МЕЖДУНАРОДНАЯ ЗАЯВКА, ОПУБЛИКОВАННАЯ В СООТВЕТСТВИИ С ДОГОВОРЫМ О ПАТЕНТНОЙ КООПЕРАЦИИ (PCT)

(51) Международная классификация изобретения	A61F 5/04 // A61B 17/56
(11) Номер международной публикации	WO 91/12782
(43) Дата международной публикации	5 сентября 1991 (05.09.91)

| (21) Номер международной заявки | PCT/SU90/00058 |
| (22) Дата международной подачи | 26 февраля 1990 (26.02.90) |

Заявитель (для всех указанных государств, кроме US): МОСКОВСКИЙ ГОРОДСКОЙ НАУЧНО-ИССЛЕДОВАТЕЛЬСКИЙ ИНСТИТУТ СКОРОЙ ПОМОЩИ ИМЕНИ Н.В.СКЛИРОСОВСКОГО [SU/SU]; Москва 129010, В.Калашная пл, д. 3 (SU) [MOSKOVSKY GORODSKOI NAUCHNO-ISSELEDOVATELSKI INSTITUT SKOROI Pomoshchi IMENI N.V.SKLIROSOVSKOGO, Moscow (SU)].

Изобретатели и Заявители (только для US):
- ОХОТСКИЙ Владимир Павлович [SU/SU]; Москва 129110, Олимпийский пр, д. 20, кв. 16 (SU) [OKHOTSKY, Vladimir Pavlovich, Moscow (SU)].
- КАУЛЕН Владимир Дмитриевич [SU/SU]; Москва 123355, ул. Генерала Гагарина, д. 30, корп. 4, кв. 430 (SU) [KAULEN, Vladimir Dmitrievich, Moscow (SU)].
- ПОТАПЕНКО Владимир Антонович [SU/SU]; Москва 117333, Ленинский пр, д. 6/1, кв. 114 (SU) [POTAPENKO, Vladimir Antonovich, Moscow (SU)].

Агент: ТОРГОВО-ПРОМЫШЛЕННАЯ ПАЛАТА CCCP; Москва 103735, ул. Куяльник, д. 5/2 (SU) [THE USSR CHAMBER OF COMMERCE AND INDUSTRY, Moscow (SU)].

Указанные государства: AT (европейский патент), BE (европейский патент), CH (европейский патент), DE (европейский патент)*, DK (европейский патент), ES (европейский патент), FR (европейский патент), GB (европейский патент), HU, IT (европейский патент), JP, LU (европейский патент), NL (европейский патент), SE (европейский патент), US.

Опубликована

Отчет о международном поиске.

Title: CRUS SPLINT

Название изобретения: ШИНА ДЛЯ ЛЕЧЕНИЯ ПЕРЕЛОМОВ ГОЛЕНИ

Abstract

A crus splint comprises a base (1) connected through a kinematic link with a frame (3) and a device (6) for orientation of the crus fragments. The frame (3) is mounted with the possibility of angular rotation about the longitudinal axis (4) of the crus resting upon a hammock-like support (25) mounted on the frame (3). The device (6) for orientation of the crus fragments comprises a carrying element (7) which is mounted on the frame with the possibility of reciprocal and angular movements in three mutually perpendicular planes and on which are secured two legs (8) spaced from each other. The free end of each of the legs (8) interacts with a wire (11) to be placed on the heel bone and whose ends are secured in a stirrup (12) connected through a pulley block system (13) to a load (14).

Вперед до нового объявления, указание - 52- в международных заявках с датой международной подачи до 3 октября 1990г. будет иметь эффект на территории Федеративной Республики Германия, исключая территорию бывшей ГДР.
Шина для лечения переломов голени содержит основание (I), соединенное посредством кинематической связи с рамой (3), и устройство (6) для ориентации отломков голени. Рама (3) установлена с возможностью углового поворота относительно продольной оси (4) голени, опорой которой служит тягач (25), установленный на раме (3). Устройство (6) для ориентации отломков голени включает установленный на раме (3) с возможностью возвратно-поступательного и углового перемещений в трех взаимно перпендикулярных плоскостях несущий элемент (7), на котором закреплены отстоящие друг от друга две стойки (8). Свободный конец каждой из стоек (8) взаимодействует с предназначенной для установки в пяточной кости спицей (II), концы которой закреплены в скобе (I2), соединенной через трособлучную систему (I3) с грузом (I4).
ШИНА ДЛЯ ЛЕЧЕНИЯ ПЕРЕЛОМОВ ГОЛЕНИ

Область техники

Настоящее изобретение относится к медицине, а именно к шине для лечения переломов голени.

Предшествующий уровень техники

Известна шина для лечения переломов голени (SU, A, 995701), содержащая основание, жестко связанное с рамой, на которой установлен служащий опорой голени тахмачок, и устройство для ориентации отломков голени, включающее несущий элемент, установленный на основании с возможностью возвратно-поступательного и углового перемещения в трех взаимно перпендикулярных плоскостях. На несущем элементе закреплены отстоящие друг от друга две стойки, свободный конец каждой из которых взаимо-действует с предназначенной для установки в пяточной кости спицей. Концы спицы закреплены в окне, соединенной через трособлучную систему с грузом.

Данная шина позволяет получить хорошее сопоставление отломков голени в первые 2-3 суток после травмы.

Однако при устранении отломков по длине (на данной шине) может произойти "заклинание" устройства ориентации отломков голени, так как основание, по которому перемещается несущий элемент, и трос, соединенный со скобой, в которой закреплена спица, находятся в разных плоскостях на большом расстоянии друг от друга, что приводит к возникновению нежелательного момента. Единая жесткая конструкция основания с рамой не позволяет большому поворачиваться на бок, а не зафиксированное бедро большой ноги (особенно во время сна) может отрицательно сказываться на репозиции отломков больной голени. Для данной конструкции шины характерна недостаточная стабильность в месте перелома из-за ротационных смещений отломков голени относительно друг друга. Длительное вынужденное положение на спине во время лечения создает
физические неудобства и страдания для больного, затрудняет гигиенический уход за ним, способствует возникновению болезненных явлений, а также возможны гипостатические осложнения – пролежни, пневмонии и другие из-за вынужденного длительного постельного режима.

Раскрытие изобретения

В основу настоящего изобретения положена задача создать шину для лечения переломов голени с такой связью основания с рамой и таким расположением несущего элемента устройства для ориентации отломков голени, которые обеспечили бы возможность поворота пациента на бок при сохранении стабильности положения отломков голени.

Поставленная задача решается тем, что в шине для лечения переломов голени, содержащей основание, связанное с рамой, на которой установлен служащий опорой голени тамацок, и устройство для ориентации отломков голени, включающее установленный с возможностью возвратно-поступательного и углового перемещений в трех взаимно перпендикулярных плоскостях несущий элемент, на котором закреплены отстоящие друг от друга две стойки, свободный конец каждой из которых взаимодействует с предназначенной для установки в пяточной кости спицей, концы которой закреплены в скобе, соединенной через трособложную систему с грузом, согласно изобретению, рама соединена с основанием посредством кинематической связи с возможностью углового поворота относительно продольной оси голени, при этом несущий элемент устройства для ориентации отломков голени установлен на раме.

Целесообразно, чтобы указанная кинематическая связь включала бы жестко связанную с рамой в зоне размещения пяточной кости сергу, шарнирно установленную на вертикальной стойке, жестко связанную с основанием, и установленный на основании блок с опорными роликами, взаимодействующими с поперечной стенкой рамы, выполненной дугообразной и расположенной в плоскости, перпен-
диккулярной продольной плоскости рамы.
Такое конструктивное выполнение кинематической
связи является наиболее оптимальным, так как шарнир и
серега, с одной стороны, обеспечивают надежную продоль-
nую и вертикальную компенсирующую подвеску, образуют
надежную силовую замкнутую конструкцию рамы, обеспеchi-
ующую стабильную параллельность продольных стенок ра-
мы при скольжении по ним несущего элемента от груза.
С другой стороны, раме, выполненной дугообразно, обеспечи-
чены более простые конструкторско-технологические тре-
бования по скольжению на опорных роликах при поворотах
относительно продольной оси. Кроме того, дугообразная
часть рамы значительно повышает ее прочность при воз-
действии на нее здравой части ноги, подколенной части
и бедра, от которых происходит угловой поворотный мо-
мент относительно продольной оси голени.
Необходимо раму снабдить средством ограничения
ее углового поворота.
Это необходимо для обеспечения большому благо-
приятных условий для вздыхования.
Целесообразно указанные средство выполнить в вы-
де двух фиксаторов, расположенных в криволинейном пазу,
выполненном в серге, и взаимодействующих с вертикаль-
ной стойкой.
Такое конструктивное выполнение средства наибо-
ле простое в изготовлении и при эксплуатации обладает
надежностью и обеспечивает многовариантность углового
поворота рамы относительно своей продольной оси.
Необходимо раму установить на основании с воз-
можностью продольного перемещения в вертикальной плос-
коскости, при этом блок трособлочкой системы с возможностью
продольного перемещения надо разместить на полке демп-
фирующего П-образного элемента, установленного с возмож-
ностью продольного перемещения в направляющих, жестко
закрепленных на основании.
Продольное перемещение рамы в вертикальной плос-
kости дает эффект универсального использования предла-
гаемой шины для разновозрастных групп — по типоразмерам голени и бедра (от 10 летнего возраста и выше). Размещение блока трособлочной системы на демпфирующим П-образном элементе с возможностью продольного перемещения обеспечивает необходимые угловые и вертикальные ориентации для гибкой связи груза с установленным на раме устройством для ориентации отломков голени. Кроме того, демпфирующий эффект от П-образного элемента частично положительно сказывается при разовых "случайных" резких продольных перемещениях голени во время сна, способствуя уменьшению болевых ощущений.

Необходимо со стороны расположения бедра на продольных стенках рамы установить ложемент бедра.

Установленный на раме ложемент бедра эффективно выполняет роль универсального фиксирующего элемента подколенного стиба и бедренной части, при одновременном обеспечении угловых поворотов рамы от усилий здорового бедра.

Целесообразно ложемент бедра установить на раме с возможностью продольного перемещения и с возможностью углового поворота относительно оси, перпендикулярной продольной оси рамы.

Конструктивное обеспечение возможности продольного перемещения ложемента бедра на раме положительно сказывается при обеспечении укладки голени на тамачок, подкладывании ватно-марлевой подушки под коленный стиб и фиксировании здоровой части бедра. Дополнительное конструктивное обеспечение углового поворота относительно оси, перпендикулярной продольной оси рамы, способствует возможности посадки больного на кровати, что положительно сказывается при гигиеническом уходе за ним и отдыхе при длительном постельном режиме.

Необходимо раму снабдить дополнительной опорой для ложемента бедра, выполненном в виде дугообразной стяжки, расположенной в одной плоскости с поперечной стенкой рамы и жестко закрепленной концами на ее внутренней поверхности, при этом поперечная стенка рамы ох-
Ватывает дугообразную стяжку.

Наличие дугообразной стяжки обеспечивает дублирование фиксаторов в серге при максимальных углах ограничения с опорными роликами поворота рамы, а также повышает надежность при эксплуатации подвижных частей рамы относительно основания.

Целесообразно ложемент бедра выполнить из поливика.

Данный материал обладает легкостью, прочностью, пластичностью и эффективно фиксирует облегчающее бедро, как в продольном, так и в поперечном направлениях. Важным свойством ложемента бедра из поливика является гигиеничность: можно мыть теплой водой с мылом, обрабатывать различными дезинфицирующими растворами.

Краткое описание чертежей

Ниже настоящее изобретение поясняется описанием конкретного примера выполнения шины для лечения переломов голени со ссылками на прилагаемые чертежи, на которых:

фиг. 1 - шина для лечения переломов голени, выполненная согласно изобретению, вид сбоку;
фиг. 2 - то же, что на фиг. 1, аксонометрия;
фиг. 3 - то же, что на фиг. 1, вид сверху;
фиг. 4 - разрез IV-IV на фиг. 1 при горизонтальном положении рамы;
фиг. 5 - разрез V-V на фиг. 1, в момент углового поворота рамы.

Лучший вариант осуществления изобретения

Шина для лечения переломов голени, выполненная согласно изобретению, содержит основание I (фиг. 1), связанное посредством кинематической связи 2 с рамой 3, установленной с возможностью углового поворота относительно продольной оси 4 голени 5, и устройство 6 для
ориентации отломков голени 5.

Указанное устройство 6 (фиг. 2) включает уста-
новленный с возможностью возвратно-поступательного и
углового перемещений в трех взаимно перпендикулярных
плоскостях несущий элемент 7, который установлен на ра-
ме 3 с возможностью продольного перемещения по ней за
счет сухого скольжения. На несущем элементе 7 закрепле-
ны отстоящие друг от друга две стойки 8. В свободном
конце каждой из стоек 8 выполнен паз 9, предназначенный
для установки в нем и жесткой фиксации посредством вин-
тов 10 спицы II. Концы спицы II закреплены в скобе 12,
соединенной через трособлочную систему 13 с грузом 14.

Указанная кинематическая связь 2 рамы 3 с осно-
ванием I включает жестко связанную с рамой 3 в зоне раз-
мещения пятки кости сергу 15 и блок 16 с опорными
роликами I7. Серга 15 шарнирно посредством оси 18 ус-
тановлена на вертикальной стойке 19, жестко связанной
с основанием I, благодаря чему обеспечена надежная
продольная и вертикальная компенсирующая подвеска, а
также обеспечена надежная силовая замкнутая конструкция
рамы 3, обеспечивающая стабильную параллельность про-
дольных стенок 20 рамы 3 при скольжении по ним несущего
элемента 6 от груза 14.

Блок 16 установлен на основании I со стороны рас-
положения бедра. Его опорные ролики I7 взаимодействуют
с поперечной стенкой 21 рамы 3, выполненной дугообраз-
ной и расположенной в плоскости, перпендикулярной про-
дольной плоскости рамы 3. Выполнение поперечной стенки
21 дугообразной обеспечивает более простые конструктив-
но-технологические требования по скольжению на опорных
роликах I7 при поворотах рамы 3 относительно продольной
оси 4. Кроме того, дугообразная поперечная стенка 21
значительно повышает прочность рамы 3 при воздействии
на нее здоровой части ноги, подколенной части и бедра,
от которых происходит угловой поворотный момент относи-
тельно продольной оси 4 голени 5 (фиг. I).

Для обеспечения больному наиболее благоприятных
условий для выздоровления рама 3 снабжена средством 22 ограничения ее углового поворота. Указанное средство 22 выполнено в виде двух фиксаторов 23, расположенных в криволинейном пазу 24 (фиг. 2), выполненном в серге 15 и взаимодействующих о вертикальной стойкой 19. Такое конструктивное выполнение средства 22 наиболее простое в изготовлении и при эксплуатации, обладает надежностью и обеспечивает многовариантность углового поворота рамы 3 относительно продольной оси 4.

Для фиксации голени 5 (фиг. 1) на продольные стенки 20 рамы 3 устанавливают сменный хлопчатобумажный табачок 25, а со стороны бедра на указанных стенках 20 установлен ложемент 26 бедра. Ложемент 26 бедра эффективно выполняет роль универсального фиксирующего элемента подголенного сгиба и бедренной части, при одновременном обеспечении угловых поворотов рамы 3 от усилий здорового бедра. Ложемент 26 бедра крепится винтами к металлической накладке 27 (фиг. 3). Накладка 27 установлена на оси 28 вращения, являющейся частью клюбы 29, закрепленной своими концами в замках 30, установленных на раме 3 с возможностью продольного перемещения и фиксируемых стопорными винтами 31. Конструктивное обеспечение возможности продольного перемещения ложемента 26 бедра на раме положительно сказывается при обеспечении укладки голени 5 (фиг. 1) на табачок 25, подкладывание ватно-марлевой подушки (не показан) под коленный сгиб и фиксировании здоровой части бедра. Обеспечение углового поворота ложемента 26 бедра относительно оси 28 (фиг. 3) вращения, перпендикулярной продольной оси рамы 3, способствует возможности посадки больного на кровати, что положительно сказывается при гигиеническом уходе за ним и отдыхе при длительном постельном режиме. Сам ложемент 26 бедра выполнен из поливика. Данный материал обладает легкостью, прочностью, пластичностью и эффективно фиксирует облегчающее бедро как в продольном, так и в поперечном направлениях. Важным свойством поливика является гигиеничность: можно
мыть теплой водой с мылом, обрабатывать различными де-зинфицирующими растворами. Крепление ложемента 26 к бедру осуществляется при помощи ленты 32 (фиг. 1), про- пущенного через отверстия 33 (3) в ложементе 26.

Рама 3 снабжена дополнительной опорой для ложе- мента 26 бедра, выполненной в виде дугообразной стяжки 34 (фиг. 2), расположенной в одной плоскости с попереч- ной стенкой 21 рамы 3 и жестко закрепленной концами на ее внутренней поверхности так, что поперечная стенка 21 рамы 3 охватывает дугообразную стяжку 34. Наличие этой стяжки 34 обеспечивает дублирование фиксаторов 23 при максимальных углах ограничения поворота рамы 3 по- средством опорных роликов 17, а также повышает надеж- ность при эксплуатации подвижных частей рамы 3 относи- тельно основания I.

Для создания универсальности использования дан- ной конструкции шины для разновозрастных групп - по ти- поразмерам голени и бедра (от 10-летнего возраста и вы- ше) рама 3 установлена на основании I с возможностью продольного перемещения в вертикальной плоскости. В дан- ном конструктивном выполнении шины это достигается за счет того, что на конце вертикальной стойки 19 (фиг. 1) выполняют резьбу, ось 18 выполняет в виде валика, кото- рый надевает на указанную стойку 19 и с двух сторон крепят гайками 35 на нужной высоте. При этом блок 36 трссоболочной системы 13 с возможностью продольного пе- ремещения размещен на полке П-образного элемента 37 (фиг. 2), установленного с возможностью продольного пе- ремещения в направляющих 36, жестко закрепленных на осо- новании I.

Размещение блока 36 трссоболочной системы 13 на демпфирующим П-образном элементе 37 с возможностью про- дольного перемещения обеспечивает необходимые угловые и вертикальные ориентации для гибкой связи груза 14 с установленным на раме 3 устройством 6 для ориентации отломков голени. Кроме того, демпфирующий эффект от П- образного элемента 37 частично положительно сказывает-
сая при разовых "случайных" резких продольных перемещениях голени во время сна, способствуя уменьшению болевых ощущений.

Предлагаемая шина для лечения переломов голени работает следующим образом.

Рама 3 (фиг. 2) с серьёзой 15 устанавливается в горизонтальное положение с помощью двух фиксаторов 23 поворота рамы 3, прижатием последних к резиновому кольцу 39 (фиг. 1) на вертикальной стойке 19. Проведенную через пяточную кость спицу II (фиг. 2) натягивают в скобе 12. Голень 5 (фиг. 1) укладывают на трампач 25 так, чтобы ось вращения рамы 3 совпала с осью большеберцовой кости (точка A на фиг. 4), что обеспечивается рассасливанием или затягиванием трампача 25 в зависимости от объема мягких тканей голени 5. Спица II (фиг. 2) жестко фиксируется винтами 10 в пазах 9 стоек 8, под колленный стабиль подкладывается ватно-марлевая подушка (не показана). Бедро обертывается хлопчатобумажной пеленкой и к нему плотно подводится ложемент 26 за счет передвижения замков 30 и вращения вокруг оси 28. Через отверстия 33 продевается лента 32 (фиг. 1) и ложемент 26 пришнуровывается к бедру, после этого закручиваются стопорные винты 31 (фиг. 2). Производится репозиция отломков подбором груза 14 и с помощью устройства 6 для ориентации отломков голени. Точность репозиции контролируется рентгенологически.

Установив один из фиксаторов 23 (фиг. 5) на угол α ($\approx 50^\circ$), больной одновременно поворачивается на бок, после чего производится фиксация положения другим фиксатором 23. При повороте больного на бок происходит вращение рамы 3, жестко соединенной с серьёзой 15, и устройства 6 для ориентации отломков голени, при этом тросик с грузом 14 остается неподвижным. Вращение рамы 3 происходит за счет передачи усилия с бедра через ложемент 26 на раму 3. Отсутствие ротационных смещений обусловливается одновременным продольным перемещением проксимальных отломков, фиксированных опосредовано через
выполненном в серье (I5), и взаимодействующих с вертикальной стойкой (I9).

5. Шина по п. I, отличающаяся тем, что рама (3) установлена на основании (I) с возможностью продольного перемещения в вертикальной плоскости, при этом блок (36) трюемочной системы (I3) с возможностью продольного перемещения размещен на полке демпфирующего П-образного элемента (37), установленного с возможностью продольного перемещения в направляющих (38), жестко закрепленных на основании (I).

6. Шина по п. I, отличающаяся тем, что со стороны расположения бедра на продольных стенках (20) рамы (3) установлена ложемент (26) бедра.

7. Шина по п. 6, отличающаяся тем, что ложемент (26) бедра установлен на раме (3) с возможностью продольного перемещения и с возможностью углового поворота относительно оси (28), перпендикулярной продольной оси рамы (3).

8. Шина по п. 6, отличающаяся тем, что рама (3) снабжена дополнительной опорой для ложемента (26) бедра, выполненной в виде дугообразной стяжки (34), расположенной в одной плоскости с поперечной стенкой (21) рамы (3), жестко закрепленной концами на ее внутренней поверхности, при этом поперечная стенка (21) рамы (3) охватывает дугообразную стяжку (34).

9. Шина по п. 6, отличающаяся тем, что ложемент (26) бедра выполнен из поливика.
INTERNATIONAL SEARCH REPORT

International Application No.
PCT/SU 90/00058

I. CLASSIFICATION OF SUBJECT MATTER (if several classification symbols apply, indicate all) *

According to International Patent Classification (IPC) or to both National Classification and IPC

IPC: A 61 F 5/04 // A 61 B 17/56

II. FIELDS SEARCHED

Minimum Documentation Searched 7

<table>
<thead>
<tr>
<th>Classification System</th>
<th>Classification Symbols</th>
</tr>
</thead>
<tbody>
<tr>
<td>IPC:</td>
<td>A 61 F, 5/04, A 61 B 17/56+ 17/60</td>
</tr>
</tbody>
</table>

Documentation Searched other than Minimum Documentation to the Extent that such Documents are Included in the Fields Searched 8

III. DOCUMENTS CONSIDERED TO BE RELEVANT 9

<table>
<thead>
<tr>
<th>Category</th>
<th>Citation of Document, 11 with indication, where appropriate, of the relevant passages 12</th>
<th>Relevant to Claim No. 13</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>SU, A1, 1459663 (MOSKOVSKY MEDITTSINSKY STOMATOLOGI-CHESKY INSTITUT IM. N.A. SEMASHKO) 23 February 1989</td>
<td>1-3</td>
</tr>
<tr>
<td>A</td>
<td>US, A, 2020262 (HARRY HERSCHEL LEITER), 5 November 1935, the claims, figures 1-4</td>
<td>4, 5, 7, 8</td>
</tr>
<tr>
<td>A</td>
<td>US, A, 2319609 (A.H. LA GROSE), 18 May 1943, the claims, figures 1,4</td>
<td>9</td>
</tr>
</tbody>
</table>

* Special categories of cited documents: 10

"A" document defining the general state of the art which is not considered to be of particular relevance

"E" earlier document but published on or after the international filing date

"L" document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another citation or other special reason (as specified)

"O" document referring to an oral disclosure, use, exhibition or other means

"P" document published prior to the international filing date but later than the priority date claimed

"T" later document published after the international filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the invention

"X" document of particular relevance; the claimed invention cannot be considered novel or cannot be considered to involve an inventive step

"Y" document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such documents, such combination being obvious to a person skilled in the art.

"A" document member of the same patent family

IV. CERTIFICATION

Date of the Actual Completion of the International Search
4 February 1991 (04.02.91)

Date of Mailing of this International Search Report
4 March 1991 (04.03.91)

International Searching Authority
ISA/SU

Signature of Authorized Officer

Form PCT/ISA/210 (second sheet) (January 1985)
<table>
<thead>
<tr>
<th>Катето-</th>
<th>Ссылка на документ*, с указанием, где необходимо, частей, относящихся к предмету поиска</th>
<th>Относится к пункту формулы №*</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>SU, A1, I459663 (МОСКОВСКИЙ МЕДИЦИНСКИЙ СТОМАТОЛОГИЧЕСКИЙ ИНСТИТУТ ИМ. Н.А.СЕМАШКО) 23 февраля 1989 (23.02.89)</td>
<td>I-3</td>
</tr>
<tr>
<td>A</td>
<td>US, A, 2020262 (HARRY HERSCHEL LEITNER), 5 ноября 1935 (05.11.35), формула, фиг. I-4</td>
<td>4,5,7,8</td>
</tr>
<tr>
<td>A</td>
<td>US, A, 2319609 (A.H.IA GROSSE), 18 мая 1943 (18.05.43), формула, фиг. I,4</td>
<td>9</td>
</tr>
</tbody>
</table>

* Особые категории ссылочных документов:

- **A** документ, определяющий общий уровень техники, который не имеет более близкого отношения к предмету поиска.

- **E** более ранний патентный документ, опубликованный на дату международной подачи или после нее.

- **L** документ, подтверждающий существование признаков, на который не идет ссылка, с целью установления даты публикации другого ссылочного документа, а также в других целях (как указано).

- **O** документ, относящийся к устному раскрытию, применению, выставке и т. д.

- **P** документ, опубликованный до даты международной подачи, но после даты этой подачи, на которую идет ссылка.

* Типы документов:

- **Т** более поздний документ, опубликованный после даты международной подачи или даты приоритета и не порождающий заявку, но приведенный для понимания принципа или теории, на которых основывается изобретение.

- **X** документ, имеющий более близкое отношение к предмету поиска, но не приведенный в изобретении.

- **Y** документ, имеющий более близкое отношение к предмету поиска, в котором не приведен данный документ как ссылка.

- **&** документ, являющийся членом одного и того же патентного семейства.

IV. УДОБОРОШЕНИЕ ОТЧЕТА

Дата действительного завершения международного поиска: 4 февраля 1991 (04.02.91)

Дата отправки настоящего отчета о международном поиске: 4 марта 1991 (04.03.91)

Международный поисковый орган: ISA/SU

Подпись уполномоченного лица: Н. Шепелев