
(19) United States
US 2005O152192A1

(12) Patent Application Publication (10) Pub. No.: US 2005/0152.192 A1
Boldy et al. (43) Pub. Date: Jul. 14, 2005

(54) REDUCING OCCUPANCY OF DIGITAL
STORAGE DEVICES

(76) Inventors: Manfred Boldy, Horb a.N. (DE); Peter
Sander, Mannheim (DE); Hermann
Stamm-Wilbrandt, Eberbach (DE)

Correspondence Address:
Whitham, Curtis & Christfofferson, P.C.
Suite 340
11491 Sunset Hills Road
Reston, VA 20190 (US)

(21) Appl. No.:

(22) Filed:

(30)

Dec. 22, 2003

110

Dec. 22, 2004

11/019,099

Foreign Application Priority Data

(EP).. O3104922.4

Sector Directory

1OO 120

Publication Classification

(51) Int. Cl." ... G11C 5/00
(52) U.S. Cl. .. 365/189.05

(57) ABSTRACT

A digital data Storage device physically Stores blocks of
identical data only once on its Storage medium wherein a
Second or even further identical blocks are Stored only as
reference referring to the first block of these identical blocks.
By this technique, Storage of duplicate data is most effec
tively avoided on the lowest Storage level of the disk Storage
device, even in cases where identical blocks are written by
different operating Systems. In the preferred embodiment,
the underlying Storage medium (magnetic hard disk, optical
disk, tape, or M-RAM) is segmented into two areas, the first
area particularly comprising a relatively Small block refer
ence table and the remaining physical Storage area for
Storing real blocks of information.

Real Blocks

105

115

Patent Application Publication Jul. 14, 2005 Sheet 1 of 10 US 2005/0152192 A1

Sector Directory Real Blocks

105 V.

110

115

M

1OO 120 FIG. 1A

Sector Table Sector Storage
10GB 10GB

Expandable

3. & : -->
3. 170

150 155 160 165 FIG. 1B

R FP S
Sector Number D fingerprint First Block LIFO

2 Ao35
13 A036
14 A037
15 A038
16 AO39
17 AO3A
18 AO3B
19 AO3C
20 AO3D
2 AO3E

FIG. 2 FIG. 3 FIG. 4

L
Block (prev) (..next) (.rc) (.fp)
Number Prev. Block Next Block Reference Count Fingerprint

14557 ---H
4558 H
14559 ---H
14560 ---
14561

14562 PPPP 14563
14564 H H.
E.

Patent Application Publication Jul. 14, 2005 Sheet 2 of 10 US 2005/0152192 A1

"Blockwrite(s,blk III)"

O O

yes yes
620

Orig
phyS. read(b)

625
ae

blk and orig
identical ?

630 phys. Write
b, blk

640

FIG. 6A

Patent Application Publication Jul. 14, 2005 Sheet 3 of 10 US 2005/0152192 A1

"make block b available for writing"

aux==gray Code?

b).rc = -1
(mark block
as defect)

G) push (U, b)

FIG. 6B

Patent Application Publication Jul. 14, 2005 Sheet 4 of 10 US 2005/0152192 A1

"Write block Or increase reference COunt"

700
b = position of blk
in list with fingerprint fn

705

O
b == undef ?

Patent Application Publication Jul. 14, 2005 Sheet 5 of 10 US 2005/0152192 A1

"Blockread(s)"

800

Rs)==undef?

810

return phys. read (Rs)
805

return "something"

FIG. 7

Patent Application Publication Jul. 14, 2005 Sheet 6 of 10 US 2005/0152192 A1

High level formatting of storage (initialization)

for al SectorS S: 900

R(s) = undef

for all possible fingerprints fin:
FPfn) = undef 905

910
initialize U as empty stack

for all remaining real blocks b:
push(U,b)

for all real blocks b:
(b) prev = undef
b.next = undef

Lb.rc = 0
b).fn = undef

915

920

Patent Application Publication Jul. 14, 2005 Sheet 7 of 10 US 2005/0152192 A1

"find position of blk in list with fingerprint fn"

1000

FP frn)==undef ?

yes
1005 1010

b = FPfn

Orig = phyS. read(b)

blk and orig
identical ?

1015

yes
yes

- return b

FIG. 9A

Patent Application Publication Jul. 14, 2005 Sheet 8 of 10 US 2005/0152192 A1

"remove b from list with fingerprint fn"

-1100
O

yes
1105

FPIfn) = L(b).next Lb).prev).next
b).next

FP(fn). prev = undef

1125

1110

Lb.next ==
undef ?

1115

Lb).next = undef

1120

(b) prev = undef

LL(b.next).prev
(b)-prev

FIG. 9B

Patent Application Publication Jul. 14, 2005 Sheet 9 of 10 US 2005/0152192 A1

"prepend b to list with fingerprint fn"

1200

FPfn) == undef

Patent Application Publication Jul. 14, 2005 Sheet 10 of 10 US 2005/0152192 A1

"Initialize U as empty stack"
1305

FIG. 1 OA

"push(U,b)"
1320

1325
UIUO =b

FIG. 1 OB

"b = pop(U)"
1340

b = U(UO)

1345

U(O) = U(O - 1

FIG 1 OC

US 2005/01521.92 A1

REDUCING OCCUPANCY OF DIGITAL STORAGE
DEVICES

FIELD OF THE INVENTION

0001. The invention generally relates to digital data stor
age devices Such as magnetic hard disk drives, optical disk
drives, tape Storage devices, Semiconductor-based Storages
emulating or virtually realizing hard disk drives like Solid
hard disks or RAM disks Storing information in continuous
data blockS. More specifically, the invention concerns opera
tion of Such a digital Storage device in order to reduce
Storage Occupancy.

BACKGROUND OF THE INVENTION

0002. In computer hardware technology it is well-known
to use disk storage devices like hard disk drives (HDDs) or
optical disk drives built-up of one or a Stack of multiple hard
disks (platters) on which data is stored on a concentric
pattern of magnetic/optical tracks using read/write heads.
These tracks are divided into equal arcs or Sectors. Two
kinds of Sectors on Such disks are known. The first and at the
very lowest level is a Servo Sector. In the case of a magnetic
Storage device, when the hard disks are manufactured, a
Special binary digit (bit) pattern is written in a code called
gray code on the Surface of the disks, while the drive is
open in a clean room, with a device called "servo writer'.
0003. This gray code consists of Successive numbers that
differ by only a Single bit like the three bit code Sequence,
000, 001", 011", 010", 110', etc. Although many gray codes
are possible, one specific type of gray code is considered the
gray code of choice because of its efficiency in computation.
Although there are other Schemes, the gray code is written
in a wedge at the Start of each Sector. There are a fixed
number of Servo Sectors per track and the Sectors are
adjacent to one another. This pattern is permanent and
cannot be changed by writing normal data to the disk drive.
It also cannot be changed by low-level formatting the drive.
0004 Disk drive electronics use feedback from the heads
which read the gray code pattern, to very accurately position
and constantly correct the radial position of the appropriate
head over the desired track, at the beginning of each Sector,
to compensate for variations in disk (platter) geometry
caused by mechanical StreSS and thermal expansion or
contraction.

0005. At the end of the manufacturing process, the hard
disk Storage devices generally are low-level formatted.
Afterwards, only high-level operations are performed Such
as known partitioning procedures, high-level formatting and
read/write of data in the form of blocks as mentioned above.
All high-level operations can be derived from only two base
operations, namely a BlockRead and a BlockWrite opera
tion. Thus even partitioning and formatting, the latter inde
pendently of the underlying formatting Scheme like MS
DOS FAT, FAT32, NTFS or LINUX EXT2, are
accomplished using the mentioned base operations.
0006 When high-level formatting such a disk drive, each
disk (platter) is arranged into blocks of fixed length by
repeatedly writing with a definite patch like “S5A'. After
formatting, when Storing data in Such disk Storage devices,
these data are Stored as continuous data Segments on the disk
(platter). These continuous data segments are also referred to
as “data” or, simply, “blocks” and such terminology will be
used hereinafter.

Jul. 14, 2005

0007. It is to be noted that, in known tape storage devices,
data are stored in form of data blocks, as well. The only
difference between the above described hard disk devices
and these tape Storage devices is that data Stored on HDDs
are directly accessible by means of the read/write head
(so-called direct memory access DMA operation mode),
whereas data Stored on tapes are only accessible in a
Sequential manner Since the tape has to be wound to the
location where the data of interest are stored before these
data can be accessed.

0008. In order to minimize storage occupancy in those
Storage devices, it is known to avoid duplicate data. A disk
drive System comprising a Sector buffer having a plurality of
Segments for Storing data and reducing Storage occupancy is
disclosed in U.S. Pat. No. 6,092,145 assigned to the assignee
of the present invention. Generally, HDD systems require a
sector buffer memory to temporarily store data in the HDD
System because the data transfer rate of the disk is not equal
to the data transfer rate of a host computer and thus a Sector
buffer is provided in order to increase the data I/O rate of
new high capacity HDD systems. The system described
therein particularly includes a controller for classifying data
to be stored in the sector buffer and for storing a portion of
the classified data in a Segment of the Sector buffer Such that
the portion of classified data Stored in the Segment is not
Stored in any other Segment in the Sector buffer. Therefore,
the sector buffer is handled more efficiently, and the com
putational load to check for duplicated data is reduced and
the disk drive thus improves data transfer efficiency.

0009. The subject matter of the U.S. Pat. No. 6,092,145,
in other words, concerns an improved method for read-ahead
and write-ahead operations using a Sector buffer wherein
duplicates are eliminated only in the Sector buffer imple
mented on the hard disk or a separate Random Access
Memory (RAM), in order to provide the improved transfer
efficiency mentioned above.
0010 Another approach for optimizing storage occu
pancy is disclosed in U.S. Pat. No. 5,732,265 assigned to
Microsoft Corporation. Particularly disclosed is an encoder
for use in CD-ROM pre-mastering software. The storage in
the computer readable recording medium (CD-ROM) is
optimized by eliminating redundant Storage of identical data
Streams for duplicate files whereby two files having equiva
lent data Streams are detected and encoded as a Single data
Stream referenced by the respective directory entries of the
files. More particularly addressed therein is the problem of
data consistency that arises when multiple files are encoded
as a single data Stream and when these files are separately
modified by an operating System or application program. In
U.S. Pat. No. 5,732,265 it is further disclosed to implement
Such an encoder in an operating System or file System to
dynamically optimize Storage in the memory System of the
computer wherein the above-described mechanism is
applied at the time a file is created or Saved on a data Volume
to detect whether the file is a duplicate of another existing
file on the data volume.

0011. The above-discussed prior art approaches, how
ever, have a disadvantage in that they do not address
reduction of Storage occupancy of Stored user data (e.g.
within a file or between files) which is stored in an above
identified data Storage device. Only as an example, it is
referred to text or picture files where blocks frequently are

US 2005/01521.92 A1

fully represented by a recurring data byte being regarded as
duplicate data in the present context. Nevertheless, as com
puter usage and application programs Supporting it has
become more Sophisticated, there is an increased likelihood
that relatively large portions of individual (possibly large)
files comprising many blocks of data may be duplicated in
many Stored files, letterhead and watermarks Stored in
documents and portions of image files representing rela
tively large image areas having little detail therein being
only a few examples. Further, as the capacity of memory
devices increases, it becomes even more clearly impractical
to compare a block to the stored with all blocks which-may
have been previously Stored in one or more memory devices
to determine if an identical block has been previously stored.

SUMMARY OF THE INVENTION

0012. It is therefore an object of the present invention to
provide an improved mechanism for minimizing data occu
pancy in an above Specified digital data Storage device.
0013 A further object is to provide such a data storage
device with enhanced data access and transmission perfor

CC.

0.014) Another object is to provide a mechanism for
minimizing data occupancy in Such a data Storage device
that is transparent to an operating System of a computer
using the data Storage device.
0.015 The above objects are achieved by a digital data
Storage device and a method for operating Same in accor
dance with the respective independent claims. Advantageous
features are Subject matter of the corresponding Subclaims.
0016. The underlying concept of the invention is to
physically Store blocks of identical data only once on the
Storage medium of the data Storage device wherein a Second
block or even further identical blocks are stored only as
reference(s) referring to the first block of these identical
blockS. AS a consequence, Storage of duplicate data is most
effectively avoided at the lowest storage level of the disk
Storage device, even in cases where identical blocks are
written by different operating Systems. The proposed method
thereby effectively avoids data duplicates being created on
the Sector level of the Storage medium. The proposed
mechanism is operating System independent or fully trans
parent to an operating System, respectively, Since it operates
on the pre-mentioned block/sector level which is not known
by the operating System. In contrast to the above-discussed
known approaches, the invention proposes, when writing to
an existing block of information onto the Storage medium,
not to modify the real block itself but, moreover, to modify
only the relatively small reference table. Thus identical
blocks of information are stored only once on the block level
of the Storage device and accessed or addressed only using
reference information Stored in the reference table.

0.017. In the preferred embodiment, the underlying stor
age medium (magnetic hard disk (platter), optical disk, tape,
or M-RAM) is segmented into two areas, the first area
comprising a relatively small block reference table (in the
following briefly referred to as “reference table”) and the
remaining physical Storage area for Storing real blocks of
information. Despite differences in the Storage mechanism,
it is emphasized that the present invention can also be
applied to tape Storage devices Since it does not depend on
the underlying data access mechanism.

Jul. 14, 2005

0018. The possible entries of the reference table, in
another embodiment, are continuously numbered wherein
the reference table contains, for each real block, at least one
entry. This entry contains a unique identifier for identifying
the physical sector where the real block is stored in the
remaining physical Storage area. The length of this entry is
preferably defined as the maximum amount of required
binary digits (bits) for real sector IDs.
0019. In yet another embodiment, a real block stored in
the Second area of the Storage medium comprises, in addi
tion to other required information like a header, the Stored
data and a Cyclic Redundancy Checking (CRC), a reference
counter. That counter counts the number of references to the
present real block. The reference counter is preferably used
to identify whether a block is used or not.

0020. According to another aspect, as the result of a
low-level formatting of the Storage medium after manufac
ture/assembly of the Storage device, the number of real
blocks available for Storing equals the number of entries of
the reference table. Only later, during operation of the
Storage medium where the Second area of the Storage
medium is filled with blocks of real data, the size of the
reference table will be adapted or its optimum size being
determined. Thus the optimum size can be re-calculated on
a periodic time basis.

0021 According to still another aspect of the invention,
during the above-described low-level formatting or a Suc
cessive formatting Step after the low-level formatting of a
So-called “intermediate format' of the Storage medium,
three tables, the above mentioned reference table, a linkage
or chain table and a fingerprint table are created. Implemen
tation of the fingerprint table presumes that for each block to
be written a "fingerprint” can be calculated. An exemplary
fingerprint algorithm is a cyclic redundancy check (CRC)
mechanism which preferably is used for calculation of the
entries of the fingerprint table. CRC is a well-known mecha
nism of checking for errors in data that has been transmitted
on a communications link. A Sending device applies a 16- or
32-bit polynomial to a block of data that is to be transmitted
and appends the resulting cyclic redundancy code to the
block. The receiving end applies the same polynomial to the
data and compares its result with the result appended by the
Sender. If they agree, the data has been received Successfully.
If not, the Sender can be notified to resend the block of data.

0022. In the preferred embodiment, the fingerprint table,
for a given fingerprint value, contains the first block iden
tified by a block identifier (BLOCK-ID) with that finger
print. The chain table, in that embodiment, is bi-linked and
contains, for each real block, its predecessor and Successor
in the list of blocks with equal fingerprint and the reference
count of the corresponding block and the fingerprint of the
block. The reference table, in that embodiment, is continu
ously numbered and contains at least an entry for each real
block. That entry preferably consists of the mentioned
BLOCK-ID.

0023. In order to enable dynamic expansion of the ref
erence table in accordance with the above-mentioned pro
ceSS for optimizing the Storage area of the Storage medium,
in a further embodiment, a particular Storage area on the
Storage medium is reserved for the reference table and thus
can not be occupied by real (user) data. The real data is only

US 2005/01521.92 A1

Stored in a real Sector wherein occupation of the real Sector
advantageously can move from Outer tracks to inner tracks
of the Storage medium.
0024. According to yet another embodiment, the refer
ence table is Stored outside the Storage medium of the
Storage device, preferably in an Electronically Erasable
Programmable Read-Only Memory (EEPROM/Flash RAM)
being part of the storage device or a virtual RAM disk
Storage being part of the main Storage of an underlying
computer System.

BRIEF DESCRIPTION OF THE DRAWINGS

0.025 In the following, the present invention is described
in more detail by way of preferred embodiments from which
further features and advantages of the invention become
evident wherein

0026 FIGS. 1A and 1B depict schematic views of an
available Storage Space of a storage device for illustrating
Segmentation of the Storage medium into two different areas
(FIG. 1a) and for illustrating the principle of expandable
sector storage (FIG. 1b) in accordance with the invention;
0.027 FIG. 2 depicts a reference table according to the
preferred embodiment of the invention;
0028 FIG. 3 depicts a fingerprint table according to the
preferred embodiment of the invention;
0029 FIG. 4 depicts a LIFO stack of free blocks accord
ing to the preferred embodiment of the invention;
0030 FIG. 5 depicts a linkage/chain table according to
the preferred embodiment of the invention;
0031 FIGS. 6A, 6B and 6C comprise a multiple-part
flow diagram illustrating a BLOCKWRITE procedure con
ducted in an HDD device in accordance with the invention;
0032 FIG. 7 is a flow diagram illustrating a BLOCK
READ procedure conducted in an HDD device in accor
dance with the invention;
0033 FIG. 8 is a flow diagram illustrating a HIGH
LEVEL FORMATTING procedure conducted in a Hard
Disk Drive (HDD) in accordance with the invention;
0034 FIG. 9A is a flow diagram illustrating a procedure
for FINDING THE POSITION OF A BLOCK IN A LIST
USING A FINGERPRINT conducted in an HDD in accor
dance with the invention;
0035 FIG.9B is a flow diagram illustrating a procedure
for REMOVING A BLOCK FROM A LIST USING A
FINGERPRINT conducted in an HDD in accordance with
the invention;
0.036 FIG. 9C is a flow diagram illustrating a procedure
for PREPENDING B TO LIST WITH FINGERPRINT IN
conducted in an HDD in accordance with the invention;
0037 FIG. 10A is a flow diagram illustrating INITIAL
IZATION OF AN EMPTY STACK;

0.038 FIG. 10B is a flow diagram illustrating an opera
tion of PUSHING AN ELEMENT ONTO A STACK; and
0.039 FIG. 10C is a flow diagram illustrating an opera
tion of RETRIEVING THE LAST PUSHED ELEMENT
FROM THE STACK

Jul. 14, 2005

DETAILED DESCRIPTION OF THE
PREFERRED EMBODIMENTS

0040 FIGS. 1A and 1B schematically show the avail
able Storage Space of a storage medium of an underlying
Storage device, the Storage Space being arranged in accor
dance with the invention. The underlying Storage device, as
mentioned above, can be any Storage device Storing infor
mation in continuous data blocks like Sector-oriented mag
netic hard disk drives, optical disk drives or tape Storage
devices, and even Semiconductor Storage devices emulating
or virtually realizing hard disk drives like solid hard disks or
RAM disks.

0041 FIG. 1A, more particularly, illustrates how the
underlying Storage medium is Segmented into two different
storage areas 100,105, the first area 100 containing a sector
directory (e.g. implemented as a table or the like) used for
operational administration of the underlying Storage device
according to the mechanism described hereinafter and the
second area (Real Sector) 105 representing physical stor
age Space for physically storing data. In FIG. 1A it is further
illustrated by the two arrows 110, 115, that the size of each
of the two storage areas 100, 105 can be adapted dynami
cally during operation of the underlying Storage device,
mainly depending on the Storage capacity requirements of
the mentioned Sector directory. The required Storage size for
Storing the Sector directory, again, mainly depends on the
number of currently existing data duplicates on Sector level
to be administered by means of the Sector directory.
0042 FIG. 1B shows a similar segmentation according
to another embodiment of the invention where a number of
different Storage devices or Storage Subunits are involved. In
this Scenario, the Sector directory is Stored on a Storage
medium 150 of a first storage device wherein the real blocks
are stored on the storage media 155, 160, 165 of other
devices. In this way, the Sector Storage area can be expanded
nearly arbitrarily, as indicated by arrow 170.
0043. In the following it is assumed that, for each block
to be written into a sector of the underlying HDD, a
fingerprint value (fn) can be calculated. A known example
for a fingerprint used in Storage media is the above men
tioned mechanism of Cyclic Redundancy Checking (CRC).
CRC is a method of checking for errors in data that has been
transmitted on a communications link whereby a Sending
device applies a 16-bit or 32-bit polynomial to a block of
data that is to be transmitted and appends the resulting cyclic
redundancy code (CRC) to the block. The receiving end
applies the same polynomial to the data and compares its
result with the result appended by the Sender. If they agree,
the data has been received Successfully. If not, the Sender can
be notified to resend the block of data.

0044) The mechanism for reducing storage occupancy in
accordance with the invention, as illustrated in FIG. 1A, is
based on Segmentation of the Storage area of the HDD or
other Storage device into two different areas, the first area
containing a Sector table and the Second area intended for
physically Storing data. In that Sector table area, there is
Stored a reference table R containing at least one entry for
each real block of data. As illustrated in FIG. 2, in the
preferred embodiment, the possible entries of that table are
continuously numbered whereby each entry comprises a
unique identifier (ID) of a stored block.
004.5 The sector table area also includes a fingerprint
table FP. As illustrated by the preferred embodiment

US 2005/01521.92 A1

shown in FIG. 3, the FP table contains, for each possible
fingerprint value A034, AO35, . . . , the ID of the first block
with that fingerprint. In addition, it comprises a LIFO (last
in-first out) stack U (FIG. 4) of unused (real) blocks and
a doubly-linked table L (FIG. 5) that comprises for a given
block indicated by block number . . . , 14557, 14558, ... the
following information:

0.046 the block's predecessor or previous block p p
(column prev) in the list of blocks with identical
fingerprint value;

0047 the block's successor or next block (column
next) in the list of blocks with identical fingerprint
value;

0048 the block's reference count (column "...rc);
and

0049 the block's fingerprint value (column “...fp).
0050. The number of available fingerprint values should
be on the order of the number of real blocks available in the
HDD. In the preferred embodiment, the number of finger
prints is equal to the number of blocks which guarantees that
the average number of blocks with equal fingerprint value is
Smaller than 1. Even in case that in Some lists of the above
tables the number of blocks with identical fingerprint is
larger than 1, then other fingerprint values are not realized
(or are not presented) at all and the inequality of a new block
compared with all blocks already stored on the HDD is
ascertained also without a physical read of the block.
0051. The following are examples for the calculation of
the table sizes showing that the tables require less than 2%
of memory:
0.052 Assume that n is the number of bytes required for
Storing block numbers. For example, four bytes (thirty-two
bits) are Sufficient up to a storage capacity of two terabytes
of the underlying storage device if the block size is 512 byte
(2032*512) and three bytes are sufficient for a storage
capacity of 16 million blockS.
0053. The resulting sizes of each of the above tables is:

0054)
0055)

Size (R)=#sectors n;
size (FP)=#fingerprints n;

0056 size (U)=#blocks n;
0057 size (L)=#blocks 4*n.

0.058 Thus, in case of #sectors=#blocks=#fingerprints
the resulting table size is #blocks 7*n.
0059) The above calculation shall now be illustrated by
the following four different quantitative estimations a)-d):

0060 a)2 GB HDD: Provides 1 million blocks (<2
024) of block size 2048 byte; therefore three bytes
(n=3) are sufficient, i.e. 21* 1.000.000=21 MB (can
even be kept in an EEPROM disposed in the HDD);

0061 b) 30 GB HDD: Provides 15 million blocks
(<2024) of block size 2048 byte; therefore three
bytes are sufficient, i.e. 21* 15.000.000=315 MB (is
about 1.05% of the entire storage capacity of the
HDD);

0062 c) 100 GB HDD: Provides 50 million blocks
(<2632) of block size 2048 byte; therefore four bytes

Jul. 14, 2005

(n=4) are sufficient, i.e. 28*50.000.000=1.4 GB (is
about 1.4% of the entire Storage capacity of the
HDD);

0063) d) 8 TB HDD: Provides 4 billion blocks (<2
032) of block size 2048 byte; therefore four bytes are
sufficient, i.e. 28*4.000.000.000=112 GB (is about
1.4% of the entire storage capacity of the HDD).

0064 Statistical investigations have revealed that data
Stored on block-oriented Server Storage devices, on an aver
age Scale, contain up to 30% of duplicate files, and non
compressed picture formats like ..bmp files often contain
equally colored areas, which are Stored as identical blockS
on the storage device (e.g. black or white areas in these
pictures), even for different pictures. In the following it is
described how formatting or reading and writing blocks are
performed or executed in the preferred embodiment, based
on the above described Storage device architecture. It should
be noted that the necessary procedural Steps do not depend
on the underlying Storage device technology and thus can be
used either in a hard disk Storage device or any other Storage
device where data are Stored as data blockS.

0065 Referring now to FIGS. 6 to 9 it is described in
more detail by way of flow diagrams how the particular
operations BLOCK WRITE, BLOCK READ, “HIGH
LEVEL FORMATTING, “FINDING THE POSITION OF
A BLOCK INALIST, REMOVING A BLOCK FROMA
LIST and INSERTING ABLOCK INTO ALIST (the last
three operations by using a fingerprint) are performed in a
Sector-oriented Storage in accordance with the invention.
These operations and method of operating a Storage device
are Sufficient to guarantee that any block is Stored exactly
once in the Storage medium and that different Sectors con
taining the same block only contain references to this one
block while limiting the processing overhead to do so. The
mechanism and method in accordance with the invention
must quickly check for a block, blk, that is already Stored on
the Storage medium which can be very large. This reduction
in processing time is achieved by calculating a fingerprint
for block blk and then quickly searching the relatively short
list of blocks already present with the same fingerprint, fin.
It should be noted that blockS containing different data may,
nevertheless, result in the same fingerprint being calculated.
However, since the number of possible fingerprints which
can result from calculation based on the data content of
block is very large, the list of blocks having different content
which may have the same (or any given) fingerprint will be
a very small fraction of the number of blocks stored and the
Search can thus be performed very quickly on a list of blockS
which will generally be very short.
0.066 BLOCK WRITE Operation
0067 For the present BlockWrite operation it is assumed
that a data block blk is to be written at a position of the
HDD designated with block numbers. For that operation,
procedural steps shown in FIGS. 6A-6C are performed. It is
noted that the three parts of the entire flow diagram are
linked at cardinal points B and 'C', respectively.
0068. In first step 600 shown in FIG. 6A, for the bit
pattern of the block blk, a fingerprint fn is calculated. An
appropriate method for calculating the fingerprint is the
above-mentioned known CRC mechanism although other
appropriate and possible techniques for computing a finger

US 2005/01521.92 A1

print will be evident to those skilled in the art. Next, the
HDD position number, s, at which the block is to be written
is looked up 605 in the reference table R at block position
“s and the resulting ID entry b is checked in the next step
610 to determine if the entry 'b' is undefined (undef). If
this condition is fulfilled (i.e. b is not defined because
nothing has been previously stored for Sector S) then the
procedure continues with step 655 shown in FIG. 6B
(through linking cardinal point B). If the condition is not
fulfilled (i.e. b is already defined) then it is checked in next
step 615 by means of the linkage table L if the above
calculated fingerprint fin is identical with the fingerprint
value stored in table L for the present block entry b.

0069. If condition 615 is fulfilled then in step 620 the
whole bit pattern of b is read and stored in orig. In the
following step 625 it is then checked if the bit pattern of
block blk is identical with the bit pattern orig. If so then
the procedure is terminated 630 because block blk is
already in place (blk==orig) in Storage. Otherwise it is
further checked 635 if the reference countrc for the present
block b contained in the linkage table L is equal to 1. If
so then the bit pattern 'b' of block blk is physically written
640 to the HDD at block position “s and the procedure
terminated 630 accordingly. Otherwise, in step 645, in the
linkage table L the reference countrc of b is decreased by
1.

0070 Referring now back to step 615, if the fingerprint
fn calculated by means of the linkage table L is not
identical with the fingerprint value stored in table L for the
present block entry “b, it is checked in step 650, if the
reference count value rc’ contained in table L for entry ‘b’
is equal to 1. If So, the procedure is continued with the next
step linked to point B shown in FIG. 6B. Otherwise the
reference count rc’ is decreased by 1 in following Step
645.

0071 Now referring to FIG. 6B, it is described how the
above BlockWrite procedure is continued at cardinal point
'B' to make entry “b available for writing with step 655
where the reference count value of entry “b in the linkage
table L is set '0'. In next step 660 the entry “b is removed
from the list contained in the fingerprint table FP for
fingerprint fn. The underlying procedure for the removal of
entry b is described in more detail referring to FIG. 9B.
0072 The following steps 665-680 surrounded by line
690 relate to a mechanism for handling physically defective
blocks in a HDD and thus represent an optional but further
advantageous perfecting feature of the invention. In Step 665
of that optional procedure, a gray code is physically be
written at block “b of the HDD. In the following step 670,
that block b is physically read and Stored temporarily as
variable “aux. In step 675 it is then checked if the data
pattern temporarily Stored in aux is equal with the original
gray code. If not, the present block can be assumed to be
defective and thus in the following step 680 that block is
marked as defective simply by Setting the reference count
'rc of that block to '-1. Otherwise, whether or not the
optional procedures indicated by line 690 are performed, the
procedure continues with Step 685 where a Stack operation
push(U, x) with X="b in the present case is executed,
making block b available as an unused block. The neces
Sary Stack operations are described in detail below with
reference to FIGS. 10A-10C.

Jul. 14, 2005

0073. In FIG. 6C it is illustrated how the presently
described procedure continues at cardinal point C. In the
first step 695 the entry for block b in the reference table R
is set undef (=undefined). In the following step 700, the
position of a block blk with fingerprint value fn in the list
with all blocks of fingerprint value "fn (FPfn) is deter
mined. The underlying procedure for finding that position is
described in more detail hereinafter referring to FIG. 9A. In
following step 705 it is checked if b is undefined (undef)
indicating, that no block in the list is identical to blk. If
YES, the above described pop(U) operation is performed
with the LIFO stack U in step 710 to receive a free block for
storing. In the next step 715 b is inserted into the fingerprint
table FP with the above calculated fingerprint value fn. For
the details of that insertion procedure it is referred to the
following description of FIG. 9C.
0074 Similarly to preceding step 640, in present step 720
the bit pattern of block blk is physically written to the HDD
at real block baccordingly. Thereafter, the reference count
rc’ of b is set 725 to the value 1 in the linkage table L,
because the block blk is stored for the first time on the
Storage device. In addition, the fingerprint value of table L
is set 730 with the above calculated value fn. In the last step
735, at the positions of the reference table R, the value b is
entered. Then the present procedure is terminated by Step
740.

0075). However, if the check box 705 reveals “NO, i.e.
that the entry b of the reference table R is not undefined
(undef), then the procedure continues with step 745 where
the reference count “rc of “b in the linkage table L is
increased by 1. The reason for this alternating path is that
an already existing block b with content identical to blk
was found in the list, and the new reference to that block
increases the number of blocks referring to it.
0076 Thus, in Summary, the block write operation in
accoredance with the invention first determines the finger
print of the block to be written and then searches to
determine if a block with the same fingerprint already exists
in memory. This Search is performed by looking up all
blocks in a doubly linked list of blocks with fingerprint fn.
The first element of this list is accessed in a constant time by
the array FP FPIfnis either undef (e.g. an empty list with
blocks offingerprint fn) or holds the first physical block with
fingerprint fin. If a Stored physical block b of content
identical to blk is found, all that has to be done is to set the
reference for S (RS=b) and increment the reference count
for block b by 1.
0077. That is, if no block is already stored which has the
Same fingerprint, the block to be written is not a duplicate of
any other previously written block. While blocks having
different content could have the same fingerprint computed
for them, this Screening by fingerprints reduces the number
of block which must be considered to a list which is
generally very short (and, as will be demonstrated, will only
be a relatively few blocks, on average) compared to the
number of blocks which can be stored in a potentially very
large memory.
0078 BLOCK READ Operation
0079. It is now assumed accordingly that a data block
with block number's is to be read from the storage device.
The following are the steps sufficient for that block read
operation in accordance with the preferred embodiment of
the present invention.

US 2005/01521.92 A1

0080. In step 800 (FIG. 7) it is checked if the entry at
position 's' is undefined (undef). If so, in step 805, an
arbitrary bit pattern is returned. Otherwise, in step 810, the
block blk at the position “s of the reference table R is
physically read and returned.

0081 HIGH-LEVEL FORMATTING Operation
0082) Referring now to FIG. 8, a preferred embodiment
of a procedure for high-level formatting a HDD is described
in detail by way of the depicted flow diagram. This proce
dures serves for initializing an HDD for applying the HDD
operation method according to the invention.

0083) In a first step 900 (FIG. 8), for all sectors s of the
HDD, the corresponding entries of the reference table R are
set undefined (undef), namely all entries of R. Then, in the
fingerprint table FP, for all possible fingerprint values fin,
FPIfn) is set 905 undefined (undef). In step 910, the LIFO
Stack U is initialized as an empty Stack. In the following Step
915, for all remaining real blocks b contained in the area 105
shown in FIG. 1A, the above described push operation, as
shown too in FIG. 8, is applied for X=b. In the final step 920
of the present formatting procedure, for all real blockSb, the
corresponding entries for the parameters previous block
prev, next block 'next and fingerprint value fin contained
in the linkage table L are set undefined (undef) wherein the
entry for the parameter reference count rc’ is set 0.

0084 FINDING THE POSITION OF A BLOCK IN A
LIST Operation

0085. According to the preferred embodiment illustrated
by way of the flow diagram depicted in FIG. 9A, the
procedure starts with step 1000 where it is checked if a given
fingerprint entry of the fingerprint table FP is undefined
(undef). If yes’ then it is returned 1005 undef since the
list of blocks with fingerprint fin is empty in this case.
Otherwise, the first block of the list of blocks with finger
print fn 1010 is denoted by “b. In the following step 1015
the block b is physically read and temporarily Stored as
variable orig. Then it is checked 1020 if the bit patterns of
blk and orig are identical. If so, then the block ID “b is
returned 1025. Otherwise, the next block stored in column
next of the linkage table L for present block b is set 1030
as a new block b. Thereafter it is checked 1035 if the new
block b is undefined (undef) (i.e. the list is completely
traversed). If so “undef is returned 1040. Otherwise it is
jumped back to step 1015 and this step executed for a next
block b. Thus the block ID of a block in the list identical
to blk is returned, if one exists, and otherwise undef is
returned as indication of non-existence of Such a block.

0086) REMOVING ABLOCK FROM ALIST Operation

0087. In the preferred embodiment illustrated in FIG.9B,
the procedure for removing a block b with a fingerprint
value "fn from the linkage table L starts with checking 1100
in the fingerprint table FP if block b is the first block in
that list. If so then the fingerprint value "fn of the next block
contained in linkage table L is fetched and in the fingerprint
table "FP" set 1105 as first block with that "fn value. There
after in the linkage table 'L' the corresponding entry with
that "fn value is fetched and the corresponding prev value
set 1110 undef. In the following steps 1115 and 1120 the
next and prev values of the present block bare both set
undef.

Jul. 14, 2005

0088 Referring back to step 1100, if the current block ‘b’
is not the first block in the list, it is jumped to the entry for
the previous block prev of present block b in the linkage
table L and the next block 'next entry for that entry is set
1125 as the next block 'next for the current block b in the
'L' table. In the next step 1130 following in the path it is then
checked if the status of the current entry set in step 1125 is
undef. If so, this path is continued with step 1115 followed
by step 1120 as described beforehand. Otherwise, an inter
mediate step 1135 is executed where it is jumped to the entry
for the next block 'next of present block b in the linkage
table L and the previous block preventry for that entry is
set 1125 as the previous block prev for the current block ‘b’
in the “L table.

0089 PREPEND B TO LIST WITH FINGERPRINT
FN

0090. As illustrated by the preferred embodiment for this
procedure for insertion of a block b having a fingerprint
value "fn into a linkage table L and a fingerprint table FP
shown in FIG. 9C, it is first checked 1200 if the underlying
entry for "fn in the fingerprint table “FP is undef. If so
then the next block entry and the previous block entry of the
“L table for “bare both set 1205,1210"undef. After this ‘b’
is inserted with its fingerprint value fn in the FP table and
the procedure is terminated 1220, i.e. the list consists of
block b in this case only.
0091) If the condition in step 1200 is not being fulfilled
(the list of blocks with fingerprint "fn is not empty) then the
procedure continues with Step 1225 of a Second path where
the present fingerprint value fin gathered from the finger
print table FP is set for next block 'next contained in the
linkage table “L. Thereafter the previous block prev con
tained in the linkage table L for that fingerprint is Set
1230 b (b is pre-pended to the list FPfn).
0092. It is important to note that, of all the above
described operations, only the block write operation requires
more than a constant time and that the block read operation
only has the Small and constant additional processing burden
of following the reference Rs). Therefore, the effect of the
invention on memory input/output rates is very slight while
optimally reducing memory occupancy by eliminating all
duplication of blocks of Stored data with a granularity
potentially much Smaller than files.
0093. It is also noteworthy that the above described tables
R, FP, L and the LIFO stack U, in part or even all, can be
implemented in a Static approach with predefined size or in
a dynamic approach where the size is dynamically adapted
to the actual Storage requirements for Storing the corre
sponding necessary data. The above described Search pro
cedures for finding data duplicates on Storage Sector level
can be implemented by way of a known indexing mecha
nism in order to enhance overall processing performance of
the described Storage management mechanism.
0094. In summary, it is clearly seen that the invention
provides for optimally reduced occupancy of memory
devices with minimal penalty in processing burden or use of
Storage. For example in case c discussed above in regard to
a 100 GB HDD, providing 50,000,000 blocks of 2048 byte
Storage, if working with 24-bit fingerprints, then even on a
fully written memory of totally different blocks, the average
length of a list of blocks having the same fingerprint will be

US 2005/01521.92 A1

50,000,000/2=2.9802, or, on average, less than three
blocks which must be read to determine if a block to be
stored is a duplicate of a block previously written. This
meritorious effect is increased with increasing memory
capacity since the average number of blocks which must be
read remains relatively Small while the memory capacity
may greatly increase and the difference between the number
of blocks of storage and the number of blocks which must
be read to identify or disprove the presence of a block blk
becomes increasingly great. Further, although the invention
has been described for a hard disk drive (HDD) only, it is
understood hereby, that the invention can be applied accord
ingly in a tape Storage or Semiconductor Storage or any
CPU-based Storage using block memory devices, if that
Storage comprises Segmentation into blocks as described
beforehand.

0.095. Further, the invention can also be implemented
either in a storage area network (SAN) or a network attached
Storage (NAS) environment. A SAN is a high-speed special
purpose digital network that interconnects different kinds of
data Storage devices with associated data Servers on behalf
of a larger network of users. Typically, a storage area
network is part of the overall network of computing
resources for an enterprise. A Storage area network is usually
clustered in close proximity to other computing resources
such as IBM S/390 mainframe computers but may also
extend to remote locations for backup and archival Storage,
using wide area network carrier technologies Such as asyn
chronous transfer mode or Synchronous optical networks.
0.096 ANAS is a hard disk storage that is set up with its
own network address rather than being attached to the
department computer that is Serving applications to a net
work's WorkStation users. By removing Storage access and
its management from the department Server, both application
programming and files can be served faster because they are
not competing for the same processor resources. The net
work-attached Storage device is attached to a local area
network (typically, an Ethernet network, the most widely
installed local area network (LAN) technology) and
assigned an IP address. File requests are mapped by the main
server to the NAS file server. A network-attached storage
consists of hard disk Storage, including multi-disk RAID
(redundant array of independent disks) Systems, and Soft
ware for configuring and mapping file locations to the
network-attached device. Network-attached Storage can be a
Step toward and included as part of the above mentioned
more Sophisticated Storage System known as SAN.

0097. In these environments, as pointed out in FIG. 1b,
the sector table (including the above described tables) is
Separated physically from the Sector Storage, i.e. both are
implemented on different disk Storage devices (e.g. HDDs).
Hereby it is enabled to implement a large Sector table that is
used to access Sector Storages arranged in a Stack of other
HDDs. It is mentioned hereby that today's HDD controllers
are able to manage 100 or even more HDDs. The mentioned
Stack of Sector Storage HDDS in case of need can be
extended easily insofar as the Sector table arranged on the
first HDD has only to be enlarged.

0098. It is further to be noted that the sector table, in
another embodiment, can also be arranged in a Solid-State
random access memory (RAM) thus enhancing processing
Speed for managing the Sector table.

Jul. 14, 2005

0099. Thereupon it is noteworthy that although the under
lying Storage device is an HDD Storage in the present
embodiment, the concepts and mechanisms described here
inafter can also be applied to other types of Storage devices
like Semiconductor-based Storages.

1. A digital data Storage device Storing information on a
Storage medium Segmented into blocks, wherein Said Storage
medium is Segmented into two areas, wherein the first area
comprises reference means and the remaining area of the
Storage medium is used for Storing Said information and
wherein a second or further block being identical with a first
block on block level is Stored only as reference referring to
the first block.

2. A digital data Storage device according to claim 1,
comprising at least one reference table containing at least
one entry for each block, at least one fingerprint table
containing fingerprint information for each block and at least
one chain table containing, for each block, at least informa
tion about blocks having Same fingerprints.

3. A digital data Storage device according to claim 2,
wherein the entries of Said reference table are numbered
consecutively.

4. A digital data Storage device according to claim 2,
wherein each of Said entries consists of at least one field
containing a unique identifier for identifying the physical
Sector where the real block is Stored in the remaining
physical Storage area.

5. A digital data Storage device according to claim 4,
wherein the length of a reference field is defined as the
maximum amount of required binary digits (bits) for real
Sector IDs.

6. A digital data Storage device according to claim 1,
wherein a real block Stored in Said remaining area of the
Storage medium comprises a reference counter for counting
the number of references to that real block.

7. A digital data Storage device according to claim 6,
wherein Said reference counter is used to identify how many
times a block is referred to.

8. A digital data Storage device according to claim 2,
wherein Said fingerprint table contains, for each fingerprint,
the first unique identifier of a block corresponding to Said
fingerprint.

9. A digital data Storage device according to claim 2,
wherein Said chain table contains, for a particular block, its
preceding block in the linkage table having Same fingerprint,
its Successive block in the linkage table having Same fin
gerprint, its reference count, and its fingerprint.

10. A digital data Storage device according to claim 1,
wherein Said Storage medium is formatted So that the num
ber of real blocks equals the number of entries of the
reference table.

11. A digital data Storage device according to claim 10,
wherein the number of real blockS is adapted on a periodic
time basis.

12. A digital data Storage device according to claim 1,
wherein a particular area of Said Storage medium is reserved
for the reference table and thus can not be occupied by real
(user) data wherein these real data is only stored in a real
Sector wherein occupation of the real Sector advantageously
can move from outer tracks to inner tracks of the Storage
medium.

13. A digital data Storage device according to claim 1,
wherein Said reference means is Stored outside the Storage
medium of the Storage device, preferably in a Random

US 2005/01521.92 A1 Jul. 14, 2005

Access-Memory (RAM) being part of the Storage device or ence table entries in a non-volatile Storage, preferably an
a virtual RAM disk Storage being part of the main Storage of Electrically Erasable Programmable Read-Only Memory
an underlying computer System. (EEPROM).

14. A digital data Storage device according to claim 13,
further comprising a fail-over means for Storing the refer

