

(12) STANDARD PATENT
(19) AUSTRALIAN PATENT OFFICE

(11) Application No. AU 2013269253 B2

(54) Title
Pipe fitting

(51) International Patent Classification(s)
F16L 37/14 (2006.01) **A62C 35/68** (2006.01)

(21) Application No: **2013269253** (22) Date of Filing: **2013.05.30**

(87) WIPO No: **WO13/179127**

(30) Priority Data

(31) Number
1209568.3 (32) Date
2012.05.30 (33) Country
GB

(43) Publication Date: **2013.12.05**
(44) Accepted Journal Date: **2017.09.07**

(71) Applicant(s)
Ralph Mehr

(72) Inventor(s)
Mehr, Ralph

(74) Agent / Attorney
Belyea IP, PO Box 1011, ELSTERNWICK, VIC, 3185, AU

(56) Related Art
EP 0054173 A1
GB 631,745 A
US 6,634,677 B2

(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(19) World Intellectual Property Organization

International Bureau

(10) International Publication Number

WO 2013/179127 A1

(43) International Publication Date
5 December 2013 (05.12.2013)

WIPO | PCT

(51) International Patent Classification:
F16L 37/14 (2006.01) A62C 35/68 (2006.01)

DO, DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, GT, HN, HR, HU, ID, IL, IN, IS, JP, KE, KG, KN, KP, KR, KZ, LA, LC, LK, LR, LS, LT, LU, LY, MA, MD, ME, MG, MK, MN, MW, MX, MY, MZ, NA, NG, NI, NO, NZ, OM, PA, PE, PG, PH, PL, PT, QA, RO, RS, RU, RW, SC, SD, SE, SG, SK, SL, SM, ST, SV, SY, TH, TJ, TM, TN, TR, TT, TZ, UA, UG, US, UZ, VC, VN, ZA, ZM, ZW.

(21) International Application Number:
PCT/IB2013/001114

(22) International Filing Date:
30 May 2013 (30.05.2013)

(25) Filing Language: English

(26) Publication Language: English

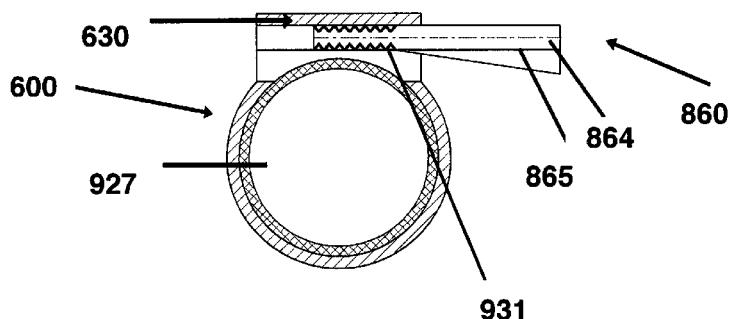
(30) Priority Data:
1209568.3 30 May 2012 (30.05.2012) GB

(72) Inventor; and

(71) Applicant : MEHR, Ralph [GB/IL]; 49 West Ham Lane, Stratford, London, E15 4PH (GB).

(74) Agent: SHALOM LAMPERT IP & ENGINEERING LTD; 59 Yakinton Street, Pob 1078, 21520-41 Maalot (IL).

(81) Designated States (unless otherwise indicated, for every kind of national protection available): AE, AG, AL, AM, AO, AT, AU, AZ, BA, BB, BG, BH, BN, BR, BW, BY, BZ, CA, CH, CL, CN, CO, CR, CU, CZ, DE, DK, DM,


(84) Designated States (unless otherwise indicated, for every kind of regional protection available): ARIPO (BW, GH, GM, KE, LR, LS, MW, MZ, NA, RW, SD, SL, SZ, TZ, UG, ZM, ZW), Eurasian (AM, AZ, BY, KG, KZ, RU, TJ, TM), European (AL, AT, BE, BG, CH, CY, CZ, DE, DK, EE, ES, FI, FR, GB, GR, HR, HU, IE, IS, IT, LT, LU, LV, MC, MK, MT, NL, NO, PL, PT, RO, RS, SE, SI, SK, SM, TR), OAPI (BF, BJ, CF, CG, CI, CM, GA, GN, GQ, GW, KM, ML, MR, NE, SN, TD, TG).

Published:

- with international search report (Art. 21(3))
- before the expiration of the time limit for amending the claims and to be republished in the event of receipt of amendments (Rule 48.2(h))

(54) Title: PIPE FITTING

FIGURE 10A

(57) Abstract: A pipe connection assembly (600) including: (a) a housing (620); (b) a first opening (622) disposed within the housing (620), the opening having an inner surface adapted to receive a first end of a first pipe element (927); (c) an open-ended channel (630) disposed within a wall of the housing (620), the channel (630) having a wide cross- section (632) disposed distal to the first opening, and a narrow cross- section (634) disposed between the wide cross-section (632) and the first opening (622), the channel (630) fluidly communicating with the first opening (622) via the narrow cross-section (634); and (d) a lock pin (860) having a backbone (862) and a tooth (864) extending longitudinally therefrom, the backbone (862) adapted to be received by the wide cross-section (632), the tooth (864) adapted to be received by the narrow cross-section (634), the pin (860) adapted to be urged along the open ended channel (630), whereby a bottom edge (865) of the tooth (864) protrudes through the narrow cross- section (634) into the opening (622).

WO 2013/179127 A1

Pipe Fitting

CROSS-REFERENCE TO RELATED APPLICATIONS

5 This application draws priority from UK Patent Application No. GB1209568.3, filed May 30, 2012, which application is incorporated by reference for all purposes as if fully set forth herein.

FIELD AND BACKGROUND OF THE INVENTION

10 The present invention relates to quickfit methods, fittings and apparatus for connecting pipes and pipe elements.

The present invention relates to pipes for carrying water and the like and, in particular, it concerns methods for connecting pipes and the corresponding pipe elements and connections.

15 Various techniques are known for connecting water pipes in fire prevention and domestic water supply systems. For many years, the only alternative to threading or flange connections was a labor intensive welding processes. More recently, a number of quick-assembly systems have been marketed. These systems seek to reduce the labor costs of assembly by providing various types of mechanical engagement to hold pipe ends together without requiring welding.

20 One quick-assembly system, disclosed in U.S. Pat. No. 5,040,831, is available commercially in the U.S. under the trade name POZ-LOK® from Southwestern Pipe, Inc. This system employs specially molded connector fittings which have slots on opposite sides. A pipe is inserted into the connector and a U-shaped bracket is hammered in through the slots. The bracket creates indents in the sides of the pipe, thereby retaining the pipe within the connector.

25 Another system is proposed by U.S. Pat. No. 5,779,283 to Kimura et al. This system is similar to the POZ-LOK® system, but uses a "key" member inserted in a channel formed in a connector on just one side of the pipe. The key member is disclosed as either a flat plate with a raised ridge or as a round pin. In the case of the round pin, the front of the pin is formed with a threaded section for fastening after insertion by use of a nut on the opposite side of the connector.

In order to produce a quick fit system with lower production costs, a number of systems use thin-walled connectors that can readily be produced from modified sections of standard piping. An example of such a system is commercially available in the US under the tradename PRESSFIT™ from VICTAULIC®.

The PRESSFIT™ system employs a thin walled connector with an internal O-ring seal positioned around the end of a pipe. Engagement of the pipe within the connector is achieved using a special hydraulic circumferential press tool that makes a circumferential indent around the joint through both the connector and the pipe thereby permanently fixing them together.

My US patent numbers 5,927,763 and 6,634,677 disclose a method for connecting a first end of a cylindrical pipe within a bore of a pipe element having a terminal portion having an internal diameter sufficient to receive the first end. In this method, the wall of the terminal portion of the pipe element is outwardly deformed to produce an approximately linear, open-ended channel in a direction roughly tangential to the internal surface of this terminal portion. The first end of the pipe is then positioned within the terminal portion, and a pin-like element is forced along the channel. This causes local inward deformation of the first end, thereby locking the first end and the pipe element together.

These improvements notwithstanding, the present inventor has recognised a need for improved quick fit methods and devices for connecting pipes, and the subject matter of the present disclosure and claims is aimed at fulfilling this need.

SUMMARY OF THE INVENTION

According to teachings of the present invention there is provided a pipe connection assembly comprising:

(a) a housing;

(b) a first opening disposed within said housing, said opening having an inner surface adapted to receive a first end of a first pipe element;

(c) an open-ended channel disposed within a wall of said housing, said channel having a wide cross-section disposed distal to said first opening, and a narrow cross-section disposed between said wide cross-section and said first opening, said channel fluidly communicating with said first opening via said narrow cross-section; and

(d) a lock pin having a backbone and a longitudinal tooth extending laterally therefrom, said backbone adapted to be received by said wide cross-section, said tooth adapted to be received by said narrow cross-section, said pin adapted to be urged along said open ended channel, whereby a bottom edge of said tooth protrudes through said narrow cross-section into said opening;

wherein, when said first end is disposed within said housing such that an outer diameter of said first end is juxtaposed against said inner surface, said tooth protruding into said opening impinges upon an outer surface of said pipe element, to lock said pipe element in place, with respect to said housing, and wherein said lock pin has a first longitudinal end adapted to be inserted into said channel as a lead end, and a second longitudinal end adapted to trail behind said first longitudinal end.

In one embodiment, said lead end has a screw contour, said screw contour adapted to freely pass through said wide cross-section.

In one embodiment, at least one of said inner surface and said wide cross-section of said channel has a generally circular cross-section.

In one embodiment, said wide cross-section of said channel has a width W_1 , and said narrow cross-section has a width W_2 , and wherein a first ratio of W_2 to W_1 is less than 0.5. Said first

2013269253 22 Aug 2017

4

ratio of W2 to W1 may be less than 0.2.

In one embodiment, said backbone of said lock pin has a width D, and said narrow cross-section has a width W4, and wherein a second ratio of W4 to D is less than 0.5. Said second ratio of W4 to D may be less than 0.2.

In one embodiment, the pipe connection assembly further comprises: (e) a second opening disposed within said housing, said second opening having a second inner surface adapted to receive a second end of a second pipe element, and may further comprise: (f) a second open-ended channel disposed within said wall of said housing, said second channel having a second wide cross-section disposed distal to said second opening, and a second narrow cross-section disposed between said second wide cross-section and said second opening, said second channel fluidly communicating with said second opening via said second narrow cross-section; and (g) a second lock pin having a second backbone and a second longitudinal tooth extending longitudinally therefrom, said second backbone adapted to be received by said second wide cross-section, said second tooth adapted to be received by said second narrow cross-section, said second pin adapted to be urged along said second channel, whereby a second bottom edge of said second tooth protrudes through said second narrow cross-section into said second opening. In one embodiment, when said second end is disposed within said housing, whereby an outer diameter of said second end is juxtaposed against said second inner surface, said tooth protruding into said second opening impinges upon an outer surface of said second pipe element, to lock said second pipe element in place, with respect to said housing. In one embodiment, the pipe connection assembly may further comprise a third opening, which may be substantially perpendicular to said first and said second openings. In one embodiment, said third opening may be adapted to connect to a fire sprinkler assembly or to receive a third pipe element.

In one embodiment, a bottom edge of said longitudinal tooth is sloped, whereby a length of said tooth at said second longitudinal end exceeds the length of said tooth disposed towards said lead end.

In one embodiment, said housing includes a generally annular recess disposed around said opening, said recess adapted to receive a sealing element. In one embodiment, the sealing element may be an O-ring or a lip seal.

In one embodiment, said narrow cross-section is an elongate cross-section.

In one embodiment, a maximum length of said tooth is at least 40% of a diameter D of said backbone of said lock pin. In one version, said maximum length of said tooth is at least 60% of said diameter of said backbone of set-top pin.

<Intentionally blank>

<intentionally blank>

BRIEF DESCRIPTION OF THE DRAWINGS

The invention is herein described, by way of example only, with reference to the accompanying drawings. With specific reference now to the drawings in detail, it is stressed that the particulars shown are by way of example and for purposes of illustrative discussion of the preferred embodiments of the present invention only, and are presented in the cause of providing what is believed to be the most useful and readily understood description of the principles and conceptual aspects of the invention. In this regard, no attempt is made to show structural details of the invention in more detail than is necessary for a fundamental understanding of the invention, the description taken with the drawings making apparent to those skilled in the art how the several forms of the invention may be embodied in practice. Throughout the drawings, like-referenced characters are used to designate like elements.

In the drawings:

Figure 1a is a longitudinal cross-sectional view through a pipe connection, according to the teachings of US patent number 6,634,677;

Figure 1b is a transverse cross-sectional view through the pipe connection of Figure 1a;

Figure 1c provides a magnified view of a lock pin used in conjunction with the pipe connection shown in Figures 1a-1b;

Figures 1d-1f show sequential stages in the insertion of a lock pin to form a pipe joint assembly according to the teachings of U.S. Patent No. 6,634,677;

5 Figure 2 provides a schematic top view of a pipe connection assembly according to an embodiment of the present invention;

Figure 3 provides a schematic, longitudinal cross-sectional view (b—b) through the pipe connection assembly of Figure 2;

10 Figures 4a-4d are transverse cross-sectional views of the pipe connection assembly of Figure 2, showing sequential stages in the insertion of a lock screw to form a pipe joint assembly according to an embodiment of the present invention;

Figure 5a is a schematic, exemplary illustration of a conical lock screw, according to one embodiment of the present invention;

15 Figure 5b is a transverse cross-sectional view (c—c) through the inventive pipe connection assembly of Figure 2, without the lock screw;

Figure 6 provides a schematic, longitudinal cross-sectional view of a pipe connection assembly according to one embodiment of the present invention;

20 Figure 7 is a transverse cross-sectional view of the inventive pipe connection assembly of Figure 6, showing a longitudinal view of the channel for the lock pin (not shown);

Figure 8A is a schematic, exemplary illustration of a lock pin, according to one embodiment of the present invention;

Figure 8B provides a schematic end view of the lock pin of Figure 8A;

25 Figure 9 provides a schematic, longitudinal cross-sectional view of the inventive pipe connection assembly of Figure 6, the assembly containing and connecting between two pipes;

Figure 10A provides a transverse cross-sectional view of Figure 9, in which the lock pin is partially inserted in the lock-pin channel;

30 Figure 10B provides a transverse cross-sectional view of Figure 9, in which the lock pin is fully inserted in the lock-pin channel;

Figure 11 provides a schematic, longitudinal cross-sectional view of a pipe connection assembly according to one embodiment of the present invention, in which the assembly is a three-way pipe adaptor;

Figure 12 provides a schematic, longitudinal cross-sectional view of a pipe connection assembly according to one embodiment of the present invention, in which the assembly is an end seal;

5 Figure 13 provides a schematic, longitudinal cross-sectional view of a pipe connection assembly according to one embodiment of the present invention, in which one end of the assembly is a sprinkler fitting;

Figure 14 provides a schematic, longitudinal cross-sectional view of a pipe connection assembly according to one embodiment of the present invention, in which the assembly is a three-way pipe adaptor having a sprinkler fitting;

10 Figure 15A provides a partial, schematic, longitudinal cross-sectional view of a pipe connector, according to one embodiment of the present invention;

Figure 15B provides a schematic, transverse cross-sectional view of the pipe connector shown in Figure 15A; and

15 Figure 16 provides a partial, schematic, longitudinal cross-sectional view of a pipe connection assembly having a lip seal recess and a lip seal disposed therein, according to one embodiment of the present invention.

DESCRIPTION OF THE PREFERRED EMBODIMENTS

20 The principles and operation of the piping apparatus, fittings and methods according to the present invention may be better understood with reference to the drawings and the accompanying description.

25 Before explaining at least one embodiment of the invention in detail, it is to be understood that the invention is not limited in its application to the details of construction and the arrangement of the components set forth in the following description or illustrated in the drawings. The invention is capable of other embodiments or of being practiced or carried out in various ways. Also, it is to be understood that the phraseology and terminology employed herein is for the purpose of description and should not be regarded as limiting.

30 Figures 1a and 1b illustrate a prior-art teaching for connecting between pipe elements such as a pipe element 10. First, an end of a pipe 22 is inserted into a terminal portion 12 of pipe element 10, whereby an O-ring sealing element 18 forms a seal

between pipe 22 and pipe element 10. A lock pin 24 is then inserted and forced along a channel 14 (shown in Figure 1b), typically by means of hammer blows. This causes local inward deformation 26 of pipe 22, thereby locking together pipe 22 and pipe element 10.

5 Pin-like element 24 preferably has a pointed or wedge-shaped end 28 (shown in Figure 1b), for guiding lock pin 24 along channel 14 to exert a gradually increasing deforming force against the wall of pipe 22. The main body 30 of lock pin 24 acts as a locking element. A slightly enlarged head 32 preferably serves to prevent over-insertion and to facilitate removal of lock pin 24, if required.

10 A magnified view of pin 24 is provided in Figure 1c. As shown, lock pin 24 has a pre-defined weakened region 40 adjacent to a junction of parallel-sided shaft portion 30 and tapered portion 28. Weakened region 40 facilitates the detachment of tapered end 28 of lock pin 24 after lock pin 24 is secured in a locking position.

15 In the prior-art shown in Figure 1d, insertion of pipe end 22 within the internal bore of connector element 12 generates a wedge-shaped crevice between the opposing surfaces. Lock pin 24 is then positioned whereby tapered end portion 28 is lodged within this wedge-shaped crevice such that the long dimension of lock pin 24 is non-parallel to the long dimension of channel 14. In this position, surfaces of tapered portion 28 bear simultaneously on surfaces of pipe end 22 and channel 14. Force is 20 then applied to advance lock pin 24 through a combined linear and rotational displacement (sequence of Figures 1d, 1e and 1f) to effect local inward deformation of pipe end 22, until lock pin 24 reaches a locking position in which its long dimension lies parallel to the extensional direction of open-ended channel 14, thereby locking pipe end 22 within connector element 12.

25 I have found that my previous invention as disclosed in U.S. Patent Nos. 5,927,763 and 6,634,677 may be fundamentally unsuitable for various types of piping, including large diameter copper pipes and steel pipes having a thickness exceeding 1.5 millimeters. In such piping, and in other types of piping, the wall of the pipe is extremely hard and unyielding, and may be substantially undeformable by the disclosed 30 means.

Referring again to the drawings, Figure 2 provides a schematic top view of a pipe connection assembly 110 according to an embodiment of the present invention. Figure 3 provides a schematic, longitudinal cross-sectional view (b—b) through pipe

connection assembly 110 of Figure 2. Referring collectively to Figures 2 and 3, pipe connection assembly 110 may include a pipe connecting arrangement 120, adapted to receive an end 122 of a pipe. Typically, an inner diameter of arrangement 120 exceeds an outer diameter of end 122. An inner surface of arrangement 120 may be contoured 5 to generally match an outer contour of pipe end 122. Typically, these contours may be generally cylindrical.

An annular recess 116 of pipe connection assembly 110 holds in its place a sealing element 118 and is located so that an open-ended channel 114 is disposed between arrangement 120 and annular recess 116. Pipe end 122 may be inserted into an 10 outer pipe terminal 112 such that a sealing element 118 forms a tight seal between pipe end 122 and the outer pipe terminal 112. A conical lock screw 124 may then be screwed into open-ended channel 114, locking together the pipe end 122 and outer pipe terminal 112.

With specific reference to Figure 3, arrangement 120 may be equipped with a 15 conical lock screw head 132, which may have a slit adapted to enable screwing with a flat screw driver. Other embodiments may optionally feature one or more other arrangements, such as a recessed hexagonal shape for screwing with an Allen wrench or a hexagonal head for screwing with a socket wrench.

Figures 4a-4d are transverse cross-sectional views (c—c of pipe connection 20 assembly 110) depicting sequential stages in the insertion of conical lock screw 124 into open-ended channel 114, according to the present invention.

In Figure 4a, conical lock screw 124 is inserted into open-ended channel 114. Figure 4b shows conical lock screw 124 partially screwed into open-ended channel 114. In Figure 4c, conical lock screw 124 is screwed all the way through open-ended channel 25 114. A screw tip 170 of screw 124 may protrude outside open-ended channel 114. Figure 4d shows conical lock screw 124 in a position identical to that of screw 124 in Figure 4c, but in truncated form, in which screw tip 170 has been detached.

Screw tip 170 may be a continuous part of conical lock screw 124, and its length 30 may be contingent upon the dimensions of both conical lock screw 124 and open-ended channel 114.

Figure 5a is schematic, exemplary illustration of conical lock screw 124, according to one embodiment of the present invention. Figure 5b is a transverse cross-sectional view (c—c) through the inventive pipe connection assembly, without conical

lock screw 124. Lock screw 124 may include conical lock screw head 132, described hereinabove, and a screw threading 160. Screw threading 160 may be generally complementary to a channel threading 150 of channel 114 (both shown in Figure 5b). When lock screw 124 is screwed through channel 114, channel threading 150 is adapted 5 to direct and guide conical lock screw 124 into the correct position.

Figure 6 provides a schematic, longitudinal cross-sectional view of a pipe connection assembly 600 according to one embodiment of the present invention. Pipe connection assembly 600 includes a housing 620 having or encompassing a first opening or terminal 622 and a second opening 624 that may be longitudinally aligned, 10 or aligned at a pre-determined angle (e.g., a right angle) with respect to first opening or terminal 622. First and second openings 622, 624 may each have, or be bounded by, a terminal surface 626, 628, adapted to receive a first end of respective pipe elements (as shown in Figure 9).

Within a wall of housing 620 is disposed a channel, such as an open-ended 15 channel 630, having a wide cross-section 632 disposed distal to first and second openings 622, 624, and a narrow cross-section 634 disposed between wide cross-section 632 and first and second openings 622, 624. Each channel 630 fluidly communicates with a respective opening of first and second openings 622, 624, via narrow cross-section 634. Channel 630 may be adapted to receive a lock pin, such as the lock pin 20 provided in Figures 8A and 8B.

Housing 620 may further include a recess or geometry 650 (e.g., a generally annular recess) adapted to include or secure a sealing element such as an O-ring (not shown).

Figure 7 is a transverse cross-sectional view of the inventive pipe connection 25 assembly of Figure 6, showing a longitudinal view of channel 630.

Figure 8A is a schematic, exemplary illustration of a lock pin 860, according to one embodiment of the present invention. In this embodiment, lock pin 860 has a backbone 862 and a longitudinal tooth or fin 864 extending -- typically in radial fashion, from backbone 862, along a length of lock pin 860. Backbone 862 may be 30 adapted to be received by wide cross-section 632 of channel 630 (provided hereinabove). Similarly, a first end of tooth 864 may be adapted to be received by narrow cross-section 634. Lock pin 860 may advantageously be adapted to be urged along channel 630, whereby a bottom edge 865 of tooth 864 protrudes through narrow

cross-section into 634 and into first or second openings 622, 624 (shown in Figure 6). Typically, bottom edge 865 is sloped, whereby a length of tooth 864 at a second or trailing longitudinal end 866 exceeds a length of tooth 864 at a first or leading longitudinal end 867.

5 Backbone 862 may be equipped with, at a leading end thereof, a contour or outer surface 869 of varying dimension. A tool may be adapted to latch onto this contour, whereby lock pin 860 may be pulled through channel 630. In Figure 8A, by way of example, outer surface 869 has a screw contour.

Figure 8B provides a schematic end view (from trailing longitudinal end 866) of 10 lock pin 860. The width of tooth or fin 864 is less than the width or diameter D of backbone 862. Typically, the width of tooth or fin 864 is less than one-half, less than one-third, less than one-quarter, or less than one-sixth the width or diameter D of backbone 862.

15 Typically, the maximum length of tooth or fin 864 is at least 40%, at least 50%, at least 60%, at least 70%, at least 80%, or at least 90% of the width or diameter D of backbone 862.

The length of tooth or fin 864 may be at least 40%, at least 50%, at least 60%, at least 70%, at least 75%, or at least 80% of the inner width or diameter of the respective opening (e.g., first opening 622) of housing 620.

20 Referring back to Figure 8A, the angle A between bottom edge 865 and a longitudinal axis of lock pin 860 may be, in one embodiment, at least 2°, at least 4°, at least 7°, at least 10°, at least 12°, or at least 15°. In one embodiment, angle A may be at most 45°, at most 40°, at most 35°, at most 30°, at most 25°, or at most 20°.

Figure 9 provides a schematic, longitudinal cross-sectional view of pipe 25 connection assembly 600, the assembly containing and connecting between a first pipe 927 having an outer (typically cylindrical) surface 931 and a second pipe 928 having an outer (typically cylindrical) surface 932.

A recess 650 in housing 620 may be adapted to include or secure a sealing 30 element 651 such as an O-ring, which may tightly fit around surface 931 of pipe 927, whereby sealing is effected between surface 931 and terminal surface 626 of housing 620.

Figure 10A provides a transverse cross-sectional view of Figure 9, in which lock pin 860 is partially inserted in open-ended (lock-pin) channel 630. Initially, the

insertion of lock pin 860 may proceed with facility and with little mechanical resistance. As the position of lock pin 860 proceeds longitudinally through channel 630, bottom edge 865 of tooth 864 will eventually contact outer surface 931 of pipe 927.

5 At this point, lock pin 860 may be driven (e.g., by hammering) or pulled (e.g., as described hereinabove) through channel 630. Bottom edge 865 of tooth 864 impinges upon outer surface 931 of pipe 927, and may even deform outer surface 931, to secure pipe 927 within pipe connection assembly 600, as shown in Figure 10B.

10 Figure 11 provides a schematic, longitudinal cross-sectional view of a pipe connection assembly 1100 according to one embodiment of the present invention, in which the assembly is a three-way pipe adaptor.

Figure 12 provides a schematic, longitudinal cross-sectional view of a pipe connection assembly 1200 according to one embodiment of the present invention, in which the assembly is an end seal or fitting.

15 Figure 13 provides a schematic, longitudinal cross-sectional view of a pipe connection assembly 1300 according to one embodiment of the present invention, in which one end of the assembly is a sprinkler fitting 1385.

20 Figure 14 provides a schematic, longitudinal cross-sectional view of a pipe connection assembly 1400 according to one embodiment of the present invention, in which the assembly is a three-way pipe adaptor having a sprinkler fitting 1485.

Figure 15A provides a partial, schematic, longitudinal cross-sectional view of a pipe connector, according to one embodiment of the present invention. Figure 15B provides a schematic, transverse cross-sectional view of the pipe connector shown in Figure 15A. In this embodiment, the pin backbone has a longitudinal length L , and at 25 least a portion of a perimeter of the backbone has a screw contour along at least 50%, at least 70%, at least 80%, at least 90%, at least 95%, or along all of length L . In Figure 15B, by way of example, the backbone has a screw contour along the entire length L . The backbone may have, over at least a portion of a longitudinal length L_1 between the lead end and the tooth, a screw contour around an entire perimeter of the backbone. In 30 Figure 15B, by way of example, the entire perimeter of the backbone has a screw contour over the entire longitudinal length L_1 between the lead end and the tooth.

Figure 16 provides a partial, schematic, longitudinal cross-sectional view of a pipe connection assembly having a lip seal recess 1650 adapted to include or secure a

sealing element 1651 such as a lip seal 1651, according to one embodiment of the present invention.

It will be appreciated that certain features of the invention, which are, for clarity, described in the context of separate embodiments, may also be provided in combination 5 in a single embodiment. Conversely, various features of the invention, which are, for brevity, described in the context of a single embodiment, may also be provided separately or in any suitable sub-combination.

Although the invention has been described in conjunction with specific 10 embodiments thereof, it is evident that many alternatives, modifications and variations will be apparent to those skilled in the art. Accordingly, it is intended to embrace all such alternatives, modifications and variations that fall within the spirit and broad scope of the appended claims. All publications, patents and patent applications mentioned in this specification, including U.S. Patent No. 5,927,763 and 6,634,677, are herein 15 incorporated in their entirety by reference into the specification, to the same extent as if each individual publication, patent or patent application was specifically and individually indicated to be incorporated herein by reference. In addition, citation or identification of any reference in this application shall not be construed as an admission that such reference is available as prior art to the present invention.

CLAIMS

1. A pipe connection assembly comprising:
 - (a) a housing;
 - (b) a first opening disposed within said housing, said opening having an inner surface adapted to receive a first end of a first pipe element;
 - (c) an open-ended channel disposed within a wall of said housing, said channel having a wide cross-section disposed distal to said first opening, and a narrow cross-section disposed between said wide cross-section and said first opening, said channel fluidly communicating with said first opening via said narrow cross-section; and
 - (d) a lock pin having a backbone and a longitudinal tooth extending laterally therefrom, said backbone adapted to be received by said wide cross-section, said tooth adapted to be received by said narrow cross-section, said pin adapted to be urged along said open ended channel, whereby a bottom edge of said tooth protrudes through said narrow cross-section into said opening;wherein, when said first end is disposed within said housing such that an outer diameter of said first end is juxtaposed against said inner surface, said tooth protruding into said opening impinges upon an outer surface of said pipe element, to lock said pipe element in place, with respect to said housing,
- and wherein said lock pin has a first longitudinal end adapted to be inserted into said channel as a lead end, and a second longitudinal end adapted to trail behind said first longitudinal end.
2. The pipe connection assembly of claim 1, wherein said lead end has a screw contour, said screw contour adapted to freely pass through said wide cross-section.
3. The pipe connection assembly of claim 1 or claim 2, wherein at least one of said inner surface and said wide cross-section of said channel has a generally circular cross-section.

4. The pipe connection assembly of any one of claims 1 to 3, wherein said wide cross-section of said channel has a width W1, and said narrow cross-section has a width W2, and wherein a first ratio of W2 to W1 is less than 0.5.

5. The pipe connection assembly of claim 4, wherein said first ratio of W2 to W1 is less than 0.2.

6. The pipe connection assembly of any one of claims 1 to 5, wherein said backbone of said lock pin has a width D, and said narrow cross-section has a width W4, and wherein a second ratio of W4 to D is less than 0.5.

7. The pipe connection assembly of claim 6, wherein said second ratio of W4 to D is less than 0.2.

8. The pipe connection assembly of any one of claims 1 to 7, further comprising:

(e) a second opening disposed within said housing, said second opening having a second inner surface adapted to receive a second end of a second pipe element.

9. The pipe connection assembly of claim 8, the assembly further comprising:

(f) a second open-ended channel disposed within said wall of said housing, said second channel having a second wide cross-section disposed distal to said second opening, and a second narrow cross-section disposed between said second wide cross-section and said second opening,

said second channel fluidly communicating with said second opening via said second narrow cross-section; and

(g) a second lock pin having a second backbone and a second longitudinal tooth extending longitudinally therefrom, said second backbone adapted to be received by said second wide cross-section, said second tooth adapted to be received by said second narrow cross-section, said second pin adapted to be urged along said second channel, whereby a second bottom edge of said second tooth protrudes through said second narrow cross-section into said second opening.

10. The pipe connection assembly of claim 9, wherein, when said second end is disposed within said housing, whereby an outer diameter of said second end is juxtaposed against said second inner surface, said tooth protruding into said second opening impinges upon an outer surface of said second pipe element, to lock said second pipe element in place, with respect to said housing.

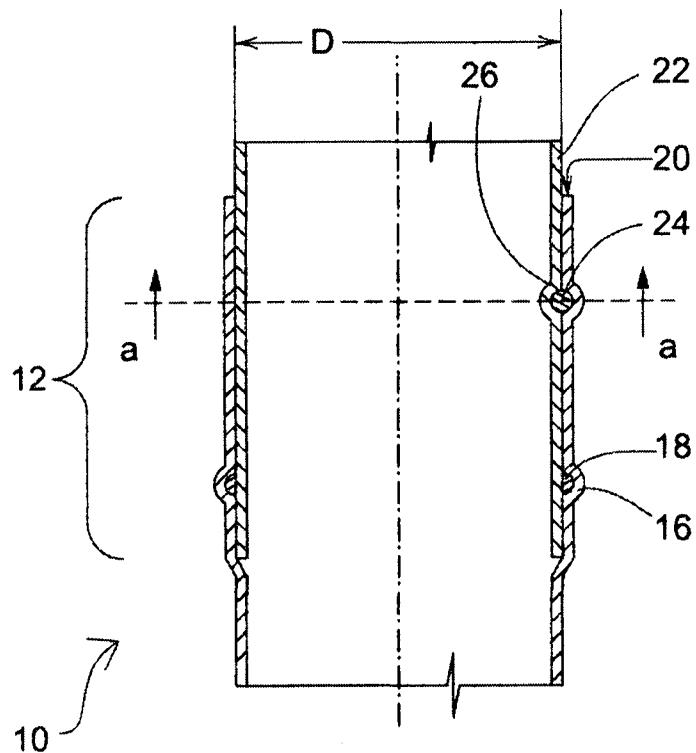
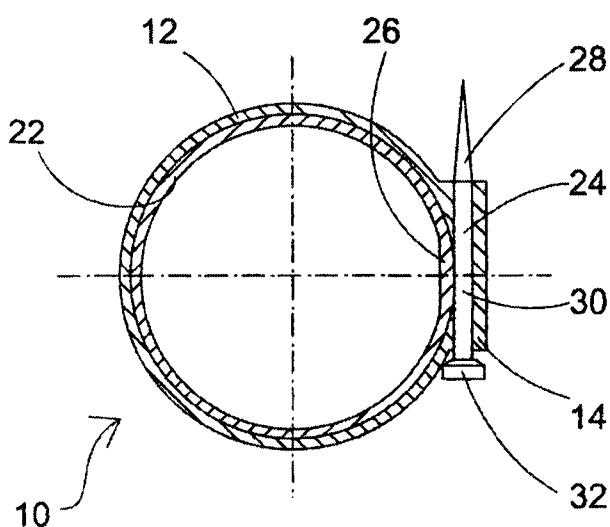
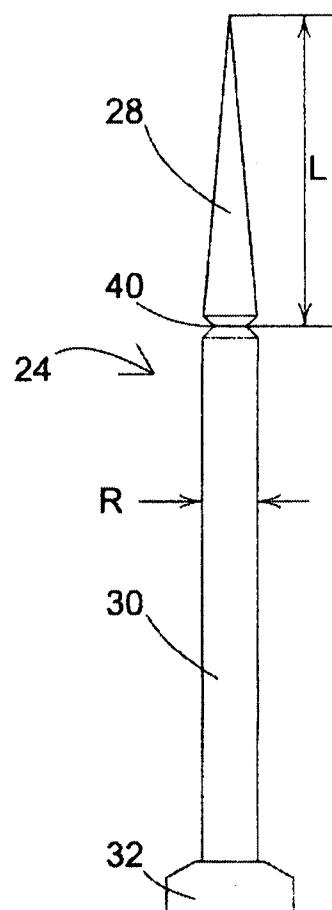
11. The pipe connection assembly of claim 10, further comprising a third opening.

12. The pipe connection assembly of claim 11, wherein said third opening is substantially perpendicular to said first and second openings.

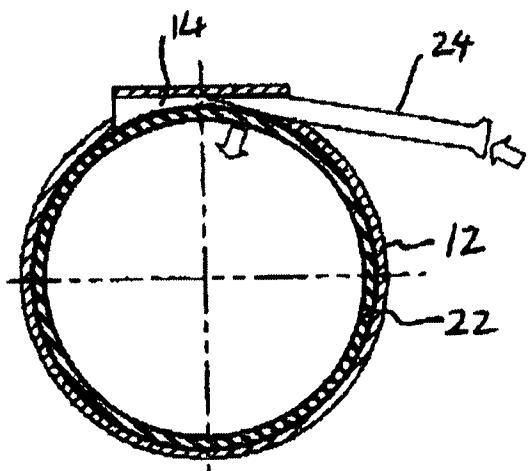
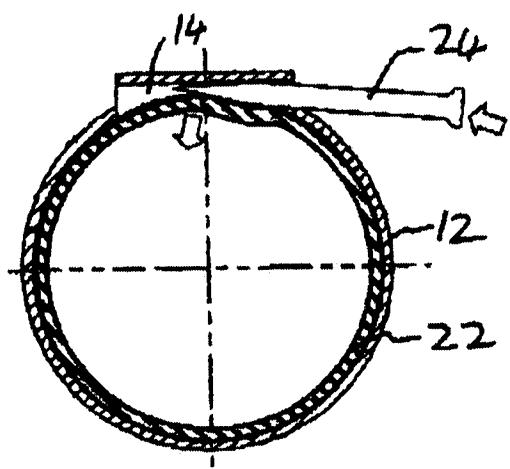
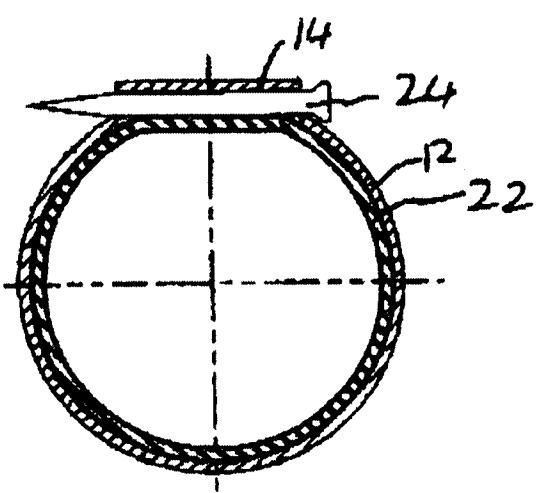
13. The pipe connection assembly of claim 11 or claim 12, wherein said third opening is adapted to connect to a fire sprinkler assembly or to receive a third pipe element.

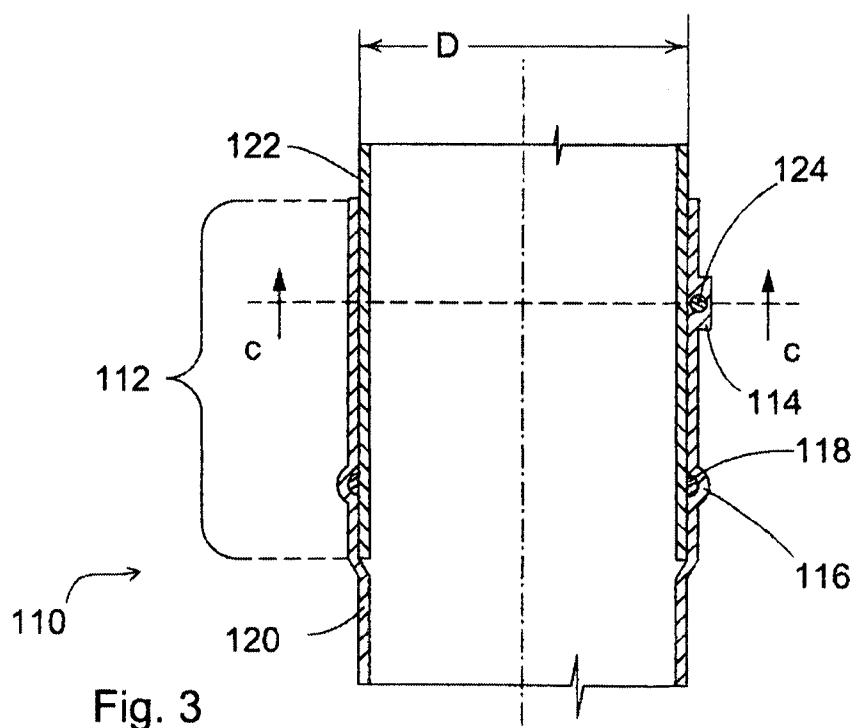
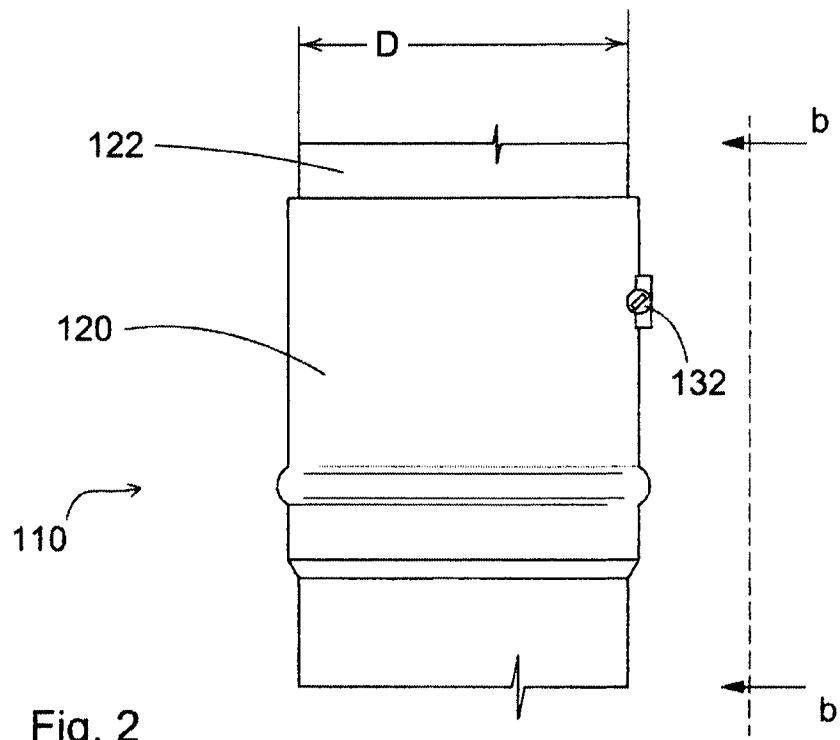
14. The pipe connection assembly of any one of claims 1 to 13, wherein a bottom edge of said longitudinal tooth is sloped, whereby a length of said tooth at said second longitudinal end exceeds a length of said tooth disposed towards said lead end.

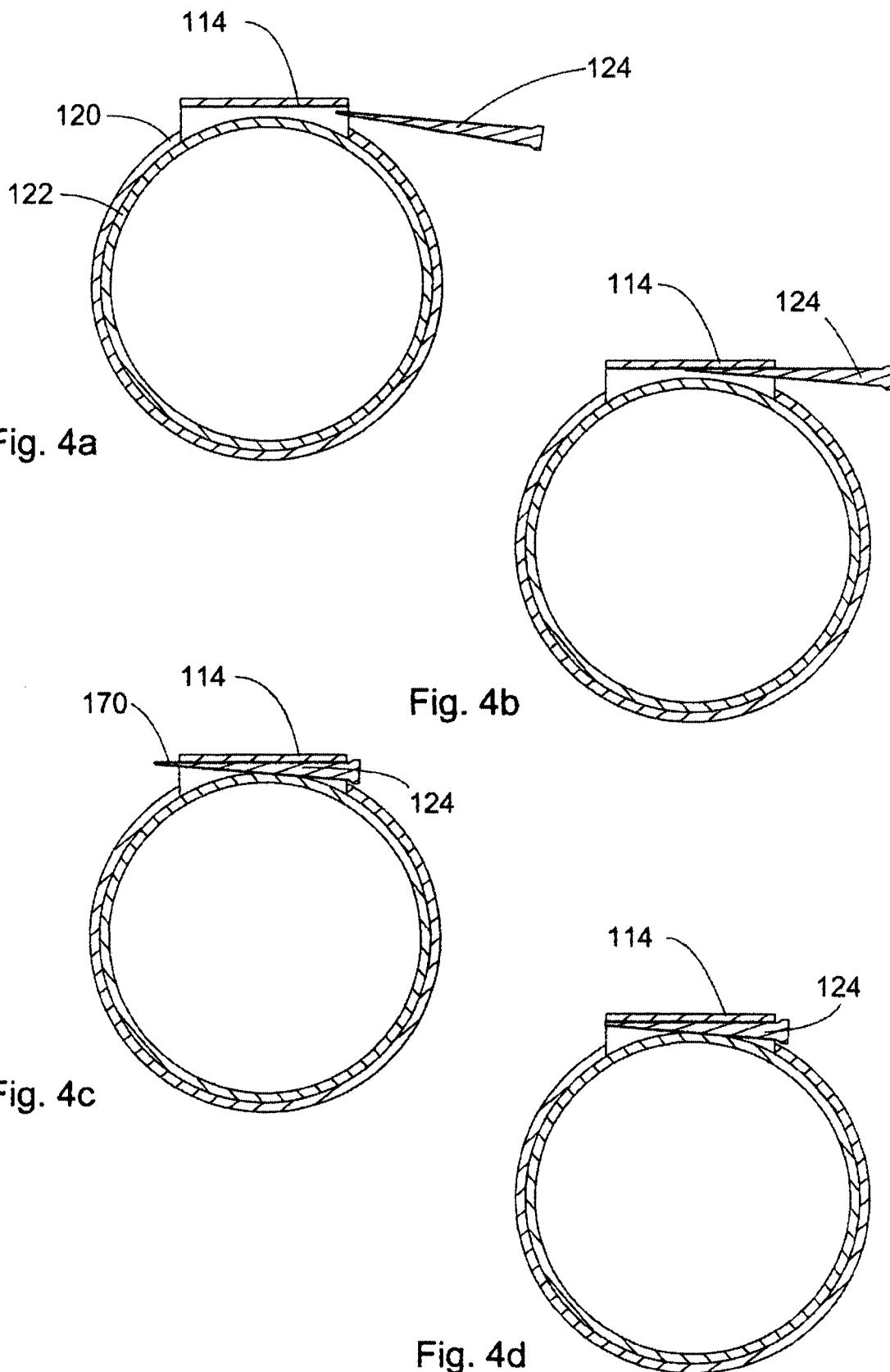
15. The pipe connection assembly of any one of claims 1 to 14, wherein said housing includes a generally annular recess disposed around said opening, said recess adapted to receive a sealing element.

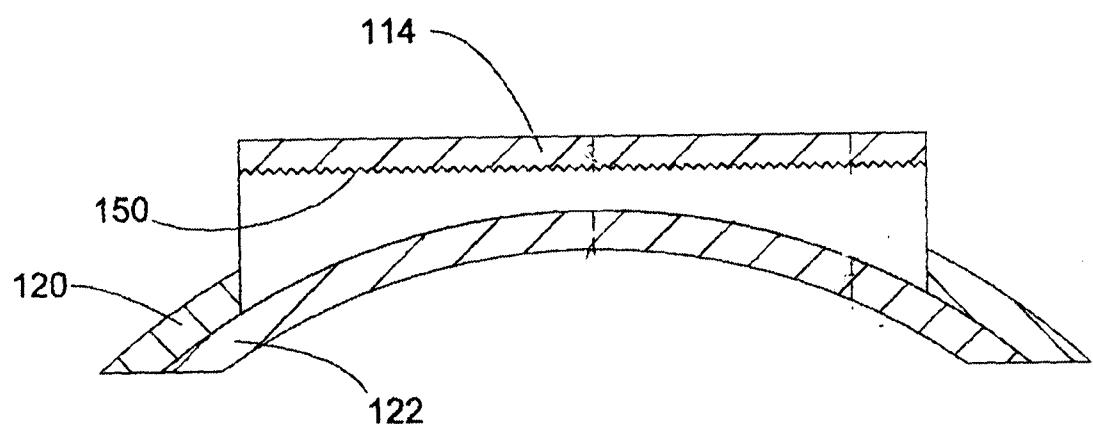
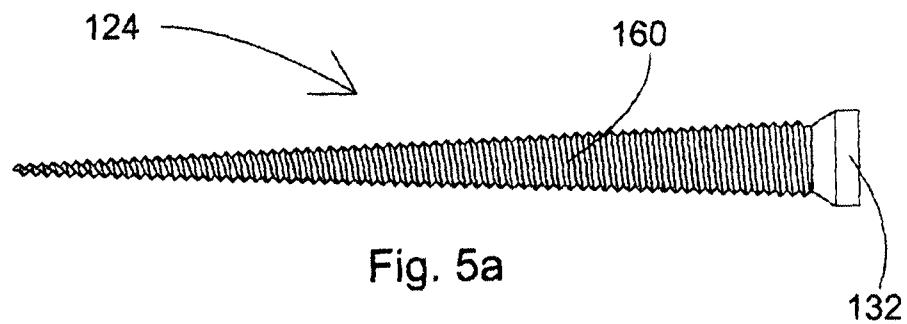



16. The pipe connection assembly of claim 15, further including said sealing element.

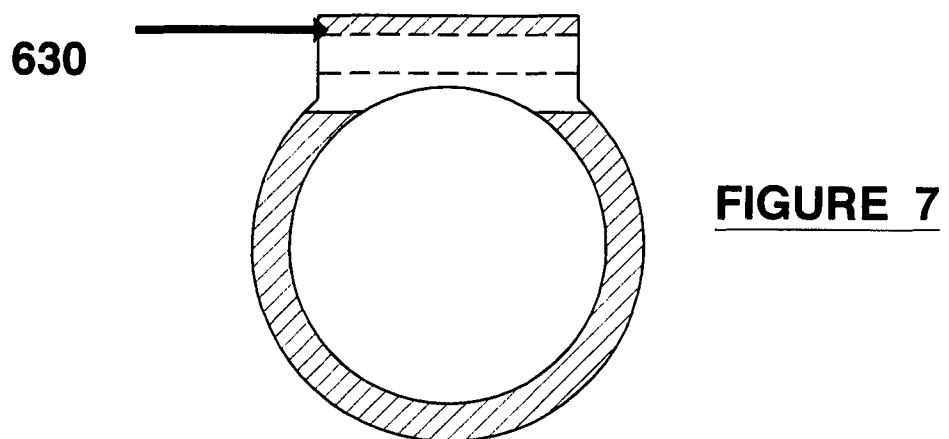
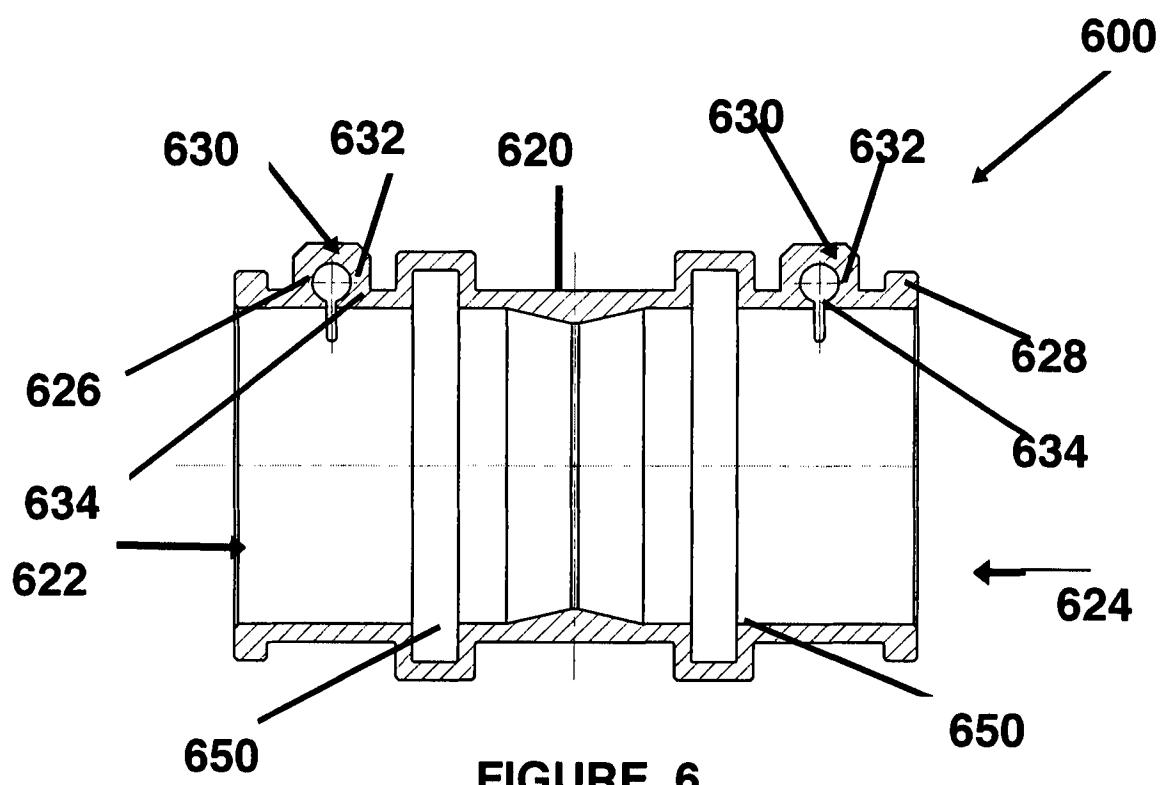
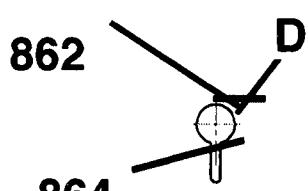
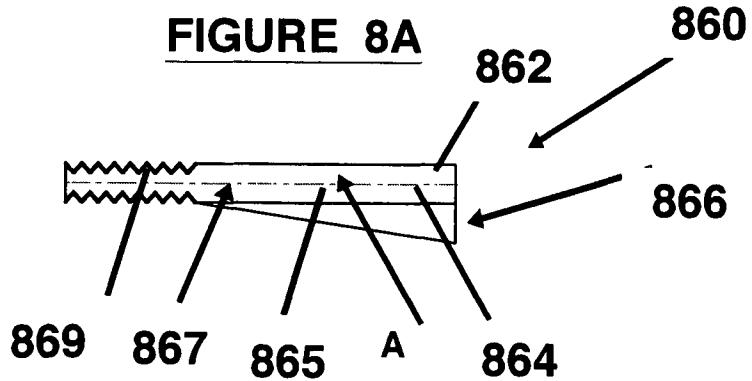
17. The pipe connection assembly of claim 16, wherein said sealing element is an O-ring or a lip seal.

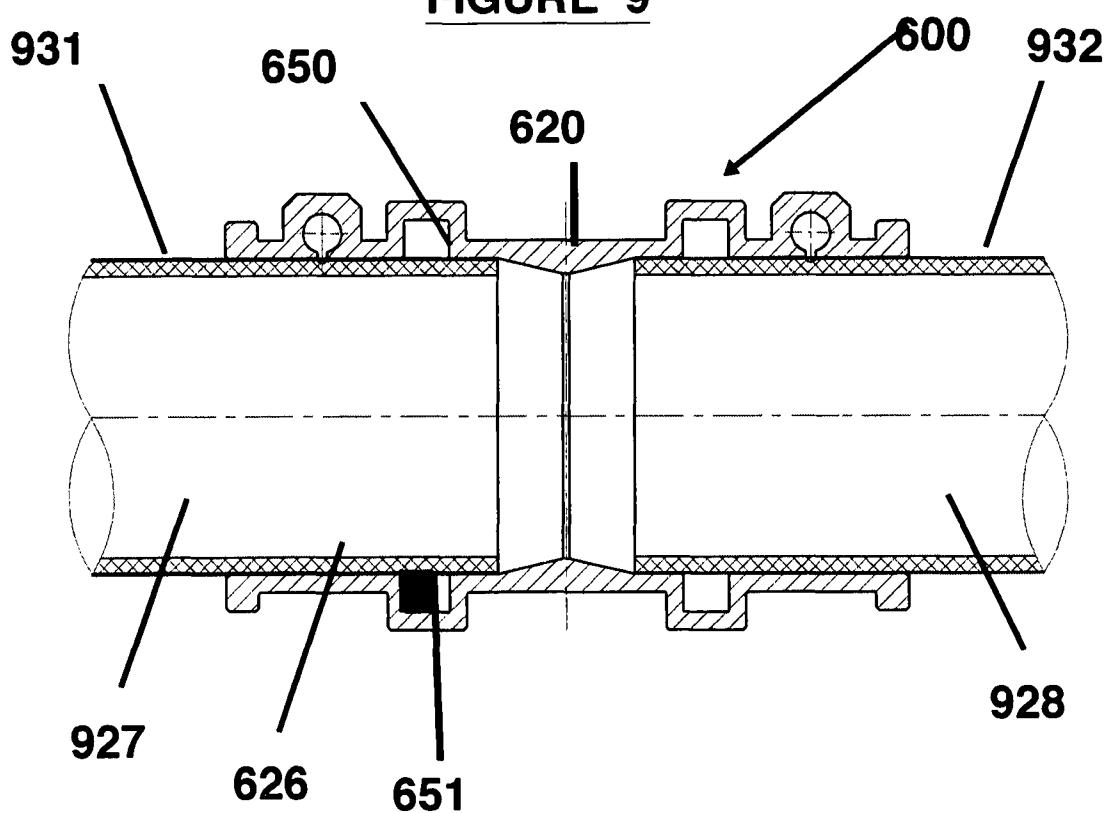



18. The pipe connection assembly of any one of claims 1 to 17, wherein said narrow cross-section is an elongate cross-section.

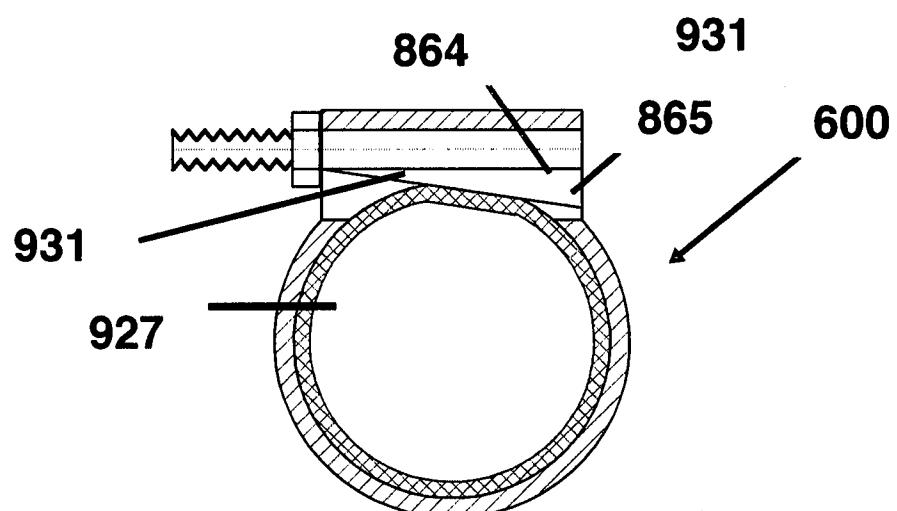
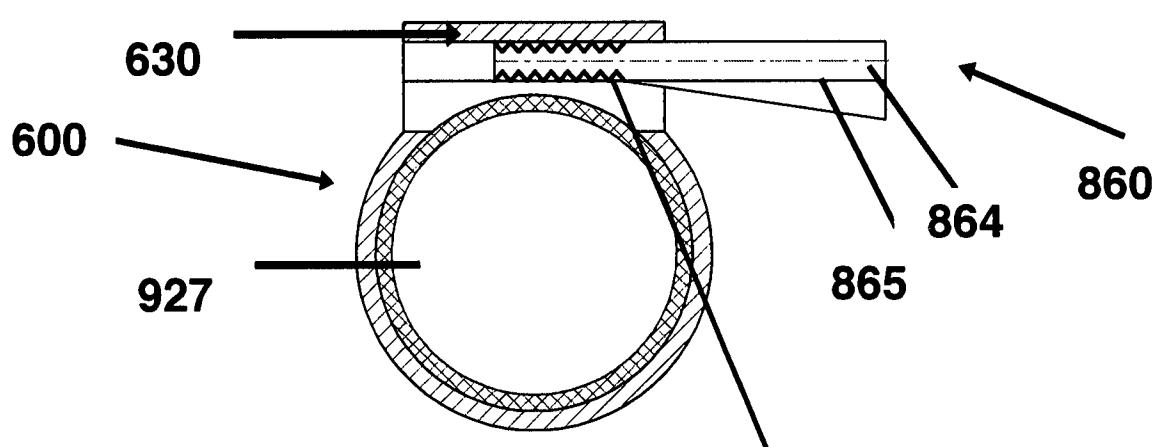


19. The pipe connection assembly of any one of claims 1 to 18, wherein a maximum length of said tooth is at least 40% of a diameter D of said backbone of said lock pin.

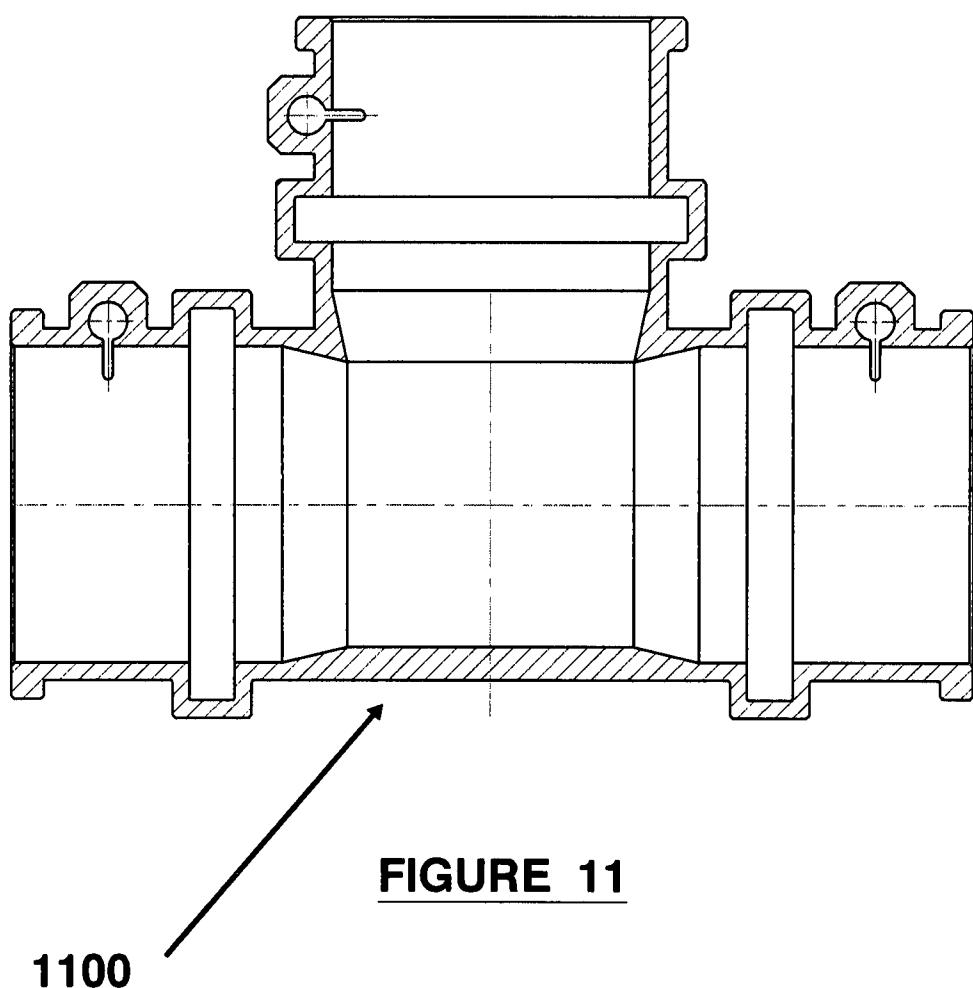

20. The pipe connection assembly of claim 19, wherein said maximum length of said tooth is at least 60% of said diameter D of said backbone of said lock pin.



Fig. 1a PRIOR ARTFig. 1b PRIOR ARTFig. 1c PRIOR ART





2/12


FIGURE 1d**Prior Art****FIGURE 1e****Prior Art****FIGURE 1f****Prior Art**



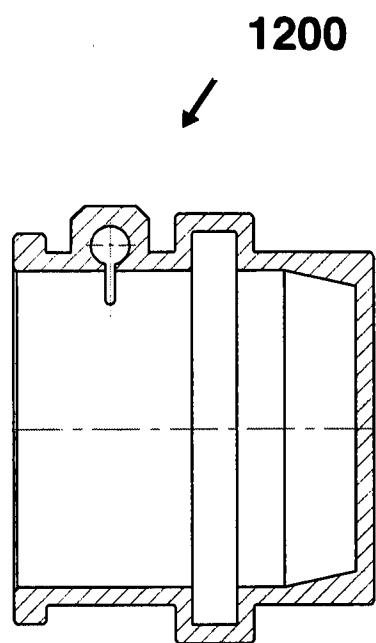


FIGURE 8B**FIGURE 8A**

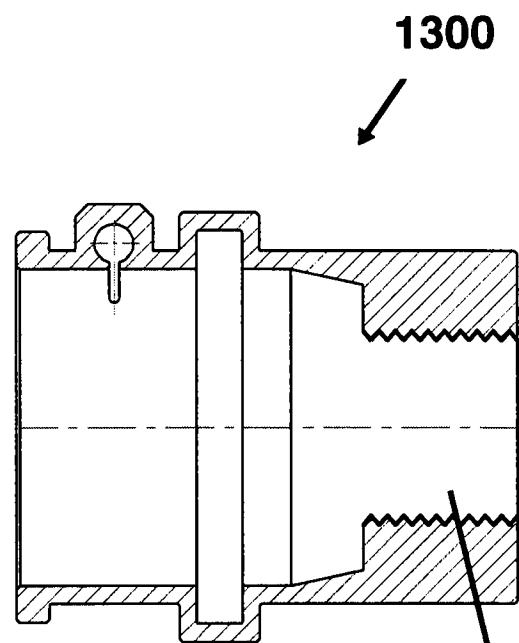

FIGURE 9

FIGURE 10A**FIGURE 10B**

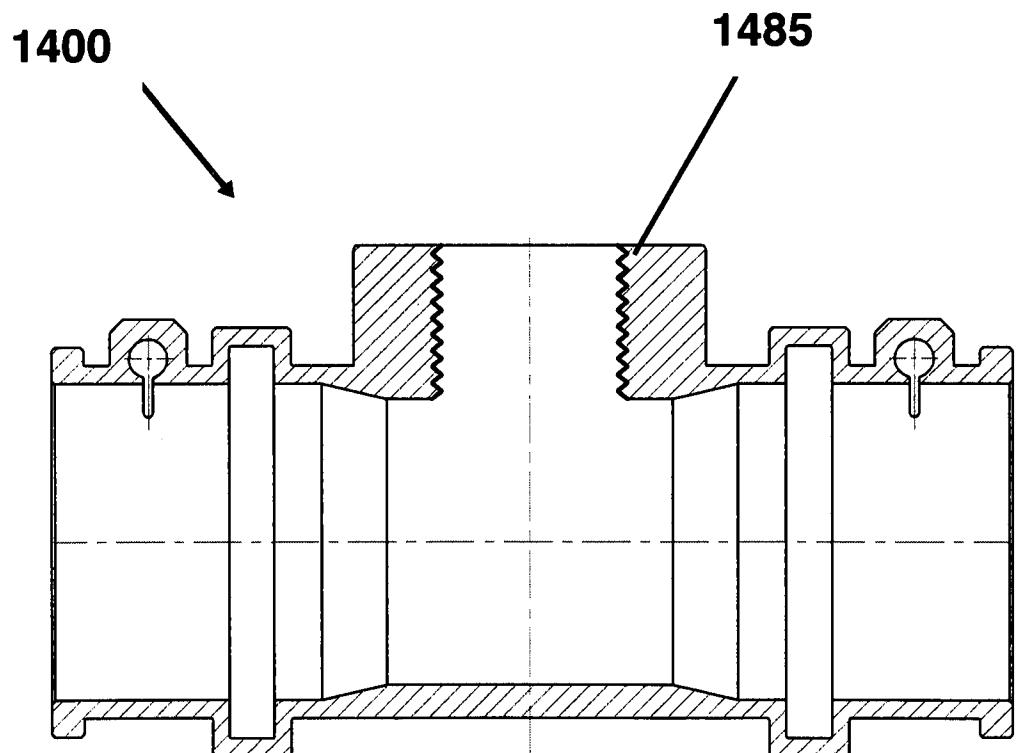
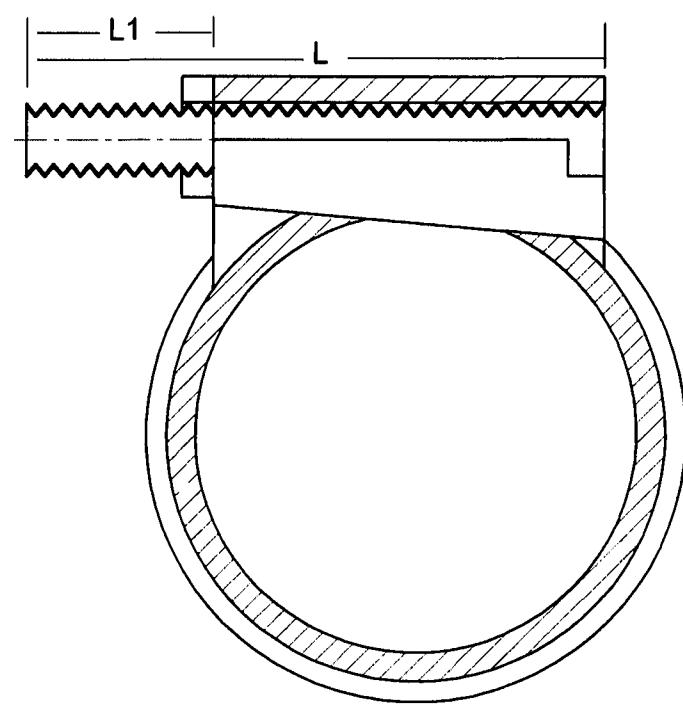
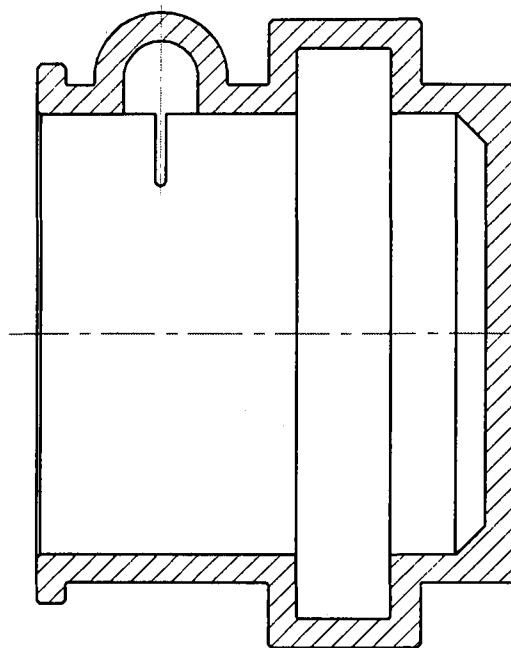
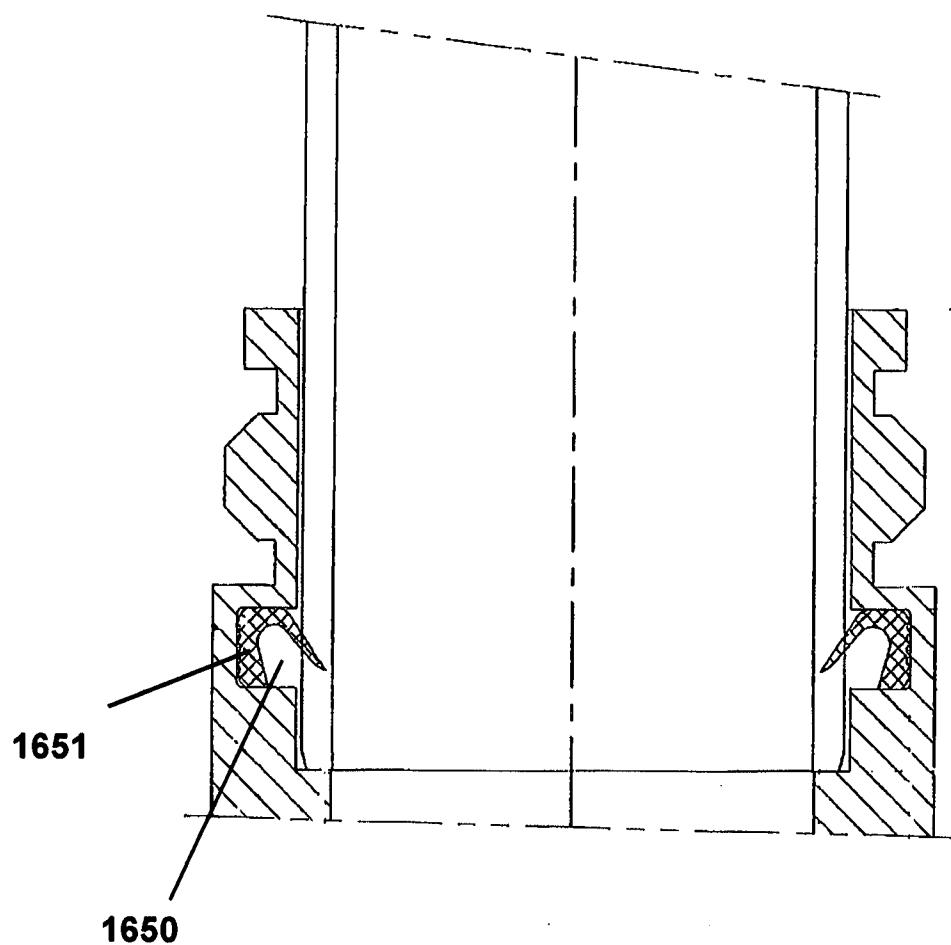


FIGURE 12


FIGURE 13

1385

FIGURE 14

FIGURE 15a**FIGURE 15b**

FIGURE 16