACGATC GGTTACAGAA ATCAAGTCTG AACTCGTCCT AGTTGATAAT
 61 GTTTTACTT ATACAGTAAA ATACGGTGAC ACTTTAAGCA CAATTGCTGA AGCAATGGGG
 121 ATTGATGTGC ATGTCTTAGG AGATATTAAT CATATTGCTA ATATTGACTT AATTTTCCA
 181 GACACGATCC TAACAGCAA CTACAATCAA CACGGTCAGG CAACGACTTT GACGGTTCAA
 241 GCACCTGCTT CTAGTCCAGC TAGCGTTAGT CATGTACCTA GCAGTGAGCC ATTACCCAA
 301 GCATCTGCCA CCTCTCAACC GACTGTTCCCT ATGGCACCCT CTGCGACACC ATTAGCATCT
 361 GCAAAGCCAG ATAGTTCTGT GACAGCGTCA TCTGAGCTCA CATCGTCAAC GAATGATGTT
 421 TCGACTGAGT CGTCTAGCGA ATCACAAAAG CAGCCAGAAG TACCACAAGA AGCAGTTCCA
 481 ACTCCTAAAG CAGCTGAAAC GACTGAAGTC GAACCTAAGA CAGACATCTC AGAAGACCCA
 541 ACTTCAGCTA ATAGGCCTGT ACCTAACGAG AGTGCTTCAG AAGAAGTTTC TTCTGCGGCC
 601 CCAGCACAAG CCCCAGCAGA AAAAGAAGAA ACCTCTGCGC CAGCAGCACA AAAAGCTGTA
 661 GCTGACACCA CAAGTGTGC AACCTCAAAC GGCCTTTCTT ACGCTCCAAA CCATGCCTAC
 721 AATCCAATGA ATGCAGGGCT TCAACCACAA ACAGCAGCCT TCAAAGAAGA AGTGGCTTCT
 781 GCCTTGGTA TTACGTCATT TAGTGGTTAC CGTCCAGGTG ACCCAGGAGA TCATGGTAAA
 841 GGTTTGGCCA TTGATTAT GGTGCCTGAA AATTCTGCTC TTGGTGATCA AGTTGCTCAA
 901 TATGCCATTG ACCATATGGC AGAGCGTGGT ATTTCATACG TTATTTGGAA ACAGCGATTC
 961 TATGCGCCAT TTGCAAGTAT TTACGGACCA GCTTACACAT GGAACCCCAT GCCAGATCGC
 1021 GGCAGTATTA CAGAAAACCA TTATGATCAT GTTCATGTCT CCTTTAATGC TTAA (SEQ ID
 NO:15)

Figure 16

1 QEWTPRSVTE IKSELVLVDN VFTYTVKYGD TLSTIAEAMG IDVHVLGDIN HIANIDLIFP
 61 DTILTANYNQ HQQATTLTVQ APASSPASVS HVPSSEPLPQ ASATSQPTVP MAPSATPLAS
 121 AKPDSSVTAS SELTSSTNDV STESSSESQK QPEVPQEAVP TPKAETTEV EPKTDISEDP
 181 TSANRPVPNE SASEEVSSAA PAQAPAEKEE TSAPAAQKAV ADTTSVATSN GLSYAPNHAY
 241 NPMNAGLQPQ TAAFKEEVAS AFGITSFSGY RPGDPGDHGK GLAIDFMVPE NSALGDQVAQ
 301 YAIDHMAERG ISYVIWKQRF YAPFASIYGP AYTWNMPMPDR GSITENHYDH VHVSFNA*
 (SEQ ID NO:16)

Figure 17

12384	1	ATGATTATTACTAAAAAGAGCTTATTGTGACAAGTGTGCGTTGTCGTT	50
2699	1	ATGATTATTACTAAAAAGAGCTTATTGTGACAAGTGTGCGTTGTCGTT	50
B514	1	ATGATTATTACTAAAAAGAGCTTATTGTGACAAGTGTGCGTTGTCGTT	50
Spy57	1	ATGATTATTACTAAAAAGAGCTTATTGTGACAAGTGTGCGTTGTCGTT	50
U09352	1	ATGATTATTACTAAAAAGAGTTATTGTGACAAGTGTGCGTTGTCGTT	50
Oklahoma	1	ATGATTATTACTAAAAAGAGCTTATTGTGACAAGTGTGCGTTGTCGTT	50

12384	51	AGCACCTTGGCGACAGCACAGGCACAAGAGTGGACACCACGATCGGTTA	100
2699	51	AGCACCTTGGCGACAGCGCAGGCACAAGAGTGGACACCACGATCGGTTA	100
B514	51	AGCACCTTGGCGACAGCGCAGGCACAAGAGTGGACACCACGATCGGTTA	100
Spy57	51	AGTACCTTGGCGACAGCGCAGGCACAAGAGTGGACACCACGATCGGTTA	100
U09352	51	AGCACCTTGGCGACAGCGCAGGCACAAGAGTGGACACCACGATCGGTTA	100
Oklahoma	51	AGTACCTTGGCGACAGCGCAGGCACAAGAGTGGACACCACGATCGGTTA	100

12384	101	CAGAAATCAAGTCTGAACTCGCTTAGTTGATAATGTTTTACTTATACT	150
2699	101	CAGAAATCAAGTCTGAACTCGCTTAGTTGATAATGTTTTACTTATACT	150
B514	101	CAGAAATCAAGTCTGAACTCGCTTAGTTGATAATGTTTTACTTATACT	150
Spy57	101	CAGAAATCAAGTCTGAACTCGCTTAGTTGATAATGTTTTACTTATACT	150
U09352	101	CACAAATCAAGTCTGAACTCGCTTAGTTGATAATGTTTTACTTATACT	150
Oklahoma	101	CAGAAATCAAGTCTGAACTCGCTTAGTTGATAATGTTTTACTTATACT	150

12384	151	GTAAAATACGGTGACACTTAAGCACAATTGCTGAAGCAATGGGAATTGA	200
2699	151	GTAAAATACGGTGACACTTAAGCACAATTGCTGAAGCAATGGGAATTGA	200
B514	151	GTAAAATACGGTGACACTTAAGCACAATTGCTGAAGCAATGGGAATTGA	200
Spy57	151	GTAAAATACGGTGACACTTAAGCACAATTGCTGAAGCAATGGGAATTGA	200
U09352	151	GTAAAATACGGTGACACTTAAGCACAATTGCTGAAGCAATGGGAATTGA	200
Oklahoma	151	GTAAAATACGGTGACACTTAAGCACAATTGCTGAAGCAATGGGAATTGA	200

12384	201	TGTGCATGTCTTAGGAGATATTAATCATATTGCTAATATTGACTTAATT	250
2699	201	TGTGCATGTCTTAGGAGATATTAATCATATTGCTAATATTGACTTAATT	250
B514	201	TGTGCATGTCTTAGGAGATATTAATCATATTGCTAATATTGACTTAATT	250
Spy57	201	TGTGCATGTCTTAGGAGATATTAATCATATTGCTAATATTGACCTAATT	250
U09352	201	TGTGCATGTCTTAGGAGATATTAATCATATTGCTAATATTGACTTAATT	250
Oklahoma	201	TGTGCATGTCTTAGGAGATATTAATCATATTGCTAATATTGACCTAATT	250

12384	251	TTCCAGACACGATCCTAACAGCCAACCTACAACACCGTCAGGCAACG	300
2699	251	TTCCAGACACGATCCTAACAGCAAACCTACAACACCGTCAGGCAACG	300
B514	251	TTCCAGACACGATCCTAACAGCAAACCTACAACACCGTCAGGCAACG	300
Spy57	251	TTCCAGACACGATCCTAACAGCAAACCTACAACACCGTCAGGCAACG	300
U09352	251	TTCCAGACACGATCCTAACAGCAAACCTACAACACCGTCAGGCAACG	300
Oklahoma	251	TTCCAGACACGATCCTAACAGCAAACCTACAACACCGTCAGGCAACG	300

12384	301	ACTTGACGGTTCAAGCGCCTGCTTAGTCCAGCTAGCGTTAGTCATGT	350
2699	301	ACTTGACGGTTCAAGCACCTGCTTAGTCCATCTAGCGTTAGTCATGT	350
B514	301	ACTTGACGGTTCAAGCACCTGCTTAGTCCAGCTAGCGTTAGTCATGT	350
Spy57	301	AATTGACGGTTCAAGCACCTGCTTAGTCCAGCTAGCGTTAGTCATGT	350
U09352	301	ACTTGACGGTTCAAGCGCCTGCTTAGTCCAGCTAGCGTTAGTCATGT	350
Oklahoma	301	AATTGACGGTTCAAGCACCTGCTTAGTCCAGCTAGCGTTAGTCATGT	350

12384	351	ACCTAGCAGTGAGCCATTACCCCAAGCATTCTGACCTCTCAATCGACTG	400
2699	351	ACCTAGCAGTGAGCCATTACCCCAAGCATTCTGACCTCTCAACCGACTG	400
B514	351	ACCTAGCAGTGAGCCATTACCCCAAGCATTCTGACCTCTCAACCGACTG	400
Spy57	351	ACCTAGCAGTGAGCCATTACCCCAAGCATTCTGACCTCTCAACCGACTG	400
U09352	351	ACCTAGCAGTGAGCCATTACCCCAAGCATTCTGACCTCTCAATCGACTA	400
Oklahoma	351	ACCTAGCAGTGAGCCATTACCCCAAGCATTCTGACCTCTCAACCGACTG	400

12384	401	TTCCATGGCACCATCTGCGACACCCTGATGTCCAACGACACCATT	450
2699	401	TTCCATGGCACCATCTGCGACACCCTGATGTCCAACGACACCATT	450
B514	401	TTCCATGGCACCATCTGCGACACCCTGATGTCCAACGACACCATT	429
Spy57	401	TTCCATGGCACCATCTGCGACACCCTGATGTCCAACGACACCATT	450
U09352	401	TTCCATGGCACCATCTGCGACACCCTGATGTCCAACGACACCATT	450
Oklahoma	401	TTCCATGGCACCATCTGCGACACCCTGATGTCCAACGACACCATT	450

12384	451	GCATCTGCAAAGCCAGATAGTTCTGACAGCGTCATCTGAGCTCACATC	500
2699	451	GCATCTGCAAAGCCAGATAGTTCTGACAGCGTCATCTGAGCTCACATC	500
B514	430	GCATCTGCAAAGCCAGATAGTTCTGACAGCGTCATCTGAGCTCACATC	479
Spy57	451	GCATCTGCAAAGCCAGATAGTTCTGACAGCGTCATCTGAGCTCACATC	500
U09352	451	GCATCTGCAAAGCCAGATAGTTCTGACAGCGTCATCTGAGCTCACATC	500
Oklahoma	451	GCATCTGCAAAGCCAGATAGTTCTGACAGCGTCATCTGAGCTCACATC	500

12384	501	GTCAACGAATGATGTTGACTGAGTTGTCTAGCGAACATCACAAAGCAGC	550
2699	501	GTCAACGAATGATGTTGACTGAGTTGTCTAGCGAACATCACAAAGCAGC	550
B514	480	GTCAACGAATGATGTTGACTGAGTCGTCTAGCGAACATCACAAAGCAGC	529
Spy57	501	GTCAACGAATGATGTTGACTGAGTTGTCTAGCGAACATCACAAAGCAGC	550
U09352	501	ATCAACGAATGATGTTGACTGAGTTGTCTAGCGAACATCACAAAGCAGC	550
Oklahoma	501	GTCAACGAATGATGTTGACTGAGTTGTCTAGCGAACATCACAAAGCAGC	550

12384	551	CAGAAGTACCAAGAAGCAGTTCAACTCCTAAAGCAGCTGAAACGACT	600
2699	551	CAGAAGTACCAAGAAGCAGTTCAACTCCTAAAGCAGCTGAAACGACT	600
B514	530	CAGAAGTACCAAGAAGCAGTTCAACTCCTAAAGCAGCTGAAACGACT	579
Spy57	551	CAGAAGTACCAAGAAGCAGTTCAACTCCTAAAGCAGCTGAAACGACT	600
U09352	551	CAGAAGTACCAAGAAGCAGAACTCCTAAAGCAGCTGAAACGACT	600
Oklahoma	551	CAGAAGTACCAAGAAGCAGTTCAACTCCTAAAGCAGCTGAAACGACT	600

12384	601	GAAGTCGAACCTAACGACAGACATCTCAGAGGATTCAACTCAGCTAATAG	650
2699	601	GAAGTCGAACCTAACGACAGACATCTCAGAACGACCAACTTCAGCTAATAG	650
B514	580	GAAGTCGAACCTAACGACAGACATCTCAGAACGACCAACTTCAGCTAATAG	629
Spy57	601	GAAGTCGAACCTAACGACAGACATCTCAGAACGACCAACTTCAGCTAATAG	650
U09352	601	GAAGTCGAACCTAACGACAGACATCTCAGAACGACCAACTTCAGCTAATAG	650
Oklahoma	601	GAAGTCGAACCTAACGACAGACATCTCAGAACGACCAACTTCAGCTAATAG	650

12384	651	GCCTGTACCTAACGAGAGTGCTTCAGAAGAAGTTCTGCGGGCCCCAG	700
2699	651	GCCTGTACCTAACGAGAGTGCTTCAGAAGAAGCTTCTGCGGGCCCCAG	700
B514	630	GCCTGTACCTAACGAGAGTGCTTCAGAAGAAGTTCTGCGGGCCCCAG	679
Spy57	651	GCCTGTACCTAACGAGAGTGCTTCAGAAGAAGCTTCTGCGGGCCCCAG	700
U09352	651	GCCTGTACCTAACGGAAGTGCTTCAGAAGAAGCTTCTGCGGGCCCCAG	700
Oklahoma	651	GCCTGTACCTAACGAGAGTGCTTCAGAAGAAGCTTCTGCGGGCCCCAG	700

12384	701	CACAAGCCCCAGCAGAAAAAGAAGAACCTCT-----GCGCCA	738
2699	701	CACAAGCTCCAGCAGAAAAAGAAGAACCTCTCAGATGTTAACTGCGCCA	750
B514	680	CACAAGCCCCAGCAGAAAAAGAAGAACCTCT-----GCGCCA	717
Spy57	701	CACAAGCCCCAGCAGAAAAAGAAGAACCTCT-----GCGCCA	738
U09352	701	CACAAGCTCCAGCAGAAAAAGAAGAACCTCTCAGATGTTAACTGCGCCA	750
Oklahoma	701	CACAAGCCCCAGCAGAAAAAGAAGAACCTCT-----GCGCCA	738

12384	739	GCAGCACAAAAAGCTGTAGCTGACACCACAAGTGTGCAACCTCAAATGG	788
2699	751	GCAGCACAAAAAGCTGTAGCTGACACCACAAGTGTGCAACCTCAAACGG	800
B514	718	GCAGCACAAAAAGCTGTAGCTGACACCACAAGTGTGCAACCTCAAACGG	767
Spy57	739	GCAGCACAAAAAGCTGTAGCTGACACCACAAGTGTGCAACCTCAAATGG	788
U09352	751	GCAGCACAAAAAGCTGTAGCTGACACCACAAGTGTGCAACCTCAAACGG	800
Oklahoma	739	GCAGCACAAAAAGCTGTAGCTGACACCACAAGTGTGCAACCTCAAATGG	788

12384	789	CCTTCTTACGCTCCAAACCATGCCTACAATCCAATGAATGCAGGGCTTC	838
2699	801	CCTTCTTACGCTCCAAACCATGCCTACAATCCAATGAATGCAGGGCTTC	850
B514	768	CCTTCTTACGCTCCAAACCATGCCTACAATCCAATGAATGCAGGGCTTC	817
Spy57	789	CCTTCTTACGCTCCAAACCATGCCTACAATCCAATGAATGCAGGGCTTC	838
U09352	801	CCTTCTTACGCTCCAAACCATGCCTACAATCCAATGAATGCAGGGCTTC	850
Oklahoma	789	CCTTCTTACGCTCCAAACCATGCCTACAATCCAATGAATGCAGGGCTTC	838

12384	839	AACCACAAACAGCAGCCTCAAAGAAGAAGTGGCTCTGCCTTGGTATT	888
2699	851	AACCACAAACAGCAGCCTCAAAGAAGAAGTGGCTCTGCCTTGGTATT	900
B514	818	AACCACAAACAGCAGCCTCAAAGAAGAAGTGGCTCTGCCTTGGTATT	867
Spy57	839	AACCACAAACAGCAGCCTCAAAGAAGAAGTGGCTCTGCCTTGGTATT	888
U09352	851	AACCACAAACAGCAGCCTCAAAGAAGAAGTGT-CTTGCCTTGGTATT	899
Oklahoma	839	AACCACAAACAGCAGCCTCAAAGAAGAAGTGGCTCTGCCTTGGTATT	888

12384	889	ACGTCAATTAGGGTACCGTCCAGGTGATCCAGGAGATCAT-GGTAAAG	937
2699	901	ACGTCAATTAGGGTACCGTCCAGGAGATCCAGGAGATCAT-GGTAAAG	949
B514	868	ACGTCAATTAGGGTACCGTCCAGGTGACCCAGGAGATCAT-GGTAAAG	916
Spy57	889	ACGTCAATTAGGGTACCGTCCAGGTGATCCAGGAGATCAT-GGTAAAG	937
U09352	900	ACGTCAATTAGGGTACCGTCCAGGAGATCCAGGAGATCATGGTAAAG	949
Oklahoma	889	ACGTCAATTAGGGTACCGTCCAGGTGATCCAGGAGATCAT-GGTAAAG	937

12384	938	GTTGGCCATTGATTTATGGCTGCTGAAAATTCTGCTCTGGTATCAA	987
2699	950	GATTAGCCATTGACTTTATGGTACCGGTTAGCTCTACGCTCTGGTATCAA	999
B514	917	GTTGGCCATTGATTTATGGCTGCTGAAAATTCTGCTCTGGTATCAA	966
Spy57	938	GTTGGCCATTGATTTATGGCTGCTGAAAATTCTGCTCTGGTATCAA	987
U09352	950	GATTAGCCATTGACTTTATGGTACCGGTTAGCTCTACGCTCTGGTATCAA	999
Oklahoma	938	GTTGGCCATTGATTTATGGCTGCTGAAAATTCTGCTCTGGTATCAA	987

12384	988	GTTGCTCAATATGCCATTGACCATATGGCAGAGCGTGGTATTCATACGT	1037
2699	1000	GTTGCTCAATATGCCATTGACCATATGGCAGAGCGTGGTATTCATACGT	1049
B514	967	GTTGCTCAATATGCCATTGACCATATGGCAGAGCGTGGTATTCATACGT	1016
Spy57	988	GTTGCTCAATATGCCATTGACCATATGGCAGAGCGTGGTATTCATACGT	1037
U09352	1000	GTTGCTCAATATGCCATTGACCATATGGCAGACGGTGGTATTCATACGT	1049
Oklahoma	988	GTTGCTCAATATGCCATTGACCATATGGCAGAGCGTGGTATTCATACGT	1037

12384	1038	TATTGGAAACAGCGATTCTATGCGCCATTGCAAGTATTTACGGACCAG	1087
2699	1050	TATTGGAAACAGCGATTCTATGCGCCATTGCAAGTATTTACGGACCAG	1099
B514	1017	TATTGGAAACAGCGATTCTATGCGCCATTGCAAGTATTTACGGACCAG	1066
Spy57	1038	TATTGGAAACAGCGATTCTATGCGCCATTGCAAGTATTTACGGACCAG	1087
U09352	1050	TATTGGAAACAGCGATTCTATGCGCCATTGCAAGTATTTACGGACCAG	1099
Oklahoma	1038	TATTGGAAACAGCGATTCTATGCGCCATTGCAAGTATTTACGGACCAG	1087

12384 1088 CCTACACATGGAACCCATGCCAGATCGCGGCAGTATTACAGAAAACCAT 1137
2699 1100 CCTACACATGGAACCCATGCCAGATCGCGGCAGTATTACAGAAAACCAT 1149
B514 1067 CTTACACATGGAACCCATGCCAGATCGCGGCAGTATTACAGAAAACCAT 1116
Spy57 1088 CCTACACATGGAACCCATGCCAGATCGCGGCAGTATTACAGAAAACCAT 1137
U09352 1100 CCTACACATGGAACCCATGCCAGATCGCGGCAGTATTACAGTTTCCAT 1149
Oklahoma 1088 CCTACACATGGAACCCATGCCAGATCGCGGCAGTATTACAGAAAACCAT 1137
* *****

12384 1138 TATGATCATGTTCATGTCTCCTTAATGCTTAA 1170
2699 1150 TATGATCATGTTCATGTCTCCTTAATGCTTAA 1182
B514 1117 TATGATCATGTTCATGTCTCCTTAATGCTTAA 1149
Spy57 1138 TATGATCATGTTCATGTCTCCTTAATGCTTAA 1170
U09352 1150 TATGATCATGTTCATGTCTCCTTAATGCTTAA 1182
Oklahoma 1138 TATGATCATGTTCATGTCTCCTTAATGCTTAA 1170

Figure 18

12384	1	MIITKKSLFVTVALSLAPLATAQQAQEWTPRSVTEIKSELVLVDNVFTYT	50
2699	1	MIITKKSLFVTVALSLAPLATAQQAQEWTPRSVTEIKSELVLVDNVFTYI	50
B514	1	MIITKKSLFVTVALSLAPLATAQQAQEWTPRSVTEIKSELVLVDNVFTYT	50
Spy57	1	MIITKKSLFVTVALSLVPLATAQQAQEWTPRSVTEIKSELVLVDNVFTYT	50
U09352	1	MIITKKSLFVTVALSLAPLATAQQAQEWTPRSVTOIKSELVLVDNVFTYT	50
Oklahoma	1	MIITKKSLFVTVALSLVPLATAQQAQEWTPRSVTEIKSELVLVDNVFTYT	50

12384	51	VKYGDTLSTIAEAMGIDVHVLGDINHIANIDLIFPDTILTANYNQHGQAT	100
2699	51	VKYGDTLSTIAEAMGIDVHVLGDINHIANIDLIFPDTILTANYNQHGQAT	100
B514	51	VKYGDTLSTIAEAMGIDVHVLGDINHIANIDLIFPDTILTANYNQHGQAT	100
Spy57	51	VKYGDTLSTIAEAMGIDVHVLGDINHIANIDLIFPDTILTANYNQHGQAT	100
U09352	51	VKYGDTLSTIAEAMGIDVHVLGDINHIANIDLIFPDTILTANYNQHGQAT	100
Oklahoma	51	VKYGDTLSTIAEAMGIDVHVLGDINHIANIDLIFPDTILTANYNQHGQAT	100

12384	101	TLTVQAPASSPASVSHPSSEPLPQASATSQSTVPMAPSATPSDVPTTPF	150
2699	101	TLTVQAPASSPSSVSHPSSEPLPQASATSQPTVPMAPSATPSDVPTTPF	150
B514	101	TLTVQAPASSPASVSHPSSEPLPQASATSQPTVPMAPSATP-----L	143
Spy57	101	NLTVOQAPASSPASVSHPSSEPLPQASATSQPTVPMAPPATPSDVPTTPF	150
U09352	101	TLTVQAPASSPASVSHPSSEPLPQASATSQSTIPMAPSATPSDVPTTPL	150
Oklahoma	101	NLTVOQAPASSPASVSHPSSEPLPQASATSQPTVPMAPPATPSDVPTTPF	150

12384	151	ASAKPDSSVTASSELTSSTNDVSTELSESQKQPEVPQEAVENTPKAAETT	200
2699	151	ASAKPDSSVTASSELTSSTNDVSTELSESQKQPEVPQEAVENTPKAAEPT	200
B514	144	ASAKPDSSVTASSELTSSTNDVSTESSSESQKQPEVPQEAVENTPKAAETT	193
Spy57	151	ASAKPDSSVTASSELTSSTNDVSTELSESQKQPEVPQEAVENTPKAAETT	200
U09352	151	ASAKPDSSVTASSELTSSTNDVSTELSESQKQPEVPQEAEPENTPKAAEST	200
Oklahoma	151	ASAKPDSSVTASSELTSSTNDVSTELSESQKQPEVPQEAVENTPKAAETT	200

12384	201	EVEPKTDISEDSTSANRPVPNESASEEVSSAAPAQAPAEKE----ETSAP	246
2699	201	EVEPKTDISEDPTSANRPVPNESASEEEASSAAPAQAPAEKEETSQLTAP	250
B514	194	EVEPKTDISEDPTSANRPVPNESASEEVSSAAPAQAPAEKE----ETSAP	239
Spy57	201	EVEPKTDISEAPTSANRPVPNESASEEVSSAAPAQAPAEKE----ETSAP	246
U09352	201	EVEPKTDISEDSTSANRPVPNGSASEEEASSAAPAQAPAEKEETSQLTAP	250
Oklahoma	201	EVEPKTDISEAPTSANRPVPNESASEEVSSAAPAQAPAEKE----ETSAP	246

12384	247	AAQKAVADTTSVATSNGLSYAPNHAYNPMNAGLQPQTAAFKEEVASAFGI	296
2699	251	AAQKAVADTTSVATSNGLSYAPNHAYNPMNAGLQPQTAAFKEEVASAFGI	300
B514	240	AAQKAVADTTSVATSNGLSYAPNHAYNPMNAGLQPQTAAFKEEVASAFGI	289
Spy57	247	AAQKAVADTTSVATSNGLSYAPNHAYNPMNAGLQPQTAAFKEEVASAFGI	296
U09352	251	AAQKAVADTTSVATSNGLSYAPNHAYNPMNAGLQPQTAAFKEEVLLPLVL	300
Oklahoma	247	AAQKAVADTTSVATSNGLSYAPNHAYNPMNAGLQPQTAAFKEEVASAFGI	296

12384	297	TSFSGYRPGDPGDHGKGLAIDFMVPENSALGDQVAQYAIIDHMAERGISYV	346
2699	301	TSFSGYRPGDPGDHGKGLAIDFMVPVSSTLGDQVAQYAIIDHMAERGISYV	350
B514	290	TSFSGYRPGDPGDHGKGLAIDFMVPENSALGDQVAQYAIIDHMAERGISYV	339
Spy57	297	TSFSGYRPGDPGDHGKGLAIDFMVPENSALGDQVAQYAIIDHMAERGISYV	346
U09352	301	RHLVVTVQEIQEIIGKGLAIDFMVPVSSTLGDQVAQYAIIDHMADGGISYV	350
Oklahoma	297	TSFSGYRPGDPGDHGKGLAIDFMVPENSALGDQVAQYAIIDHMAERGISYV	346

12384	347	IWKQRFYAPFASIYGPAYTWNPMPDRGSITENHYDHVHVSFNA	389
2699	351	IWKQRFYAPFASIYGPAYTWNPMPDRGSITENHYDHVHVSFNA	393
B514	340	IWKQRFYAPFASIYGPAYTWNPMPDRGSITENHYDHVHVSFNA	382
Spy57	347	IWKQRFYAPFASIYGPAYTWNPMPDRGSITENHYDHVHVSFNA	389
U09352	351	IWKQRFYAPFASIYGPAYTWNPMPDRGSITVHYDHVHVSFNA	393
Oklahoma	347	IWKQRFYAPFASIYGPAYTWNPMPDRGSITENHYDHVHVSFNA	389

Figure 19

1 ATGAAGAAAA GAAIGTTATT AGCGTCAACA GTAGCCTTGT CATTGCCCC
 51 AGTATTGGCA ACTCAAGCAG AAGAAGTTCT TTGGACTGCA CGTAGTGTG
 101 AGCAAATCCA AAACGATTG ACTAAAACGG ACAACAAAAC AAGTTATACC
 151 GTACAGTATG GTGATACTT GAGCACCATT GCAGAAGCCT TGGGTGAGA
 201 TGTACAGTG CTTGCGAATC TGAACAAAAT CACTAATATG GACTTGATT
 251 TCCCAGAAC TGTTTGACA ACGACTGTCA ATGAAGCAGA AGAAGTAACA
 301 GAAGTTGAAA TCCAAACACC TCAAGCAGAC TCTAGTGAAG AAGTGACAAC
 351 TGCGACAGCA GATTTGACCA CTAATCAAGT GACCGTTGAT GATCAAACG
 401 TTCAGGTTGC AGACCTTCT CAACCAATTG CAGAAGTTAC AAAGACAGTG
 451 ATTGCTTCTG AAGAAGTGGC ACCATCTACG GGCACCTCTG TCCCAGAGGA
 501 GCAAACGACC GAAACAACTC GCCCAGTTGA AGAAGCAACT CCTCAGGAAA
 551 CGACTCCAGC TGAGAAGCAG GAAACACAAG CAAGCCCTCA AGCTGCATCA
 601 GCAGTGGAAAG TAACTACAAAC AAGTCAGAA GCAAAAGAAG TAGCATCATC
 651 AAATGGAGCT ACAGCAGCAG TTTCTACTTA TCAACCAGAA GAGACGAAAA
 701 TAATTTCAAC AACCTACGAG GCTCCAGCTG CGCCCGATTA TGCTGGACTT
 751 GCAGTAGCAA AATCTGAAAA TGCAAGGTCTT CAACCACAAA CAGCTGCCTT
 801 TAAAGAAGAA ATTGCTAACT TGTTGGCAT TACATCCTT AGTGGTTATC
 851 GTCCAGGAGA CAGTGGAGAT CACGGAAAAG GTTTGGCTAT CGACTTTATG
 901 GTACCAGAAC GTTCAGAATT AGGGGATAAG ATTGCGGAAT ATGCTATTCA
 951 AAATATGGCC AGCCGTGGCA TTAGTTACAT CATCTGGAAA CAACGTTCT
 1001 ATGCTCCATT CGATAGCAAA TATGGGCCAG CTAACACTTG GAACCCAATG
 1051 CCAGACCGTG GTAGTGTGAC AGAAAATCAC TATGATCACG TTCACGTTTC
 1101 AATGAATGGA TAA (SEQ ID NO:17)

Figure 20

1 MKKRMILLAST VALSFAPVLA TQAEELWLTA RSVEQIQNDL TKTDNKTSYT
 51 VQYGDTLSTI AEALGVDVTI LANLNKITNM DLIFPETVLT TTVNEAEEVT
 101 EVEIQTPOAD SSEEVTTATA DLTNQVTVD DQTVQVADLS QPIAEVTKTV
 151 IASEEVAPST GTSVPPEQTT ETTRPVEEAT PQETTPAEKQ ETQASPQAAS
 201 AVEVTTTSE AKEVASSNGA TAAVSTYQPE ETKIISTTYE APAAPDYAGL
 251 AVAKSENAGL QPQTAAFKEE IANLFGITSF SGYRPGDSDG HGKGLAIDFM
 301 VPERSELGDK IAEYAIQNMA SRGISYIIWK QRFYAPFDSK YGPANTWNPM
 351 PDRGSVTENH YDHVHVSMNG * (SEQ ID NO:18)