(54) 发明名称
一种染料敏化太阳能电池

(57) 摘要
本发明公开了一种染料敏化太阳能电池，包括有透光导电基底、透光导电基底表面附有含敏
化染料的 p 型透明导电氧化物半导体纳米材料层，含敏化染料的 p 型透明导电氧化物半导体纳
米材料层作为光阴极。本发明降低了电池的成本，可以利用一些对于 n 型半导体不适用的敏化
染料，同时也为以后发展高效的光伏器件奠定基
础。
1. 一种染料敏化太阳能电池，包括有两相对的透光导电基底，其特征在于：一个透光导电基底表面镀有贵金属层后作为对电极，另一个透光导电基底表面附有含敏化染料的p型透明导电氧化物半导体纳米材料层，所述含敏化染料的p型透明导电氧化物半导体纳米材料层作为阴极，所述对电极和阴极间隙相对，且对电极和阴极之间有电解质。

2. 根据权利要求1所述的一种染料敏化太阳能电池，其特征在于：一个透光导电基底表面附有含敏化染料的n型氧化物半导体纳米材料层，另一个透光导电基底表面附有含敏化染料的p型透明导电氧化物半导体纳米材料层，所述含敏化染料的n型氧化物半导体纳米材料层作为阳极，含敏化染料的p型透明导电氧化物半导体纳米材料层作为阴极，所述阳极和阴极位置相对，且阳极和阴极之间有电解质；所述透光导电基底、含敏化染料p型透明导电氧化物半导体纳米材料层、含敏化染料n型氧化物半导体纳米材料层、电解质构成串联染料敏化太阳能电池。

3. 根据权利要求1所述的一种染料敏化太阳能电池，其特征在于：所述p型透明导电氧化物半导体纳米材料可采用NiO；或者是铜铁矿结构的ABO₂，其中A=Cu or Ag，B=Al，Cr，Sc，Y，或者是SrCu₂O₂。

4. 根据权利要求1所述的一种染料敏化太阳能电池，其特征在于：所述n型氧化物半导体纳米材料可采用二氧化钛，或者是氧化锌。
一种染料敏化太阳能电池

技术领域
本发明涉及太阳能电池领域，具体为一种染料敏化太阳能电池。

背景技术
染料敏化太阳能电池（DSSC）以其可持续发展性、环境友好性和简单的制备工艺以及低成本等优点已经成为最有潜力取代传统的p-n结太阳能电池的光电转换器件。在过去的二十年中，染料敏化太阳能电池一直是各国能源领域研究的热点课题。在2001年和2004年，Grätzel小组以纳米多孔TiO₂薄膜为电阳极，以钌（Ⅱ）的多吡啶配合物为敏化剂，用I🌿/I⁻氧化还原对为的电解液体系制备染料敏化太阳能电池，其效率分别达到了10.4%和11.04%。取得突破性的进展后，研究人员对这种电池做了大量的研究，促进了这种结构的太阳能电池的发展，但这些研究绝大多数都是基于Gratzel及其合作者的观念，所使用化学成分及电池的结构也与他们的基本相同。而这种结构的电池由于受到染料吸收太阳能光谱的范围的限制，进一步提高单个光敏的半导体电极的电池的效率极其困难。要进一步提高染料敏化太阳能电池的效率，必须对设计电池的思想，电池的结构以及电池的各个部件作出调整。

目前对染料敏化太阳能电池的研究普遍集中在以TiO₂，ZnO，SnO₂等n-型半导体为光阳极材料，基本原理是染料分子吸收太阳光后将电子迅速注入到n-型纳米半导体的导带中，随后扩散至导电基底，经外回路转移至对电极，处于氧化态的染料接受电子被还原，从而完成了电子输运的一个循环过程。

理论上单个光敏的半导体电极的染料敏化电池的效率略大于30%，而包含两个光敏的半导体电极的太阳能电池的效率接近43%。因此，进一步提高染料敏化太阳能电池效率的直接途径就是光敏染料的半导体电极取代目前普遍使用的惰性阴极进而扩展为串联太阳能电池。其方法之一是使用传统的p型半导体电极，p-CdSe，p-CdTe，p-InP等来代替惰性阴极。但是这些半导体在很多电解质中不稳定，影响了电池的性能。另一方法就是设计出纳米结构的染料敏化光阳极进而扩展为串联电池，其动力学过程与使用n型半导体作为光阳极的染料敏化电池恰好相反，如图1所示，即以p型纳米半导体材料为染料敏化太阳能电池的光阳极材料，染料吸收太阳光后将电子转移到氧化性的电解液中；p-型半导体价带中的电子转到染料的最高被占有的分子轨道上从而在半导体价带中产生空穴，空穴扩散到底电极经外电路输运到对电极，从而完成一个空穴的循环。

P型透明氧化物半导体NiO₄，铁电氧化物结构的ABO₃（A=Cu or Ag, B=Al, Cr, Sc, Y, etc.），SrCu₂O₃等材料已经被证明带隙大于3eV，对可见光不吸收且导电类型为p-型，同时，这些氧化物非常稳定。但到目前还没有关于ABO₃，SrCu₂O₃作为光阳极的发明。

发明内容
本发明的目的是提供一种染料敏化太阳能电池，实现以p型透明导电氧化物半导体纳米材料作为电池的光阳极。
一种染料敏化太阳能电池，包括有两相对的透光导电基底，其特征在于：一个透光导电基底表面镀有贵金属层后作为对电极，另一个透光导电基底表面附有含敏化染料的p型透明导电氧化物半导体纳米材料层，所述含敏化染料的p型透明导电氧化物半导体纳米材料层作为光阴极，所述对电极和光阴极位置相对，且对电极和光阴极之间有电解质。

所述的一种染料敏化太阳能电池，其特征在于：一个透光导电基底表面附有含敏化染料的n型氧化物半导体纳米材料层，另一个透光导电基底表面附有含敏化染料的p型透明导电氧化物半导体纳米材料层，所述含敏化染料的n型氧化物半导体纳米材料层作为光阴极，含敏化染料的p型透明导电氧化物半导体纳米材料层作为光阴极，所述光阴极和光阴极位置相对，且光阴极和光阴极之间有电解质；所述透光导电基底、含敏化染料p型透明导电氧化物半导体纳米材料层、含敏化染料n型氧化物半导体纳米材料层、电解质构成串联染料敏化太阳能电池。

所述的一种染料敏化太阳能电池，其特征在于：所述p型透明导电氧化物半导体纳米材料可采用NiO，或者锡或Au，B=Al，Cr，Sc，Y，或者SrCu2O2。

所述的一种染料敏化太阳能电池，其特征在于：所述n型氧化物半导体纳米材料可采用二氧化钛，或者氧化锡。

本发明构成的染料敏化太阳能电池具有导电的透光导电基底、形成在透光导电基底上的含敏化染料的p型透明导电氧化物半导体纳米材料层作为光阴极；以及镀有贵金属的透光导电基底作为对电极和在对电极、光阴极之间的电解质层。

本发明构成的串联染料敏化太阳能电池具有透光导电基底、形成在透光导电基底上的含敏化染料的n型氧化物半导体纳米材料层作为光阴极的第一基底部件；透光导电基底、形成在透光导电基底上的含敏化染料的p型透明导电氧化物半导体纳米材料层作为光阴极的第二基底部件；以及在光阴极、光阴极之间的电解质层。

本发明以p型透明导电氧化物半导体纳米材料作为染料敏化太阳能电池的光阴极，取代了传统染料敏化太阳能电池的对电极，组装成染料敏化太阳能电池和既包含光阴极又包含光阴极的串联染料敏化太阳能电池，本发明降低了电池的成本，可以利用一些对n型半导体不适用的敏化染料，同时也为以后发展高效的光伏器件奠定基础。

附图说明

图1是传统技术光阴极太阳能电池的示意图。

图2是根据本发明实施方案一的染料敏化太阳能电池的示意图。

图3是根据本发明实施方案二的串联染料敏化太阳能电池的示意图。

具体实施方式

具体实施方案一：

透光导电基底上具有光阴极本体，其含有敏化染料。光阴极本体为p型透明导电氧化物半导体纳米材料。p型透明导电氧化物半导体纳米材料的例子有NiO，锡或Au，B=Al，Cr，Sc，Y等材料。光阴极本体的制备方式没有
特别的限制，可以是将包含 p 型透明导电氧化物半导体纳米材料的胶溶液在透光导电基底上，然后进行烧结还制备来制备半导体光阴极。涂装的方法包括丝网印刷工艺、刮板工艺、旋涂工艺等。

本发明实施方案一中对于透光导电基底没有特殊的限制，只要具有透光和导电性质即可。导电基底包括市场上的 ITO、FTO 玻璃。

p 型透明导电氧化物半导体纳米材料 NiO_{x} 铜铁矿结构的 ABO_{2} (A=Ca 或 Ag, B=Al, Cr, Sc, Y, 等等), SrCuO_{2} 等的制备没有严格的限制。可以是水热法、溶胶—凝胶法等。

对于光阴极的厚度没有严格的限制，可以是 0.1-50 微米。半导体光阴极的厚度在 10 微米左右时可取的，厚度在 0.1-50 微米有可能得到改善电池效率的光电转换。

光阴极进行热处理，以便提高光阴极与透光导电基底的粘合强度，对热处理的时间和温度没有严格的限制，将热处理的温度控制在 100-500 度，热处理的时间控制在 1-10 小时。

本发明实施方案一中对于对电极没有特殊的限制，只要具有透光和导电性质即可。导电基底包括市场上的 ITO、FTO 玻璃。在对电极上镀重金属层没有特殊限制，可以是溅射工艺、旋涂工艺等。

敏化染料为一些还原性的染料，如硫咔唑、四碘荧光素或自己合成的具有还原性的染料。对于将敏化染料粘合到光阴极上的方法没有特殊的限制。例如，可以将电极本体浸入到用有机溶剂溶解的敏化染料的溶液中，然后清除有机溶剂，来将敏化染料粘合到半导体光阴极中。敏化染料的粘合剂为每克电极 0.01-1mmol。若半导体光阴极周围存在未被粘附的敏化染料，会影响电池的性能，可借助于冲洗半导体光阴极来消除。冲洗溶液为乙醇之类的有机溶剂。为了将大量敏化染料粘合到半导体光阴极上，在浸渍之前对半导体光阴极进行加热时可取的，在加热之后光阴极到达环境温度之前进行浸渍，以避免水吸附到光阴极上影响敏化染料的吸附。

电解质层通常包含电解质、溶剂、以及各种添加剂。电解质的例子包括：磺和砜化合物；溴和溴化物；亚铁氰化物—氰铁化合物或二茂铁—二茂铁离子络合物；聚硫化钠或烷基硫醇—烷基化二硫类的硫化合物；聚精染料等等。电解质层的溶剂优选是低粘性，高离子迁移率以及与敏感层传导性的溶剂。这种溶剂包括：乙醚碳酸脂和丙烯碳酸脂之类的碳酸酯；二恶烷和乙二基醚之类的醚；乙醚甘油二烷基醚、丙烯甘醇二烷基醚、聚乙烯甘醇二烷基醚以及聚丙烯甘醇二烷基醚之类的醚等。对电解质的厚度没有严格求，可以调整到 200 微米以下，这个厚度范围有可能得到高的光电转换效率。

对于电解质的注入没有特殊的限制，可以在两个基底之间提供树脂膜的密闭，然后将电解质注入到密封空间中来制备电解质层，在此情况下电解质通过基底的注入孔注入到密封的空间中。

具体实施方案二：

如图 3 所示，根据本发明实施方案二的新型串联染料敏化太阳电池包括第一基底部分、第二基底部分、以及电解质层。第一基底部分具有透光导电基底，形成在基底表面上的基底中包含敏化染料的 n 型氧化物半导体纳米材料层的光阴极。第二基底部分具有透光导电基底以及形成在基底上且包含敏化染料的 p 型透明导电氧化物半导体纳米材料的光阴极。
本发明实施方案二中对于透光导电基底没有特殊的限制，只要具有透光和导电性质即可。导电基底包括市场上的ITO、FTO玻璃。

第一部件中基底上具有的光阳极层，其含有敏化染料。光阳极层为n型氧化物半导体纳米材料。n型氧化物半导体纳米材料的例子有二氧化钛、氧化锌等。光阳极的制备方法没有特别的限制，可以是将包含n型氧化物半导体纳米材料的胶涂敷在透光导电基底上，然后进行烧结还制造成光阳极。涂胶的方法包括丝网印刷工艺、刮板工艺、旋涂工艺等。

对于光阳极的厚度没有严格的限制，可以是0.1~50微米。光阳极的厚度在10微米左右时可取的，厚度在0.1~50微米有可能得到改善电池效率的光电转换。

对光阳极进行热处理，以便提高半导体电极与透光导电基底的粘合强度，对热处理的时间和温度没有严格的限制，将热处理的温度控制在100~500度，热处理的时间控制在1~10小时。

敏化染料为一些氧化性的染料，如N-719，黑染料等。对于将敏化染料粘合到光阳极上没有特殊的限制。例如，可以将光阳极本体浸入到用有机溶剂溶解的敏化染料的溶液中，然后清洗有机溶剂，来将敏化染料粘合到光阳极中。敏化染料的粘合剂为每克电极0.01~1mmol。若光阳极周围存在未被粘附的敏化染料，会影响电池的性能，可借助于冲洗光阳极来清除。冲洗溶剂为乙醇之类的有机溶剂。为了将大量敏化染料粘合到光阳极上，在浸渍之前对光阳极进行加热时可取的，在加热之后光阳极达到环境温度之前进行浸渍，以避免水吸附到光阳极上影响敏化染料的吸附。

第二部件中基底上具有的光阳极本体，其上粘合有敏化染料。光阳极为p型透明导电氧化物半导体纳米材料。p型透明导电氧化物半导体纳米材料的例子NiO，氧化锰矿物结构的ABO_{2}（A=Cu or Ag，B=Al、Cr、Sc、Y，etc.），SrCuO_{2}等材料。光阳极本体的制备方法没有特别的限制，可以是将包含p型透明导电氧化物半导体纳米材料的胶涂敷在透光导电基底上，然后进行烧结还制备来制备半导体光阳极。涂胶的方法包括丝网印刷工艺、刮板工艺、旋涂工艺等。

p型透明导电氧化物半导体纳米材料NiO，氧化锰矿物结构的ABO_{2}（A=Cu or Ag，B=Al，Cr，Sc，Y，etc.），SrCuO_{2}等的制备没有严格的限制，可以是水热法、溶胶－凝胶法等。

同样，对于光阳极的厚度没有严格的限制，可以是0.1~50微米。半导体光阳极的厚度在10微米左右时可取的，厚度在0.1~50微米有可能得到改电池效率的光电转换。

对光阳极进行热处理，以便提高光阳极与透光导电基底的粘合强度，对热处理的时间和温度没有严格的限制，将热处理的温度控制在100~500度，热处理的时间控制在1~10小时。

敏化染料为一些还原性的染料，如硫化铜，四碘荧光素或自己合成的具有还原性的染料。对于将敏化染料粘合到光阳极上没有特殊的限制。例如，可以将光阳极本体浸入到用有机溶剂溶解的敏化染料的溶液中，然后清洗有机溶剂，来将敏化染料粘合到光阳极中。敏化染料的粘合剂为每克电极0.01~1mmol。若光阳极周围存在未被粘附的敏化染料，会影响电池的性能，可借助于冲洗光阳极来清除。冲洗溶剂为乙醇之类的有机溶剂。为了将大量敏化染料粘合到光阳极上，在浸渍之前对光阳极进行加热时可取的，在加热之后光阳极达到环境温度之前进行浸渍，以避免水吸附到光阳极上影响敏化染料的吸附。
【0036】电解质层通常包含电解质、溶剂、以及各种添加剂。电解质的例子包括：碘和碘化物；溴和溴化物；亚铁氰化物和氰铁化物或二茂铁－二茂铁离子络合物；聚硫化钠或烷基硫醇－烷基化二硫之类的硫化合物；染料等等。电解质层的溶剂优选是低粘性，高离子迁移率、以及足够离子传导性的溶剂。这种溶剂包括：乙烯碳酸脂和丙烯碳酸脂之类的碳酸脂；二恶烷和二乙基醚之类的醚；乙烯醇二烷基醚、丙烯醇二烷基醚、聚乙烯醇二烷基醚以及聚丙烯醇二烷基醚之类的醚醚等。对电解质的厚度没有严格要求，可以调整到200微米以下，这个厚度范围有可能得到高的光电转换效率。

【0037】对于电解质的注入没有特殊的限制，可以在第一部件和第二部件之间提供树脂或玻璃的密封，然后将电解质注入到密封空间中来制备电解质层，在此情况下电解质通过第一基底或第二基底的注入孔注入到密封的空间中。