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SPARE BLOCK MANAGEMENT IN NON-VOLATILE MEMORIES

FIELD OF THE INVENTION

[0001] This invention relates generally to the operation of non-volatile flash
memory systems, and, more specifically, to techniques of managing usage of blocks
or other portions of the memory, particularly in memory systems having large

memory cell blocks.

BACKGROUND

[0002] Solid-state memory capable of nonvolatile storage of charge,
particularly in the form of EEPROM and flash EEPROM packaged as a small form
factor card, has recently become the storage of choice in a variety of mobile and
handheld devices, notably information appliances and consumer electronics products.
Unlike RAM (random access memory) that is also solid-state memory, flash memory
is non-volatile, and retaining its stored data even after power is turned off. Also,
unlike ROM (read only memory), flash memory is rewritable similar to a disk storage
device. In spite of the higher cost, flash memory is increasingly being used in mass
storage applications. Conventional mass storage, based on rotating magnetic medium
such as hard drives and floppy disks, is unsuitable for the mobile and handheld
environment. This is because disk drives tend to be bulky, are prone to mechanical
failure and have high latency and high power requirements. These undesirable
attributes make disk-based storage impractical in most mobile and portable
applications. On the other hand, flash memory, both embedded and in the form of a
removable card is ideally suited in the mobile and handheld environment because of

its small size, low power consumption, high speed and high reliability features.

[0003] Flash EEPROM is similar to EEPROM (electrically erasable and
programmable read-only memory) in that it is a non-volatile memory that can be
erased and have new data written or “programmed” into their memory cells. Both
utilize a floating (unconnected) conductive gate, in a field effect transistor structure,
positioned over a channel region in a semiconductor substrate, between source and
drain regions. A control gate is then provided over the floating gate. The threshold
voltage characteristic of the transistor is controlled by the amount of charge that is

retained on the floating gate. That is, for a given level of charge on the floating gate,
-1-
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there is a corresponding voltage (threshold) that must be applied to the control gate
before the transistor is turned “on” to permit conduction between its source and drain
regions. In particular, flash memory such as Flash EEPROM allows entire blocks of

memory cells to be erased at the same time.

[0004] The floating gate can hold a range of charges and therefore can be
programmed to any threshold voltage level within a threshold voltage window. The
size of the threshold voltage window is delimited by the minimum and maximum
threshold levels of the device, which in turn correspond to the range of the charges
that can be programmed onto the floating gate. The threshold window generally
depends on the memory device’s characteristics, operating conditions and history.
Each distinct, resolvable threshold voltage level range within the window may, in

principle, be used to designate a definite memory state of the cell.

[0005] The transistor serving as a memory cell is typically programmed to a
"programmed" state by one of two mechanisms. In "hot electron injection,” a high
voltage applied to the drain accelerates electrons across the substrate channel region.
At the same time a high voltage applied to the control gate pulls the hot electrons
through a thin gate dielectric onto the floating gate. In "tunneling injection,” a high
voltage is applied to the control gate relative to the substrate. In this way, electrons
are pulled from the substrate to the intervening floating gate. While the term
“program” has been used historically to describe writing to a memory by injecting
electrons to an initially erased charge storage unit of the memory cell so as to alter the
memory state, it has now been used interchangeable with more common terms such as

“write” or “record.”

[0006] The memory device may be crased by a number of mechanisms. For
EEPROM, a memory cell is electrically erasable, by applying a high voltage to the
substrate relative to the control gate so as to induce electrons in the floating gate to
tunnel through a thin oxide to the substrate channel region (i.e., Fowler-Nordheim
tunneling.) Typically, the EEPROM is crasable byte by byte. For flash EEPROM,
the memory is electrically erasable either all at once or one or more minimum
crasable blocks at a time, where a minimum erasable block may consist of one or

more sectors and each sector may store 512 bytes or more of data.

.
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[0007] The memory device typically comprises one or more memory chips that may
be mounted on a card. Each memory chip comprises an array of memory cells
supported by peripheral circuits such as decoders and erase, write and read circuits.
The more sophisticated memory devices also come with a controller that performs

intelligent and higher level memory operations and interfacing.

[0008] There are many commercially successful non-volatile solid-state memory
devices being used today. These memory devices may be flash EEPROM or may
employ other types of nonvolatile memory cells. Examples of flash memory and
systems and methods of manufacturing them are given in United States patents nos.
5,070,032, 5,095,344, 5,315,541, 5,343,063, and 5,661,053, 5,313,421 and 6,222,762.
In particular, flash memory devices with NAND string structures are described in
United States patent nos. 5,570,315, 5,903,495, 6,046,935. Also nonvolatile memory
devices are also manufactured from memory cells with a dielectric layer for storing
charge. Instead of the conductive floating gate elements described earlier, a dielectric
layer is used. Such memory devices utilizing dielectric storage element have been
described by FEitan et al., “NROM: A Novel Localized Trapping, 2-Bit Nonvolatile
Memory Cell,” IEEE Electron Device Letters, vol. 21, no. 11, November 2000, pp.
543-545. An ONO diclectric layer extends across the channel between source and
drain diffusions. The charge for one data bit is localized in the dielectric layer
adjacent to the drain, and the charge for the other data bit is localized in the dielectric
layer adjacent to the source. For example, United States patents nos. 5,768,192 and
6,011,725 disclose a nonvolatile memory cell having a trapping dielectric sandwiched
between two silicon dioxide layers. Multi-state data storage is implemented by
separately reading the binary states of the spatially separated charge storage regions

within the dielectric.

[0009] In order to improve read and program performance, multiple charge storage
elements or memory transistors in an array are read or programmed in parallel. Thus,
a “page” of memory elements are read or programmed together. In existing memory
architectures, a row typically contains several interleaved pages or it may constitute

one page. All memory elements of a page will be read or programmed together.

[0010] In flash memory systems, erase operation may take as much as an order of
magnitude longer than read and program operations. Thus, it is desirable to have the

-3-
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erase block of substantial size. In this way, the erase time is amortized over a large

aggregate of memory cells.

[0011] The nature of flash memory predicates that data must be written to an erased
memory location. If data of a certain logical address from a host is to be updated, one
way is rewrite the update data in the same physical memory location. That is, the
logical to physical address mapping is unchanged. However, this will mean the entire
erase block contain that physical location will have to be first erased and then
rewritten with the updated data. This method of update is inefficient, as it requires an
entire erase block to be erased and rewritten, especially if the data to be updated only
occupies a small portion of the erase block. It will also result in a higher frequency of
erase recycling of the memory block, which is undesirable in view of the limited

endurance of this type of memory device.

[0012] Data communicated through external interfaces of host systems, memory
systems and other electronic systems are addressed and mapped into the physical
locations of a flash memory system. Typically, addresses of data files generated or
received by the system are mapped into distinct ranges of a continuous logical address
space established for the system in terms of logical blocks of data (hereinafter the
“LBA interface”). The extent of the address space is typically sufficient to cover the
full range of addresses that the system is capable of handling. In one example,
magnetic disk storage drives communicate with computers or other host systems
through such a logical address space. This address space has an extent sufficient to

address the entire data storage capacity of the disk drive.

[0013] Flash memory systems are most commonly provided in the form of a memory
card or flash drive that is removably connected with a variety of hosts such as a
personal computer, a camera or the like, but may also be embedded within such host
systems. When writing data to the memory, the host typically assigns unique logical
addresses to sectors, clusters or other units of data within a continuous virtual address
space of the memory system. Like a disk operating system (DOS), the host writes
data to, and reads data from, addresses within the logical address space of the memory
system. A controller within the memory system translates logical addresses received
from the host into physical addresses within the memory array, where the data are
actually stored, and then keeps track of these address translations. The data storage

-4 -
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capacity of the memory system is at least as large as the amount of data that is

addressable over the entire logical address space defined for the memory system.

[0014] In current commercial flash memory systems, the size of the erase unit has
been increased to a block of enough memory cells to store multiple sectors of data.
Indeed, many pages of data are stored in one block, and a page may store multiple
sectors of data. Further, two or more blocks are often operated together as
metablocks, and the pages of such blocks logically linked together as metapages. A
page or metapage of data are written and read together, which can include many
sectors of data, thus increasing the parallelism of the operation. Along with such

large capacity operating units the challenge is to operate them efficiently.

[0015] For ease of explanation, unless otherwise specified, it is intended that the term
“block” as used herein refer to either the block unit of erase or a multiple block
“metablock,” depending upon whether metablocks are being used in a specific
system. Similarly, reference to a “page” herein may refer to a unit of programming
within a single block or a “metapage” within a metablock, depending upon the system

configuration.

[0016] When the currently prevalent LBA interface to the memory system is used,
files generated by a host to which the memory is connected are assigned unique
addresses within the logical address space of the interface. The memory system then
commonly maps data between the logical address space and pages of the physical
blocks of memory. The memory system keeps track of how the logical address space
is mapped into the physical memory but the host is unaware of this. The host keeps
track of the addresses of its data files within the logical address space but the memory

system operates with little or no knowledge of this mapping.

[0017] Another problem with managing flash memory system has to do with system
control and directory data. The data is produced and accessed during the course of
various memory operations. Thus, its efficient handling and ready access will directly
impact performance. It would be desirable to maintain this type of data in flash
memory because flash memory is meant for storage and is nonvolatile. However,
with an intervening file management system between the controller and the flash

memory, the data can not be accessed as directly. Also, system control and directory
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data tends to be active and fragmented, which is not conducive to storing in a system
with large size block erase. Conventionally, this type of data is set up in the controller
RAM, thereby allowing direct access by the controller. After the memory device is
powered up, a process of initialization enables the flash memory to be scanned in
order to compile the necessary system control and directory information to be placed
in the controller RAM. This process takes time and requires controller RAM

capacity, all the more so with ever increasing flash memory capacity.

[0018] US 6,567,307 discloses a method of dealing with sector updates among large
erase block including recording the update data in multiple erase blocks acting as
scratch pad and eventually consolidating the valid sectors among the various blocks
and rewriting the sectors after rearranging them in logically sequential order. In this

way, a block needs not be erased and rewritten at every slightest update.

[0019] WO 03/027828 and W0 00/49488 both disclose a memory system dealing with
updates among large erase block including partitioning the logical sector addresses in
zones. A small zone of logical address range is reserved for active system control
data separate from another zone for user data. In this way, manipulation of the system
control data in its own zone will not interact with the associated user data in another
zone. Updates are at the logical sector level and a write pointer points to the
corresponding physical sectors in a block to be written. The mapping information is
buffered in RAM and eventually stored in a sector allocation table in the main
memory. The latest version of a logical sector will obsolete all previous versions
among existing blocks, which become partially obsolete. Garbage collection is

performed to keep partially obsolete blocks to an acceptable number.

[0020] Prior art systems tend to have the update data distributed over many blocks or
the update data may render many existing blocks partially obsolete. The result often
is a large amount of garbage collection necessary for the partially obsolete blocks,
which is inefficient and causes premature aging of the memory. Also, there is no
systematic and efficient way of dealing with sequential update as compared to non-

sequential update.

[0021] Flash memory with a block management system employing a mixture of

sequential and chaotic update blocks is disclosed in United States Patent Publication
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No. US-2005-0144365-A1 dated June 30, 2005, the entire disclosure of which is

incorporated herein by reference.

SUMMARY OF THE INVENTION

[0022] In a first set of aspects, a non-volatile memory system includes a non-
volatile memory circuit having a plurality of erase blocks each formed of a plurality
of non-volatile memory cells, the blocks being operable in a first and a second mode,
the first operating mode being of higher endurance than the second operating mode.
The memory system also includes a controller circuit connected to the memory circuit
for controlling the transfer of data between the memory circuit and a host to which the
memory system is attached and the management of data stored on the memory circuit.
The memory is partitioned into a first section of blocks operated according to the first
mode and a second section of blocks operated according to the second mode, where
the second section initially includes one or more spare blocks allocated to be used to
replace a defective block in the second section. The controller can reassign spare

blocks from the second section to be spare blocks for the first section.

[0023] In a second set of embodiments, a non-volatile memory system includes a
non-volatile memory circuit having a plurality of erase blocks each formed of a
plurality of non-volatile memory cells, the blocks being operable in a first and a
second mode, the first operating mode being of higher endurance than the second
operating mode. The memory system also includes a controller circuit connected to
the memory circuit for controlling the transfer of data between the memory circuit and
a host to which the memory system is attached and the management of data stored on
the memory circuit. The memory is partitioned into a first section of blocks operated
according to the first mode and a second section of blocks operated according to a
second mode. In response to determining that a block from the second partition is
defective when operated in the second mode, the controller can reassign the
determined block to the first partition to be a spare block usable to replace a defective

block in the first section and operated according to the first mode.

[0024] In further aspects, a non-volatile memory system includes a non-volatile
memory circuit having a plurality of erase blocks each formed of a plurality of non-
volatile memory cells, the memory blocks including a data storage portion and an

overhead storing portion, the overhead including a one bit time stamp. The memory
-7 -
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system also includes a controller circuit connected to the memory circuit to control
the transfer of data between the memory circuit and a host to which the memory
system is attached and to manage data stored on the memory circuit, where the control
circuit maintains a control structure for unassigned blocks that includes a one bit time
stamp for each unassigned block. The value of the time stamp’s bit in the overhead of
a given block is toggled in response to the block undergoing an erase operation. The
value of the time stamp in the control structure for the unassigned blocks is set to the
value of time stamp in the overhead of the corresponding block when the
corresponding block is entered in the control structure for unassigned blocks. During
an initialization process, the controller performs a comparison of the values of said
time stamp in the overhead of the unassigned blocks with the value of the

corresponding time stamp in the control structure for the respective unassigned

blocks.

[0025] Additional aspects present a non-volatile memory system having a non-
volatile memory circuit having a plurality of erase blocks each formed of a plurality
of non-volatile memory cells and a controller circuit connected to the memory circuit
to control the transfer of data between the memory circuit and a host to which the
memory system is attached and to manage data stored on the memory circuit. The
plurality of blocks include a first plurality of blocks used to store host supplied data
identified by a logical address and to store system data and one or more spare blocks
to compensate for failed blocks of the first plurality of blocks. The control circuit
maintains a logical to physical addresses conversion table holding entries for blocks
containing host supplied data and entries for spare blocks. The table entries assign the
blocks containing host supplied data the corresponding logical addresses by which the
host identifies the data and assign spare blocks logical addresses exceeding the logical

address space of which the host is aware.

[0026] Various aspects, advantages, features and embodiments of the present
invention are included in the following description of exemplary examples thereof,
which description should be taken in conjunction with the accompanying drawings.
All patents, patent applications, articles, other publications, documents and things
referenced herein are hereby incorporated herein by this reference in their entirety for

all purposes. To the extent of any inconsistency or conflict in the definition or use of
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terms between any of the incorporated publications, documents or things and the

present application, those of the present application shall prevail.

BRIEF DESCRIPTION OF THE DRAWINGS

[0027] The various aspects and features of the present invention may be better
understood by examining the following figures, in which:

Figure 1 illustrates schematically the main hardware components of a memory
system suitable for implementing the present invention;

Figure 2 illustrates schematically a non-volatile memory cell;

Figure 3 illustrates the relation between the source-drain current I and the
control gate voltage Vg for four different charges Q1-Q4 that the floating gate may
be selectively storing at any one time;

Figure 4A illustrates schematically a string of memory cells organized into an
NAND string;

Figure 4B illustrates an example of an NAND array 210 of memory cells,
constituted from NAND strings 50 such as that shown in FIG. 4A;

Figure 5 illustrates a page of memory cells, organized for example in the
NAND configuration, being sensed or programmed in parallel;

Figures 6(0) - 6(2) illustrate an example of programming a population of 4-
state memory cells;

Figures. 7A-7E illustrate the programming and reading of the 4-state memory
encoded with a given 2-bit code;

Figure 8 illustrates the memory being managed by a memory manager with is
a software component that resides in the controller;

Figure 9 illustrates the software modules of the back-end system;

Figures. 10A(i) — 10A(iii) illustrate schematically the mapping between a
logical group and a metablock. FIG. 10B illustrates schematically the mapping
between logical groups and metablocks;

Figure 11 illustrates the organizational system abstract levels showing the
relation between host’s logical address LBA, their grouping into logical groups and
mapping to groupings of physical blocks (i.c., metablocks) ;

Figure 12 illustrates the physical and logical memory architecture;

-9.-
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Figure 13 illustrates the physical and logical memory architecture across
multiple banks;

Figure 14A illustrates a data page consisting of multiple ECC pages;

Figure 14B illustrates an example format for an ECC page which stores only
binary data and reside in a subpage;

Figure 15 illustrates a host operating with the flash memory device through a
series of caches at different levels of the system;

Figure 16 illustrates the metablocks in each bank being partitioned into a
binary cache portion and a regular metablock portion;

Figure 17 illustrates processes within the Media Management Module;

Figure 18 illustrates the mapping of host logical data to the memory physical
memory;

Figure 19 illustrates the possible data paths and processes from the host to the
metablock of the main memory via the binary cache;

Figure 20 illustrates the relocation of a block from a multi-level partition to
the spare block section of a binary partition;

Figure 21 is a flow for relocating a spare block from the multi-level partition
to the binary partition;

Figure 22 illustrates the use and storage of a 1-bit time stamp for spare blocks;
and

Figure 23 is of an access table for an extended logical space.

DESCRIPTION OF EXEMPLARY EMBODIMENTS
MEMORY SYSTEM

[0028] FIG. 1 illustrates schematically the main hardware components of a memory
system suitable for implementing the present invention. The memory system 90
typically operates with a host 80 through a host interface. The memory system is
typically in the form of a memory card or an embedded memory system. The
memory system 90 includes a memory 200 whose operations are controlled by a
controller 100. The memory 200 comprises of one or more array of non-volatile
memory cells distributed over one or more integrated circuit chip. The controller 100
includes an interface 110, a processor 120, an optional coprocessor 121, ROM 122

(read-only-memory), RAM 130 (random access memory) and optionally
-10 -
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programmable nonvolatile memory 124. The interface 110 has one component
interfacing the controller to a host and another component interfacing to the memory
200. Firmware stored in nonvolatile ROM 122 and/or the optional nonvolatile
memory 124 provides codes for the processor 120 to implement the functions of the
controller 100. Error correction codes may be processed by the processor 120 or the
optional coprocessor 121. In an alternative embodiment, the controller 100 is
implemented by a state machine (not shown.) In yet another embodiment, the

controller 100 is implemented within the host.

Physical Memory Structure

[0029] FIG. 2 illustrates schematically a non-volatile memory cell. The memory cell
10 can be implemented by a field-effect transistor having a charge storage unit 20,
such as a floating gate or a diclectric layer. The memory cell 10 also includes a

source 14, a drain 16, and a control gate 30.

[0030] There are many commercially successful non-volatile solid-state memory
devices being used today. These memory devices may employ different types of

memory cells, each type having one or more charge storage element.

[0031] Typical non-volatile memory cells include EEPROM and flash EEPROM.
Examples of EEPROM cells and methods of manufacturing them are given in United
States patent no. 5,595,924. Examples of flash EEPROM cells, their uses in memory
systems and methods of manufacturing them are given in United States patents nos.
5,070,032, 5,095,344, 5,315,541, 5,343,063, 5,661,053, 5,313,421 and 6,222,762. In
particular, examples of memory devices with NAND cell structures are described in
United States patent nos. 5,570,315, 5,903,495, 6,046,935. Also, examples of
memory devices utilizing dielectric storage element have been described by Eitan et
al., “NROM: A Novel Localized Trapping, 2-Bit Nonvolatile Memory Cell,” IEEE
Electron Device Letters, vol. 21, no. 11, November 2000, pp. 543-545, and in United
States patents nos. 5,768,192 and 6,011,725.

[0032] In practice, the memory state of a cell is usually read by sensing the
conduction current across the source and drain electrodes of the cell when a reference
voltage is applied to the control gate. Thus, for each given charge on the floating gate

of a cell, a corresponding conduction current with respect to a fixed reference control
- 11 -
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gate voltage may be detected. Similarly, the range of charge programmable onto the
floating gate defines a corresponding threshold voltage window or a corresponding

conduction current window.

[0033] Alternatively, instead of detecting the conduction current among a partitioned
current window, it is possible to set the threshold voltage for a given memory state
under test at the control gate and detect if the conduction current is lower or higher
than a threshold current. In one implementation the detection of the conduction
current relative to a threshold current is accomplished by examining the rate the

conduction current is discharging through the capacitance of the bit line.

[0034] FIG. 3 illustrates the relation between the source-drain current Ip and the
control gate voltage Vg for four different charges Q1-Q4 that the floating gate may
be selectively storing at any one time. The four solid Ip versus Vg curves represent
four possible charge levels that can be programmed on a floating gate of a memory
cell, respectively corresponding to four possible memory states. As an example, the
threshold voltage window of a population of cells may range from 0.5V to 3.5V.
Seven possible memory states “07, “17, “27, “37, “4” “5”  “6”, respectively
representing one erased and six programmed states may be demarcated by partitioning
the threshold window into five regions in interval of 0.5V each. For example, if a
reference current, IREF of 2 pA is used as shown, then the cell programmed with Q1
may be considered to be in a memory state “1” since its curve intersects with Irgr in
the region of the threshold window demarcated by VCG = 0.5V and 1.0V. Similarly,

Q4 is in a memory state “5”.

[0035] As can be seen from the description above, the more states a memory cell is
made to store, the more finely divided is its threshold window. For example, a
memory device may have memory cells having a threshold window that ranges from
—1.5V to 5V. This provides a maximum width of 6.5V. If the memory cell is to store
16 states, each state may occupy from 200mV to 300mV in the threshold window.
This will require higher precision in programming and reading operations in order to

be able to achieve the required resolution.

[0036] FIG. 4A illustrates schematically a string of memory cells organized into an

NAND string. An NAND string 50 comprises of a series of memory transistors M1,
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M2, ... Mn (e.g., n= 4, 8, 16 or higher) daisy-chained by their sources and drains. A
pair of select transistors S1, S2 controls the memory transistors chain’s connection to
the external via the NAND string’s source terminal 54 and drain terminal 56
respectively. In a memory array, when the source select transistor S1 is turned on, the
source terminal is coupled to a source line (see FIG. 5B). Similarly, when the drain
select transistor S2 is turned on, the drain terminal of the NAND string is coupled to a
bit line of the memory array. Each memory transistor 10 in the chain acts as a
memory cell. It has a charge storage element 20 to store a given amount of charge so
as to represent an intended memory state. A control gate 30 of each memory
transistor allows control over read and write operations. As will be seen in FIG. 4B,
the control gates 30 of corresponding memory transistors of a row of NAND string
are all connected to the same word line. Similarly, a control gate 32 of each of the
select transistors S1, S2 provides control access to the NAND string via its source
terminal 54 and drain terminal 56 respectively. Likewise, the control gates 32 of
corresponding select transistors of a row of NAND string are all connected to the

same select line.

[0037] When an addressed memory transistor 10 within an NAND string is read or is
verified during programming, its control gate 30 is supplied with an appropriate
voltage. At the same time, the rest of the non-addressed memory transistors in the
NAND string 50 are fully turned on by application of sufficient voltage on their
control gates. In this way, a conductive path is effective created from the source of
the individual memory transistor to the source terminal 54 of the NAND string and
likewise for the drain of the individual memory transistor to the drain terminal 56 of
the cell. Memory devices with such NAND string structures are described in United

States patent nos. 5,570,315, 5,903,495, 6,046,935.

[0038] FIG. 4B illustrates an example of an NAND array 210 of memory cells,
constituted from NAND strings 50 such as that shown in FIG. 5A. Along ecach
column of NAND strings, a bit line such as bit line 36 is coupled to the drain terminal
56 of each NAND string. Along cach bank of NAND strings, a source line such as
source line 34 is couple to the source terminals 54 of each NAND string. Also the
control gates along a row of memory cells in a bank of NAND strings are connected

to a word line such as word line 42. The control gates along a row of select
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transistors in a bank of NAND strings are connected to a select line such as select line
44. An entire row of memory cells in a bank of NAND strings can be addressed by
appropriate voltages on the word lines and select lines of the bank of NAND strings.
When a memory transistor within a NAND string is being read, the remaining
memory transistors in the string are turned on hard via their associated word lines so
that the current flowing through the string is essentially dependent upon the level of

charge stored in the cell being read.

[0039] FIG. S illustrates a page of memory cells, organized for example in the
NAND configuration, being sensed or programmed in parallel. FIG. 5 essentially
shows a bank of NAND strings 50 in the memory array 210 of FIG. 4B, where the
detail of each NAND string is shown explicitly as in FIG. 4A. A “page” such as the
page 60, is a group of memory cells enabled to be sensed or programmed in parallel.
This is accomplished by a corresponding page of sense amplifiers 212. The sensed
results are latches in a corresponding set of latches 214.  Each sense amplifier can be
coupled to a NAND string via a bit line. The page is enabled by the control gates of
the cells of the page connected in common to a word line 42 and each cell accessible
by a sense amplifier accessible via a bit line 36. As an example, when respectively
sensing or programming the page of cells 60, a sensing voltage or a programming
voltage is respectively applied to the common word line WL3 together with

appropriate voltages on the bit lines.

Physical Organization of the Memory

[0040] One important difference between flash memory and of type of memory is that
a cell must be programmed from the erased state. That is the floating gate must first
be emptied of charge. Programming then adds a desired amount of charge back to the
floating gate. It does not support removing a portion of the charge from the floating
to go from a more programmed state to a lesser one. This means that update data

cannot overwrite existing one and must be written to a previous unwritten location.

[0041] Furthermore erasing is to empty all the charges from the floating gate and
generally takes appreciably time. For that reason, it will be cumbersome and very
slow to erase cell by cell or even page by page. In practice, the array of memory cells

is divided into a large number of blocks of memory cells. As is common for flash
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EEPROM systems, the block is the unit of erase. That is, each block contains the
minimum number of memory cells that are erased together. While aggregating a large
number of cells in a block to be erased in parallel will improve erase performance, a
large size block also entails dealing with a larger number of update and obsolete data.
Just before the block is erased, a garbage collection is required to salvage the non-

obsolete data in the block.

[0042] Each block is typically divided into a number of pages. A page is a unit of
programming or reading. In one embodiment, the individual pages may be divided
into segments and the segments may contain the fewest number of cells that are
written at one time as a basic programming operation. One or more pages of data are
typically stored in one row of memory cells. A page can store one or more sectors. A
sector includes user data and overhead data. Multiple blocks and pages distributed
across multiple arrays can also be operated together as metablocks and metapages. If
they are distributed over multiple chips, they can be operated together as megablocks

and megapage.

Examples of Multi-level Cell (“MLC”) Memory Partitioning

[0043] A nonvolatile memory in which the memory cells each stores multiple bits of
data has already been described in connection with FIG. 3. A particular example is a
memory formed from an array of field-effect transistors, each having a charge storage
layer between its channel region and its control gate. The charge storage layer or unit
can store a range of charges, giving rise to a range of threshold voltages for each
field-effect transistor. The range of possible threshold voltages spans a threshold
window.  When the threshold window is partitioned into multiple sub-ranges or
zones of threshold voltages, each resolvable zone is used to represent a different
memory states for a memory cell. The multiple memory states can be coded by one
or more binary bits. For example, a memory cell partitioned into four zones can
support four states which can be coded as 2-bit data. Similarly, a memory cell
partitioned into eight zones can support eight memory states which can be coded as 3-

bit data, etc.

All-bit, Full-Sequence MLC Programming

[0044] FIG. 6(0) - 6(2) illustrate an example of programming a population of 4-state
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memory cells. FIG. 6(0) illustrates the population of memory cells programmable
into four distinct distributions of threshold voltages respectively representing memory
states “07, “17, “2” and “3”. FIG. 6(1) illustrates the initial distribution of “erased”
threshold voltages for an erased memory. FIG. 6(2) illustrates an example of the
memory after many of the memory cells have been programmed. Essentially, a cell
initially has an “erased” threshold voltage and programming will move it to a higher
value into one of the three zones demarcated by verify levels vVy, vV, and vVs. In
this way, each memory cell can be programmed to one of the three programmed state
“17, “2” and “3” or remain un-programmed in the “erased” state. As the memory gets
more programming, the initial distribution of the “erased” state as shown in FIG. 6(1)

will become narrower and the erased state is represented by the “0” state.

[0045] A 2-bit code having a lower bit and an upper bit can be used to represent each
of the four memory states. For example, the “0”, “1”, “2” and “3” states arc
respectively represented by “117, “017, “00” and ‘10”. The 2-bit data may be read
from the memory by sensing in “full-sequence” mode where the two bits are sensed
together by sensing relative to the read demarcation threshold values rVy, rV, and rV;

in three sub-passes respectively.

Bit-by-Bit MLC Programming and Reading

[0046] FIGs. 7A-7E illustrate the programming and reading of the 4-state memory
encoded with a given 2-bit code. FIG. 7A illustrates threshold voltage distributions
of the 4-state memory array when each memory cell stores two bits of data using the
2-bit code. Such a 2-bit code has been disclosed in US Patent Application No.
10/830,824 filed April 24, 2004 by Li et al., entitled “NON-VOLATILE MEMORY
AND CONTROL WITH IMPROVED PARTIAL PAGE PROGRAM
CAPABILITY”.

[0047] FIG. 7B illustrates the lower page programming (lower bit) in a 2-pass
programming scheme using the 2-bit code. The fault-tolerant LM New code
essentially avoids any upper page programming to transit through any intermediate
states. Thus, the first pass lower page programming has the logical state (upper bit,
lower bit) = (1, 1) transits to some intermediate state (x, 0) as represented by

programming the “unprogrammed” memory state “0” to the “intermediate” state
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designated by (x, 0) with a programmed threshold voltage greater than Da but less
than Dc.

[0048] FIG. 7C illustrates the upper page programming (upper bit) in the 2-pass
programming scheme using the 2-bit code. In the second pass of programming the
upper page bit to “0”, if the lower page bit is at “1”, the logical state (1, 1) transits to
(0, 1) as represented by programming the “unprogrammed” memory state “0” to “1”.
If the lower page bit is at “0”, the logical state (0, 0) is obtained by programming from
the “intermediate” state to “3”. Similarly, if the upper page is to remain at “1”, while
the lower page has been programmed to “0”, it will require a transition from the
“intermediate” state to (1, 0) as represented by programming the “intermediate” state

to “2”‘

[0049] FIG. 7D illustrates the read operation that is required to discern the lower bit
of the 4-state memory encoded with the 2-bit code. A readB operation is first
performed to determine if the LM flag can be read. If so, the upper page has been
programmed and the readB operation will yield the lower page data correctly. On the
other hand, if the upper page has not yet been programmed, the lower page data will

be read by a readA operation.

[0050] FIG. 7E illustrates the read operation that is required to discern the upper bit
of the 4-state memory encoded with the 2-bit code. As is clear from the figure, the
upper page read will require a 3-pass read of readA, readB and readC, respectively

relative to the demarcation threshold voltages Da, Dy and De.

[0051] In the bit-by-bit scheme for a 2-bit memory, a physical page of memory cells
will store two logical data pages, a lower data page corresponding to the lower bit and

an upper data page corresponding to the upper bit.

Binary and MLC Memory Partitioning

[0052] FIG. 6 and FIG. 7 illustrate examples of a 2-bit (also referred to as “D2”)
memory. As can be seen, a D2 memory has its threshold range or window partitioned
into 4 regions, designating 4 states. Similarly, in D3, each cell stores 3 bits (low,
middle and upper bits) and there are 8 regions. In D4, there are 4 bits and 16 regions,

etc. As the memory’s finite threshold window is partitioned into more regions, the
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resolution and for programming and reading will necessarily become finer. Two

issues arise as the memory cell is configured to store more bits.

[0053] First, programming or reading will be slower when the threshold of a cell must
be more accurately programmed or read. In fact in practice the sensing time (needed
in programming and reading) tends to increase as the square of the number of

partitioning levels.

[0054] Secondly, flash memory has an endurance problem as it ages with use. When
a cell is repeatedly programmed and erased, charges is shuttled in and out of the
floating gate 20 (see FIG. 2) by tunneling across a dielectric. Each time some
charges may become trapped in the dielectric and will modify the threshold of the
cell. In fact over use, the threshold window will progressively narrow. Thus, MLC
memory generally is designed with tradeoffs between capacity, performance and

reliability.

[0055] Conversely, it will be seen for a binary memory, the memory’s threshold
window is only partitioned into two regions. This will allow a maximum margin of
errors. Thus, binary partitioning while diminished in storage capacity will provide

maximum performance and reliability.

[0056] The multi-pass, bit-by-bit programming and reading technique described in
connection with FIG. 7 provides a smooth transition between MLC and binary
partitioning. In this case, if the memory is programmed with only the lower bit, it is
effectively a binary partitioned memory. While this approach does not fully optimize
the range of the threshold window as in the case of a single-level cell (“SLC”)
memory, it has the advantage of using the same demarcation or sensing level as in the
operations of the lower bit of the MLC memory. As will be described later, this
approach allows a MLC memory to be “expropriated” for use as a binary memory, or
vice versa. How it should be understood that MLC memory tends to have more

stringent specification for usage.

Binary Memory and Partial Page Programming

[0057] The charge programmed into the charge storage element of one memory cell

produces an electric field that perturbs the electric field of a neighboring memory cell.
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This will affect the characteristics of the neighboring memory cell which essentially is
a field-effect transistor with a charge storage element. In particular, when sensed the
memory cell will appear to have a higher threshold level (or more programmed) than

when it is less perturbed.

[0058] In general, if a memory cell is program-verified under a first field environment
and later is read again under a different field environment due to neighboring cells
subsequently being programmed with different charges, the read accuracy may be
affected due to coupling between neighboring floating gates in what is referred to as
the “Yupin Effect”. With ever higher integration in semiconductor memories, the
perturbation of the electric field due to the stored charges between memory cells

(Yupin effect) becomes increasing appreciable as the inter-cellular spacing shrinks.

[0059] The Bit-by-Bit MLC Programming technique described in connection with
FIG. 7 above is designed to minimize program disturb from cells along the same
word line. As can be seen from FIG. 7B, in a first of the two programming passes,
the thresholds of the cells are moved at most half way up the threshold window. The
effect of the first pass is overtaken by the final pass. In the final pass, the thresholds
are only moved a quarter of the way. In other words, for D2, the charge difference
among neighboring cells is limited to a quarter of its maximum. For D3, with three

passes, the final pass will limit the charge difference to one-eighth of its maximum.

[0060] However, the bit-by-bit multi-pass programming technique will be
compromised by partial-page programming. A page is a group of memory cells,
typically along a row or word line, that is programmed together as a unit. It is
possible to program non overlapping portions of a page individually over multiple
programming passes. However, owning to not all the cells of the page are
programmed in a final pass together, it could create large difference in charges
programmed among the cells after the page is done. Thus partial-page programming
would result in more program disturb and would require a larger margin for sensing

accuracy.

[0061] In the case the memory is configured as binary memory, the margin of
operation is wider than that of MLC. In the preferred embodiment, the binary

memory is configured to support partial-page programming in which non-overlapping
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portions of a page may be programmed individually in one of the multiple
programming passes on the page. The programming and reading performance can be
improved by operating with a page of large size. However, when the page size is
much larger than the host’s unit of write (typically a 512-byte sector), its usage will be
inefficient. Operating with finer granularity than a page allows more efficient usage

of such a page.

[0062] The example given has been between binary versus MLC. It should be
understood that in general the same principles apply between a first memory with a
first number of levels and a second memory with a second number of levels more than

the first memory.

LOGICAL AND PHYSICAL BLOCK STRUCTURES

[0063] FIG. 8 illustrates the memory being managed by a memory manager with is a
software component that resides in the controller. The memory 200 is organized into
blocks, each block of cells being a minimum unit of erase. Depending on
implementation, the memory system may operate with even large units of erase
formed by an aggregate of blocks into “metablocks” and also “megablocks”. For
convenience the description will refer to a unit of erase as a metablock although it will
be understood that some systems operate with even larger unit of erase such as a

“megablock” formed by an aggregate of metablocks.

[0064] The host 80 accesses the memory 200 when running an application under a
file system or operating system. Typically, the host system addresses data in units of
logical sectors where, for example, each sector may contain 512 bytes of data. Also,
it is usual for the host to read or write to the memory system in unit of logical clusters,
cach consisting of one or more logical sectors. In some host systems, an optional
host-side memory manager may exist to perform lower level memory management at
the host. In most cases during read or write operations, the host 80 essentially issues a
command to the memory system 90 to read or write a segment containing a string of

logical sectors of data with contiguous addresses.

[0065] A memory-side memory manager 300 is implemented in the controller 100 of
the memory system 90 to manage the storage and retrieval of the data of host logical

sectors among metablocks of the flash memory 200. The memory manager comprises
=20 -



WO 2010/078540 PCT/US2010/020014

a front-end system 310 and a back-end system 320. The front-end system 310
includes a host interface 312. The back-end system 320 includes a number of
software modules for managing erase, read and write operations of the metablocks.
The memory manager also maintains system control data and directory data
associated with its operations among the flash memory 200 and the controller RAM

130.

[0066] FIG. 9 illustrates the software modules of the back-end system. The Back-
End System mainly comprises two functional modules: a Media Management Layer

330 and a Dataflow and Sequencing Layer 340.

[0067] The media management layer 330 is responsible for the organization of logical
data storage within a flash memory meta-block structure. More details will be

provided later in the section on “Media management Layer”.

[0068] The dataflow and sequencing layer 340 is responsible for the sequencing and
transfer of sectors of data between a front-end system and a flash memory. This layer
includes a command sequencer 342, a low-level sequencer 344 and a flash Control
layer 346. More details will be provided later in the section on “Low Level System

Spec”.

[0069] The memory manager 300 is preferably implemented in the controller 100. It
translates logical addresses received from the host into physical addresses within the
memory array, where the data are actually stored, and then keeps track of these

address translations.

[0070] FIGs. 10A(i) — 10A(iii) illustrate schematically the mapping between a
logical group and a metablock. The metablock of the physical memory has N
physical sectors for storing N logical sectors of data of a logical group. FIG. 10A(i)
shows the data from a logical group LG;, where the logical sectors are in contiguous
logical order 0, I, ..., N-I. FIG. 10A(ii) shows the same data being stored in the
metablock in the same logical order. The metablock when stored in this manner is
said to be “sequential.” In general, the metablock may have data stored in a different

order, in which case the metablock is said to be “non-sequential” or “chaotic.”

[0071] There may be an offset between the lowest address of a logical group and the
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lowest address of the metablock to which it is mapped. In this case, logical sector
address wraps round as a loop from bottom back to top of the logical group within the
metablock. For example, in FIG. 10A(iii), the metablock stores in its first location
beginning with the data of logical sector £&. When the last logical sector N-/ is
reached, it wraps around to sector 0 and finally storing data associated with logical
sector k-1 in its last physical sector. In the preferred embodiment, a page tag is used
to identify any offset, such as identifying the starting logical sector address of the data
stored in the first physical sector of the metablock. Two blocks will be considered to

have their logical sectors stored in similar order when they only differ by a page tag.

[0072] FIG. 10B illustrates schematically the mapping between logical groups and
metablocks. Each logical group 380 is mapped to a unique metablock 370, except for
a small number of logical groups in which data is currently being updated. After a
logical group has been updated, it may be mapped to a different metablock. The
mapping information is maintained in a set of logical to physical directories, which

will be described in more detail later.

System Abstraction Model

[0073] FIG. 11 illustrates the organizational system abstract levels showing the
relation between host’s logical address LBA, their grouping into logical groups and
mapping to groupings of physical blocks (i.e., metablocks). There are three
abstraction levels distributed among the front-end 310 and back-end 320 of the

memory manager 300 (see also FIG. 8).

[0074] At the front end 310, in a logical level organization, a partition manager
groups logical units (LBAs) from the host into logical groups. Each logical group 380

will be stored in a metablock 370 of the memory.

[0075] At the back end 320, in a physical level, the memory is organized into
physical blocks, each physical block 360 being a minimum physical unit of erase.
However, to improve performance, greater parallelism is achieved in an abstraction
level where an aggregate of blocks (metablock) are logically grouped to be erased

together.

[0076] FIG. 12 illustrates the physical and logical memory architecture. Physically,
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the memory is organized into blocks which are the minimum unit of erase physically.
Typically, a memory plane is an array of memory cells served by a page of sensing
circuits. The plane contains a plurality of blocks. Each block 360 contains multiple
physical pages. For binary memory, each physical page 350 stores one data page.
For MLC, each physical page stores more than one data page. The physical page 350
is further partitioned into subpages. For binary memory, each subpage 352 stores one
data ECC page. A metablock 370 is a logical grouping of erase blocks across
multiple planes for the memory manager to erase as a unit. Similarly a metapage 372
is a logical grouping of pages across multiple planes for the memory manager to
program or read as a unit. The logical group is a grouping of host logical units that

are to be store in a metablock.

[0077] FIG. 13 illustrates the physical and logical memory architecture across
multiple banks. Even more parallelism is achieved when the various entities are
logical grouped across banks. The aggregated entities are each label with the prefix

“mega”. In particular, the various entities are defined below.

[0078] FIG. 14A illustrates a data page consisting of multiple ECC pages. For
example, a data page may consist of 2, 4, or 8 ECC pages. A data page resides in a

physical page 350 (see FIG. 13.) Similarly, an ECC page resides in a subpage 352.

[0079] FIG.14B illustrates an example format for an ECC page which stores only
binary data and reside in a subpage. It has three fields: a header of 14 bytes, a data
section of four 512-byte sectors and a ECC plus spare portion of N bytes.

[0080] The following is a terminology for the abstraction model:
Physical NAND Layer Terms

[0081] Physical Page: A maximum set of NAND memory cells which can be read or
programmed concurrently in a physical block. A physical page can store one

(SLC/Binary/D1) or more (MLC/D2, D3, D4)) data pages.

[0082] Data Page: A minimum amount of data which can be read and programmed
concurrently in a physical block. MLC data pages differ from each other in
accordance with the programming mode and order. There are Low and High pages in

D2; Lower, Middle, and Upper pages in D3.
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[0083] Word-line (wordline): A row of NAND memory cells across a physical block,
which normally consists of one (in ABL memories) or two (called even and odd

pages) physical pages.

[0084] Physical block: The minimum physical erase unit. Block consists of fixed

number of physical pages and word-lines.

[0085] Plane: A subset of physical blocks within a die where the blocks are evenly
distributed among planes. Parallel operations (write, read, or erase) are possible on a

single block on each plane within a die.

[0086] Dic: A die is a physical blocks array of one or more planes. Each die supports

asynchronous operations relative to the other dies.
[0087] Chip: A chip is one or more dies, where chip-select line defines a chip.

[0088] Multi-chip package: A physical package with multiple chip select lines is

referred to as multi-chip package.

[0089] Channel: A physical path to access a chip or group of chips. Channels on a

card are mutually exclusive. A channel can access one or more memory banks.
Abstraction Level Terms

[0090] Data Page: The Abstraction Model Data Page maps to Physical NAND Layer
Data Page. The Page can be programmed up to certain number of times depending on
the memory technology and reliability requirements. Typically, Data Page can only be

programmed once in MLC mode and 4 times in Binary or lower-page-only modes.

[0091] Sector: Sector is 512 Bytes of host data identified by Logical Group number
and offset within the Logical Group.

[0092] ECC Page: The theoretically minimum read and program data unit for the
memory management with an ECC Page header, all data (2048 bytes in BES, or 4
sectors worth of data) protected by single ECC, all stored together. One Data Page can
map 2, 4 or 8 ECC Pages, depending on the Data Page size.

[0093] Meta-page: The maximum read and program unit in a bank. Meta-page
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comprises all data pages across a meta-block which can be read and programmed

concurrently. Meta-page consists of one or more die-pages.

[0094] Die-Page: The maximum read and program unit in a die. Die-page is made of
all data pages across a die, which can be read and programmed concurrently. Die-

page consists of one or more data pages.

[0095] Mega-page: The maximum read and program unit in a multi-bank product.
Mega-page is made of all data pages across mega-block which can be read and

programmed concurrently. Mega-page consists of one or more meta-pages.

[0096] Meta-block: The minimum erasable unit used by the memory management
system, comprises a set of physical blocks. Normally, all meta-blocks are parallel-
connected meaning they can be accessed independently and concurrently. Physical
blocks forming a meta-block may be located in planes within a single chip, or in
planes distributed across multiple chips, accessible from the same channel. When a
meta-block is a group of multiple physical blocks they must be organized according to
the interleave rules for a chip, die, plane and page; each physical block of the meta-
block is capable of being accessed in parallel to the other blocks in the same meta-

block

[0097] Bank: The array of meta-blocks independently managed by memory
management system. The bank is one meta-block, one meta-page wide. A flash based

product can consist of one or more banks.
Logical Level Terms

[0100] Logical Sector: A Logical Sector is 512 Bytes of host data identified by LBA
within a logical partition. Every Logical Sector maps to an Abstraction Model sector,

which is identified by Logical Group number and offset within the Logical Group.

[0101] LBA: LBA or Logical Block Address is an identifier for a logical sector in a

logically contiguous partition.

[0102] Logical Group: The group of contiguous logical sectors which maps to one

meta-block. Capacity of Logical Group depends on meta-block’s type (D1, D2, D3, or
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D4). A Logical Group corresponds to a same capacity group of logical sectors, which

may or may not be logically contiguous in LBA space of a partition.

[0103] Logical Mega-group: The group of contiguous logical sectors which maps to
multiple meta-blocks. Capacity of Logical Mega-Group depends on meta-block’s type
(D1, D2, D3, or D4). A Logical Meta-Group corresponds to a same capacity group of
logical sectors, which is logically contiguous in LBA space of a partition. Logical

Mega-Group is made of one or more Logical Groups from different banks.

MEMORY PARTITIONED INTO MAIN AND BINARY CACHE PORTIONS

[0104] According to one aspect of the invention, in a flash memory having an array of
memory cells that are organized into a plurality of blocks, the cells in each block
being erased together, the flash memory is partitioned into at least two portions. A
first portion forms the main memory for storing mainly user data. Individual memory
cells in the main memory being configured to store one or more bits of data in each
cell. A second portion forms a cache for data to be written to the main memory.
Individual memory cells in the binary cache being configured to store one bit of data

in each cell.

[0105] The Binary Cache of the present system has the follows features and
advantages: a) it increases burst write speed to the device; b) it allows data that is not
aligned to pages or meta-pages to be efficiently written; c) it accumulates data for a
logical group, to minimize the amount of data that must be relocated during garbage
collection of a meta-block after the data has been archived to the meta-block; d) it
stores data for a logical group in which frequent repeated writes occur, to avoid
writing data for this logical group to the meta-block; and e) it buffers host data, to
allow garbage collection of the meta-block to be distributed amongst multiple host

busy periods.

[0106] Prior art has disclosed flash memory system operating with a cache and
operating in mixed MLC and SLC modes and with the SLC memory operating as a
dedicated cache. However, except for features a) and possibly d), the other features
of the present invention are not found in prior art. The following publications are

examples of these prior art.
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[0107] Using RAM in a write cache has been disclosed in US Patent No. 5,930,167 to

Lee et al.

[0108] Partitioning the memory into two portions one operating in binary and the
other in MLC has been disclosed in US Patent No. 6,456,528 to Chen, the entire

disclosure of which is incorporated therein by reference.

[0109] United States Patent Publication Number: Publication Number: US-2007-
0061502-A1 on March 15, 2007 and US-2007-0283081-A1 dated December 6, 2007
by Lasser both disclose a flash memory operating in mixed MLC and SLC modes. A
specific portion of the memory is always allocated to operate in SLC mode and to

serve as a dedicated cache.

[0110] FIG. 15 illustrates a host operating with the flash memory device through a
series of caches at different levels of the system. A Cache is high-speed storage for
temporarily storing data being passed between a high-speed and a slower-speed
component of the system. Typically high-speed volatile RAM are employed as cache
as in a host cache 82 and/or in a controller cache 102 of the memory controller. The
non-volatile memory 200 is partitioned into two portions. The first portion 202 has
the memory cells operating as a main memory for user data in either MLC or binary
mode. The second portion 204 has the memory cells operating as a cache in a binary
mode. Thus, the memory 200 is partitioned into a main memory 202 and a binary

cache.

[0111] FIG. 16 illustrates the metablocks in each bank being partitioned into a binary
cache portion and a regular metablock portion. As will be described in more detail
later, the binary cache portion has the memory storing binary data, whereas the
regular metablock portion is configured as MLC memory that can store one or more
bits of data per cell. FIG. 16 also illustrates the mapping of addresses in host LBA
address space to banks in a 4-bank memory. Meta-pages N and N+1 interleave across
4 banks, completely independent from each other. As described above, the memory
arrays in each bank are organized into metablocks to which logical groups are

mapped.
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[0112] The host LBA address space comprises sequential LBA addresses within
mega-pages, where a mega-page is the unit of programming parallelism, with size

determined by required write speed to MLC flash.

[0113] The LBA address space for a single bank comprises sequential LBA addresses
within meta-pages, and sequential meta-pages within meta-blocks. For a 4-bank
memory, every 4th meta-page in host LBA address space is a meta-page in the
sequential LBA address space for one bank, making bank logical space 4 times
smaller. An LBA address for a bank comprises a host LBA address with two relevant

bits omitted.

MEDIA MANAGEMENT LAYER

[0114] The Media Management Layer (MML) 330 (see also FIG. 9) is a module of
the Back-End system 320 for managing the organization of logical data storage within
a flash memory meta-block structure which it creates and maintains. Specific features
include handling of partial meta-page programming, handling of non-sequential and
repetitive updates, tables and lists used for logical-to-physical address translation and

free block management, and wear leveling based on hot counts.

[0115] FIG. 17 illustrates processes within the Media Management Module. After
initialization, a host data access management is responsible for managing data
exchange with the dataflow and sequencing module 340 (see also FIG. 9). When
host data is received, it sends the host data either directly to the regular MLC portion
or in transit to the binary cache (“BC”) portion of the memory. If routed to the
regular MLC portion, the data will be managed by a sequential update block
management module. The sequential update block management module will have the
data written page by page sequentially to one of a cluster of update blocks or to a
newly allocated update block. If routed to the binary cache (“BC”) portion, the data
will be managed by a BC management module. The BC management module will
have the data in units of ECC pages written into one or more subpages. In either
cases, new block may need to be allocated or obsolete blocks recycled in cooperation
with an erase (free) metablock management module. A set of control data is
generated and maintained during the various block manipulations and data storage

into the blocks. The control data includes BC indices, erased metablock lists, group
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address table (“GAT”). The control data are managed by the modules described
carlier as well as a control data update module and a metablock linking module. The
translation between logical to physical addresses is handled by a logical to physical

address translation module operating with the group address table.

HOST DATA STORAGE

[0116] FIG. 18 illustrates the mapping of host logical data to the memory physical
memory All LBAs in all partitions are mapped to Logical Groups — Binary, or MLC,
where MLC Logical Groups can be designated as stored in full MLC mode (D2 or

D3) or lower-page only mode.

[0117] Every Logical Group is mapped to an Intact block. Those Logical Groups
which were updated non-sequentially can have some data stored in one ore more
Update Blocks. Also, Binary Cache blocks can contain fragments for Logical Groups,
regardless if they have Update Blocks or not.

Host Write to Cache or Main Memory

[0118] FIG. 19 illustrates the possible data paths and processes from the host to the
metablock of the main memory via the binary cache. The host data is slated for the
metablocks in the main memory 202. The depending on conditions, the data is either
written directly to the main memory 202 or in directly via the binary cache 204. The
following is a list of the processes and management modules for the various routing

shown in the figure.

(1) Binary Cache write from host

(2) Meta-block write from host

(3) Meta-block write from Binary Cache
(4) Binary Cache write management

(5) Binary Cache block management

(6) Meta-block write management

(7) Meta-block management
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[0119] These techniques are described more fully in United States patent applications:
“NONVOLATILE MEMORY AND METHOD WITH WRITE CACHE
PARTITIONING”, by Paley, Alexander et al.; “NONVOLATILE MEMORY WITH
WRITE CACHE HAVING FLUSH/EVICTION METHODS?”, by Paley, Alexander et
al.; and “NONVOLATILE MEMORY WITH WRITE CACHE PARTITION
MANAGEMENT METHODS”, by Paley, Alexander et al.; and Provisional
application “NONVOLATILE MEMORY AND METHOD WITH IMPROVED
BLOCK MANAGEMENT SYSTEM”, by Gorobets, Sergey A. et al., all being filed

concurrently herewith.

Spare Block Pool Management

[0120] Non-volatile memory system often have defective storage elements, both from
the manufacturing process and acquired or grown defects. For example, the
responsiveness of flash memory cells typically changes over time as a function of the
number of times the cells are erased and re-programmed. This is thought to be the
result of small amounts of charge being trapped in a storage element dielectric layer
during each erase and/or re-programming operation, which accumulates over time.
This generally results in the memory cells becoming less reliable, and may require
higher voltages for erasing and programming as the memory cells age. The effective
threshold voltage window over which the memory states may be programmed can
also decrease as a result of the charge retention. This is described, for example, in
United States patent no. 5,268,870. The result is a limited effective lifetime of the
memory cells; that is, memory cell eventual fail to operate properly, usually failing to
program or erase properly. The number of cycles to which a flash memory block is
desirably subjected depends upon the particular structure of the memory cells, the
amount of the threshold window that is used for the storage states, the extent of the
threshold window usually increasing as the number of storage states of ecach cell is
increased. Depending upon these and other factors, the number of lifetime cycles can
be as low as 10,000 and as high as 100,000 or even several hundred thousand. To
account for this, memory devices frequently employ defect management procedure
and remap defective elements at the cell, sectors, block, or other structural level.
Aspects of defect management are discussed in more detail in U.S. patent number

5,297,148.
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[0121] To account for this, memory systems will often include a number of spare or
extra blocks above some predefined minimum to cover for any initial or grown
defects on the device. Although more generally applicable, a number of aspects of
managing such a pool of spare blocks can be described in the context of a memory
systems presented in the preceding sections, which includes a binary section and a
multi-level (or MLC) section. The following discussion will use the memory systems
described above and in United States patent applications: “WEAR LEVELING FOR
NON-VOLATILE MEMORIES: MAINTENANCE OF EXPERIENCE COUNT
AND PASSIVE TECHNIQUES”, by Gorobets, Sergey A. et al.; “NONVOLATILE
MEMORY AND METHOD WITH WRITE CACHE PARTITIONING”, by Paley,
Alexander et al.; “NONVOLATILE MEMORY WITH WRITE CACHE HAVING
FLUSH/EVICTION METHODS”, by Paley, Alexander et al.; “NONVOLATILE
MEMORY WITH WRITE CACHE PARTITION MANAGEMENT METHODS”, by
Paley, Alexander et al.; and MAPPING ADDRESS TABLE MAINTENANCE IN A
MEMORY DEVICE, by Gorobets, Sergey A. et al.; and Provisional application
“NONVOLATILE MEMORY AND METHOD WITH IMPROVED BLOCK
MANAGEMENT SYSTEM”, by Gorobets, Sergey A. et al., all being filed
concurrently herewith, as the exemplary embodiment, with the more general situation

mentioned along the way.

[0122] In the exemplary embodiment, a spare block is a free block above the
minimum required for system functionality in its normal fashion, where at least one
free block is used to perform consolidations and compactions. Additionally, the
minimum may include a certain number of blocks which can be used as binary cache
block and update blocks, to guarantee certain level of performance. There maybe
some blocks allocated to be temporary closed update blocks, so that the system does
not need to update free block list (FBL) and group access table (GAT) every time a
new block is fully written. When the number of free blocks reaches the minimum, the
system can then either go to Read-Only mode immediately, or it is possible to use less
blocks as update blocks and so on, but this will gradually affect performance. The
spare blocks are extra blocks above the predefined minimum and can be described as
blocks that can be used to compensate for block failures before the system becomes

reduced from its fully functional and, for example, goes into an “end of life” type
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scenario, such as a Read-Only mode or other measured described in U.S. patent

publication number US-2007-0266200-A1.

Transference of Spare Blocks Between Partitions

[0123] The preceding sections present an example of a memory system having a
binary section and a multi-level (MLC) section. Other details of a binary/MLC
memory arrangement are also described in U.S. patent number 6,456,528. In such an
arrangement, the blocks operating in the MLC mode require a higher precision
programming and such blocks typically can be used for less cycles than those
operating in a binary mode. The binary mode is faster and more coarse, providing
higher endurance. Under the binary cache arrange, the binary blocks will tend to
experience more cycles than MLC ones, the system being arranged design to do more
binary writes in order to reduce number of MLC operations. For example, if binary
endurance is, say, 100 higher than MLC (say a maximum number of erase cycles
=100K in binary mode versus 1K erase cycles in MLC mode), the system could go as
far as doing 100 more binary writes than MLC writes without making effective binary
block wear rate higher than MLC wear. Consequently, it were to replace 1 MLC erase
with 10 binary erases, that would provide an endurance improvement for the system.
In any case, however, as well as any initially bad blocks, both the binary and MLC

sections may grow defective blocks.

[0124] To allow for defective memory blocks, a memory with two different portions
can include spare blocks in a number of different arrangements. For example, each
partition could keep its own separate spare pool, one of extra binary blocks and one of
extra MLC blocks; however, this would result in the device reaching its end of life
scenario when either of the pools is fully used, regardless of the state of the other
pool. Another arrangement would be a shared pool of blocks for mixed use, taken by
cither the binary partition or MLC partition as needed and operated in the
corresponding mode. In the shared pool arrangement, the memory would reach end
of life scenario when the shared pool is fully used; but the resultant endurance will not
be optimal because frequent random writes will no longer be kept outside the MLC
partition for blocks in the shared pool and this will cause an impact to the MLC

blocks, reducing any endurance advantage.
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[0125] According to the aspect presented here, the two partitions have separate spare
block pools, but spare blocks can be transferred from the pool for the lower endurance
MLC partition to the pool for the higher endurance binary partition. This allows for a
relatively small pool to be kept for the binary partition, but should the need arise, for
blocks to be transferred over form the MLC block pool. For example, there may
initially be assigned very few spare binary partition blocks. This initial assignment of
spare binary block could even be none, but as a practical matter, there will usually a
few blocks, or even just a single spare, assigned to binary so that the transfer
mechanism need not be invoked by a single failure. If any additional spare blocks are
need for the binary partition, MLC spares can then be transferred as needed from the
larger MLC spare pool, with any transferred blocks than being operated as appropriate
for the new partition (i.e., binary). Although some embodiments could also allow
transferal of spares from the spare pool of the higher endurance binary pool to the
MLC spare pool, this will generally not be done as the binary cells are usually
operated in a coarser, faster mode that may lead to lower endurance if subsequently

operated in the more stringent MLC mode.

[0126] Thus, the block pools are separate, but the device will only go to end of life
mode when both pools are used up. The MLC blocks, even when having been
previously used, can still be used in binary mode, which is more coarse. Therefore,
aside from maybe one or a few blocks initially assigned as binary spare blocks, the
system can keep, and cycle, all spare blocks within the MLC partition, and make them
new binary spares when needed. As noted, the exemplary embodiment does not use
the reverse transfer, since a binary block may not be usable as a MLC block,
assuming binary blocks are being worn with faster rate, since a binary block is likely

to reach the maximum number of MLC erases quite early in device’s life.

[0127] The concept can be illustrated schematically using Figure 20. (It will be
understood that the arrangement shown is just conceptual and the physical layout on a
device need not group all the spare blocks together, etc.) The memory is partitioned
into two sections, the binary section 2001 and MLC section 2003. The partition may
be a fixed, hard partition or a dynamic or other soft partition. Each partition has spare
block pool, shown as 2011 and 2013. The binary spare block pool 2011 is initially

assigned few spare blocks, from none to a few, with one or two taken as the
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exemplary embodiment. The MLC spare block pool 2013 initially assigned a larger
number of blocks. Some of these initially allotted spare may be lost at testing, being
reassigned to cover for bad blocks from the production process. In any case, when the
binary section 2001 needs a spare block due to, say, a programming failure, it will
first check its own spare block pool 2011 and appropriate the needed block if one is
available; if not, it will then request one to be reassigned as shown at 2015 from the
MLC spare block pool 2013, which is then treated as the needed binary spare block.
If there are no available spares in 2013 to be reassigned, the device goes into end of

life mode.

[0128] It is usually preferable that the binary free block list 2011 always has at least
one spare block in order to avoid “on the fly” block relocation from the MLC pool
3013 directly to a used binary block, which may create a scenario when the system
has a recently erased and written binary block without prior reference in binary tables
Consequently, any time the binary pool 2011 becomes empty, the exemplary

embodiment will reassign a spare binary block.

[0129] Figure 21 is flow illustrating the reassignment process for a spare block.
Beginning at 2101, when the binary partition 2001 needs a spare block, it first looks
in its spare block pool 2011 and, at 2103 determines whether a spare is available. If
so, the spare is then used by the memory as requested; if not, at 2107, a spare block is
then requested from the MLC spare block pool 2013. If the MLC pool is also empty,
the device will go into end of life mode at 2109; if a spare is available, it is then
transferred at 2111 (corresponding to 2015 in Figure 20) the used in binary mode at
2113.

[0130] Although presented here in the context of a memory partitioned into a binary
section and a multi-state section, it can also be used in other applications where the
memory elements can be operated in more than one mode. The memory could then
be similarly partitioned into two (or more) sections that are then operated according to
the different modes. When the one mode is more prone to failure (as in MLC), it can
be allocated a larger portion of spare blocks the division, which is operated in the
other mode (as in binary) that is less prone to generating defects. When the less error
prone section needs a spare block and has none available left from its relatively small
allotment, a spare block is then transferred and operated accordingly. Also, although
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the example is based on two partitions operating in two corresponding modes, it can
extended to more partitions; for example, even in the binary/MLC case, there could be
more than one MLC partition operating at differing state densities. These extensions

similarly apply to the following discussion related to 2017 of Figure 20.

[0131] Considering generalizations beyond the binary-MLC example further, as
noted, both partitions could both store multiple bits per cell, but of a different number,
such as 2-bits per cell in the less error prone partition and 3-bits per cell in the other,
or even a true binary (that is, only operated in and optimized for binary) mode and a
lower-page mode of MLC. Another possibility is to have different partitions that
operate with the same number of states per cell say both binary, or as in all-binary
mode where the multi-level partition is operated in a lower page only mode. In this
case, the memory blocks it each partition may be equally prone to errors in terms of
rate per erase cycle, but the block in one partition (such as the binary cache used to
store recently updated data) will be more prone to errors due to higher usage rate than
blocks in the other, or main memory, partition . Consequently, it some cases the
likelihood of error can be due memory operation mode and in other the usage
pattern/frequency. The partitioning may also be a division of physical partition
between logical partitions, say one for system data, the other for user data, where
relative frequency of block erases would be determined by likely update frequency in

the partitions, assuming the system data is likely to be updated more often.

[0132] Also, these techniques need not be limited to when the main spare pool be in
the memory partition which is more, or less, prone to errors. More generally, the
main spare pool can be in one of multiple partitions, and that allows the system to use
it all before the card runs out of spares and need not be limited to a partition where
error is more likely. For example, in all-binary cases, there could still be a binary
cache partition of the non-volatile memory. Consequently, partitioning criteria can
include: higher/lower endurance (for example, binary versus MLC); differences in
density, speed, data retention (for example, lower page only versus full MLC); how
prone to error (as in an all binary cases, where on partition, such as a cache area, is
more frequently updated and the system could cycle spares into this partition to keep a
lower average hot count and extend time failure); where one partition is higher

endurance and higher update rate; and so on.
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[0133] The preceding discussion has noted how MLC mode tends to be a finer, or less
reliable, mode in that it has tighter operating tolerances and is usually more prone to
grown defects than the more coarse binary mode. Because of this, a block that may
be considered defective when operated in a multi-state mode may still be operable in
binary mode: for example, although a block may experience program failure when
programming an upper page, it may still be operable in a binary (e.g., lower page
only) format. Consequently, a block that is found defective as an MLC block can be
reassigned to the spare block pool of the binary partition. This is illustrated at 2017 in
Figure 20, where a block from the MLC partition 2003, which is outside of the MLC
spare block pool 2013, is transferred over to the binary spare block pool 2011. The
transfer need not be immediate, but can be performed when convenient for the
system, such as a sort of background operation. If the MLC partition 2003 then needs
a replacement block, this can then be shifted out of the spare pool 2013. (Again, it
should be noted that the arrangement of Figure 20, with the spare blocks all physically

lumped together at one side, is just schematic.

[0134] For example, if an MLC block fails after 1K cycles, say, because it fails to
meet the criteria of a finer MLC programming mode, but it may still be used in binary
mode for, say, 100K cycles because the programming is more coarse and less
sensitive to block wear. This is the case when the block fails to program in MLC
mode due to block wear when some cells fail to program to the right levels, but not
due to a severe failure, like a word-line short or substrate short. In some
embodiments, the transferred block can be checked to determine that it will operate
properly in binary mode. In may be preferable to more simply just transfer the block
and initially assume that it will operate well in binary, since the system is in any
designed to handle errors as they arise. Further, even without testing, an important
indicator of whether the block will be usable in binary form is the symptoms of a
failure. For example, the controller can assume that if a failure happens on the upper
page (finer mode than lower page), it is due to block wear not short. There are many
ways for the system to check what happened, such as an analysis of the number of

unprogrammed bits.

Use of 1-Bit Time Stamp for Spare and Free Block Management
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[0135] As noted above, a spare block is a free block above the minimum required for
system functionality in its normal fashion. The exemplary embodiments, as described
in United States patent applications: “WEAR LEVELING FOR NON-VOLATILE
MEMORIES: MAINTENANCE OF EXPERIENCE COUNT AND PASSIVE
TECHNIQUES”, by Gorobets, Sergey A. et al.; “NONVOLATILE MEMORY AND
METHOD WITH WRITE CACHE PARTITIONING”, by Paley, Alexander et al.;
“NONVOLATILE MEMORY WITH WRITE CACHE HAVING
FLUSH/EVICTION METHODS”, by Paley, Alexander et al.; “NONVOLATILE
MEMORY WITH WRITE CACHE PARTITION MANAGEMENT METHODS”, by
Paley, Alexander et al.; and MAPPING ADDRESS TABLE MAINTENANCE IN A
MEMORY DEVICE, by Gorobets, Sergey A. et al.; and Provisional application
“NONVOLATILE MEMORY AND METHOD WITH IMPROVED BLOCK
MANAGEMENT SYSTEM”, by Gorobets, Sergey A. et al., all being filed
concurrently herewith, will also a number of free blocks, both as blocks currently
unassigned to a logical address for host data and also for caching, updating,
consolidating, and other management functions. For example, at least one free block
is kept to be used to perform consolidations and compactions. There maybe some
blocks allocated to be temporary closed update blocks, so that the system does not
need to update free block list (FBL) and group access table (GAT) every time a new
block is fully written. The spare blocks are extra blocks above a predefined minimum
that includes the full complement free blocks and can be described as blocks that can
be used to compensate for block failures. In some embodiments, the spare blocks can
used as any other blocks, effectively make the free block pool larger by, for example,
occasionally swapping members of the spare block pool with members of the free
block list. In the embodiment described here, the system only knows that it has spares
by keeping a count of total free blocks. Consequently, members of the spare block
pool may have been used, as opposed having been kept segregated in an used state.
According to another aspect presented here, the system keeps a 1-bit time stamp or
flag as a block's attribute to tell recently written blocks in the case when blocks are

not kept in erased state.

[0136] Rather than erase a block with obsolete content as soon as convenient, it may
be preferable to instead erase obsolete blocks as late as possible, just before they are

to be programmed. This can help to remove disturb effect a block can accumulate
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from being kept in an erased state for a long time. This arrangement can, however,
lead to complications during initialization. When the free or spare blocks are kept in
an crased state, the spare block pool and free block list would have only erased
blocks, so that during initialization the system would only need to scan blocks from
these to find recently written blocks. By instead not keeping blocks in an erased state,
it is not enough just to perform such as scan as obsolete, free blocks and recently
written blocks, with new data, may look identical. For example, consider the situation
where the host may keep rewriting the same Logical Group again and again: The
memory system could not tell if a block in the free block list or spare block pool has
old data or just been rewritten with a new data. A 1-bit time stamp that is toggled

when the system erases and starts programming the blocks is introduced for this

purpose.

[0137] The time stamp bit is toggled every time the system erases and begins to
program blocks. At this point, the reference in the system’s tables will have the old
time stamp value, say, TS=0, but the block will have TS=1 in its headers. That will
indicate that the system has erased the block and started programming it since the last
update of the table. At initialization, the system can scan blocks in free block list and
spare block pool, and, if time stamps in the block does not match one in the free block

list, say, the system can recognize the block as recently written, after the last update.

[0138] The system can maintain the time stamp as an attribute, much as is described
in United States patent application “WEAR LEVELING FOR NON-VOLATILE
MEMORIES: MAINTENANCE OF EXPERIENCE COUNT AND PASSIVE
TECHNIQUES”, by Gorobets, Sergey A. et al. being filed concurrently herewith for a
block’s experience or hot count, where it is maintained along with the address. Under
this arrangement, the system will only store it for spare blocks, free blocks, or both.
Further, under this arrangement, the system does not need to have it stored for all
free/spare block, but only for those free/spare blocks which are likely to be used
before the next update of the free block list as kept in non-volatile memory. For the
other free blocks, the value of the 1-bit time stamp can be determined by reading it
from the blocks themselves, as it will not have changed since the last update.
Additionally, all blocks will have the time stamp bit stored somewhere on the block

itself, such as in a page header, to allow comparison between the two values. If an
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MLC block is moved to the binary partition, as described above with respect to
Figures 20 and 21, the corresponding reference can be mover from the MLC list or

pool to the binary list or pool, without changing the time stamp.

[0139] As noted above, a time stamp to determine whether a spare block has been
written would only be of use in embodiments where a spare block may have been
previously written and not kept segregated from the other blocks until used as a
replacement.  For example, in the memory management of the exemplary
embodiments, the system may occasionally exchange blocks between the free block

list and spare block pool for wear leveling reasons, for example.

[0140] Considering the wear leveling example in more detail, as described more
below and in United States Provisional application “NONVOLATILE MEMORY
AND METHOD WITH IMPROVED BLOCK MANAGEMENT SYSTEM”, by
Gorobets, Sergey A. et al., filed concurrently herewith, the spare blocks may be kept
as entries a portion of the group access table, or GAT, that extends the GAT beyond
the usual logical to physical mapping and which is only for block allocation and in
used as an exported logical space. The system may exchange hot (heavily used)
blocks in the free block list with cold (little used) blocks from the GAT or the spare
block portion of the GAT. Records can be kept of the mean hot counts of these free
block list, the GAT, and the spare block portion of the GAT. These can be used to
determine when to perform an exchange, and whether to exchange free blocks with
spare blocks or to perform a block copy of seldom written data from a cold GAT
block into a hot free block, freeing up the cold block for use. The criteria used to
determine when to perform such an exchange could include: the average hot count of
the blocks in the free block list is greater than a predefined amount above the average
hot count of the GAT or the spare block GAT; or a predefined number of erases have

been performed.

[0141] If a criteria such as these are met and the average hot count of the spare GAT

is less than the average hot count of the GAT, the wear leveling code on the system

will schedule a spare GAT exchange operation. (In other systems without the spare

GAT arrangement, the appropriate spare block management tables or data would be

used.) The wear leveling operation can then be performed at a convenient time. To

find the spare blocks that are suitable to be exchanged with the free block list, a check
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can be made on the hot count assigned to spare blocks, whether maintained in the
blocks’ header, as an attribute, or in a dedicated table. Spare blocks with the lowest

hot count will be used for exchange.

[0142] A procedure for exchanging free and spare blocks when the mean hot count
for the free block list exceeds that of the spare GAT can be as follows: Determine
how many blocks should be moved out of the free block list (for example, all free
blocks having a hot count above a threshold). The same number of coldest spare
blocks is found by checking their hot counts. The exchange is then made and the
corresponding mean hot counts are updated. Consequently, whether by this or other
exchange mechanisms, there may be spare blocks which have previously been
written. More discussion of wear leveling relevant to the present discussion is given
in United States patent application “WEAR LEVELING FOR NON-VOLATILE
MEMORIES: MAINTENANCE OF EXPERIENCE COUNT AND PASSIVE
TECHNIQUES?”, by Gorobets, Sergey A. et al. filed concurrently herewith.

[0143] Returning the discussion of the time stamp, Figure 22 schematically illustrates
the use of the time stamp. An exemplary block 2201 is shown as having a data
storing portion 2203 and a header portion 2205, which includes the 1-bit time stamp
TS 2207. If the blocks are organized into fixed meta-blocks, only a single TS needs
to keep for the meta-block. To the right side of Figure 22 is a data management
structure 2211, such as a free block list or spare block pool, that will have the entry
for the free or spare block 2201. Block 2201 has its entry in 2211 represented at
2213. In this representation, the entry 2213 will have the block’s (or meta-block’s, if
blocks are stored as fixed meta-blocks) physical address and associated attributes,
including 1 bit for the time stamp TS 2217 and, here, also the experience (or hot)
count hc 2213. More generally, the TS bit 2207 is stored somewhere on the unit of
erase, whether the basic physical unit (block) or composite virtual unit (meta-block),
and the corresponding TS bit 2217 is maintained by the data management system as
an attribute for the corresponding unassigned (free or spare) erase structure among its

management data.

[0144] The TS 2217 values in the free/spare block tables is set when the free block

list is newly populated with the block, its time stamp being added along with its

address. When a block which used to be referenced somewhere else, say by the GAT,
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becomes free, it is added to the free block list with the time stamp copied “as is”
copied from its header time stamp 2207. As described above, in the exemplary
embodiment, the system holds obsolete blocks in the free and spare block pools in an
un-crased state until as late as practical. The TS value 2207 stored on the block itself
will be toggled when the system erases the block and programs to it before the next
erase. It is programmed to the first header to be programmed and may be continued
in the other headers as well. On the next update of the free block list, it can be
removed from the free block list as it is not longer free or spare, be is reference
somewhere else, such as the group access table or updating information for the access
table. Consequently, the comparison of these two TS bits 2207 and 2217 for a given
block will indicate whether the block has been erased and stated to be programmed
since the last update of the table. As obsolete, free blocks and recently written blocks,
with new data may look identical, a comparison of the two can tell if a block in the
free block list or spare pool has old data or just been rewritten with a new data. At
initialization, the system scan free and/or blocks and if time stamp in block does not
match one in the control structure, the block is recognized as recently written, after
the last data structure update. In this way, the time stamp allows the system to use
blocks from the free block list without the need to update free block list every time it
is done, since the system can scan the free block list and check the time stamps to

find out what changed.

[0145] As noted, in the exemplary embodiment, all free and spare blocks have un-
erased, obsolete data (once they have been programmed the first time. The time
stamp allows for the determination of whether a block has been used since the last
date that free or spare block list has been updated, since this cannot be determined just
by looking as a block’s data. In some arrangements, a global, absolute time could be
kept in both the blocks themselves as well as a free block listing, which could be used
to tell whether a block has a newer global time stamp than that in the free block list.
However, such an absolute time stamp would take more space (likely on the order of
32 bits) to store, as opposed to the 1-bit time stamp presented here that only needs the
single bit to tell whether the block has or has not be used since the last update.
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Maintenance of Spare Blocks in Access Table

[0146] As noted above, in another aspect presented here, spare blocks, free blocks, or
both, can be addressed by the group access table. Traditionally, an access table, such
as a File Access Table (FAT) or the group access table (GAT) mainly described here,
is a look up table with an entry for each logical address, where the addresses are at the
appropriate level of granularity for the system: file, sector, block, or, in the exemplary
GAT, meta-block. Each GAT entry stores the corresponding physical location for the
currently stored logical address. Depending on the embodiment, various attributes of
the address may also be stored associated with the address, such as the just described
1-bit time stamp or the experience count of United States patent application “WEAR
LEVELING FOR NON-VOLATILE MEMORIES: MAINTENANCE OF
EXPERIENCE COUNT AND PASSIVE TECHNIQUES”, by Gorobets, Sergey A. et
al. filed concurrently herewith. The aspect presented here extends the access table to
include entries not associated with a host’s logical address: If the memory has too
many spare blocks to fit into the free block list, the system creates additional GAT
entries to be used as placeholders for the excess spare blocks. Schematically, this is
equivalent to formatting a device to a larger logical capacity without making the extra
capacity available to the host and the blocks, pre-allocated for the extra logical

capacity will be used as spares, since the host will not use them.

[0147] Although more generally applicable to systems using address translation
tables, the discussion here will be based on the exemplary embodiments of United
States patent applications: “WEAR LEVELING FOR NON-VOLATILE
MEMORIES: MAINTENANCE OF EXPERIENCE COUNT AND PASSIVE
TECHNIQUES?”, by Gorobets, Sergey A. et al.; “NONVOLATILE MEMORY AND
METHOD WITH WRITE CACHE PARTITIONING”, by Paley, Alexander et al.;
“NONVOLATILE MEMORY WITH WRITE CACHE HAVING
FLUSH/EVICTION METHODS”, by Paley, Alexander et al.; “NONVOLATILE
MEMORY WITH WRITE CACHE PARTITION MANAGEMENT METHODS”, by
Paley, Alexander et al.; and MAPPING ADDRESS TABLE MAINTENANCE IN A
MEMORY DEVICE, by Gorobets, Sergey A. et al.; and Provisional application
“NONVOLATILE MEMORY AND METHOD WITH IMPROVED BLOCK
MANAGEMENT SYSTEM”, by Gorobets, Sergey A. et al., all being filed
concurrently herewith. The group access table (GAT) is a look up table with an entry
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for each logical group, both the logical addresses for the host data and the extended
logical address space for blocks not associated with the host’s logical addresses. Each
GAT entry stores the meta-block (physical) address for an entry, and, according to the
embodiment, associated attributes which can include hot count, 1-bit time stamp, and
so on. The GAT is stored in the non-volatile memory in control blocks in GAT pages
holding entries for a contiguous set of logical groups. Portions of the GAT can then
be cached in the controller’s SRAM memory to reduce the number of reads on the
non-volatile memory. There is one entry in the GAT for each logical group, both the
host associated logical addresses and the extended logical space for spare blocks.

This extended portion for spare blocks can be referred to as Spare GAT or SGAT.

[0148] The memory management layer will handle the various tasks related to the
GAT, included the extended SGAT portion. For the non-extend portion of the GAT,
this would include the various control and mapping operations, such as the control
and management of the GAT pages on the non-volatile memory and the various
caching mechanisms related to GAT use. For the SGAT, this would include
managing un-allocated metablocks forming GAT entries and also to supply the free
block exchange routine mentioned above. The SGAT pages can be located just after
the standard GAT pages in a page list index. As discussed previously, the free block
exchange routine would take the required un-allocated meta-blocks from the SGAT
pages and replace them with the required free blocks. All or just a portion, such as

any excess beyond some minimum, of the free blocks can be maintained in the SGAT.

[0149] Figure 23 schematically illustrates the GAT structure. The GAT 2301 is here
structured as the usual portion 2303 and the SGAT portion 2305. Each entry includes
the logical address 2311, the associated physical address 2313, and associated
attributes 2215. The entries in the portion 2303 correspond to the logical addresses
from the host. The entries in the SGAT portion 2305 will be for logical addresses not
exported to, and not available to, the host, with the corresponding physical address
entries being those of spare blocks. The logical address space for the SGAT entries
will begin with a value following that of the address range as seen by the host from
outside of the memory system. As blocks are allocated or de-allocated to host data
based upon (the host’s) logical addresses, these will be entered in usual portion 2303

of the before the SGAT section 2305. Consequently, this arrangement provides a
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convenient storage mechanism for free blocks, particularly when the number of these

exceed the number of allocated storage slots in the free and/or spare block lists.

Conclusion

[0150] Although the invention has been described with reference to particular
embodiments, the description is only an example of the invention’s application and
should not be taken as a limitation. Consequently, various adaptations and
combinations of features of the embodiments disclosed are within the scope of the

invention as encompassed by the following claims.
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IT IS CLAIMED:

1. A non-volatile memory system, comprising:

a non-volatile memory circuit having a plurality of erase blocks each formed
of a plurality of non-volatile memory cells, the blocks being operable in a first and a
second mode, the first operating mode being of higher endurance than the second
operating mode; and

a controller circuit connected to the memory circuit for controlling the transfer
of data between the memory circuit and a host to which the memory system is
attached and the management of data stored on the memory circuit, the memory being
partitioned into a first section of blocks operated according to the first mode and a
second section of blocks operated according to the second mode, where the second
section initially includes one or more spare blocks allocated to be used to replace a
defective block in the second section and where the controller can reassign spare

blocks from the second section to be spare blocks for the first section.

2. The non-volatile memory system of claim 1, wherein the first mode
operates the memory cells in a binary mode and the second mode operates the

memory cells in a multi-level mode.

3. The non-volatile memory system of claim 1, where the partition of non-

spare blocks the memory into a first and section is fixed.

4. The non-volatile memory system of claim 1, where the partition of non-

spare blocks the memory into a first and section is variable.

5. The non-volatile memory system of claim 1, where the first section initially
includes one or more spare blocks allocated to be used to replace a defective block in

the first section.
6. The non-volatile memory system of claim 5, where the first section initially

includes one spare block allocated to be used to replace a defective block in the first

section.
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7. The non-volatile memory system of claim 1, where the controller reassigns
a spare block from the second section to be spare blocks for the first section in

response to the first section having too few spare blocks.

8. The non-volatile memory system of claim 1, where the controller does not

reassign spare blocks from the first section to be spare blocks for the second section.

9. The non-volatile memory system of claim 1, wherein the first section is

used to store user data and the second section is used to store system data.

10. The non-volatile memory system of claim 1, wherein the second section is

used as a cache memory for data stored in the first section.

11. A method of operating a non-volatile memory system including a non-
volatile memory circuit having a plurality of erase blocks each formed of a plurality
of non-volatile memory cells and a controller circuit connected to the memory circuit
for controlling the transfer of data between the memory circuit and a host to which the
memory system is attached and the management of data stored on the memory circuit,
the method comprising:

partitioning the memory into a first section of blocks and a second section of
blocks, where the second section initially includes one or more spare blocks allocated
to be used to replace a defective block in the second section;

operating the blocks of the first section according to a first mode;

operating the blocks of the second section according to a second mode, the
first operating mode being of higher endurance than the second operating mode; and

reassigning by the controller of a spare block from the second section to be a

spare block for the first section.

12. The method of claim 11, wherein the first mode operates the memory cells
in a binary mode and the second mode operates the memory cells in a multi-level

mode.

13. The method of claim 11, where the partition of non-spare blocks the

memory into a first and section is fixed.
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14. The method of claim 11, where the partition of non-spare blocks the

memory into a first and section is variable.

15. The method of claim 11, where the first section initially includes one or

more spare blocks allocated to be used to replace a defective block in the first section.

16. The method of claim 15, where the first section initially includes one

spare block allocated to be used to replace a defective block in the first section.

17. The method of claim 11, where the controller reassigns a spare block from
the second section to be spare blocks for the first section in response to the first

section having too few spare blocks.

18. The method of claim 11, where the controller does not reassign spare

blocks from the first section to be spare blocks for the second section.

19. The method of claim 11, wherein the first section is used to store user data

and the second section is used to store system data.

20. The method of claim 11, wherein the second section is used as a cache

memory for data stored in the first section.

21. A non-volatile memory system, comprising:

a non-volatile memory circuit having a plurality of erase blocks each formed
of a plurality of non-volatile memory cells, the blocks being operable in a first and a
second mode, the first operating mode being of higher endurance than the second
operating mode; and

a controller circuit connected to the memory circuit for controlling the transfer
of data between the memory circuit and a host to which the memory system is
attached and the management of data stored on the memory circuit, the memory being
partitioned into a first section of blocks operated according to the first mode and a
second section of blocks operated according to a second mode, where, in response to

determining that a block from the second partition is defective when operated in the
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second mode, the controller can reassign the determined block to the first partition to
be a spare block usable to replace a defective block in the first section and operated

according to the first mode.

22. The non-volatile memory system of claim 21, wherein the first mode
operates the memory cells in a binary mode and the second mode operates the

memory cells in a multi-level mode.

23. The non-volatile memory system of claim 21, where the first section
initially includes one or more spare blocks allocated to be used to replace a defective

block 1n the first section.

24. The non-volatile memory system of claim 21, where, subsequent to
determining that said block from the second partition is defective when operated in
the second mode and prior to reassigning the determined block to the first partition to
be a spare block, the controller determines whether the block determined to be
defective when operated in the second mode is also defective when operated in the

first mode.

25. The non-volatile memory system of claim 21, where the controller
determines whether to reassign the determined block based upon the failure mode

when operated in the second mode.

26. A method of operating a non-volatile memory system having

A method of operating a non-volatile memory system including a non-volatile
memory circuit having a plurality of erase blocks each formed of a plurality of non-
volatile memory cells and a controller circuit connected to the memory circuit for
controlling the transfer of data between the memory circuit and a host to which the
memory system is attached and the management of data stored on the memory circuit,
the method comprising:

partitioning the memory into a first section of blocks and a second section of
blocks;

operating the blocks of the first section according to a first mode;
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operating the blocks of the second section according to a second mode, the
first operating mode being of higher endurance than the second operating mode;

determining that a block from the second partition is defective when operated
in the second mode; and

in response to determining that a block from the second partition is defective
when operated in the second mode, reassigning by the controller the determined block
to the first partition to be a spare block usable to replace a defective block in the first

section and operated according to the first mode.

27. The method of claim 26, wherein the first mode operates the memory cells
in a binary mode and the second mode operates the memory cells in a multi-level

mode.

28. The method of claim 26, where the first section initially includes one or

more spare blocks allocated to be used to replace a defective block in the first section.

29. The method of claim 26, further comprising:

subsequent to determining that said block from the second partition is
defective when operated in the second mode and prior to reassigning the determined
block to the first partition to be a spare block, determining by the controller whether
the block determined to be defective when operated in the second mode is also

defective when operated in the first mode.

30. The method of claim 26, where the controller determines whether to
reassign the determined block based upon the failure mode when operated in the

second mode.

31. A non-volatile memory system, comprising:

a non-volatile memory circuit having a plurality of erase blocks each formed
of a plurality of non-volatile memory cells, the memory blocks including a data
storage portion and an overhead storing portion, the overhead including a one bit time
stamp; and

a controller circuit connected to the memory circuit to control the transfer of

data between the memory circuit and a host to which the memory system is attached
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and to manage data stored on the memory circuit, where the control circuit maintains
a control structure for unassigned blocks that includes a one bit time stamp for each
unassigned block,

where the value of the time stamp’s bit in the overhead of a given block is
toggled in response to the block undergoing an erase operation and the value of the
time stamp in the control structure for the unassigned blocks is set to the value of time
stamp in the overhead of the corresponding block when the corresponding block is
entered in the control structure for unassigned blocks, and

wherein during an initialization process, the controller performs a comparison
of the values of said time stamp in the overhead of the unassigned blocks with the
value of the corresponding time stamp in the control structure for the respective

unassigned blocks.

32. The non-volatile memory system of claim 31, wherein the control circuit

maintains a copy of said control structure in the non-volatile memory circuit.

33. The non-volatile memory system of claim 32, wherein based upon the
comparison, the controller determines which of the block entered in the control
structure for unassigned blocks has been written since the last updating of the copy of

said control structure maintained in the non-volatile memory circuit.

34. A method of operating a non-volatile memory system having a non-
volatile memory circuit having a plurality of erase blocks each formed of a plurality
of non-volatile memory cells, the memory blocks including a data storage portion and
an overhead storing portion, and a controller circuit connected to the memory circuit
to control the transfer of data between the memory circuit and a host to which the
memory system is attached and to manage data stored on the memory circuit, the
method comprising:

maintaining in the overhead of the blocks a one bit time stamp;

maintaining by the controller circuit a control structure for unassigned blocks
that includes a one bit time stamp for each unassigned block;

toggling the value of the time stamp’s bit in the overhead of a given block in

response to the block undergoing an erase operation;
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setting the value of the time stamp in the control structure for the unassigned
blocks to the value of time stamp in the overhead of the corresponding block when the
corresponding block is entered in the control structure for unassigned blocks; and

performing an initialization process, including the controller performing a
comparison of the values of said time stamp in the overhead of the unassigned blocks
with the value of the corresponding time stamp in the control structure for the

respective unassigned blocks.

35. The method of claim 34, further comprising the control circuit

maintaining a copy of said control structure in the non-volatile memory circuit.

36. The method of claim 35, further comprising, based upon the comparison,
the controller determines which of the block entered in the control structure for
unassigned blocks has been written since the last updating of the copy of said control

structure maintained in the non-volatile memory circuit.

37. A non-volatile memory system, comprising:

a non-volatile memory circuit having a plurality of erase blocks each formed
of a plurality of non-volatile memory cells; and

a controller circuit connected to the memory circuit to control the transfer of
data between the memory circuit and a host to which the memory system is attached
and to manage data stored on the memory circuit,

where the plurality of blocks include a first plurality of blocks used to store
host supplied data identified by a logical address and to store system data and one or
more spare blocks to compensate for failed blocks of the first plurality of blocks, and
the control circuit maintains a logical to physical addresses conversion table holding
entries for blocks containing host supplied data and entries for spare blocks,

where the table entries assign the blocks containing host supplied data the
corresponding logical addresses by which the host identifies the data and assign spare
blocks logical addresses exceeding the logical address space of which the host is

awarc.

38. The non-volatile memory system of claim 37, wherein the table entries

further maintains associated attributes for the blocks.
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39. The non-volatile memory system of claim 38, wherein the associated

attributes for the blocks includes the blocks’ respective experience count.

40. The non-volatile memory system of claim 38, wherein the associated

attributes for the spare blocks includes a one bit time stamp.

41. The non-volatile memory system of claim 37, wherein the controller
circuit forms memory blocks into composite multi-block structures and the table

entries are for said composite multi-block structures.

42. The non-volatile memory system of claim 37, wherein the table entries for

spare blocks are for less than all of the spare blocks in the memory system.

43. A method of operating a non-volatile memory system having a non-
volatile memory circuit having a plurality of erase blocks each formed of a plurality
of non-volatile memory cells and a controller circuit connected to the memory circuit
to control the transfer of data between the memory circuit and a host to which the
memory system is attached and to manage data stored on the memory circuit, the
method comprising:

using a first plurality of the plurality of blocks to store host supplied data
identified by a logical address and to store system data;

using one or more spare blocks to compensate for failed blocks of the first
plurality of blocks; and

maintaining by the control circuit a logical to physical addresses conversion
table holding entries for blocks containing host supplied data and entries for spare
blocks, the maintaining a table including:

assigning the table entries for blocks containing host supplied data the
corresponding logical addresses by which the host identifies the data; and
assigning the table entries for the spare blocks logical addresses

exceeding the logical address space of which the host is aware.

44. The method of claim 43, wherein the table entries further maintain

associated attributes for the blocks.
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45. The method of claim 43, wherein the associated attributes for the blocks

includes the blocks’ respective experience count.

46. The method of claim 43, wherein the associated attributes for the spare

blocks includes a one bit time stamp.
47. The method of claim 43, wherein the controller circuit forms memory
blocks into composite multi-block structures and the table entries are for said

composite multi-block structures.

48. The method of claim 43, wherein the table entries for spare blocks are for

less than all of the spare blocks in the memory system.
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