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(57) L’invention est un dictionnaire de transmission de
données adapté a un systéme informatique pour coder,
stocker ou extraire des informations de transmission de
données reliées de fagon hiérarchique. Ce dictionnaire
est constitué¢ d’un arbre de définitions localisables par
ordinateur qui porte sur des informations de transmission
en rapport avec le systeme informatique, ou d’un groupe
de tels arbres. Ces arbres sont obtenus 4 partir d’un
premier groupe de définitions qui comprend les
caractéristiques des instructions, des réponses ou des
données utilisables par le systéme informatique. Ces
caractéristiques comprennent, s’il y en a, des propriétés
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(57) A data transmission dictionary is provided, which is
adapted for use by a computer system for encoding,
storing, or retrieving hierarchically related data
transmission information. The dictionary is comprised of
a group of one or more computer searchable definition
trees relating to transmission information of the
computer system. The trees are derived from a first
definition group which includes characteristics of
commands, replies or data usable by the computer
system. The characteristics include structure and value
properties and restrictions, if any, applying to the
commands, replies or data. Each tree represents,
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et des restrictions de structure et de valeur se rapportant
aux instructions, aux réponses ou aux données. Chacun
des arbres représente la définition de I'instruction, de la
réponse ou de la donnée a laquelle il se rapporte. Chaque
arbre comprend un noeud racine identifi¢ par un nom,
par exemple un code. Ce noeud racine comprend des
informations qui déerivent le type de l'arbre de
définitions en cause (c.-a-d., si cet arbre se rapporte 4 une
instruction, & une réponse ou 4 une donnée), et peut
comprendre un ou plusieurs noeuds descendants internes
ou terminaux. Ces noeuds représentent les composantes
de la définition représentée par D’arbre. Les noeuds
descendants contiennent une information décrivant le
niveau de ces noeuds dans I’arbre. Ces noeuds peuvent
comprendre des informations d’attributs, ainsi que des
valeurs requises se rapportant aux informations de
transmission représentées par eux.
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respectively, a definition of a the command, reply or data
to which it relates. Each tree includes a root node
identified by name, eg. a codepoint. The root node
includes information describing the type of definition
tree concerned (i.e. whether it relates to a command,
reply or data), and may include one or more internal or
terminal descendant nodes. These nodes represent
components of the definition represented by the tree. The
descendent nodes include level information describing
the level of the node within its tree. The nodes may
include attribute information, and may include value
requirements relating to transmission information
represented by the nodes.
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METHOD AND MEANS FOR ENCODING STORING AND RETRIEVING
HIERARCHICAL DATA PROCESSING INFORMATION FOR A COMPUTER SYSTEM

ABSTRACT

A data transmission dictionary is provided, which is adapted for use by a computer system
forencoding, storing, or retrieving hierarchicalily related data transmission information. The
dictionary is comprised of a group of one or more computer searchable definition trees
relating to transmission information of the computer system. The trees are derived from
a first definition group which includes characteristics of commands, replies or data usable
by the computer system. The characteristics include structure and value properties and
restrictions, if any, applying to the commands, replies or data. Each tree represents,
respectively, a definition of a the command, reply or data to which it relates. Each tree
includes a root node identified by name, eg. a codepoint. The root node includes
information describing the type of definition tree concerned (i.e. whether it relates to a
command, reply or data), and may include one or more internal or terminal descendant
nodes. These nodes represent components of the definition represented by the tree. The
descendent nodes include level information describing the level of the node within its tree.
The nodes may include attribute information, and may include value requirements relating
to transmission information represented by the nodes.
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METHOD AND MEANS FOR ENCODING STORING AND RETRIEVING
HIERARCHICAL DATA PROCESSING INFORMATION FOR A COMPUTER
SYSTEM

FIELD OF THE INVENTION

This invention relates to data processing and storage systems and in particular to methods
and means for specifying the syntax of a hierarchical language for use in data
transmissions of such systems.

BACKGROUND OF THE INVENTION

Data processing, for instance distributed processing, requires a connection protocol that
defines specific flows, and interactions. These flows and interactions convey the intent and
results of distributed processing requests. The protocol is necessary for semantic
connectivity between applications and processors in a distributed environment. The
protocol must define the responsibilities between the participants and specify when flows
should occur and their contents. Distributed applications allow operations to be processed
over a network of cooperating processors.

Clients and servers send information between each other using that set of protocols.
These protocols define the order in which messages can be sent and received, the data
that accompanies the messages, remote processor connection flows, and the means for
converting data that is received from foreign environments.

The client provides the connection between the application and the servers via protocols.
It supports the application end of the connection by: (1) Initiating a remote connection (2)
Translating requests from the application into the standardized format, otherwise known
as generating, (3) Translating replies from standardized formats into the application format,
otherwise known as parsing, (4) Disconnecting the link from the remote processor when
the application terminates or when it switches processors.
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The server responds to requests received from the client. It supports the server end of the
connection by: (1) Accepting a connection (2) Receiving input requests and data and
converting them to its own internal format (parsing), (3) Constructing (generating) and
sending standardized reply messages and data.

In a particular, distributed data processing architecture uses the Distributed Data
Management Architecture (DDM) used for the standardized format of the messages. DDM
provides the conceptual framework for constructing common interfaces for command and
reply interchange between a client and a server. Most DDM commands have internal
statement counterparts.

BRIEF DESCRIPTION OF THE DRAWINGS

Fig. 1 depicts DDM Objects.

Fig. 2 depicts a DDM Object Interchange Format.

Fig. 3 depicts a flowchart illustrating depth first searching.

Figs. 4a, b illustrate a example DDM Object: Root Node as defined in the
architecture.

Figs. 5a, b illustrate an example of the Root Node OPNQRY.

Fig. 6 comprises a diagram representing a method of constructing the definition for
loosely coupled files.

Fig. 7 illustrates a tree for the Command portion of ACCRDBRM.

Fig. 8 depicts an example of retrieving a definition for the LCF method.

Fig. 9 depicts a CASE method as used in RSM.

Fig. 10 comprises a diagram representing the construction of a DDM definition by
the root storage method.

Fig. 11 depicts an example of retrieving a definition for the RSM method.

Fig. 12 depicts an ADDG Flowchart.

Fig. 13 depicts a flowchart for step 1 of ADDG; generate DDMTXT.

Fig. 14 depicts a flowchart for step 2 of ADDG; create DDM definitions.

Fig. 15 depicts a flowchart for step 3 of ADDG; assemble DDM definitions.
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Fig. 16 depicts ADDG tool pseudocode.

Figs. 17a-l depict an implemented DDM dictionary and retrieval method in
accordance with the instant invention.

Fig. 18 comprises a representation of a DDM Command in the form of a tree.

Fig. 19 illustrates the DDM Dictionary Definition Syntax.

Fig. 20 depicts parsers and generators in a Distributed System.

Fig. 21 illustrates a tree for the Command portion of OPNQRY.

Fig. 22 illustrates a tree for the Command Data portion of OPNQRY.

Fig. 23 illustrates a tree for the Reply Data portion of OPNQRY.

Fig. 24 depicts the method of parsing and generation employed by the instant

invention.

DEFINITIONS

The following definitions are provided to assist in understanding the invention described
below. Additional information may be found in the manual, "IBM Distributed Data
Management Architecture Level 3: Reference, SC21-9526".

DSS (Data Stream Structure): DDM can be viewed as a multi-layer architecture for
communicating data management requests between servers located on different data
processing systems. All information is exchanged in the form of objects mapped onto a
data stream appropriate to communication facilities being used by DDM. A data stream
structure is a set of bytes which contains, among others, information about whether the
enclosed structure is a request, reply, or data (an object structure); whether the structure
is chained to other structures; etc. There are three general types of DDM data stream
structures: "request structures” ( RQSDSS ) which are used for all requests to a target
system for processing; "reply structures" ( RPYDSS ) which are used for all replies from
a target system to a source system regarding the conditions detected during the
processing of the request; and "object structures” ( OBJDSS ) which are used for all
objects sent between systems.
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Mnemonic: specifies a short form of the full name of a DDM object.

Class: describes a set of objects that have a common structure and respond to the same
commands.

Codepoint: A codepoint (code point) specifies the data representation of a dictionary
class. Codepoints are hexadecimal synonyms for the named terms of the DDM
architecture. Codepoints are used to reduce the number of bytes required to identify the
class of an object in memory and in data streams.

Command: Commands are messages sent to a server to request the execution of a
function by that server. For example, the command "Get_Record" can be sent to a file
system. Each DDM command normally returns (results in the sending of) one or more
reply messages or data objects.

DDM commands can be described under four headings:

1. Description: The description part usually includes, a Command Name, or the
mnemonic name of the command, such as "OPNQRY"; and an Expanded Name,
such as "Open Query", that is a description of the command function.

2. Parameters: The parameters or instance variables describe the objects that can (or
must be) sent as parameters of the command. The parameters can be sent in any
order because they are identified by their class codepoints. The parameters are
generally associated with a set of attributes (characteristics):

(a) required, optional, or ignorable. A Required attribute specifies that support or use of

a parameter is required: when a parameter is specified as being required in a parameter

list for a command, the parameter must be sent for that command. All receivers supporting

the command must recognize and process the parameter as defined. When specified in
the parameter list of a reply message, the parameter must be sent for that reply message.
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All receivers must accept the parameter. An Optional attribute specifies that support or use
of a parameter is optional. When a parameter is specified as being optional in a parameter
list for a command, the parameter can optionally be sent for that command. All receivers
supporting the command must recognize and process the parameter as defined and use
the default value if it is not sent. When specified in the parameter list of a reply message,
the parameter can optionally be sent for that reply message. All receivers must accept the
parameter. An Ignorable attribute specifies that a parameter can be ignored by the
receiver of a command if the receiver does not provide the support requested. The
parameter can be sent optionally by all senders. The parameter must be recognized by all
receivers. The receiver is not required to support the architected default value and does
not have to validate the specified value;

(b) Repeatable or Not Repeatable: A Repeatable attribute specifies that a parameter can
be repeated in the value of the object variable being described. There are no requirements
that the elements of the list be unique or that the elements of the list be in any order;

(c) Length characteristic: This describes the length requirements or restrictions of the
corresponding data transmission.

3. Command Data: the list of all the possible classes of data objects (for example,
records) that can be associated with the command. Each data object is generally
associated with a set of attributes (characteristics), as are the parameters.

4. Reply Data: The reply data section lists all possible classes of data objects that can be
returned for the command. The list may contain notes about selecting the data objects to
return. The reply data objects that are normally returned for the command. When
exception conditions occur, the reply data objects may not be returned, instead reply
messages may return a description of the exception conditions.

All DDM commands may be enclosed in a RQSDSS before transmission:

RQSDSS(command(command parameters))
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All DDM command data objects and reply data objects may be enclosed in an OBJDSS
structure for transmission.

OBJDSS(command-data-object(object parameters)) OBJDSS(reply-data-object(object
parameters))

All DDM command replies may be enclosed in a RPYDSS structure for transmission:

RPYDSS(command-reply(reply parameters))

Parsing: the process of verifying syntactic correctness of a DDM string (DDM stream), and
of translating it into a recognizable internal format.

Generation: the process of creating a valid DDM string from an internal format.

Tree: A tree structure is either: (a) an empty structure, or (b) a node with a number of
subtrees which are acyclic tree structures. A node y which is directly below node x is
called a direct descendent of x; if x is atlevel | and vy is at level |+1 the x is the parent of
y and y is the child of x . Also, x is said to be an ancestor of y. The root of the tree is
the only node in the tree with no parent. If a node has no descendents it is called a terminal
node or a leaf. A node which is not a terminal node nor a root node is an internal node.

DDM Architecture Dictionary: The architecture dictionary describes a set of named
descriptions of objects. The primary objects listed in the dictionary are broken down into
the classes "CLASS" and " HELP". Each of these objects has an external name and an
external codepoint that can be used to locate it. These are complex objects (nested
collections of many sub-objects). The entries in a dictionary are of varying length and each
contains a single complete object. For scalar objects, all of the data of the object
immediately follows the length and class codepoint of the object. For collection objects, the
data following the length and class codepoint of the collection consists of four byte binary
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numbers specifying the entry number in the dictionary at which the collection is stored.
The DDM Architecture Dictionary is also referred to as the DDM Architecture document.

DDM Architecture: The DDM architecture is fully described by the DDM Architecture
Dictionary.

Forest: A grouping of trees.

Parameter: There are three kinds of DDM objects, as shown in Figure 1.

First there are simple scalars which contain only a single instance of one of the
DDM data classes, such as a single number or a single character string. DDM attributes,
such as length, alignment and scale are simple scalars.

Then, there are mapped scalars which contain a sequence of instances of the
DDM data classes that are mapped onto a byte stream by an external descriptor that
specifies their class identifier and other attributes.

Finally, there are collections which contain a sequence of scalar and collection
objects. DDM commands, reply messages, and attribute lists are all examples of collection
objects.

All objects (including parameters) are transmitted as a contiguous string of bytes
with the following format:
(a) a two byte binary length. The length field of an object always includes the length of the
length field and the length of the codepoint field, as well as the length of the object's data
value;
(b) a two byte binary value that specifies the codepoint of the class that describes the
object. All objects are instances of the "CLASS" object that specifies the variables of the
object, specifies the commands to which the object can respond, and provides the
programming to respond to messages;
(c) an object's data area consists of the data value of primitive classes of objects, such as
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numbers and character strings, or the element objects of a collection. A parameter can be
either a scalar or a collection.

Since the class of a DDM object describes its parameters, it thereby defines the
interchange data stream form, as shown in Figure 2. This makes it possible to transmit a
command consisting of multiple scalar parameters from one manager to another.

Definition: A definition as used in reference to data processing structures and operations
described herein is the association of a name with an attribute list. Definitions are used
to specify the characteristics of variables, values and other aspects of objects.

Database Management System (DBMS): A software system that has a catalog describing
the data it manages. It controls the access to data stored within it. The DBMS also has
transaction management and data recovery facilities to protect data integrity.

SQL( Structured Query Language): A language used in database management systems
to access data in the database.

Depth First Search: is a means of systematically visiting nodes in a tree. The order is as
follows: (1) Visit the root node; (2) Visit the children of the root node; (3) To visit a child,
chose its children and visit them in turn. [n general, other alternatives at the same level
or below are ignored as long as the current node that is being visited is not a terminal
node. One way to implement depth-first search is depicted in Figure 3.

The corresponding pseudo-code is:

1. Form a one element queue consisting of the root node.

2. Until the queue is empty, remove the first element from the queue and add the first
element's children, if any, to the front of the queue.

Other types of searches are possible, such as breadth-first search, which expands the
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nodes in order of their proximity to the start node, measured by the number of arcs
between them.

Application Requester(AR): the source of a request to a remote relational database
management system (DBMS). The AR is considered a client.

Application Server(AS): the target of a request from an AR. The DBMS at the AS site
provides the data. The AS is considered a server.

DESCRIPTION OF THE IBM DISTRIBUTED DATA MANAGEMENT (DDM) LANGUAGE
The Distributed Data Management (DDM) Architecture (as described in the IBM
publication, "IBM Distributed Data Management Architecture Level 3: Reference, SC21-
9526") describes a standardized language for Distributed Applications. This language is
used by the data management components of existing systems to request data services
from one another. It manipulates data interchange amongst different kinds of currently
existing systems, efficient data interchange amongst systems of the same kind; common
data management facilities for new systems; and evolution of new forms of data
management. DDM provides the abstract models necessary for bridging the gap between
disparate real operating system implementations. Some of the services addressed by the
DDM distributed database models are to

(a) establish a connection with a remote database;

(b) create application specific access methods (packages) in the database or dropping
them from the database. These packages include the definitions of application variables
used for input and output of SQL statements defined by the Application Requester;

(c) retrieve descriptions of answer set data;

(d) execute SQL statements bound in a database package;

(e) dynamically prepare and execute SQL statements in-the database;

(f) maintain consistent unit of work boundaries between the application requester and the
database;

(9) terminate the connection with the database.
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SPECIFICATION OF DDM OBJECTS

The DDM Architecture is defined by a "dictionary" of terms that describe the concepts,
structures, and protocols of DDM. DDM entities are called objects. They are also
synonymously called terms. See Figures 4a and 4b for a sample DDM Object. The object
drawn is EXCSATRD (Exchange Server Attributes Reply Data). In order to obtain more
information about the object EXCSATRD, one should look at the objects that form
EXCSATRD. Forexample, the objects EXTNAM, MGRLVLLS, SRVCLSNM, SRVNAM and
SRVRLSLYV, which constitute the parameters of EXCSATRD are themselves DDM objects
and can be found elsewhere in the architecture (architecture dictionary) in alphabetical
order. Every object has a help variable. This variable is for supplemental information and
explains the purpose and the semantics of the object. Another example of a DDM
Command as documented in the DDM architecture reference, above is depicted in Figures
5a, and 5b.

Like object-oriented languages, DDM has three characteristics that make it object-oriented.
These are encapsulation, inheritance, and polymorphism.

Encapsulation is a technique for minimizing interdependencies amongst separately written
objects by defining strict external interfaces. DDM uses this concept to define each object
class (an instance of which is an object) that is part of the architecture. Most of the DDM
object classes have the following attributes: inscmd (instance commands), clscmd (class
commands), insvar (instance variables), clsvar (class instance variables). In addition, there
are other attributes, namely length and class.

Length indicates length or size of the object. There are two length attributes associated
with most objects: one is the abstract length referring to the fact that if the entire object
class were to be transmitted, including help text, it would be as long as the value specified
with the attribute. This is always "*", where "™*" represents a indefinite length due to its
abstract nature. The second length attribute is a part of the instance variable list. It
specifies the length of the object when it is transmitted as part of the protocol. The length
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of some objects is clear (fixed) at the time of definition. Most objects however, have
variable lengths which are determined depending on their use. Thus, these objects have
their lengths available only at the time of transmission of the objects.

Class indicates the class name or codepoint. Each object class has a name which briefly
describes its type. Each object class also has a codepoint which is an alternate and more
efficient (for transmission) way of naming it. This attribute is specified twice for every DDM
object class, first as a brief description and then, as part of the instance variable list (as a
hexadecimal number). There are some DDM objects which are not self-describing, when
they are transmitted. That is, when these objects are transmitted they are recognized by
the receiver from the context; the length and the codepoint which are essential for the
recognition of the object by the receiver are not transmitted even though these attributes
are defined for these objects by DDM. The second characteristic,

Inheritance is a technique that allows new, more specialized classes to be built from the
existing classes. DDM uses the inheritance structure to encourage the reusability of the
definition (and eventually of the code, if the implementation is object-oriented). The class
COMMAND for example, is the superclass of all commands. From the superclass, the
subclass inherits its structure. The third characteristic,

Polymorphism is a technique that allows the same command to be understood by different
objects, which respond differently.
In this disclosure, the following will be used:
N : the number of terms in the dictionary (number of trees),
m : the number of total nodes in the expansion of a DDM command or reply
message (number of nodes in a tree;
k : number of top level nodes, approximately N/10 in the specific application
described herein;
j : average number of children per node.
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OTHER METHODS
This section describes other methods of hierarchical language storage and retrieval
methodologies, including Loosely Coupled Files (LCF) and Root Storage Method (RSM).

LOOSELY COUPLED FILES (LCF)

Given that the DDM model isolates dictionaries from processing, LCF design represents
the DDM dictionaries by a collection of static data structures, which may be generated by
macros. Each DDM Dictionary is assembled and link-edited into separate load modules.
Isolation of DDM objects requires as search arguments, (a) the object name (character
string) and (b) the dictionary identification. The dictionaries closely resemble the structure
of the DDM documentation i.e. comprising a network of nodes. Thus, if one is familiar with
the DDM documentation, one may correlate DDM concepts (scalars, collections,
codepoints) to the LCF DDM Dictionaries.

LCF Retrieval Methodology:

Since but a single definition of each DDM object exists, the requirement to generate
the object or to recognize its existence is dependent upon that single definition. Thus, LCF
creates generation and parsing methods which are driven entirely by the DDM dictionaries.
Any DDM object to be generated first isolates the object definition within the appropriate
dictionary. Then, it "pushes"” the length and codepoint attributes onto a stack if the object
is a collection and proceeds recursively through all the instance variables of the collection,
halting when a scalar (leaf or terminal node) is encountered. When a scalar (terminal node)
is reached, a generator routine is invoked, which "pushes" the scalar length, codepoint as
well as the scalar value onto the stack. The length is returned to the invoker at the higher
level. In this fashion, when all instance variables of a collection have been processed, the
length of the collection is the sum of the lengths returned from the individual invocations.
The example below depicts the LCF pseudo-code for building the definition at run-time.
Note that recursion is used. Another way is depicted in Figure 6 without recursion (i.e.

recursion is simulated).
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Example

Newdef LCF_Construct (IN Codepoint)
(*LCF Method for constructing Definition*)
Search for the file identified by the Codepoint
Scan for all its parameters (or instance variables), if any

if There Are Some Then
Do;
Scan file for instance variables
Do for all the Instance Variables
Definition = Definition +
LCF_Construct(Codepoint)
End Do;
End If;
End LCF_Construct;

To illustrate the LCF flow and provide some insight with regard to the impact of Dictionary
access and recursion on path length consider the example illustrated in Fig. 7 which
depicts the definition tree to be built. LCF maintains 13 files for this tree. To illustrate the
LCF flow and provide some insight with regard to the impact of Dictionary access and
recursion on path length consider the example as depicted in Fig. 8.

Hence, LCF retrieves each file, sequentially searches for parameters in each file (the
search argument is a variable length character string, or DDM Mnemonic, such as
RDBNAM in the example above), and then for each parameter found, gets the file and
extracts its parameters. This is a recursive method. This recursive step is done atruntime,
each time one wants to generate or parse a DDM stream. This means that the methods
to construct a DDM Dictionary definition is an exhaustive search that goes through the
entire file: Hence, in order to build the definition, LCF requires m retrievals and with each
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retrieval there is a sequential search to locate the parameters.

LCF Storage Methodology:

LCF stores each DDM definition in a file, in the format shown in Figures 5a and 5b. This
means that each term is stored in a separate file with information that is not needed by the
parsing and generation processes. Also each of its instance variables are stored in the
same fashion, etc.

The storage requirements for LCF are approximately 1000 + 100m bytes per term in the
dictionary, i.e. assuming 1000 bytes head and tail overhead plus 100 bytes per internal
node. Hence, the storage requirements for the entire dictionary are approximately:
(1000+100m) N.

ROOT STORAGE METHOD

The Root Storage Method (RSM) approximates or simulates the recursion aspects of DDM
object definition construction by an appropriate implementation technique (nested CASE
statements, CASE within CASE within CASE). Given this direction, the objects defined
within the DDM dictionaries can be entirely eliminated or restricted to objects of a given
type. RSM restructures the DDM Dictionaries by first eliminating the dictionary identifier as
an element in the search argument, and hence all dictionaries are merged together. Then,
the dictionary search arguments are changed from character strings to codepoints. The
character strings are still maintained within the dictionary. Finally, objects defined within
the dictionaries are restricted to root nodes only. Thus, only DDM commands, command
data, reply messages and reply data are defined. However, the constituent instance
variables of any given DSS (or parameters), collection or scalar are not defined.

RSM RETRIEVAL METHODOLOGY

Once the object has been identified to satisfy a request, then for each root level object, a
unigue root level object generator exists, which will generate one complete object. The
object generator non-recursively constructs the instance variables (collections and scalars)
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which constitute the object. Consequently, the Generator must simulate the recursion
inherent in the generation of all instance variables comprising that object. Figure 9 depicts
the CASE within CASE method. Figure 10 depicts the flowchart of RSM object
construction. With this approach, the DDM dictionaries are partitioned such that objects are
defined within static data structures and the constituent instance variables are hardcoded.
Note that in this method, the definitions of the various parameters are hardcoded multiple
times, and that this method is not extendible to all possible variations of DDM. For
example, it has the limitation in the number of levels of nesting that CASE statements are
allowed.

To construct the definition for ACCRDBRM (as depicted in Figure 7 ), RSM undertakes the
steps depicted in Figure 11.

To construct a definition, one must execute one retrieval with cost proportional to Log N
to the base 2, and m CASE statements. Thus, RSM retrieves the root term definition.
Thereafter, the parameters' expansions are hard-coded into the procedure. This method
approximates the recursion aspects of DDM Object Generation by an implementation
technique (e.g. CASE within CASE... etc.). Due to limitations in programming languages,
there are only so many levels of nesting of case statements that are possible, hence
making the method not expandable. This appears to be a hard limitation. If DDM expands
to have more levels, the RSM will exhaust its usefulness. f DDM strings reach a depth
exceeding the nesting limit, then redesigning of the code will have to be done. In addition,
this method is not well suited to parsing, because DDM is not static. When parsing DDM
Strings the parameters at each level of DDM term in the tree can appear in any order. The
CASE within a CASE... does not provide all possible combinations of parameter ordering.
Also, for each occurrence of the parameter in the dictionary, the semantic procedure
associated with it is duplicated. The programs are hardcoded, and therefore difficult to
maintain. Due to the increased size, the programs are more complex. In order to maintain
the program, recompilation is performed each time. Hence, in order to obtain the definition
of the DDM term, there is one retrieval necessary and one sequential search in the top
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level file. Then, a series of embedded CASE statements provide the rest of the DDM
definition.

RSM STORAGE METHODOLOGY

RSM stores only the root or "top level" definitions. The constituent instance variables of the
parameters are not defined. This means that only the top level codepoint definitions are
stored as data. All the parameters derived through the root are hardcoded in the program.
This results in the loss of information, including some of the necessary information required
to parse and generate a DDM string. That is, all the information about the structure of the
parameters is not available as data. If there are changes in the dictionary, this may resuit
in consistency problems. While LCF stored all the information for all the codepoints, this
method only stores the structural information for the top level codepoints. The storage
requirements for RSM are approximately 1000+100m per top level term assuming 1000
bytes for head and tail overhead plus 100 bytes perinternal node. Hence, there are about
(1000 +100m)k for the entire dictionary. The rest of the information for the structure of the
parameters is hardcoded in the program as depicted in Figure 9. Assuming there are N/10
top level objects, then the cost of storage is (1000+100m) N/10 bytes.

DRAWBACKS OF THE LCF AND RSM METHODS

LCF maintains a set of files without constructing the definition. This means that each time
a definition of an object is required, LCF has to reconstruct it using the methods described
above. There is no added value to reconstructing the definition each time it is required
since the same definition will be required over and over again. In addition, LCF does not
keep a very compact form of each of the definitions of each of the parameters; it
remembers information that is not needed, i.e. information that is not essential for parsing
and generating. The invention herein overcomes these drawbacks by expanding the
definition of a DDM command inside the data structure, and therefore not requiring its
reconstruction each time itis accessed and by defining a short form of the data to describe
the essence of the definition in a few bytes.
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RSM only stores the top level node definition of the tree. The rest of the definition is
hardcoded in the program. While this saves on space compared to the LCF method, RSM
does not record the information of the root node in a compact fashion. RSM maintenance
may be difficult due to hard coding of each parameter and duplication of code for each
instance of the parameter in the dictionary. RSM is also subject to the limitations of
programming languages such as the level of nesting of CASE statements. The invention
herein overcomes these problems.

SUMMARY OF THE INVENTION
Inconveniences of other methods discussed above and elsewhere herein are remedied by
the means and method provided by the instant invention which is described hereafter.

In accordance with one aspect of the invention a data transmission dictionary is provided,
which is adapted for use by a computer system for encoding, storing, or retrieving
hierarchically related data transmission information. The dictionary is comprised of a group
of one or more computer searchable definition trees relating to transmission information
of the computer system. The trees are derived from a first definition group which includes
characteristics of commands, replies or data usable by the computer system. The
characteristics include structure and value properties and restrictions, if any, applying to
the commands, replies or data. Each tree represents, respectively, a definition of the
command, reply or data to which it relates. Each tree includes a root node identified by
name, such as a codepoint. The root node includes information describing the type of
definition tree concerned (i.e. whether it relates to a command, reply or data), and may
include one or more internal or terminal descendant nodes, which nodes represent
components of the definition represented by the tree. The descendent nodes include level
information describing the level of the node within its tree. The nodes may include attribute
information, and may include value requirements relating to transmission information
represented by the nodes.

The root node of each definition in the dictionary may include information relating to length
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restrictions of transmission information represented by its definition tree.

The attribute information may include a requirement as to whether data transmission
information represented by a node is required, optional or ignorable.

The attribute information also may include information on length, repeatability or non-
repeatability of data transmission information represented by the node.

Advantageously, the root node of each of the definition trees may be made the sole
accessible entry for the tree.

As their size tends to be compact the definition trees may be stored in main memory of the
computer system using them for use by parsing or generating programming to process
data transmission for the computer system.

Advantageously the definition trees are stored in a compact linear form preferably
expressed in a depth first search form.

In accordance with another aspect of the invention there is provided a method of creating
the data transmission dictionary, above, by deriving a group of one or more computer
searchable definition trees from a first definition group of nodes defining portions of
commands replies or data usable by a computer system, compacting each of the nodes
by retaining only information necessary for the processing of data transmission streams
according to the definition trees; assembling each definition tree by sequencing the
compacted nodes in a linear form, starting with the root node of each of the definition trees,
by placing information included in each compacted node in a resulting implemented
dictionary; and by assembling each child node of said definition tree in turn. The process
of assembling each child node involves placing information included in the child node in
the resulting implemented dictionary and assembling each of the child's child nodes in turn.
The process of assembling a terminal node involves placing information included in the
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terminal node in the resulting implemented dictionary.

In accordance with still another aspect of the invention means is provided for constructing
the data transmission dictionary described above which comprise an extractor for deriving
a group of one or more computer searchable definition trees from a first definition group
of nodes defining portions of commands replies or data usable by a computer system. A
compactor is provided for compacting each of the nodes while retaining only information
necessary for the processing of data transmission streams according to the definition trees.
An assembler is provided for assembling each definition tree starting with the root node for
each tree. The assembler can place information included in each compacted root node
in the resulting implemented dictionary and assemble each of the compacted node's child
nodes, if any, in turn. The assembler is adapted to place information included in each
child node in the resulting implemented dictionary and to assemble each of said child's
child nodes, if any, in turn.

In accordance with a further aspect of the invention the dictionary described above is
incorporated into a computer system for use by it for encoding, storing, or retrieving
hierarchically related data transmission information for use by said computer system
internally or in communication with another computer system.

In accordance with another aspect of the invention there is provided a method of encoding
and decoding a data transmission of one or more computer systems using the dictionary
described above using the following steps:

separating the data transmission into command, reply, or data parts corresponding
to individual definitions in the dictionary, and ensuring that the parts conform to required
specifications of the data transmission protocol used by the system;

for each of the parts, retrieving a corresponding definition tree from the dictionary,
and

stepping through the data transmission ensuring that required information is present
and that relevant rules are obeyed for the tree structure for each of said nodes
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encountered in the data transmission; and also ensuring that structural and value rules
relating to the nodes, as described in the definition corresponding to the node are adhered
to.

Advantageously, in the above method when used for encoding the data transmission the
dictionary definitions serve as a roadmap for the translation of internal data structures of
the computer system into a data transmission which conforms to requirements of the
definitions.

Advantageously as well in the aforementioned method when used for decoding a data
transmission the dictionary definitions serve as a roadmap for the verification of the data
transmission according to the definition requirements and the translation into internal data
structures of the computer system.

In accordance with another aspect of the invention there is provided a distributed computer
system comprising a source system and destination system. The source system includes
an application requestor, a parser and a generator supporting the application requestor.
The destination system includes a server and a parser and generator supporting the
server. The parsers and generators have access to one or more dictionaries constructed
in accordance with the dictionary described above for the purpose of processing data
transmissions between the source and destination systems.

The distributed computer system described above may contain the destination and source
systems within one or a local computer system.

In accordance with yet another aspect of the invention a data processing dictionary is
provided, which is adapted for use by a computer system for encoding, storing, or
retrieving hierarchically related data processing information. The dictionary is comprised
of a group of one or more computer searchable definition trees relating to data processing
information of the computer system. The trees are derived from a first definition group
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which includes characteristics of commands, replies or data usable by the computer
system. The characteristics include structure and value properties and restrictions, if any,
applying to the commands, replies or data. Each tree represents, respectively, a definition
of a the command, reply or data to which it relates. Each tree includes a root node
identified by name. The root node includes information describing the type of definition
tree concerned (i.e. whether it relates to a command, reply or data), and may include one
or more internal or terminal descendant nodes, which nodes represent components of the
definition represented by the tree. The descendent nodes include level information
describing the level of the node within its tree. The nodes may include attribute information,
and may include value requirements relating to data processing information represented
by the nodes.

It may prove advantageous for some of the nodes of the tree to be linked.to data stored
by the data processing system for representing or accessing the data stored.

DETAILED DESCRIPTION OF THE INVENTION
In the invention described herein below the definitions of DDM commands, replies, and
data are stored in command, reply, and data trees, respectively.

This invention which will be termed the DDM Dictionary Structure Optimizer (including
method and means) (DDSO) compacts the definition of nodes of the DDM command and
reply data trees by retaining only the information necessary for parsing and generation of
the DDM data streams. DDSO also assembles the definition of a DDM command, reply,
or data by sequencing the compacted nodes in the corresponding tree in a depth first
search manner. Definitions are created by first scanning the DDM Architecture document
(which may be on line advantageously) and then by extracting the necessary information.
Then, each of the definitions is assembled. In order to explain DDSOQ, it is first described
how to create the DDM Dictionary structure of the invention from the DDM architecture
document, then what the storage and retrieval methodologies are, and the formal
specification of the definition syntax. Finally, we discuss the advantages and
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disadvantages of DDSO are discussed.

CREATING THE DDM DICTIONARY DATA STRUCTURE

The DDM Dictionary Data Structure is a compact form of definitions derived from selections
of the dictionary defined by the DDM architecture document. Each definition is expressed
as a tree (having one or more nodes) in a linear form, and preferably expresses it in depth
first search form, with each of the nodes defined in a compact form. In general, the steps
are the following:

Step 0:(Extraction Stage)

Get all the codepoints (identifiers of the nodes) for the trees required in the forest. The
DDM architecture provides a network of nodes that are pointing to each other. This stage
extracts the nodes needed for the trees of the application. Only the root nodes are given
to the Extraction Stage. This step calculates which nodes are needed for the definitions.

Step 1: ( Compaction Stage )

Scan all the DDM files created in step O for essential information, i.e. the top level
codepoint for each node and all node parameters. Retain the information in DDSO form
for the parameter. The specifics of the DDSO form are described below . An example of
DDSO form is: "RN1: 2401,*255", which indicates attributes (RN), level in the tree (1),
unique identifier (2401) and length attribute (*255).

Step 2 : ( Assembly Stage )

This step assembles (expands) each of the parameters. This means that if a parameter
itself has parameters (i.e. it is a parent) then the children are added in a depth first search
manner, and they are given one level higher than that of the parent.

ADDG (Automated DDM Dictionary Generator) is a convenient tool which can be used
to create one or more DDM Dictionary data structures (dictionaries) from the DDM
architecture document. ADDG has three steps, as depicted in Figure 12:
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1. Generate DDMTXT: This exec steps through the DDM architecture document extracting
the information required by the user. This includes the root nodes specified by the user,
as well as all the nodes required in the expansion of the root nodes. Each of these nodes
is extracted into a file with filename equal to the DDM mnemonic term and a file type of
DDMTXT. Other files are generated, such as DDM FLVL which provides a list of all DDM
terms which are going to be expanded; EXPCDPT FILE which provides a list of all valid
part specifications (a part specification specifies whether the DDM object is a command,
reply, or data object) and their corresponding DDM codepoints and DDM HEX which
provides a list of all DDM mnemonics with corresponding codepoints. The
generate_ DDMTXT high level flowchart is depicted in Figure 13.

2. Create DDM Definitions:

The Generate_ DDMTXT exec must be run before the Create_ DDM_Definitions exec.
Create_DDM_Definitions creates the DDM_DEF FILE which contains a DDM definition for
each DDM Term. It follows the specific rules that were setup in the DDSO form for the
dictionary. Create_DDM_Definitions is depicted in Figure 14.

3. Assemble DDM Definitions

The Generate_DDMTXT and Create_DDM_Definitions execs must have been executed
before this exec is run. This exec assembles all top level DDM terms by assembling parts
of several DDM definitions. It also contains the source language specific statements in
order to store each definition. The definitions are stored in a file. Pseudocode for the
Assemble_DDM_Definitions is depicted in Figure 15.

The pseudocode for the ADDG tool is shown in Figure 16.

There are therefore two main operations involved in constructing the definition and these
are compaction and assembly. Compaction involves storing each parameter in the
compacted form, while assembly is an expansion process that reassembles a complete
definition of a root node in depth first search format. It is possible to compact the definitions
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of each parameter without performing the assembly. Resulting storage savings over LCF
will occur. However, the performance overhead of LCF to create the definition will have to
be incurred, since the definition will have to be created at run-time as opposed to creating
the definition before runtime, as is done in the instant invention. It is also possible to
assemble the definition without compacting it. Due to the duplication of certain internal
nodes, and large storage requirements for each node, this alternative may not prove
attractive. However, if compaction and assembly are both done then maximum benefits
may be obtained from the instant invention.

Storage Methodology

DDSO stores the DDM definition files in the format shown by the example depicted in
Figures 17a-I. A DDM definition is a linear expression of a tree, assembled in depth first
search manner, and contains information required, namely: information required for the
root node and information stored for non-root nodes. The root node requires 6 bytes for
its definition and each non root node requires 11 bytes. If there are m nodes in the tree
then the tree requires 11m + 6 bytes. Hence, for N trees in a dictionary, 11mN + 6N bytes
are required. In addition, a small search table requires 6 bytes per tree, hence 6N bytes.
Therefore the total implementation requires 11mN + 12N bytes.

Note that in the example, the constants 11 and 6, i.e. the number of bytes per internal and
root nodes respectively are slightly higher. Certain additional characters ( "/"'s) and
punctuation (",") were added to improve human readability.

For the example application, approximately 5088 bytes of data are required for the
dictionary itself and a small lookup table of about 510 bytes for the purposes of searching.
Since the definition is already constructed, the cost of retrieval reduces to the cost of a
search through the lookup table, eg. the cost using binary searching.

1. Information Stored for Root Node:
The following attribute information is stored for the root node:
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(a) Carrier Type: i.e. whether it is a request, reply, or data object. In DDM there is one
general format for the request data stream structure. The request envelope (RQSDSS)
fields must be specified in a certain order because they are not self-defining structures.
Only one command can be carried by a RQSDSS. Similarly, in DDM there is one general
format for the reply data stream structure. All fields must be specified in the order required
because the reply envelope (RPYDSS) is not a self-defining structure. Similarly, the data
object envelope (OBJDSS) has a pre-specified format, and carries all objects except the
commands and reply messages. An OBJDSS however may carry multiple objects;

(b) The codepoint of the root node;

(c) The length characteristic: The length characteristic includes descriptions for fixed length
objects, variable length objects, objects with a maximum length, and objects with a
minimum length.

2. Information Stored for Internal Nodes and Leaves (terminal nodes):
The following attribute information is stored for non-root nodes:

(a) whether the node is Required, Optional, or Ignorable;

(b) whether the node (and its descendents) are repeatable or not;

(c) the level or depth of the node in the tree;

(d) the length characteristic of that node.

The first attribute stored is the Required, Optional, or Ignorable attribute.

A Required attribute specifies that support or use of a parameter is required: when a
parameter is specified as being required in a parameter list fora command, the parameter
must be sent for that command. All receivers (of transmissions) supporting the command
must recognize and process the parameter as defined. When specified in the parameter
list of a reply message, the parameter must be sent for that reply message. All receivers
must accept the parameter.
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An Optional attribute specifies that support or use of a parameter is optional. When a
parameter is specified as being optional for a parameter in a parameter list for a command,
the parameter can optionally be sent for that command. All receivers supporting the
command must recognize and process the parameter as defined and use the defauit value
if it is not sent. When specified in the parameter list of a reply message, the parameter can
optionally be sent for that reply message. All receivers must accept the parameter.

An Ignorable attribute specifies that a parameter can be ignored by the receiver of a
command if the receiver does not provide the support requested. The parameter can be
sent optionally by all senders. The parameter codepoint must be recognized by all
receivers. The receiver can ignore the parameter value.

Next is the Repeatable or Not Repeatable attribute. A Repeatable attribute specifies that
a parameter can be repeated. If it is specified as Not Repeatable it can't. There are no
requirements that the elements of the list be unique, or that the elements of the list be in
any order. The information stored for root and non root nodes is logically depicted in
Figures 21-23.

For example, a top level node with the description " 1,200C,**** " has a carrier of 1
(request), codepoint of hex'200C' and variable length (i.e. up to an unspecified limit).

In addition, a parameter, or internal node, with the following description: " RN2:2408,*255
" means that the parameter is required, non-repeatable, has a codepoint of hex'2408' and
has variable length of up to 255.

ORDERING OF THE PARAMETERS
In the embodiment described the parameters for each full tree are listed in a linear fashion;
for example, for the tree depicted in Figure 18, the ordering of the parameter definitions in
the tree for depth first search is: NO, N1, L1, N2, N2.1, L2, N2.2, L3, N3, L4, N4, N4.1,
N4.1a, L5, N4.1b, L6, N5, L7, where:
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N stands for Node, and

L stands for Leaf.

The order of the tree is maintained. The tree can be reconstituted in a hierarchical form,
since depth first search order was used, and depth information was maintained.

Other Parameter Orderings: Because all the valid orderings in which DDM parameters
sent are all of the orderings of depth first search (not just those limited to the left-to-right
notation convention) it is more convenient to store the definition in this manner. It would
be possible, but more expensive to store them in another order. Additional information, eg.
parent information, would have to be added to the definition, so that the tree may be
reconstructed from the linear form.

RETRIEVAL MECHANISM
In the embodiment of the invention described the retrieval mechanismis based on a simple
search technique, a binary search. However, other suitable search methods can be used

depending on the range of the codepoints, the values of the codepoints, the size of the
forest to be implemented, etc.

DDM Dictionary Syntax

Figure 19 depicts DDM dictionary definition syntax for commands, replies, and data using
the embodiment of the invention described herein.

Interpretation Rules

The rules describing DDM Dictionary syntax can be interpreted as follows:

3. ":=" means "is defined by", e.g. A := B means that A is defined by B.
4. “|" means logical or, eg. A := B | C, means that A is either defined as B or C.
5. Lower case characters represent terminal nodes of the definition and are defined

as literals.
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6. Upper case characters represent non-terminal nodes and are defined as a collection
of terminals and non-terminals.
7. quotes : Items in quotes are literals. For example 'B' means the letter B.

Acronyms & Syntax used in Figure 19

Carrier indicates the DSS carrier 0 indicates the DSS carrier used for partial replies
1 indicates the DSS carrier field RQSDSS (request DSS), used for commands;

2 indicates the DSS carrier field RPYDSS (reply DSS), used for replies;

3 indicates the DSS carrier field OBJDSS (object DSS), used for objects;

Codept indicates the DDM codepoint: identifier for the DDM term;

Maxlen indicates the maximum length of the DDM term;
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Minlen indicates the minimum length of the DDM term; Level indicates the level of the
DDM tree, i.e. indicates the level of nesting with the parameter; Length is the length of
the DDM parameter; **** means variable length; $ signals the end of the definition:
LOWERA indicates a lower level architecture used by DDM. This allows for DDM to
include other architectures.

The formal specification of the definition basically means the following (still referring to
Figure 19):

DDM_ENTRY: Line 1 is the top level entry and defines the root node. The root node can
have either a request, reply or data object envelope and this is specified by the Carrier.
A carrier for the specific application has four possible values, 0 through 3, but this can be
extended for other types of envelopes. In addition to the carrier, the root node information
includes the codepoint, Codept of the node and the length specification of the root node
(the length specification of the root node is usually variable length although this is not
required. The length specification can specify a fixed length field, a maximum length field,
a minimum length field or a variable length field). The root node can be composed of DDM
objects, referred to as DDM_PARMS (first line in the formal specification) or can be
composed of objects of a lower level architecture and can either have itself a lower level
data value (Line 2) or can be a collection of lower level objects (Line 3).

DDM_PARMS: If the root node contains a collection of DDM objects and lower level
objects, then this DDM definition is followed. The DDM object can either be (a) a terminal
object (Line 4), with information such as required/optional/ignorable, repeatable/non-
repeatable, level of the terminal object in the tree (with root node being level 1), the
codepoint and length characteristic; (b) A terminal object with lower level object contents,
with the same characteristics as the terminal object above (Lines 5-6); © Two
DDM_PARMS objects. This allows a DDM_PARMS object to recursively define itself in
order to allow more than one terminal object and more than one depth in the tree (line 7);
(d) One DDM_PARMS object. This is a syntactic trick to allow for the '$' which indicates the




10

15

20

25

30

CA 02246946 1998-09-04

CA9-91-001D 30

end of the object, and is required in the definition (Line 8).

LOWOBLJ: Allows for the same structure as a DDM object and hence allows nesting and
terminal nodes. The terminal nodes contain the same basic information as a DDM terminal
node (Lines 9-11).

Line 12: A carrier can have values ranging from '0' to '3'. This can be expanded to
more values as the need arises.

Line 13: The level of the parameter in the tree. The root has level 1 and its children
have level 2. If a node has level | then its children have level |+1.

Line 14 : Codept indicates any valid DDM codepoint.

Line 15 : Length characteristic for DDM: For example, it may take on the following
values: (a) dddd, such as 1233, which means fixed length of 1233, (b) ****, which means
variable length, © *maxlen, such as *255 which means that the DDM object has a
maximum length of 255, (d) minlen*, such as 255, which means that the DDM object has
length of at least 255. Note that there are only four characters for length. This can easily
be expanded as needed

Lines 16 and 17 : Specification of minlen and maxlen

Line 18 : "roi" means that the parameter is either required, optional, or ignorable.

Line 19 :"rn" means that the parameter is either repeatable or not.

Line 20 :"d" is any valid digit from 0 to 9.

It is possible to modify the formal specification of the syntax in various ways, without
changing the intent and the meaning of the invention. Various ways of modifying it include:
(a) adding more carrier types, (b) adding more attributes to the root node, or to the
parameter nodes; as more attribute characteristics are added to the architecture, more
attribute place holders or more valid values may be added to describe DDM; © length
specifications could change such as to add more digits to one length specification, or to
add a parameter which has both minimum and maximum length restrictions. As DDM
evolves, the formal specification for the dictionary syntax will evolve as well.
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Example: The files depicted in Figures 5a,b can be stored as follows:

Request:
1,200C,****/ON2:2110,0022/RN2:2113,0068/RN2:2114,0008/ON2 :2132,0006%

Command Data:
3,200C,***/ON2:2412,*** LOWERA/RR3:0010,***/OR3:147A, ****$

There are two degenerate cases one can look at to compare DDSO with LCF and RSM.
These are:

(a) a tree with one node: while DDSO stores the node in compact form, LCF stores one
node in one file; LCF still needs to scan the file, but does not need to perform the
assembly. RSM in the case of the tree with one node reduces to LCF, since there are no
CASE statements associated with one node. Hence in the case of the tree with one node,
DDSO still maintains its advantage of storage compaction, but is still slightly better than
LCF and RSM in performance.

(b) A forest with one tree; in this case, DDSO avoids the binary search. LCF and RSM still
have to construct the definition. Hence, in the case of a forest with one tree, the invention
has advantages.

HOW DDSO DEFINITIONS ARE USED

The DDSO definitions are retrieved in both the parsing and the generation processing of
DDM strings. Parsing means receiving a DDM string, checking its syntactic correctness
and building the equivalent internal data structure for use by the local processor.
Generation means receiving an internal data structure and building the DDM string using
the definition tree. Figure 20 depicts the parsing and generation process in a requester-
server distributed system. An application program first submits a request in internal format.
(Step 1) The request is translated into the DDM string by the generation process (the
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generator consults the DDM Dictionary to do this).

(Step 2) Then, the request is sent to the server, which receives it. The parser translates
the request into internal format by consulting the DDM dictionary for syntax verification.
(Step 3) Then, the internally formatted request is executed by the server. This can be one
of various different suitable types of servers such as file servers, or database servers.
(Step 4) The server issues one or more replies in internal format, which are translated by
the generator (Generator consults the DDM Dictionary) into a DDM string or strings.
(Step 5) DDM reply is sent to the source system.

(Step 6) Finally, the source system's parser translates DDM reply into internal format
(Parser consults DDM Dictionary) and returns to the application program.

CONCEPTUAL LAYERING OF DDM

In the specific embodiment described the parser and generator advantageously share a
common design which stems from partitioning DDM data streams (DDM strings) into a
series of layers.

The first, or topmost layer, Layer Zero, consists of a DDM Command or a DDM Reply,
which constitutes a logical object. A request for parsing or generating must always come
at layer 0.

Next is Layer One, which is derived from breaking up this logical object into one or more
Data Stream Structures, or DSSs (or data communications envelopes) which are linked to
each other. For example, the DDM Command to execute an SQL Statement is
accompanied by various parameters as well as command data (the SQL statement). DSSs
can include a command part and zero or more command data parts; or, a reply part and
zero or more reply data parts; or, one or more reply data parts.

Layer Two consists of the structural properties of a tree without looking at the specific
values of the nodes within that tree. An example of a structural property of the tree is the
length value at each node which is the sum of its children's length plus a constant (for its
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own length field and codepoint, or identifier).

Finally, Layer Three: consists of each node of the DDM Tree. Each node has structural
properties in the tree and valid required values. Examples of the structural properties
within the tree include whether the node is required, optional, ignorable, repeatable, a
collection, or a scalar. ( "Collection" refers to an internal node, and "scalar" refers to a leaf
node). Examples of values of the nodes: Leaf nodes carry values and these values carry
certain restrictions. For example, leaves may be of certain data types, such as enumerated
value data types or they may have certain length restrictions, such as maximum length.

Non leaf nodes don't have values but have length restrictions.

SOFTWARE ARCHITECTURE FOR DDM PARSING AND GENERATION
METHODS

There are three major levels of the DDM Parsing/Generation Process which correspond
to the three layers mentioned above, and are depicted in Figure 24.

The first level deals with the processing of a DDM Entry (Multiple Related Data Stream
Structures): or relating two logical DDM Objects together. For example, a command must
always be followed by command data if it has any. The "links" between the two Data
Stream Structures (DSSs) (command, command data objects) are established by the
processing of the DDM Entry. This level takes care of linking DSSs together, through
various continuation bits, and ensures that the rules as defined by DDM architecture for
linkage are enforced.

The second level involves processing one Data Stream Structure at a time. This level
takes one of the DSSs and looks at its internal structure. Each DSS is composed of atree.
This level obtains the definition of the relevant DDM object from the DDM Dictionary, and
then proceeds to step through the definition, and starts comparing it to the actual data
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received (parsing), or, uses it as a roadmap to generate the appropriate data stream
(generation). While level 1 was concerned with the relationship between DSSs, level 2, the
DDM layer, takes care of the relationships between the nodes within a DDM tree, with such
activities as length checking for collection objects, etc.

The third level (the action level) concerns itself with individual nodes which include: Action
Execution, Action Specifics, and a Link to a Lower Level Architecture. The Action
Execution sublevel is the next natural level down and deals with individual nodes. These
nodes have properties, such as: required, optional, ignorable, repeatable, etc. It is the
responsibility of the Action Execution sublevel to ensure that required nodes are parsed
or generated and that other structural properties of the codepoints are obeyed. T h e
Action Specifics sublevel deals with the values in individual nodes. The nodes are either
collection objects, (i.e. internal nodes: in which case they are composed of other DDM
nodes), or they are scalars (i.e. leaf nodes ). The collection objects have no specific values
associated with them. The scalars do, and it is the responsibility of this sublevel of the
hierarchy to ensure that the values parsed or generated are the correct ones. The length
attribute is also verified against its corresponding definition in the dictionary. The third
sublevel or the lower level architecture sublevel deals with more complex scalar objects
defined in another architecture, such as the Formatted Data Object Content Architecture
developed by IBM Corporation.

The common Parser and Generator design provides the following advantages including
maintainability, generality, and non-recursive methodology.

Maintainability is due to the fact that changes in the syntax of DDM are only limited to the
action specifics portion. For example, if a parameter changes, it is very easy to locate the
unique instance of its action in the code. Also, the common logic makes it easier to
maintain the code. The Parsing and Generation processes use common data structures,
such as the Length Tree Data Structure.
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The code is very general, in that changes in the dictionary are localized to the action
specifics (Generality). One could merely change the action specifics part and have a
Parser and Generator for a Distributed File System Application, for example. The structure
of DDM is followed and hence changes can easily be incorporated.

The actions described above are for a Data Base Application. However, it would be
relatively easy for a person skilled in the art herein to build a set of actions for another
application of DDM and substitute the new set to achieve the intended results.

Another advantage of the use of the dictionary of the invention is that the method of use
simulates recursion by having a completely expanded dictionary. That is, the DDM Tree
is expanded in a depth-first search manner. Therefore, the method has the advantages of
a recursive solution without the overhead of the actual recursion.

ADVANTAGES OF DDSO

In terms of storage requirements DDSO shows useful advantages. The efficient utilization
of storage is due to the fact that only essential information is retained. The dictionary is
encoded into a specific format so that it will contain the definition in its most minimal form
while still including information about all the nodes in the tree of the definition including the
optionality information about the node, the node's length information, and the node's level
information.

Also, there is only one dictionary access per top level DDM definition. One dictionary
access gives access to the entire definition as opposed to the definition of the node only.
By comparison, LCF requires as many accesses as the number of parameters in the tree.
RSM requires one access per top level node, but only provides structural information for
the top level node and not the entire definition tree.

In addition to being more storage efficient and requiring only one dictionary access to
obtain the full definition, DDSO constructs the definition prior to compile time. Since the
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definition has been expanded prior to compilation, the recursive step is not done at run
time which would be at the expense of the user. DDSO incurs the cost once per definition
prior to compiling the code. DDSO uses binary searches into a table of top-level nodes.
DDSO could also utilize other search methods, such as hashing etc. LCF and RSM
appear to be limited to sequential search methods.

DDSO code is less complex. DDSO has a unique action for the same node and hence
does not duplicate code unnecessarily. DDSO is independent of the programming
language. Also, DDSO can use a table driven method while RSM has hardcoded
programs. DDSO encodes the definitions as data. A change in DDM architecture would
require RSM to change the program rather than just the data. For clarity, maintenance, and
simplicity, the table driven approach has advantages. Also, the method is expandable for
future use. DDSO appears to be independent of programming language, while RSM
appears limited to the number of nestings of CASE statements allowed in the
implementation of programming languages.

DDSO compacts the definitions, and defines a grammar to describe DDM. The expansion
of the trees is done before compile time, and hence the recursive step of LCF need not be
done for each DDM tree parsed or generated. DDSO is a table-driven method, in which the
table contains the node identifier followed by a pointer to the already expanded definition.

DDM DICTIONARY DATA STRUCTURE EXAMPLE
An example of a DDM dictionary according to the invention herein is depicted in Figures
17a-l. Some points to note about the example are:

1. Data Structures Used: In this example, a DDM Dictionary data structure and retrieval
mechanism are discussed. It is composed of the following declarations:
TABLE : a table containing:
--Specification and codepoint: used to search for a root level codepoint
concatenated with the specification, which indicates: CD -
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command data, CP -command part, RD - reply
data to distinguish between carrier types.

--Length of definition
--Pointer of definition: this points to the definition of the tree. This table is
used
for binary search. The specification and root level are listed in
alphabetical/numerical order.

TBLBASE: a pointer to the table used to remember the starting location of the

table.
TBL_PTR: a pointer used to search through the table
DDM_TBL: atemplate used in conjunction with TBL_PTR to search in the table

and obtain the necessary fields.

2. Specific Method to Retrieve the Data :
(a)  Find out part specification and codepoint in last four character positions.
(b) Do a binary search in the table to match desired codepoint. When found,
then move to the definition buffer area.

The retrieval mechanism depicted in Figures 17kl is based on a simple binary
search. However, other search methods can be used to fit the particular application.

The above-described embodiments are merely illustrative of the application of the
principles of the invention. Other arrangements may be devised by those skilled in the art
without departing from the spirit and scope of the invention.

The present invention is not limited to the specifically disclosed embodiments, and
variations and modifications may be made without departing from the scope of the present
invention.
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CLAIMS

The embodiments of the invention in which an exclusive property or privilege is claimed are
defined as follows:

1. A method of creating a data transmission dictionary comprising a plurality of
computer searchable compacted definition trees, said method comprising the steps of:
(1) pre-determining a list of request commands, reply commands, and object
commands required for said data transmission dictionary;
(2) extracting a plurality of root nodes from a central dictionary, each of said root
nodes identifying either a request command, a reply command, or an object
command,
(3) extracting a plurality of internal or terminal descent nodes for each said root
nodes, each said internal or terminal descent nodes representing components of
the definition of a tree associated therewith;
(4) creating an abbreviated definition of each of said root nodes and one or more
internal or terminal descent nodes associated therewith to form the plurality of
computer searchable definition trees.

2. A method according to claim 1, further comprising:

using each of the plurality of computer definition trees forming said data
transmission dictionary to generate a data stream structure mapping a request command,
a reply command, or an object command for submission to a destination system.

3. A method according to claim 1, further comprising:

using each of the plurality of computer definition trees forming said data
transmission dictionary to parse a data stream structure mapping a request command, a
reply command, or an object command at a destination receiving said data stream
structure to extract the command mapped therein.
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4, A method according to claim 1, wherein step (4) further comprises:
representing each said tree in a compacted linear depth-first format.

5. A method according to claim 1, further comprising:
including, by each said root node, information relating to length restrictions for
transmission information represented by a tree thereof.

6. A method according to claim 1, further comprising:

including, by each said internal or terminal descent node, a requirement information
indicating whether data transmission information represented by said node is required,
optional or ignorable.

7. A method according to claim 6, further comprising:

including, by each said internal or terminal descent node, information regarding
length, repeatability or non-repeatability of data transmission information represented
thereby.

8. A method according to claim 1, further comprising:
using the root node of each said tree as the sole accessible entry point for said tree.

9. A method according to claim 1, further comprising:
storing said plurality of trees entirely in a main memory of a computer system for use
by a data stream structure generation program.

10. A system for creating a data transmission dictionary comprising a plurality of
computer searchable compacted definition trees, said system comprising:

means for pre-determining a list of request commands, reply commands, and object
commands required for said data transmission dictionary;

means for extracting a plurality of root nodes from a central dictionary, each of said
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root nodes identifying either a request command, a reply command, or an object command,
means for extracting a plurality of internal or terminal descent nodes for each said
root nodes, each said internal or terminal descent nodes representing components of the
definition of a tree associated therewith;
means for creating an abbreviated definition of each of said root nodes and one or
more internal or terminal descent nodes associated therewith to form said plurality of
computer searchable definition trees.

11.  Asystemaccording to claim 10, wherein each of said plurality of computer definition
trees forming said data dictionary is used to generate a data stream structure mapping a
request command, a reply command, or an object command for submission to a
destination system.

12.  Asystemaccording to claim 10, wherein each of said plurality of computer definition
trees forming said data dictionary is used to parse a data stream structure mapping a
request command, a reply command, or an object command at a destination receiving said
data stream structure to extract the command mapped therein.

13. A system according to claim 10, wherein said means for creating an abbreviated
definition further comprises:
means for representing each said tree in a compacted linear depth-first format.

14. A system according to claim 10, wherein each said root node includes information
relating to length restrictions for transmission information represented by the tree thereof.

15.  Asystemaccording to claim 10, wherein each said internal or terminal descent node
includes a requirement information indicating whether data transmission information

represented by said node is required, optional or ignorable.

16.  Asystemaccording to claim 15, wherein each said internal or terminal descent node
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also includes information regarding length, repeatability or non-repeatability of data
transmission information represented thereby.

17. A system according to claim 10, wherein the root node of each said tree is the sole
accessible entry point for said tree.

18. A system according to claim 10, wherein said plurality of trees may be stored
entirely in a main memory of said computer system for use by a data stream structure

generation program.
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Length Class Value

Leaf or terminal DDM Codepoint (Scalar)

Length Class Vatuel Value?2..

Leaf or terminal DDM Codepoint (Mapped Scalar)

tength Class DDM Codepoint's
Children

Internal Node (Collection Codepoint)

Figure 1. DIDM Objects.
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Interchange Data Stream Form of Object A

Length
of A

Class 1 N

otes: Length of A includes total length of
the data stream representing A and all
of its component objects

Length
of C

Class K field
Codepoint| M

Length
of D

Class L long string
Codepoint

Length
of B

Class J number
Codepoint

ligure 2. DIDM Object Interchange Format.
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Insert Root Node in Empty
Queue, Q

QUEUE YES

—>  EMPTY ?

e

Remove first element from
Queue Q

Find first element's
children

+

NO ’
ANY CHILDREN ?

.l YES

Add Children to the front
of the Queue Q

Figure 3. Depth First Search Flowchart

EXIT
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EXCSATRD - server attributes reply data

EXCSATRD <QDDBASD> x'1443"
length *
class CLASS - object descriptor <QDDPRMD>
sprcls COLLECTION - collection object <QDOPRMD>
title server attributes replyldata
status TERM STATUS

This collection is used to return the following information
in response to an EXCSAT command:

- The target server's class name

- The target server's support level for each class of
manager requested by the scurce (see the descriptions
of the terms EXCSAT, SERVER, and MANAGER)

- The target server's product release level

- The target server's external name

- The target server's name

clsvar  NIL

insvar INSTANCE VARIABLES

- = e e m e e e = =

extnam INSTANCE OF EXTNAM - external name <QDDBASD>
OPTTONAL

Figure 4. a: A Sample DDM Object: Root Node as Defined in Architecture.
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mgrivlls INSTANCE_OF MGRLVLLS - manager level list
<QDDBASD>
OPTIONAL
svrcisnm INSTANCE_OF SRVCLSNM - server class name
OPTIONAL
.srvram  INSTANCE_OF SRVBAN - server name <QDDBASO>
OPTIONAL
srvrislv INSTANCEOF SRVRLSLY - server product release
level <QDDBASD>

cisemd  NIL
insemd  NIL
Figure 4b:

A Sample DDM Object: Root Node as Defined in Architecture
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OPNQRY <

length

class
sprets
title

DSS CARR[
cisvar
jnsvar
Yength
class
rdhnanm

pkgnamcsn

qryhlksz

gryblkct!

clsemd

inscmd

Figure 5
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anary Entry

GDDRDRN> x'288C"

*

CLASS - object descriptor <QDDPRMD>
COMMAND - command <QDDPRMD>
open query
ER: RQSDSS
NIL
TNSTANCE VARIABLES
x'288C"
INSTANCE _OF ROBNAM - relational database name <QDDRDAD>
OPT{ONAL
CMDTRG

INSTANCE_OF PKGNAMCSN - RD8 package name, consistency
token, and section numher <QDDRDBD>
REQUIRED

{NSTANCE_OF QRYBLKSZ - query block size <QDDRORD>

REQUIREN

INSTANCE_OF  QRYBLKCTL - query block protecal control
<QDDRDAD>

OPT)ONAL

ENUVAL x'2418' - FRCSNGROW - force single row query
protocol <QDORDBD>

OFTVAL '

NOTE Means that the value specified in the
package for this parameter should be used
to determine which query protocol is to be
used for this query.

HiL
NIt

. a: Definition of Rool Node: OPNQRY Example

*

*S

*

Comments

Title: this is OPNQRY top level command
* OPNQRY s the mnemonic
* <QDDROBD> 1s the sub-dictionary
The dictionary {s subdivided in
vartous parts

The Tength of this definition is varfable
The class of the definition
This describes a COMMAND

Title (full command name)
Which carrier: RQSDSS

Start of parameters

Length {s varfable

Codepoint of Open Query (ONQRY)

First Parameter

INSTANCE_OF attribute has the codepoint
of a class object as its value. [t
indicates the value of the variable
being described is an instance of the
specified class,

ROBNAM is optional

econd Parameter
PKGNAMCSN {5 required

~> QRYBLKCTL is an optional parameter, !f
specified, it can only contain FRCSNGROW
The default is NULL.

Defines a set of commands describing

the operations that can be perfromed

on the specified class; typically

these are instance creation and
fnitialization. €ach definition in the Tist
describes a single class cormand whose
name is specified by the codepoint of its
class

Defines a set of commands that can be
perfaormed by instances of the class. Each
definition in the 1ist describes a single
instance command whose name 15 specified
by the codepoint nf the class.




cmddta
x'2412°

rpydta
x'2408"

x'241A"

x'211R"

Figure §h:

INSTANCE_OF
OPTIONAL
NOTE

INSTANCE_OF

GPTI10NAL
NOTE

TNSTANCE_OF

OPTIONAL
REPEATABLE
KOTE

INSTARCE _OF
OPTTONAL
REPEATASLE
NOTE

CA 02246946 1998-09-04

COMMAND OBJECTS
SQLNTA - SQL program variahle data <QDDRORD>

Specified when the query has input variahles.

REPLY OBJECTS
SQLCARD - SQL communications area reply data
<QDDROBD>

The SQLCARD object cannot he returned
without also returning a reply message. An
SQUCARD must follow any reply message that
is returned.
QRYDSC - query answer set descriptton
<QDORDBD>

Contains the description, or a portion of the
description, of the answer set data.

ORYDTA - querv answer set data <QDDRDED>

Contains some portion of the answer set data
for the query or an SOLCA that reports a
non-terminating error. Can only be returned if
LMTBLKPRC query protocols are being used.

Definiion of Root Node: OPNQRY Exampte

-> Command Data. SQLDTA {s a COLLECTION
object, This part is sent with the
command,

~> Reply Data., This part is sent as a
reply to the command and the command
data.

* NOTES usually clarily or
to highlight the semantic or
operation of the parameter
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PARENT CPT =
CODEPQINT

-

LOOK FOR FILE
———————— {IDENTIFIED BY
CODEPOINT

—

SCAN FILE FOR
IRST PARAMETER

|

EEE— ANY
PARAMETERS? ——n—

NO

YES

TRANSLATE

MNEMONIC FORM
OF PARAMETER
T0 CODEPOINT

'

PUSH PARENT
CODEPOINT IN
STACK

'

GET CODEPQINT
ATTRIBUTES AND
PLACE IN DEF

’

PARENT CPT =
PARAMETER CPT

'

ANY MORE IN

STACK ? —_—

NO

YES

PARENT CPT =
TOP OF STACK

! '

| POP STACK EXIT

Figure 6. Method for Constructing the Definition for [.oosely Coupled Files
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ACCROBRM
RPYDSS
tength Spec: ¢
Codepoint: 2201
Required Required Optiona? Required Optional Opticnal Optional Optional Optiona?
NonRepeat NonRepeat| |NonRepeat| |NonRepeat NonRepeat| |NonRepeat| |NonRepeat NonRepeat|]NonRepeat
1149 002F 0035 112€ 2163 2135 1153 2125 1140
0006 * * *012 *259 *25% *259 0006 *259
Opticnal Optional Optional
NonRepeat | {NonRepeat NonRepeat
1193 1195 1196
0006 0008 0006

Figure 7. Tree for ACCRDBRM Command Part




1.
. Definition = 2201
3.
. Parameter list is:

~ W,
o e .

8.
9. Definition is 2201 1149 002F
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Retrieve ACCROBRM (2201) file
Scan for parameters in ACCRDBRM

1149, 002F, 0035, 112€, 2103, 2135, 1153, 2125, 11A0

Pop off 1149 the parameter list

Definition is 2201 1149

Search for 1149 file and scan for parameters. There are none
Pop off 002F

10.Search for 002F file and scan for parameters. There are none
11.Pop of f 0035

12.Definition is 2201 1149 002F 0035

13.Search for 0035 file and scan for parameters,

14, Parameter list is:

1193, 1195, 1196, 112E, 2103, 2135, 1153, 2125, 11A0

15.Pop off 1193

16.Definition is 2201 1149 002F 0035 1193

17.Search for 1193 file and scan for parameters. There are none.
18.Pop off 1195

19.0efinition is 2201 1149 002F 0035 1193 1195

20.Search for 1195 file and scan for parameters. There are none
21.Pop off 1196

22.Definition is 2201 1149 002F 0035 1193 1195 1196

23.Search for 1196 file and scan for parameters. There are none
24.Pop off 112E

25.Definition is 2201 1149 002F 0035 1193 1195 1196 112F
26.Search for 112E file and scan for parameters. There are none
etc. Steps 24-26 are repeated for 2103, 2135, 1153, 2125, and 11A0.

Definition is: )
2201 1149 002F 6035 1193 1195 1196 112E 2103 2135 1153 2125 11A0

Figure 8. Example in Rettieving a Definition for LCF Method
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Retrieve definition for top level command
Scan definition file for top level command for parameters
parameter A, parameter B etc...
LOOP Until A1l Elements are Processed
Remove first element from parameter list
SELECT
Remove first element from parameter list
CASE parameter A: /* Subparameters of A */
definition = definition + parameter A
CASE parameter_A.1: .
" definition = definition + parameter A.1
CASE parameter A.1.1:
definition = definition + parameter A.1.1
,CASE parameter A.1.2:
definition = definition + parameter A.1.2
CASE parameter A.2:
definition = definition + parameter A.2
CASE parameter_A.2.1:
definition = definition + parameter A.2.1
CASE parameter A.2.2:
definition = definition + parameter A.2.2
CASE parameter A.3:
definition = definition + parameter A.3
CASE parameter A.3.1: :
definition = definition + parameter A.3.1
CASE parameter A.3.2:
definition = definition + parameter A.3.2
CASE parameter_ B: /* Subparamaters of Parameter B */
definition = definition + parameter B
CASE parameter B.1:
definition = definition + parameter B.1
CASE parameter B.1.1:
definition = definition + parameter B.1.1
CASE parameter B.].2:
definition = definition + parameter B.1.2
CASE parameter B.1.3;
definition = definition + parameter B.1.3
CASE parameter 8.2:
definition = definition + parameter B.2
CASE parameter B.2.1:
definition = definition + parameter B.2.1
CASE parameter B8.2.2:
definition = definition + parameter B.2.2
CASE parameter B.3:
definition = definition + parameter B.3
CASE parameter B.3.1:
definition = definition + parameter B.3.1
CASE parameter B.3.2:
definition = definition + parameter B.3.2
etc...

ENDSELECT
end Loop;
RSM Method for Constructing Definition

Figure 9. Case Within Case Mcthod as Used in RSM
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LOOK FOR FILES
IDENTIFIED BY
CODEPOINY

f

SET LIST TO
——————— [NULL

|

MORE
PARAMETERS?

|

LIST OF
PARAMETERS =
LIST OF
PARAMETERS +
LATEST
PARAMETER

'

MORE
" ELEMENTS

IN THE
LIST ?

s

GET FIRST
ELEMENT IN THE
LIST

:

EXECUTE
CASE
STATEMENTS

' '
LIST = LIST
LESS FIRST

ELEMENT

EXIT




CA

02246946 1998-09-04

1. Retrieve definition for top level command, ACCRDBRM (2201)
2. Scan ACCROBRM for top level list of parameters
1149, 002F, 0035, 112E, 2103, 2135, 1153, 2125, 11A0

3. Definition = 2201

4. CASE 1149, definition
5. CASE 002F, definition
6. CASE 0035, definition
7. CASE 1193, definition
8. CASE 1195, definition
9. CASE 1196, definition
10.CASE 112E, definition
11.CASE 2103, definition
12.CASE 2135,

owon

3

2201
2201
2201
2201
2201

= 2201

2201
2201

1149

1149 002F

1149 002F 6035
1149 002F 0835
1149 002F 0035
1149 002F 0035
1149 002F 0035
1149 B02F 0035

1193

1193 1195

1193 1195 1196

1193 1195 1196 112¢

1193 1195 1196 112€ 2103

definition = 2201 1149 802F 0035 1193 1195 1196 112E 2103 2135

13.CASE 1153,

definition = 2201 1149 002F 0035 1193 1195 1196 112€ 2103 2135 1153

14.CASE 2125,
definition =

2201 1149 002F 0035 1193 1195 1196 112E 2103 2135 1153 2125

15.CASE 11A0,
definition =

2201 1149 002F 0035 1193 1195 1196 112E 2103 2135 1153 2125 11A0
Figure 11. Example in Retrieving a Definition for RSM Method
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Step 1:
Generate DDMTXT

Step 2:

Create DDM
Definitions

Step 3:

Assemble ODM
Definitions

Figure 12. ADDG Flowchart
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Scan through DOM
Document

l

Split up files
Required and name them
MNEMONIC DOMTXT

—> MORE FILES?

NO

YES

Take out extraneous
characters

EXIT

Figure 13. ADDG Step 1: Generate DDMTXT Flowchart
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ALL DOMTXT FILES
PROCESSED ?

NO

IS DDMTXT A FILE FOR
A ROOT NODE ?

NO l YES

Scan file for Scan file for RQSDSS
attributes and write RPYDSS, OBJDSS and
attribute info in the write carrier in the
definition definition

¥

Write Codepoint, and
Length Specification
tn definition

l

NO

-04

————  MORE PARAMETERS ?
YES 1

Write Codepoint,

EXIT

attribute and
Length Specification
in definition

Figure 14. ADDG Step 2: Create_DDM_Definitions Flowchart
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MORE ROOT PARAMETERS
———————— NOT PROCESSED?
l YES NO

Get next root
parameter

'

Insert Root Node in Empty
Queue, Q

YES

QUEUE
> EMPTY 7

NO

Remove first element from

Queue Q

Find first element's
children

+

l

ANY CHILDREN 7

l YES

NO

Add Children to the front EXIT
of the Queue Q

Figure 15. ADDG Step 3: Assemble_DDM_Definitions Flowchart
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ADDG
Generate DOMTXT
Create_DOM Definitions
Assemble _DOM_Definitions
end AODG;

Generate DDMTXT

/* Scan through DDM Document */

Do while not reached the end of the DDM Architecture Dictionary
Scan for and split up next term definition into & file
Remember codepcint and append to DDMFLVL file

End /* Do While */;

Do while we have not processed all the files
Take out extraneous characters from the file
End /* Do While */;

end Generate DOMTXT;

Create DDM Definitions ,
Do while not done with all the files
If the next file is the DDM root
Then
Oo;
Extract carrier, length information
Write in definition BNF Carriers for Command Part (CP), Comman
Data (CD), and Reply Data (RD} parts
End;
Else

Oo;

Extract required/optional/ignorable information
repeatable/nonrepeatable
length information...

Write in definition the attributes and codepoint

End;

Level = ]

Do while there are parameters in the codepoint
Obtain each parameter with attribute information
add 1 to level
write down definition for parameter in BNF form

End /* Do while */;

end Create_DOM_Definitions;
Assemble_DOM Definitions

Do while we have not processed all the root parameters
/* do a depth first search */
Form an empty queue consisting of the root node
Do until queue is empty ’
Remove first element from the queue
Add the first element's children if any
to the front of the gueue
End /* Do until */
End /* Do while */
end Assemble DDM Definitions;

Figure 16. ADDG Tool Pseudocode




CA 02246946 1998-09-04

DCL TBLBASE POINTER(31) INIT(ADDR(TABLE));
DCL TBL_PTR POINTER(31);
DCL 1 DDM_TBL BASED(TBL PTR),

2 SPEC CHAR(S),

2 LEN  FIXED(16),

2 INDEX PTR(31);

DCL 1 TABLE STATIC,

2 CDEXCSQLIMM,
3 * CHAR(6) INIT ('CD200A'),
3 * FIXED(16) INIT(LENGTH(DCDEXCSQLIMM)),
3 * PTR(31) INIT(ADDR(DCDEXCSQLIMM)),

2 CDEXCSQLSTT,
3 * CHAR(6) INIT ('CD2008'),
3 * FIXED(16) INIT(LENGTH(DCDEXCSQLSTT)),
3 * PTR(31) INIT(ADDR(DCDEXCSQLSTT)),

2 CDOPNQRY,
3 * CHAR(6) INIT ('CD200C'),
3 * FIXED(16) INIT(LENGTH(DCDOPNQRY)),
3 * PTR(31) INIT(ADDR(DCDOPNQRY)),

2 COPRPSQLSTT,
3 * CHAR(6) INIT ('CD206D'),
3 * FIXED(16) INIT(LENGTH(DCOPRPSQLSTT)),
3 * PTR(31) INIT(ADDR(DCOPRPSQLSTT)),

2 CDBNDSQLSTT,
3 * CHAR(6) INIT ('CD2004'),
3 * FIXED(16) INIT(LENGTH(DCDBNDSQLSTT)),
3 * PTR(31) INIT(ADDR(DCOBNDSQLSTT)),

2 CDDSCROBTBL,
3 * CHAR(6) INIT ('CD2012'),
3 * FIXED(16) INIT(LENGTH{DCODSCRDBTBL)),
3 * PTR(31) INIT(ADOR(DCODSCROBTBL)),

2 CPEXCSAT,
3 * CHAR(6) INIT (‘CP1041'),
3 * FIXED(16) INIT(LENGTH(DCPEXCSAT)),
3 * PTR(31) INIT(ADDR(DCPEXCSAT)),

2 CPCMDATHRM,
3 * CHAR(6) INIT ('CP121C'),
3 * FIXED(16) INIT(LENGTH(DCPCMDATHRM)),
3 * PTR(31) INIT(ADDR(DCPCMDATHRM)),

2 CPMGRLVLRM,
3 * CHAR(6) INIT ('CP1210'),
3 * FIXED(16) INIT(LENGTH(DCPMGRLVLRM)),
3 * PTR(31) INIT(ADDR(DCPMGRLVLRM)),

2 CPMGRDEPRM,
3 * CHAR(6) INIT ('CP1218'),
3 * FIXED(16) INIT(LENGTH(DCPMGRDEPRM)),
3 * PTR(31) INIT(AODR(DCPMGROEPRM)),

2 CPAGNPRMRM,
3 * CHAR(B) INIT ('CP12321),
3 * FIXED(16) INIT(LENGTH(DCPAGNPRMRM)),
3 * PTR(31) INIT(ADDR(DCPAGNPRMRM)),

Figure 17. a Example of the implemented DDM Dictionary and Retrieval Methodology in Accordance with the
Instant Invention




CA 02246946 1998-09-04

2 CPRSCLMTRM,
3 * CHAR(6) INIT ('CP1233'),
3 * FIXED(16) INIT(LENGTH{DCPRSCLMTRM)),
3 * PTR(31) INIT(ADDR(DCPRSCLMTRM)),

2 CPCMDCMPRM,
3 * CHAR(6) INIT ('CP124B'),
3 * FIXED(16) INIT(LENGTH(OCPCMDCMPRM)),
3 * PTR(31) INIT(ADOR(DCPCMOCMPRH)),

2 CPSYNTAXRM,
3 * CHAR(E) INIT ('CP124C'),
3 * FIXED(16) INIT(LENGTH(DCPSYNTAXRM)),
3 * PTR(31) INIT(ADDR(DCPSYNTAXRM)),

2 CPPRCCNVRM,
3 * CHAR(E) INIT ('CP1245'),
3 * FIXED(16) INIT(LENGTH(DCPPRCCNVRM)),
3 * PTR(31) INIT(ADDR(DCPPRCCNVRM)),

2 CPTRGNSPRM,
3 * CHAR(6) INIT ('CP125F'),
3 * FIXED(16) INIT(LENGTH(DCPTRGNSPRM)),
3 * PTR(31) INIT(ADDR(DCPTRGNSPRM)),

2 CPCMDNSPRM,
3 * CHAR(6) INIT ('CP1250'),
3 * FIXED(16) INIT(LENGTH(DCPCMDNSPRH)),
3 * PTR(31) INIT(ADDR(DCPCMDNSPRM)),

2 CPPRMNSPRM,
3 * CHAR(6) INIT ('CP1251'),
3 * FIXED(16) INIT(LENGTH(DCPPRMNSPRH)),
3 * PTR(31) INIT(ADDR(DCPPRMNSPRM)),

2 CPVALNSPRM,
3 * CHAR(6) INIT ('CP1252'),
3 * FIXED(16) INIT(LENGTH(DCPVALNSPRH)),
3 * PTR(31) INIT(ADDR(DCPVALNSPRM)),

2 CPOBJNSPRM,
3 * CHAR(6) INIT ('CP1253'),
3 * FIXED(16) INIT(LENGTH(DCPOBJNSPRM)),
3 * PTR(31) INIT(ADOR(DCPOBJNSPRM)),

2 CPCMOCHKRM,
3 * CHAR(6) INIT ('CP1254'),
3 * FIXED(16) INIT(LENGTH(DCPCMDCHKRM)),
3 * PTR(31) INIT(ADDR(DCPCHDCHKRM)),

2 CPEXCSQLIMH,
3 * CHAR(6) INIT ('CP200A'),
3 * FIXED(16) INIT(LENGTH(DCPEXCSQLINM)),
3 * PTR(31) INIT(ADDR(DCPEXCSQLIMM)),

2 CPEXCSQUSTT,
3 * CHAR(6) INIT ('CP200B'),
3 * FIXED(16) INIT(LENGTH(DCPEXCSQLSTT)),
3 * PTR(31) INIT(ADDR(DCPEXCSQLSTT)),

2 CPOPNQRY,
3 * CHAR(B) INIT ('CP200C'),
3 * FIXED(16) INIT(LENGTH(DCPOPNQRY)),
3 * PTR(31) INIT(ADDR(DCPOPNQRY)),

Figure 17b: Example of the Implemented Dictionary
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2 CPPRPSQLSTT,
3 * CHAR(6) INIT ('CP206D'),
3 * FIXED(16) INIT{LENGTH(DCPPRPSQLSTT)),
3 * PTR(31) INIT(ADDR(DCPPRPSQLSTT)),
2 CPRDBCHMM,
3 * CHAR(6) INIT ('CP200E'),
3 * FIXED(16) INIT(LENGTH(DCPRDBCMM)),
3 * PTR(31) INIT(ADOR(DCPROBCMM)),
2 CPRDBRLLBCK,
3 * CHAR(6) INIT ('CP200F'),
3 * FIXED{16) INIT(LENGTH(DCPRDBRLLBCK)),
3 * PTR(31) INIT(ADOR(DCPROBRLLBCK)),
2 CPACCRDB,
3 * CHAR(6) INIT ('CP2001'),
3 * FIXED(16) INIT(LENGTH(DCPACCRDB)),
3 * PTR(31) INIT{ADDR(DCPACCRDB)),
2 CPBGNBND,
3 * CHAR(6) INIT {'CP2002'),
3 * FIXED(16) INIT(LENGTH(DCPBGNBND)),
3 * PTR(31) INIT(ADDR(DCPBGNBND)),
2 CPINTRDBRQS,
3« CHAR(6) INIT ('CP2003'),
3 * FIXED(16) INIT(LENGTH(DCPINTRDBRQS)),
3 * PTR(31) INIT(AODR(DCPINTRDBRQS)),
2 CPBNDSQLSTT,
3 * CHAR(6) INIT ('CP2004'),
3 * FIXED(16) INIT{LENGTH(DCPBNOSQLSTT)),
3 * PTR(31) INIT(ADDR(DCPBNDSQLSTT}),
2 CPCLSQRY,
3 * CHAR(6) INIT ('CP2005'),
3 * FIXED(16) INIT(LENGTH(DCPCLSQRY)),
3 * PTR(31) INIT(ADDR(DCPCLSQRY)),
2 CPCNTQRY,
3 * CHAR(6) INIT ('CP2006'),
3 * FIXED(16) INIT(LENGTH(DCPCNTQRY)),
3 * PTR(31) INIT(ADDR(DCPCNTQRY)),
2 CPDRPPKG,
3 * CHAR(6) INIT ('CP2007'),
3 * FIXED(16) INIT(LENGTH(DCPORPPKG)),
3 * PTR(31) INIT(ADOR(DCPDRPPKG)),
2 CPDSCSQLSTT,
3 * CHAR(6) INIT ('CP2008'),
3 * FIXED(16) INIT(LENGTH(DCPDSCSQLSTT)),
3 * PTR(31) INIT(ADDR(DCPDSCSQLSTT)),
2 CPENDBND,
3 * CHAR(6) INIT ('CP200S'),
3 * FIXED(16) INIT(LENGTH(DCPENDBND)),
3 * PTR(31) INIT(ADOR(DCPENDBND)),
2 CPREBIND,
3 * CHAR(6) INIT ('CP2010'),
3 * FIXED(16) INIT(LENGTH(DCPREBIND)),
3 * PTR(31) INIT({ADDR(DCPREBIND)),

Figure 17c: Example of the Implemented DDM Dictionary
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2 CPDSCROBTBL,
3 * CHAR(6) INIT ('CP2012'),
3 * FIXED(16) INIT(LENGTH(DCPDSCRDBTBL)),
3 * PTR(31) INIT(ADDR(DCPDSCROBTBL)),

2 CPDSCINVRM,
3 * CHAR(6) INIT ('CP220A'),
3 * FIXED(16) INIT(LENGTH(DCPOSCINVRM)),
3 * PTR(31) INIT({ADDR(DCPDSCINVRM)),

2 CPENDQRYRM,
3 * CHAR(6) INIT ('CP220B'),
3 * FIXED(16) INIT(LENGTH(DCPENDQRYRM)),
3 * PTR(31) INIT(ADOR(DCPENDQRYRM)),

2 CPENDUOWRM,
3 * CHAR(6) INIT (‘'CP220C'),
3 * FIXED(16) INIT(LENGTH(DCPENDUOWRM)),
3 * PTR(31) INIT(ADDR(DCPENDUOWRM)),

2 CPABNUOWRM,
3 * CHAR(6) INIT ('CP220D'),
3 * FIXED(16) INIT(LENGTH(DCPABNUOWRM)),
3 * PTR(31) INIT(ADDR(DCPABNUOWRM)),

2 CPDTAMCHRM,
3 * CHAR(6) INIT ('CP220E'),
3 * FIXED(16) INIT(LENGTH(DCPDTAMCHRM)),
3 * PTR(31) INIT(ADDR(DCPDTAMCHRM)),

2 CPQRYPOPRM,
3 * CHAR(6) INIT ('CP220F'),
3 * FIXED(16) INIT(LENGTH(DCPQRYPOPRM)),
3 * PTR(31) INIT(ADDR(DCPQRYPOPRM)),

2 CPACCRDBRM,
3 * CHAR(6) INIT ('CP2201'),
3 * FIXED(16) INIT(LENGTH(DCPACCROBRM)),
3 * PTR(31) INIT(ADOR(DCPACCROBRM)),

2 CPQRYNOPRM,
3 * CHAR(6) INIT ('CP2202'),
3 * FIXED(16) INIT(LENGTH(DCPQRYNOPRM)),
3 * PTR(31) INIT(ADOR(DCPQRYNOPRM)),

2 CPRDBATHRM,
3 * CHAR(6) INIT ({'CP2203"),
3 * FIXED(16) INIT(LENGTH(DCPRDBATHRM)),
3 * PTR(31) INIT(ADDR(DCPRDBATHRH)),

2 CPRDBNACRM,
3 * CHAR(E) INIT ('CP2204'),
3 * FIXED(16) INIT(LENGTH(DCPROBNACRM)),
3 * PTR(31) INIT(ADDR(DCPROBNACRM)),

2 CPOPNQRYRM,
3 * CHAR(6) INIT ('CP2205'),
3 * FIXED(16) INIT(LENGTH(DCPOPNQRYRM)),
3 * PTR(31) INIT(ADDR(DCPOPNQRYRM)),

2 CPPKGBNARM,
3 * CHAR(6) INIT ('CP2206'),
3 * FIXED(16) INIT(LENGTH{DCPPKGBNARM)),
3 * PTR(31) INIT(ADDR(DCPPXGBNARM)),

Figure 17d: Example of the Implemented DDM Dictionary
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2 CPRDBACCRM,
3 * CHAR(6) INIT ('CP2207'),
3 * FIXED(16) INIT(LENGTH(DCPRDBACCRM)),
3 * PTR(31) INIT(ADDR(DCPRDBACCRM)),

2 CPBGNBNDRM,
3 * CHAR(6) INIT ('CP2208'),
3 * FIXED(16) INIT(LENGTH(DCPBGNBNDRM)),
3 * PTR(31) INIT{AODR(DCPBGNBNDRM)),

2 CPPKGBPARM,
3 * CHAR(6) INIT ('CP2209'),
3 * FIXED(16) INIT(LENGTH({DCPPKGBPARM)),
3 * PTR(31) INIT(ADDR(DCPPKGBPARM)),

2 CPRDBNAVRM,
3 * CHAR(6) INIT ('CP221A'),
3 * FIXED(16) INIT(LENGTH(DCPROBNAVRM)),
3 * PTR(31) INIT(ADDR(DCPRDBNAVRM)),

2 CPINTTKNRM,
3 * CHAR(6) INIT ('CP2210'),
3 * FIXED(16) INIT(LENGTH{DCPINTTKNRM)),
3 * PTR(31) INIT(ADDR(DCPINTTKNRM)),

2 CPROBNFNRM,
3 * CHAR(B) INIT ('CP2211'),
3 * FIXED(16) INIT(LENGTH(DCPRDBNFNRM)),
3 * PTR(31) INIT(ADOR(DCPROBNFNRM)),

2 CPOPNQFLRM,
3 * CHAR(6) INIT ('CP2212'),
3 * FIXED(16) INIT(LENGTH(DCPOPNQFLRM)),
3 * PTR(31) INIT(AODR(DCPOPNQFLRM)),

2 CPSQLERRRM,
3 * CHAR(6) INIT ('CP2213'),
3 * FIXED(16) INIT(LENGTH(DCPSQLERRRM)),
3 * PTR(31) INIT(ADDR(DCPSQLERRRM)),

2 RDEXCSAT,
3 * CHAR(6) INIT ('RD1041'),
3 * FIXED(16) INIT(LENGTH(DRDEXCSAT)),
3 * PTR(31) INIT(ADDR(ORDEXCSAT)),

2 RDEXCSQLIMM,
3 * CHAR(6) INIT ('RD200A'),
3 * FIXED(16) INIT(LENGTH(DRDEXCSQLIMM)),
3 * PTR(31) INIT(ADDR(DRDEXCSQLIMH)),

2 RDEXCSQLSTT,
3 * CHAR(6) INIT ('RD200B'),
3 * FIXED(16) INIT(LENGTH(DRDEXCSQLSTT)),
3 * PTR(31) INIT(ADDR(DRDEXCSQLSTT)),

2 RDOPNQRY,
3 * CHAR(6) INIT ('RD200C'),
3 * FIXED(16) INIT(LENGTH(DRDOPNQRY)),
3 * PTR(31) INIT(ADDR(DRDOPNQRY)),

2 RDPRPSQLSTT,
3 * CHAR(6) INIT ('RD200D'),
3 * FIXED(16) INIT(LENGTH(DRDPRPSQLSTT)),
3 * PTR(31) INIT(ADDR(DRDPRPSQLSTT)),

Figure 17e: Example of the Implemented DIDM Dictionary
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2 RDRDBCMM,
3 * CHAR(6) INIT ('RD20OE'),
3 * FIXED(16) INIT(LENGTH(DRDRDBCMM)),
3 % PTR(31) INIT(ADDR(DRORDBCMM)),
2 RDROBRLLBCK,
3 * CHAR(6) INIT ('RD200F'},
3 * FIXED(16) INIT(LENGTH(DRDRDBRLLBCK)),
3 * PTR(31) INIT(ADDR(DRDRDBRLLBCK)),
2 RDACCRDB,
3 * CHAR(6) INIT ('RD2061'),
3 * FIXED(16) INIT(LENGTH(DRDACCRDB)),
3 * PTR(31) INIT(ADDR(DRDACCRDB)),
2 RDBGNBND,
3 * CHAR(6) INIT ('RD2002'),
3 * FIXED(16) INIT(LENGTH(DRDBGNBND)),
3 * PTR(31) INIT(ADDR(DRDBGNBND)),
2 RDBNDSQLSTT,
3 * CHAR(6) INIT ('RD2604'),
3 * FIXED(16) INIT(LENGTH(DRDBNDSQLSTT)),
3 * PTR(31) INIT(ADDR{DRDBNDSQLSTT)),
2 RDCLSQRY,
3 * CHAR(6) INIT ('RD2005'),
3 * FIXED(16) INIT{LENGTH(DRDCLSQRY)),
3 * PTR(31) INIT(ADDR(DRDCLSQRY)),
2 ROCNTQRY, v
3 * CHAR(6) INIT ('RD2006'),
3 * FIXED(16) INIT(LENGTH(DRDCHTQRY)),
3 * PTR(31) INIT({ADDR(DRDCNTQRY)),
2 RDDRPPKG,
3 * CHAR(6) INIT ('RD2007'),
3 * FIXED(16) INIT(LENGTH(DRDDRPPKG)),
3 * PTR(31) INIT(ADDR{DRDDRPPKG)),
2 RDDSCSQLSTT,
3 * CHAR(6) INIT ('RD2008'),
3 * FIXEG(16) INIT{LENGTH(DRDDSCSQLSTT)),
3 * PTR(31) INIT(AODR(DRODSCSQLSTT)),
2 RDENDBND,
3 * CHAR(6) INIT ('RD2009'),
3 * FIXED(16) INIT(LENGTH(DRDENDBND)),
3 * PTR(31) INIT(ADDR(DRDENDBND)),
2 ROREBIND,
3 * CHAR(6) INIT ('RD2010'),
3 * FIXED(16) INIT(LENGTH(DROREBIND)),
3 * PTR(31) INIT(ADDR(DRDREBIND)),
2 RODSCROBTBL,
3 * CHAR(6) INIT ('RD2012'),
3 * FIXED(16) INIT(LENGTH(DRODSCROBTBL)),
3 * PTR(31) INIT(ADDR(DRDDSCROBTBL));

Iigure 17f: Fxample of the Implemented DIDM Dictionary
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DCL DCDEXCSQLIMM CHAR(32)
INIT (3,200,****/RN2:2414,**** FDOCA$');
DCL DCDEXCSQLSTT CHAR(60)
INIT (73,2008, %***/0N2:2412,**** FDOCA/RR3:0010,**** /OR3: 147A, ***
*$')3
DCL DCDOPNQRY CHAR(60)
INIT (3,200C,****/0N2:2412,**** FDOCA/RR3:0010,**** /OR3: 147A, ***
*$l);
DCL DCDPRPSQLSTT CHAR(32)
INIT ('3,200D,****/RN2:2414,**** FDOCA$');
DCL DCDBNDSQLSTT CHAR(52)
INIT (13,2004, %***/RN2:2414,**** FDOCA/ON2: 2419, **** FDOCA$');
DCL OCDDSCRDBTBL CHAR(32) ‘
INIT ('3,2012,****/RN2: 243E, %260, FDOCA$ ') ;
DCL DCPEXCSAT CHAR(96)
INIT ('1,1041,%***/IN2: 115E,**** JON2: 1404, **** /ON2: 115D,0004 /ON2:
1147,%259/IN2: 116D, **** /IN2: 1154, %259 ') ;
DCL DCPCMDATHRM CHAR(54)
INIT ('2,121C,****/RN2:1143,0006/0N2: 2110,0022/0N2: 1153, %2593 ') ;
DCL DCPMGRLVLRM CHAR(54)
INIT (12,1210, %*** /RN2: 1149, 0006 /RN2: 1404, ***+* /ON2: 1153, %2598 ') ;
DCL DCPMGRDEPRM CHAR(58)
INIT ('2,1218,****/RN2:1149,0006/0N2: 2110,0022 /RN2: 1198, 8005 /ON2:
1153,%259% ') ;
DCL DCPAGNPRMRM CHAR(54)
INIT ('2,1232,****/RN2:1149,0006,/0N2:2110,0022/0N2: 1153, *259$ ') 5
DCL DCPRSCLMTRM CHAR(110)
INIT (2,1233,****/RN2: 1149,0006/0N2:2110,0022/0N2: 112D, **** /ON2:
111F,0006/0N2: 112€,*012/0N2: 1127,0008/0N2: 1153, *259$ ') ;
DCL DCPCMDCMPRM CHAR(40)
INIT ('2,124B,****/RN2:1149,0006/0N2: 1153,*259$ ) ;
DCL DCPSYNTAXRM CHAR(82)
INIT (12,124C,****/RN2:1149,0006/RN2: 114A,6005/0N2: 000C, 0006 /0N2:
2110,0022/0N2:1153,%2598 1) ;
DCL DCPPRCCNVRM CHAR(68)
INIT ('2,1245,%***/RN2:1149,0006/RN2: 113F,0005/0K2: 2110,0022,/0N2:
1153,%259%');
DCL DCPTRGNSPRM CHAR(54)
INIT ('2,125F,****/RN2:1149,0006/0N2:2110,0022/0N2: 1153, %259% ') ;
DCL DCPCHMDNSPRM CHAR(68)
INIT (12,1250,****/RN2:1149,0006/RN2: 900C , 6006 /0N2: 2110, 0022 /ON2:
1153,+25981);
DCL DCPPRMNSPRM CHAR(68)
INIT (12,1251, **** /RN2: 1149, 0006/RN2: 000C , 0006 /0N2: 2110, 0022 /ON2:
1153,%250%');
DCL DCPVALNSPRM CHAR(68)
INIT ('2,1252,%***/RN2:1149,0006/RN2:000C 0006 /0N2: 2110 0022 /ON2:
1153,*259% ') ;
DCL DCPOBJNSPRM CHAR(68)
INIT ('2,1253,****/RN2:1149,0006/RN2: 000C 0006 /0N2: 21100022 /ON2:
1153,%259% ')
OCL DCPCMDCHKRM CHAR(68)
INIT (2,1254,****/RN2:1149,0006/RN2: 115C, 0005 /0N2: 2110, 0022 /ON2:
1153,*259% ) s

Figure 17g: Example of the Implemented DDM Dictionary
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DCL DCPEXCSQLIMM CHAR(40)
INIT ('1,200A,****/0ON2:
DCL DCPEXCSQLSTT CHAR(54)
INIT ('1,200B,****/0N2
DCL DCPOPNQRY CHAR(68)
INIT ('1,208C,****/0ON2:
2132,0006%');

DCL OCPPRPSQLSTT CHAR({54)
INIT ('1,200D,****/ON2:
DCPRDBCMM CHAR(26)
INIT (1,200€,****/ON2
OCPRDBRLLBCK CHAR(26)
INIT ('1,200F,****/ON2:
OCPINTRDBRQS CHAR(40)
INIT ('1,2003,****/RN2:
OCPBNDSQLSTT CHAR(68)
INIT ('1,2004,****/ON2:
2126,00063");

DCL DCPCLSQRY CHAR(40)
INIT (*1,2005,****/ON2
DCPCNTQRY CHAR(54)
INIT ('1,2006,****/ON2:
DCPDRPPKG CHAR(54)

INIT ('1,2007,****/0N2:
DCPOSCSQLSTT CHAR(40)
INIT ('1,2008,****/ON2:
DCPENDBND CHAR(54)
INIT ('1,2009,%***/0ON2:
DCPOSCRDBTBL CHAR(40)
INIT ('1,2012,****/ON2;
DCPENDQRYRM CHAR(54)
INIT ('2,220B,****/RN2:
DCPENDUOWRM CHAR(68)
INIT ('2,220C,****/RN2:
1153,*259%');
DCL DCPABNUOWRM CHAR(54)
INIT ('2,220D,****/RN2:
DCL DCPDTAMCHRM CHAR(54)
INIT ('2,220E,****/RN2:
DCL DCPQRYPOPRM CHAR(68)
INIT ('2,220F ,**** /RN2:
1153,*259%"');
DCL DCPQRYNCPRM CHAR(68)
INIT ('2,2202,****/RN2:
1153,+259% ') ;
DCL DCPROBATHRM CHAR(54)
INIT (12,2203,****/RN2:
DCL DCPRDBNACRM CHAR(54)
INIT (12,2204, %***/RN2:
DCL DCPOPNQRYRM CHAR(68)
INIT (12,2205,****/RN2:
1153,#259%');

ocL
DCL
oCcL

DCL

DCL
DCL
OCL
DcL
DCL
DCcL

DCL

2110,0022/RN2:
2110,0022/RN2:

2110,0022/RN2:

2110,0022/RN2:
2110,0022% )
2110,0022%");
2103,*259,/0N2:

2110,0022 /RN2:

2110,0022 /RN2:
2110,0022 /RN2:
2110,0022/RN2:
2110,0022 /RN2:
2110,0022 /RN2:
2110,0022 /ON2:
1149,ooee/o~é:

1149,0006 /RN2

1149,0006/RN2:
1149,0006/RN2:

1149,0006/RN2:
1149,0006/RN2:

1149,0006/RN2:
1149,0006/RN2

1149, 0006 /RN2:

2113,0068%');
2113,0068 /0N2:

2113,0068/RN2:

2113,0068 /0N2:

2110,0022$');

2113,0068/0N2:

2113,00688');
2113,0068/RN2
210A,0058 /0ON2:
2113,0068%');
2112,0066/0N2
2113,00688');

2110,0022/0N2:

:2115,0005/0N2:

2110,0022,/0N2:
2110,0022/0N2:

2110,0022 /RN2:

2110,0022/RN2:

2110,0022 /0N2:

:2110,0022 /0N2:

2102,0006/0N2:

Figure 17h: Example of the Implemented DDM Dictionary
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2111,0005%');

2114,0008/0N2:

2116,0005$);

2117,0008/0N2:

:2114,0008$');

1144,%2588");

:2127,0006$") ;

1153,*259%');

2116,0022/0N2:

1153,*259%');
1153,*259%');

2113,0068/0N2:

2113,0068/0N2:

1153,%259% ') ;
1153,+2598 1) ;

211F, 0005 /ON2:
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DCL DCPPKGBNARM CHAR(54)
INIT (12,2206, **** /RN2:

DCL DCPRDBACCRM CHAR(54)
INIT (12,2207 ,****/RN2:

DCL DCPBGNBNDRM CHAR(82)

INIT ('2,2208,****/RN2:

1144,*258/0N2:1153,*259%');
DCL DCPPKGBPARM CHAR(54)

INIT ('2,2209,****/RN2:

DCL DCPRDBNAVRM CHAR(54)
INIT ('2,221A,**** /RN2:
DCL DCPINTTKNRM CHAR(68)

INIT ('2,2210,****/RN2:

1153,*259$") ;
DCL DCPRDBNFNRM CHAR(54)

INIT ('2,2211,****/RN2:

DCL DCPOPNQFLRM CHAR(54)
INIT ('2,2212,**** /RN2:
DCL DCPSQLERRRM CHAR(54)
INIT (12,2213,**** /RN2:
DCL DRDEXCSAT CHAR(96)
INIT ('3,1041,%***/RN2:

1149,08006/RN2:2110,0022/0N2:1153,*259%");

1149,0006/RN2:2110,0022 /ON2: 1153, %259% ) ;

1149,0006/RN2:2110,0022/RN2:2112,0066 /RN2:

1149,0006/RN2:2110,0022/0N2:1153,%259% ") ;

1149,06006/RN2:2110,0022/0N2: 1153,*259%') ;

1149,0006/RN2:2110,0022/RN2:2103,*259/QN2:

1149,0006/RN2:2110,0022 /0N2: 1153,*2598 ') ;

1149,0006/RN2:2116,0822/0N2:1153,*259% '} ;

1149,0006 /0N2:2110,0022/0N2: 1153,*259% ') ;

1443 **** JON3: 115E,**** /ON3: 1404, **** /ON3:

1147,*259/0N3: 116D, **** /ON3: 1154, *259$ ') 5

DCL DRDACCRDB CHAR(32)
INIT ('3,2001,****/RN2:
DCL DRDEXCSQLIMM CHAR(32)
INIT (13,2004, ****/RN2:
DCL DRDEXCSQLSTT CHAR(80)
INIT ('3,2008,****/ON2:
10,%*** JOR3: 147A, ***+$ 1) ;
DCL DRDOPNQRY CHAR(66)
INIT ('3,200C,****/ON2:
1B’t**tsl)i
DCL DROPRPSQLSTT CHAR(52)
INIT ('3,2000,****/ON2:
DCL DRDRDBCMM CHAR(32)
INIT ('3,200€,**** /RN2:
DCL DRORDBRLLBCK CHAR(32)
INIT ('3,200F,****/RN2:
DCL DRDBGNBND CHAR(32)
INIT (13,2002,%***/AN2:
DCL DROBNDSQLSTT CHAR(32)
INIT (13,2008, **** /RN2:
_ DCL DRDCLSQRY CHAR(32)
INIT (13,2005,%***/RN2:
DCL DROCNTQRY CHAR(46)
INIT ('3,2006,****/ON2:
DCL DRODRPPKG CHAR(32)
INIT (13,2007, ****/RN2:
DCL DRODSCSQLSTT CHAR(52)
INIT ('3,2008,%***/RN2:
DCL DRDENDBND CHAR(32)
INIT ('3,2009,*%***/RN2:

2408, **** FDOCA$');
2408, **** ,FDOCAS');

2408,**** ,FDOCA/ON2:2413,**** FDOCA/RR3:00
2408,**** ,FDOCA/OR2: 2414, +*** FDOCA/OR?:24

2411,****,FDOCA/ONZ:2408,****,FDOCA$‘);
2408, **** ,FDOCAS ')

2408, **** FDOCA$');

2408, **** FDOCAS ') ;

2408,**** FDOCA$');

2408, **** FDOCA$');

2408,**** FDOCA/OR2: 2418, ****§');
2408,**** FDOCA$');

2411, **** FDOCA/ON2:2408,**** FDOCA$');

2408, **** FDOCA$ ') ;

Figure 171: Example of the Implemented DDM Dictionary
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OCL DROREBIND CHAR(32)
INIT ('3,2010,****/RN2:2408,**** ,FDOCA$'};
DCL DRDDSCRDBTBL CHAR(52)
INIT (3,2012,****/RN2:2411,**** FDOCA/ON2: 2408, **** ,FDOCA$ ')

DCL DCPACCRDB CHAR(208)
INIT ('1,2001,****/RN2:2110,0022/RN2: 210F ,0006 /RN2: 002F , **** /ON2:
0035, **** /0N3:1193,0006/0N3: 1195,0006/0N3: 1196, 0006 /RN2: 112E , *012 /ON2: 2
11A,0005/0N2: 2104, **** /ON2: 21216006 /0N2: 2120, 0006 /0N2: 2135, *259/0N2: 21
38,00058');

DCL 1 DCPBGNBND STATIC,

2 * CHAR(250)

INIT ('1,2002,****/0N2:2110,0822/RN2:2112,0066/0N2: 1144, ¥258 /ON
2:211D,0006/0N2: 2118,0006/0N2: 211C,0006,/0N2: 211E, 0006 /0N2: 2120, 0006 /ON2
:2121,0006/0N2: 2122,0006/0N2: 2123, 0006 /RN2: 2124, 0006,/0N2: 2125, 0006 /ON2:
2132,0006/0N2: 2106,0006/0N2: 1194, **** /ON3: 119C,0006/" ),

2 * CHAR(98)

INIT ('ON3:1190,0006/0N3: 119E,0006/0N2:2129,0006/0N2: 2130, 0006/
ON2:2131,%012/0N2: 2128, %022/ IN2: 0045, *259$ ') ;

DCL DCPREBIND CHAR(138)

INIT (11,2010, ****/0N2:2110,0022/RN2: 2104, 0058 /ON2: 1144, *258 /ON2:
2124,0006/0N2:2130,0006/0N2: 2131, *012/0N2: 2129, 0006,/0N2: 2118, 0006 /ON2: 2
128,%022%');

DCL DCPOSCINVRM CHAR(124)

INIT (12,2204, ****/RN2:1149,6006/RN2: 2101,0005/RN2: 2110, 0022 /RN2:

9010,**** /RN2: 2118,0008/RN2: 2124, 0008 /RN2: 2128, 0006,/0N2: 1153, *2595 ') ;
DCL DCPACCROBRM CHAR(180)

INIT (2,2201,****/RN2:1149,0006 /AN2: 002F , **** /0N2: 0035, **** /ON3:
1193,0006/0N3: 1195,0006 /0N3: 1196, 6086 /RN2: 112, *012 /0N2: 2103, *259 /ON2: 2
135,*250/0N2: 1153, *259/082: 2125, 0006 /ON2: 1140, *259% ') ;

Figure 17j: Example of the Implemented DDM Dictionary
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CHRPSCPT(1::2) = PARTSPEC; /* PARTSPEC INTO FIRST TWO POS. */
CHRPSCPT(3::4) = CHRCODEP; /* CPT INTO LAST FOUR POSITIONS */

/*ifl-**liiQi**ﬁ**‘i*ii**ﬁﬁ*f(*'*f'*'**'***ﬁ**'i’*i*t*i‘i’l**ﬁ'ﬁ*****'*/
/* Initialize Control Variables *
ti************************i**Q*ﬁti*i**itit*****'it**#Q**ﬁ****ﬁ*’*/
FOUND = OFF;
ARICODE= 0K;

/**t**tiﬁtittttt*kttttitttt*it*ttt*t**i**Q**ﬁ***tttt*tttiitiw*ti*#/

/* Do a binary search through the table. */
i**i*ti**‘**ﬁ**ttttttt*t'itiﬂﬁ*t*t***i*t****ﬁ*t***ﬁ**ti**iit'ttﬂi/
TOP = TABSIZE;
. BOTTOM = 1;
DO WHILE {BOTTOM =< TQOP) UNTIL (FOUND);
MIDDLE = ((TOP + BOTTOM}/2);
TBL_PTR=TBLBASE+{ (MIDOLE-1)*12);
IF SPEC = CHRPSCPT THEN
DO;
/**ﬂtt‘tiii*t*.-*ﬁ*ttiﬂ*nii**ﬂ**i*ﬂ*l**ﬁ********ﬂ**ﬂ*’it.i‘ﬁﬁ'ﬂ/
/* We found a codepoint. Set up for moving the definition */
/* later into the buffer. *
ittw**'ﬂ***i****i*'!i**t*I-*'**ﬁtﬁ*t*tt**it*iiiti*iit'tti*?***/
FOUND = ON;
DEFNPT = INDEX;
EXPLEN = LEN;
END;
ELSE
DO;
IF SPEC > CHRPSCPT THEN
TOP = MIDDLE - 1;
ELSE
BOTTOM = MIDDLE + 1;
END;
END;

FFigure 17k: Example of the Implemented DDM Dictionary




CA 02246946 1998-09-04

/*ﬁi*'*'**'*t*iﬁ*i*)ﬁtt***t*k*l**iiﬁ*'****t*iii‘***ﬁ***Ri‘**ﬂt*ﬁ**/

/* Copy the definition into the buffer area */
/*i'**ﬁ*ﬂ**t*k*ﬁii'k****ﬂi*itt****tﬁ**ﬂ*iit*****ﬁ***t*ﬁt**ﬁ*****ti/
IF FOUND THEN
DO;
CALL ARITAMC (DEFBUFPT, DEFNPT, EXPLEN, DRRMPT}
DEFBUFPT = ADDR(BUF);
END;
/*i**tth*ﬁl"‘-*ﬂt*ﬂi**tQ*ﬂ****t*.ii*t'!***tt’**********'******/
/* Else set return code to not found. Caller will invoke  */
*

/* appropriate error routines.
/ii’t*#*’t*i*****t****t****i*Q!‘tt*i****t*'t*itfﬁt*****‘iﬁt*t**/

ELSE
DO;
ARICODE = CPTNTFND; /* Codepoint not found */
END;
EXIT:
RETURN CODE({ARICODE); /* RETURN THE COOE. */

Figure 171: Example of the DDM Dictionary and Retrieving the Definition

This table shows the Method for Constructing the Definition of an Object. As one can see it is simply the retrieval of
the definition in a binary scarch manner, since the definition is constructed prior to compile time by ADDG
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DDM Command
Node ©
1 l 4 l 1
Internal Internal Internal Internal Internal
Node 1 Node 2 Node 3 Node 4 Node 5
l J,lLl l 1
Leaf 1 Internal Internal Leaf 4 Internal Leaf 7
Node 2.1 Node 2.2 Node 4.1
Leaf 2 Leaf 3
Internal Internal
Node 4. 1a Node 4.1b
Leaf 5 Leaf &

Figure 18 Pictorial Representation of a DIYM Command in Terms of a Tree
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Line 1: DOM_ENTRY := carrier ',‘ codept ‘,’ length ',' DDM_PARMS
Line 2: | carrier ',* codept ',' length ‘,’' ‘LOWERAS'

Line 3: | carrier ',' codept *,* length ',* 'LOWERA' LOWOBJ
Line 4: DDM_PARHS := /' roi rn level ':’ codept ',' length

Line 5: | */* roi rn level ':* codept ',' length ',

Line &: ' LOWERA"

Line 7: | DDM_PARHS DUM_PARMS

Line 8: | DDM_PARHS '$"

Line 9: LOWOBJ := '/' rei rn level ':' codept ', length

Line 10: | LOWOBJ LOWOBJ

Line 11: { LOWOBY '8

Line 12: carrier:= "0'’1'{'2'{*3"

Line 13: level 1= X where X > 0

Line 14: codept := any DOM codepoint
Line 15: length := dddd| '****'| '*'maxlen | minien'*"
Line 16: maxlen := any positive number
Line 17: minten := any positive number
Line 18: roi r= CRUPTOU)T

Line 19: rn = 'RY|'NY

Line 20: d t=  any digit from G te 9

Figure 19. DDM Dictionary Definition Syntax

=>

>

DDH_ENTRY describes the top level

ODM command or reply message. This
entry is used to describe the carrier
data stream structure, and also
allows the object to be a DOM

object or LOWERA Object directy.

This describes the DDH_PARH term.
For example, whether it is required,
optional or ignorable. It also
describes the length of the object
and can be composed of more DDH_PARH
objects, or a Lower Architecture
Object.

This describes a lower level term,
That term is composed of one or
more tower level terms, or a simple
Tower Yevel cobject.
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Destination System

Application Server
Program Process
1
& 3 4
DOM *+ ODM ** 2 DOM *+ DDM **
Parser Gener. +» | Parser Gener
ator ator
5

** means access to the DDM Dictionary

Figure 20. Parser and Generator in a Distribuled System
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Carrier: 1

Mnemonic: OPNQRY
Codepoint: 206C
tength Spec:

*

I

Level 2
Mnemonic: RDBNAM
Codepoint: 2110
Optional
Non-Repeatable
Length: 22

Level 2
Mnemoni ¢ : PKGNAMCSN
Codepoint: 2113
Required
Non-Repeatable ‘
Length: 68

Level 2
Mnemonic:QRYBLKSZ
Codepoint; 2114
Required
Non-Repeatable
Length: 8

Level 2
Mnemonic:QRYBLKCTL
Codepoint: 2132
Optional
Non-Repeatable
Length: 6

Figure 21. Tree for OPNQRY Command Part
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Mnemonic: OPNQRY
Codepoint: 200C
Length Spec: *
Carrier: 3

Level 2
Codepoint: 2412
Length Spec: *
Optional

Non Repeatable

Figure 22. Tree for OPNQRY Command Data Part
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Mnemonic: OPNQRY
Codepoint: 200C
Length Spec: *

Carrier: 2
Level 2 Level 2 Level 2
SQLCARD QRYDSC QRYDTA

Codepoint: 2408
Length Spec: *
Optional
Repeatable

Codepoint: 241A
Length Spec: *
Optional

Non Repeatable

Codepoint: 241B
Length Spec: *
Optional
Repeatable

Figure 23. Tree for OPNQRY Reply Data Part
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“

PROCESS_DIM_ENTRY

Processes the logical DOM Sequence. For example, command request
followed by command data

Checks the DSS information at that level, for example chaining of DSSs

Checks for sequencing within one logical ASP object

'

PROCESS_DDH
Processes one single ODM request, reply, or object

Checks the DSS fnformation within the same ONM command, e.g.
when changing blocks.

Checks for sequencing of the DM terms within the DOM command

Checks the tengths within one NOM command, e.g. the glue between

Access
0DM

Dictionary

individual codepoints

l

EXECUTE_ACTION

Processes a single DDM term,whether it is a scalar, simple FNOCA or
or DDM command or reply message

- For OOM commands, checks the codepoint and the length of the input buflfer

First level DOM commands also initialize their corresponding appropriate
output structures,

Checks the structural meaning of the DOM term: for example, ensures that
the required parameters are generated...

ACTION SPECIFICS

Processes the contents af a single DOM Term verifying its value, and
invoking FDOCA if necessary

Figure 24. The

Parsing and Generation Method




Length Class Value

Leaf or terminal DDM Codepoint (Scalar)

Length Class Vatuel Value?..

Leaf or terminal DOM Codepoint ({Mapped Scalar)

Length Class DDM Codepoint's
Children

Internal Node (Collection Codepoint)
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