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(57) ABSTRACT

This disclosure details methods for measuring and analyzing
diversification of portfolio of assets. A dimension is a logical
and quantitative means to measure diversification. As the
number of dimensions increases so does diversification.
Strong asset correlations among each other detract from the
notion of independence. A positive correlation increases risks
and is therefore undesirable. Assets are embedded into a high
dimensional Fuclidean vector space. The entire portfolio is
interpreted as a set of points whose ambient dimension is the
number of assets in the portfolio. The Karhunen-Loéve
expansion is used to quantify the KI. dimension of the geo-
metric object induced by a portfolio. The associated dimen-
sion is taken as the measure of diversification accounts for
both the number of assets and the commonality within them.
This ensures that measuring diversification as a dimension
accounts for the complete diversification affect of the portfo-
lio and is thus a valuable portfolio management tool.
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DIVERSIFICATION MEASUREMENT AND
ANALYSIS SYSTEM

PRIORITY

[0001] This application is a continuation of, and claims
priority from, U.S. Non-Provisional patent application Ser.
No. 12/417,713, entitled “Diversification Measurement and
Analysis System,” filed Apr. 3, 2009, which itself claimed
priority from U.S. Provisional Patent Application Ser. No.
61/042,027, entitled “Diversification Measurement and
Analysis System,” filed Apr. 3, 2008. The disclosures of both
of'those applications are hereby incorporated by reference in
their entireties.

FIELD OF INVENTION

[0002] Embodiments of the invention concern software
implemented systems, apparatuses, and methods in the field
of investments and statistics.

BACKGROUND

[0003] Diversification is measured for portfolios of assets.
Portfolios are modeled geometrically and the dimension of
the induced geometry is taken as the diversification measure-
ment.

[0004] The measurement of total diversification has been
absent from the realm of investments and statistics. Diversi-
fication is thus left as an inconsistent and qualitatively applied
analysis technique and is used implicitly in traditional opti-
mization techniques as a risk mitigating control.

[0005] Diversification is a powerful tool that reduces the
variance of a portfolio and consequently helps to stabilize
performance, potentially enabling more consistent returns
and mitigating risk. Diversification has also been shown to be
a cornerstone of judging the prudence of a fiduciary.

[0006] Diversification is an investment attribute that gener-
ates great consensus as to its efficacy as a management
attribute. Therefore, the utility of a robust and consistent
measurement of diversification would be strong. Despite the
widespread acceptance of diversification, investors suffer
from the absence of a well-defined, uniform quantitative met-
ric. In fact, investors are accustomed to thinking of diversifi-
cation as only an abstract or qualitative attribute.

[0007] A statistical measurement of the relationship of
assets is an indication of diversification. Yet, these relation-
ships, traditionally co-variances or correlations, measure a
unique relationship between any two single assets in the
portfolio. Because the portfolio represents the entire compo-
sition of all these relationships, the measure of any one single
relationship fails to represent a genuine level of portfolio
diversification.

[0008] Another common misinterpretation of diversifica-
tion is Beta. Beta is a measurement given to a portfolio that
describes the amount of performance of that portfolio that can
be explained by the market forces. While Beta can be con-
strued as a measurement of diversification, it too has some
limitations. Beta requires the presence of another portfolio
external to that portfolio being measured. Conventionally,
this portfolio may be the S&P 500 or other broad index. Beta
thus has some utility for measuring the degree to which an
asset will move with the market. This index is thus an approxi-
mation of the market.

[0009] Beta has several problems, in that defining the mar-
ket is inherently problematic. In the United States alone, there
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are more than 200,000 investment products. No investment
index can even come close to accounting for all of the differ-
ent investment possibilities. Ultimately, every new IPO, every
new start-up business and every new idea defines that market.
No relative measure can ever capture the true market.

[0010] A further issue is that there is little efficacy in com-
paring the portfolio to the market. Beta is a relative measure-
ment, whereas a measurement of diversification that would
better help investors to construct and manage portfolios for
performance purposes would not be concerned with items
external to the portfolio but only those assets comprising the
portfolio. Therefore, a holistic measurement of diversifica-
tion that was independent of any market benchmark or index
would be desirable by investors seeking better performance.

[0011] Investors care more about what happens to their
portfolio than what the market does. Investors who have a sole
focus on absolute returns are endeavoring to maximize the
value of their portfolio. Such investors would prefer a holistic
measurement of diversification than a measure that is relative
to another (and essentially arbitrary) index.

[0012] Diversification has been primarily measured as to
the number of assets held and to a lesser extent the largest
allocations among those assets. Measuring diversification in
this way fails to account for disparate weightings of assets and
fails to account for the commonality of assets. To illustrate,
consider a 10-asset portfolio consisting of ten equally
weighted portfolios, having each asset perform identically to
another asset. This portfolio has the overall performance of
only one asset, despite holding ten different investments.

[0013] Traditional and commonly used statistics can pro-
vide some insight into diversification, but they fail to measure
it. For example, measures of dispersion, central tendency and
distribution are in one sense measures of diversification. Per-
haps the most applicable among these measurements is the
kurtosis. The kurtosis is a value reflecting how close observed
values are to the mean of those values. The kurtosis is the
fourth moment of a probability distribution and is therefore a
dimensionless quantity. This measure also fails as a robust
measurement of diversification in that it cannot account for
the full dimensionality of the underlying data. In the conven-
tional application, a portfolio manager would use the distri-
bution and kurtosis to view the portfolio over time, and thus it
does not provide any holistic insight.

[0014] Cluster analysis has some useful applications to
help analyze diversification. However, cluster analysis fails to
distill portfolio diversification to a singular value that may
then be used to aid in the relative analysis of portfolios.
Distilling portfolio diversification to one singular value is
thus desirable to aid in investment analysis and selection,
optimization, attribution and presentation of portfolios and
assets.

[0015] Investors currently have no way of measuring diver-
sification except for the Concentration co-Efficient (CC),
Intra-Portfolio Correlation (IPC), and their derivates. A con-
sistent, robust and quantitative diversification metric is thus
of great utility to the industry.

[0016] Concentration Coefficient (CC)

[0017] The concentration coefficient (CC) measures port-
folio concentration in terms of the asset weightings. In an
equal weighted portfolio, the CC will be equal to the number
of assets. As the portfolio becomes more concentrated in
particular assets the CC will be proportionally reduced.
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[0018]

as:

Thus, the Concentration Coefficient (CC) is defined

N —1
cch = [Z (wf,)z]
i=1

[0019] P is the portfolio

[0020] N is the number of stocks held in the portfolio
[0021] Wit is the weight of the i” stock in the portfolio at
time t

[0022] The concentration coefficient has the desirable

property of being a discrete measurable quantity. However, it
fails to account for the relationships of assets and thus is
inadequate for managing diversification against market risk
or systemic risk, which are among the most prevailing risks
investors face, and need to be managed.

[0023] Intra-Portfolio Correlation (IPC)

[0024] Intra-portfolio correlation (IPC) is a means to quan-
tify diversification.

[0025] The range is from -1 to 1, with values approaching
1 being the least diversified. The IPC is a weighted average
intra-portfolio correlation.

[0026] The Intra-Portfolio Correlation (IPC) statistic is cal-
culated as follows:

IPC=3" %" XiX;py
T

[0027] X, is the fraction invested in asset i

[0028] X is the fraction invested in asset j

[0029] P, is the correlation between assets i and |
[0030] The expression may be computed when ix]

[0031] The IPC is thus a measure of diversification against
risks such as systemic risk but fails to account for other risks
such as security risk, concentration risk and model risk.

[0032] Other Forms

[0033] Other forms of diversification analysis pertain to the
classification of an asset such as depicting the sector or asset
class assigned to portfolio assets. Classification schemas may
be economic sectors, industries, valuation models or geo-
graphic locations. In addition, and especially within corpo-
rate portfolio models, elements may be product lines, the
difference between these product lines in terms of elements
such as price, characteristics of the targeted market, manu-
facturing style, goods or services, and materials used. Corpo-
rations also seek diversification for their investor base, sup-
plier base, employee base, customer base. All such analysis
techniques are qualitative, not quantitative.

[0034] While useful, this analysis fails to entirely account
for diversification by subjugating analysis to only the studied
elements, and again failing to provide a single measurement.
[0035] These techniques have additional drawbacks. They
require categorization of all components. Frequently, the cat-
egorization of such assets lacks rigor and suffers from a
non-optimal division. Additionally, there is no consistent pro-
cess or categorization for determining asset classes, which
portends a lack of consistency when describing the diversifi-
cation attributes of various portfolios. Therefore characteriz-
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ing diversification as having exposure to various asset classes
results in inconsistent, non-comparable, and varying solu-
tions.

[0036] A further element of subjectivity often results when
mapping investments to categories. The inconsistent mapping
process of various institutions map results in dissimilar diver-
sification analyses.

[0037] These techniques fail to deliver one simple numeri-
cal value that an investor can use to analyze and compare
portfolios. Therefore the result of the analysis is inadequate to
compare statistically similar portfolios as the investor would
have to analyze an array of values and most humans are
incapable of accurately determining an optimal or even supe-
rior result, wherein if the result is reduced to one value, its
comprehension and comparative efficacy increase dramati-
cally.

[0038]

[0039] For business strategy purposes, diversification is
sometimes categorized as vertical, horizontal or concentric.
In these conventional meanings, horizontal diversification is
meant to mean broadening of the product line. Vertical diver-
sification is the integration of the supply chain or distribution
outlets and concentric diversification is a corporate growth
strategy whereby a business builds its total sales by acquiring
or establishing other unrelated businesses that may share
management or technical efficiencies.

[0040] When the decision maker has a presumption of con-
trol, a diversification strategy can have several disadvantages.
Namely as a corporation diversifies, fewer resources are able
to be devoted to the same assets. This can diminish the ability
for any one asset to reach a critical mass. A more microeco-
nomic view may be that an asset with certain fixed and sunk
costs may have a decreased or negative net present value
when other assets supporting the continued development and
sales of that asset are diluted by the new diversified strategy.
One could imagine that certain efficiencies and advantages
can be obtained by practicing the discipline of focus.

[0041] While the efficacy of maximizing diversification is
not clear in corporate models, the utility of measuring diver-
sification is clear. Accounting for diversification germane to a
company provides the company with valuable information
that when combined with business intelligence can shape
strategy and execution. Product lines, target customers and
business lines may be better optimized to increase diversifi-
cation and decrease macroeconomic risks, or deliberately
focused to exploit expected advantages. Shareholders of
companies also stand to benefit from an internal diversifica-
tion measurement; such values provide insight as to the focus,
interrelationships and vulnerabilities of the company.

[0042] The only limitation towards the efficacy of invest-
ment portfolio diversification stems from a belief in the rela-
tive attractiveness of a particular asset. If other assets of
comparable attractiveness cannot be discovered, then there is
a reasonable justification for holding less diverse portfolios.
This constraint is really rather a constraint upon the fund
manager and the fund manger’s resources including her own
time for studying, analyzing and predicting returns on invest-
ments. As an investment manager’s resources grow, the man-
ager’s ability to discover several highly attractive assets also
increases and thus within a framework ofrational participants
and increasingly efficient markets the greater the importance
of diversification in the investment policy and investment
process. Without the ability to intelligently predict basic port-

Types of Diversification



US 2012/0221484 A1l

folio optimization input assumptions, any investors would be
foolish to deliberately accept a portfolio of less diversifica-
tion.

DEFINITIONS

[0043] Assets: Assets are typically financial assets, such as
stocks, bonds, funds, futures, derivatives, cash-based assets,
real estate. However, assets may also be resources. The man-
ager may uniquely define resources. A corporation, for
example, may define a resource as a person, department,
opportunity, intellectual property, process, product or natural
resource. Assets included the aforementioned financial
assets, resources and statistical representations, derivatives,
children or component therefore.

[0044] Portfolios: Portfolios are collections of assets.
Assets may vary in weight within a portfolio. Portfolios may
consist of assets that have allocation potential, but have no
allocation. This scenario occurs when considering an asset’s
allocation. Sometimes assets do not merit an allocation. How-
ever, the act of considering an asset provides it as amember of
the portfolio. Portfolios may include assets of different types.
Portfolios may include collections of assets that vary over
time. Portfolios may be either real or hypothetical. Portfolios
must have at least one asset, but are otherwise unlimited as to
the number of assets they may contain.

[0045] Relationship: Normally, relationships of assets are
given by statistical measures. Correlation, co-variance, vec-
tor angles and cosines, singular or principal component val-
ues, semi-correlations, co-integration, copulas, R-squared
and regression lines are all measures of asset relationships. In
addition to these known measurements of relationship other
approximations, measurements or estimations may be substi-
tuted. Substitutions would possess the property that any value
will measure the relative relationship of each asset, or poten-
tially, each asset to an external benchmark or index. Relation-
ships may constitute other quantifications of similarity, asso-
ciation, implication, proportion or relativity. Such
relationships may also depict an alternative expectation, such
as a conditional measurement. In addition to the conventional
measures of relationship above, for simplicity, the definition
is extended to include conventional time series. Such time
series values may depict a score, price, return value, simu-
lated value, statistic or ratio. This includes time series and
series of return information conventional in finance. Such
measurement may vary over time and probability and the
measurements may be accounting for any value that is
selected for which diversification will be measured. Relation-
ship values may be mixed among assets. For example, some
asset relationships may be built with a historical correlation,
while other asset relationships in the same matrix may be built
with a conditioned or estimated matrix. Relationships also
include any derivative, subset, composite or estimation of any
of the values obtained from the aforementioned methods.
[0046] Investor: This disclosure will also refer to an inves-
tor. An investor shall be taken to mean one who is allocating
among assets, whether an individual, institution, group, busi-
ness process or software application. Investors may also
include representatives, agents, employees, fiduciaries and
advisors to the investors. Any user of a software application
that is utilizing the processes described herein will also be
construed as an investor.

[0047] Eigenasset: An eigenasset is the index value of the
KL energy spectrum. Eigenassets may also be interpreted as
the singular values of the assets.
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[0048] Dimension: Because we are measuring diversifica-
tion as a dimension, it is useful to distinguish several types of
dimensions. This distinction enables greater utility and pre-
cision.

[0049] Ambient Dimension: The ambient dimension for a
portfolio of N assets will be N. The ambient dimension is the
initial vector space in which the data resides.

[0050] Intrinsic Dimension: The smallest number of
parameters required to model the data without loss. Intrinsic
dimension is equivalent to the spanning dimension. Within
the context of our portfolio analysis, the intrinsic dimension is
less than or equal to the ambient dimension. Thus as the
intrinsic dimension is more narrowly defined it creates a more
precise diversification measurement tool.

[0051] Spanning Dimension: The spanning dimension of
the data is the standard definition for dimension in elementary
linear algebra and indicates the minimum number of vectors
required to span the data in the portfolio P. To formalize the
definition consider the portfolio P consisting of |[PI=m assets.
Let XP be the data matrix whose j-th column is the j-th vector
in the portfolio.

XP=[x1,x2 ... xm-1,xm] (€8]

The spanning dimension is formally equivalent to matrix rank
XP).

[0052] Karhunen-Loeve Dimension (KLD): The KLD
reveals a latent or “natural” dimensionality of the portfolio
when projected in a vector space. The KI.D is the dimension
that is less than or equal to the intrinsic dimension. The KI.D
approximates the intrinsic dimension within a specified
degree of accuracy measured in terms of a confidence inter-
val. The KLD is the spanning dimension of a subspace con-
taining most of the original portfolio data. The KL.D
approaches the intrinsic dimension, N, as the confidence
interval (CI) approaches 0. Formally, KLD—N as CI—0
[0053] Karhunen-Loeve (KL) expansion: KL expansion is
used to reveal the approximate intrinsic dimension of the
portfolio. The KL expansion is a generalization of a process
also known by different names, depending on the discipline
applied. References to any one algorithm shall be interpreted
as applying any other equivalent algorithm. Other names for
the process are Principal Component Analysis (PCA), Hotell-
ing Analysis, Empirical Component Analysis, Quasihar-
monic Modes, Proper Orthogonal Decomposition (POD),
Empirical Eigenfunction Decomposition and Singular Value
Decomposition (SVD). Irrespective of the name of the func-
tion, it is a process used to construct an optimal basis for a
subspace generally used to reduce the dimensionality of a
data set. While non-essential for the description of the inven-
tion, for completeness, the following theorem as well as some
results follows.

[0054] Theorem 1

[0055] Singular Value Decomposition (SVD) Let A be a
real valued mxn matrix and 1=min(m,n). Then there exist
orthogonal matrices U and V such that

A=USVT ),

such that U is an element of R(mxm), V is an element of
R(nxn) and S=diag(sl, .. ., sn) is an element of R(mxn).

[0056] With the data matrix defined in (1) we define the
temporal covariance matrix as

Ccr=xX"x 3)
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[0057] We also define the spatial covariance matrix as:
C=xx7 )
[0058] Note that both matrices are symmetric and thus have

a full set of orthonormal eigenvectors. The orthonormal
eigenvectors are related to the left and right singular vectors
contained in U, and V respectively in the following way.
[0059] Proposition 1.1

[0060] The m left singular vectors of X exist and are given
by the m eigenvectors of Cx corresponding to nonzero eigen-
values. These eigenvalues correspond to the singular values

squared.
[0061] Proposition 1.2
[0062] The nright singular vectors of X exist and are given

by the n eigenvectors of Ct corresponding to nonzero eigen-
values. These eigenvalues correspond to the singular values
squared.

[0063] Proposition 1.3

[0064] Suppose C is an NxN symmetric matrix with zero
mean then the eigenvalues Ai i=1, . .., N are nonnegative.
[0065] Proposition 1.4

[0066] The eigenvectors of the spatial covariance matrix Cx
are uncorrelated.

[0067] The above proposition is simply because the eigen-
vectors of a symmetric matrix are orthogonal.

[0068] Proposition 1.5

[0069] For mean-subtracted data, the statistical variance of
the j-th coordinate direction is proportional to the j-th eigen-
value of C.

[0070] Proposition 1.6

[0071] Givena D term expansion in terms of the eigenbasis
associated with C, the eigenvalues of C give a measurement of
the truncation error:

N (&)
emse = Z Aj
j=D+1
[0072] Theorem 2
[0073] The basis defined by the spatial eigenvectors of Cx

captures more statistical variance than any other basis.
[0074] With this theoretical framework in place, we are
now able to define the energy of the dataset in terms of the
statistical variance, or equivalently in terms of the singular
values of the data.

[0075] The energy (EN) of the data set is defined as:
EN=sum(si), i=1, ..., N (6)
[0076] Thus, the energy captured by a D-term expansion

(ED) is given by

ED=sum(si),i=1,..., D 7
[0077] We may use the normalized energy defined as

ED=ED/EN. (8)
[0078] We will refer to a plot of the singular values (also

Eigenassets) versus the eigenvector index as a KL spectrum
plot. It is often useful to plot si/EN so that we can see imme-
diately the fraction of the total energy (or variance) contained
in each eigendirection. These plots are used to estimate the
so-called KL. dimension. This dimension is generally taken as
the number of terms required to ensure that some minimum
quantity of energy is captured by the data.
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[0079] The KL energy dimension (simply KL. dimension),
written dim(KLEy), is defined to be the minimum number of
terms Dy required in the orthogonal expansion to ensure that
ED, =y

[0080] Confidence Interval: the confidence interval is used
to associate the KLLD with a probabilistic measure of cer-
tainty. The confidence interval relates to the diversification
measure as such; there is a 95% confidence level that the
portfolio diversification is XX.X. Confidence intervals (CI)
may be measured as intervals within a distribution of poten-
tial, real or hypothetical solutions. The KLLD will approach
the count of the intrinsic dimension as the CI—1. This is the
standard interpretation of a confidence interval in statistics.
[0081] Conditioning Systems: Conditioning systems have
the purpose and utility to create better expected values and
may be useful for prediction. Additionally, conditioning sys-
tems may also have the purpose to gain additional diversifi-
cation and performance insight under special conditions.
[0082] Many conditioning systems are well known in the
field of finance, the more standard econometric methods
include Bayesian estimations, multi-factor regressions, mov-
ing averages, Markov chains, smoothing, GARCH models,
Multi-sampling, neural networks, interpolations and extrapo-
lations. Such techniques are applied at various points at the
investor’s discretion. For example, a conditioning system
may be applied to an input (time series, weight, relationship
measure or confidence interval) or an output (visualization,
metric, series of metrics or an entire database.)

[0083] KL diversification metric (KLLDM): is defined as:
KLDM=Dy/rank(X). (13)
[0084] In other words, the KL diversification metric is the

ratio of the KL energy dimension and the intrinsic (or span-
ning) dimension of the data. Perfect diversification (from the
feasible set) is achieved if the KL. energy dimension is equal
to the intrinsic dimension of the data. The KLDM thus pre-
sents diversification as a range of values from 0 to 1. Values
approaching 1 has greater diversification. Higher values also
show that more assets inside the portfolio are contributing
meaningful measures of diversification.

SUMMARY

[0085] We are measuring portfolio diversification as the
number of dimensions that the portfolio resides in. Portfolios
with more dimensions have more diversification. Lesser-di-
versified portfolios are contained in fewer dimensions.
[0086] Forexample, unless otherwise conditioned in a zero
correlation example (with all correlations=0), the portfolio
dimensionality may be equal to the number of assets in the
portfolio (at least in the equally weighted scenario). As assets
in a portfolio vary from zero correlation and tend towards —1
or 1 the portfolio dimensionality will decrease. In another
extreme example (and again existing in an unconditioned
state), a portfolio consisting of all assets with a perfect 1 or —1
correlation would have a dimensionality of 1.

[0087] To illustrate, consider FIG. 16, this may also be
interpreted as having each asset be indistinguishable from
one another. In this model, when all assets share a perfect 1
correlation with one another each assets is indistinguishable
from any other asset and from a portfolio perspective, any one
asset adds no more diversification than an hypothetical port-
folio consisting of a singular asset. Just as a single point
placed in a higher dimension, such as a point on a line the
portfolio could move in only two directions. A point in 3
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dimensions can move in more directions that are independent.
Each additional dimension explains an additional level of
independent performance. As such, a portfolio consisting of a
number of independent performing assets will have a dimen-
sionality equal to the number of assets.

[0088] Dimensions are inherently perpendicular or
orthogonal to one another. For example, consider a two
dimensional graph, the X and the Y dimensions are orthogo-
nal (perpendicular) to one another. When the dimension is
increased, it still holds that the third dimension is orthogonal
to the other dimensions.

[0089] Dimensions greater than three lose much of the intu-
ition, except for the 4th dimension which is often considered
time. Indeed, in this sense, time is independent, uncorrelated
or orthogonal to the three physical dimensions.

[0090] There is no mathematical limit to the number of
dimensions and by representing a portfolio geometrically, we
can place this portfolio into a vector space and calculate the
proper dimensionality of the portfolio. The geometry of the
portfolio is still valid, even if we lose our geometric intuition
as the portfolio transcends into the abstract realm of higher
dimensions.

[0091] In one preferred embodiment, measuring diversifi-
cation comprises the following steps that may be executed in
various orders. Please see FIG. 1 for a depiction of a possible
interaction of the nine steps.

[0092] Step 1. Obtain or create a portfolio

[0093] Step 2. Apply any weighting to assets

[0094] Step 3. Obtain or create a relationship measure for
the assets

[0095] Step 4. Obtain or create a confidence interval
[0096] Step 5. Apply any conditioning systems

[0097] Step 6. Model the data in a vector space

[0098] Step 7. Apply the Karhunen-Loéve expansion pro-
cess

[0099] Step 8. Calculate the Karhunen-Loéve Dimension
[0100] Step 9. Publish the diversification value

[0101] Conventional applications of the dimensional cal-

culation techniques applied as the core process are predomi-
nately concerned with dimensional reduction. Such dimen-
sional reduction techniques are standard in efficient image
processing and decomposition, similar to speech recognition,
the KL expansion is used to efficiently reduce and simplify
large datasets. Here the utility is for size reduction and effi-
cient electronic transmission. Dimension maximization is a
rather novel concept, even applied to the fields in which
dimensional reduction is common.

[0102] Dimensional maximization, quantification, attribu-
tion, optimization and analytics are unique to the field of
management sciences and investments.

[0103] The dimensional quantification is also harmonic
with a portfolio and its relative position to the outside world.
For example, a portfolio of 15 dimensions would be tanta-
mount to a portfolio influenced by 15 exogenous and inde-
pendent factors. Therefore, an increase in the number of
independent factors that could influence the portfolio
decreases the potential for any one factor to cause significant
harm. It is also possible to better understand and analyze a
portfolio, even if the holdings are not known. For investment
managers this is useful for reporting results to investors,
regulators and risk managers without having to disclose the
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unique holdings. The investor benefits from having a holistic
view of a portfolio and insights into diversification and risk.

BRIEF DESCRIPTION OF THE DRAWINGS

[0104] While the specification concludes with claims
which particularly point out and distinctly claim the inven-
tion, it is believed the present invention will be better under-
stood from the following description of certain examples
taken in conjunction with the accompanying drawings, in
which like reference numerals identity the same elements and
in which:

[0105] FIG. 1 shows a flowchart describing an exemplary
process executed on a computer system;

[0106] FIG. 2 shows a time series for a portfolio consisting
of'45 equally weighted assets observed over 104 trading days;

[0107] FIG. 3 shows a KL spectrum plot for the portfolio of
FIG. 2;
[0108] FIG. 4 shows a time series for the portfolio of FIG.

2 with the dominant eigenasset overlaid in dots;

[0109] FIG. 5 shows a time series for the portfolio of FIG.
2 with the second most energetic eigenasset overlaid in the
dotted line;

[0110] FIG. 6 shows a time series for a portfolio consisting
of 17 equally weighted assets consisting of hedge fund indi-
ces observed over 181 trading periods;

[0111] FIG. 7 shows a KL spectrum plot for the portfolio
described in FIG. 6;

[0112] FIG. 8 shows a time series representing the resealed
caricatures of the time series shown in FIG. 6;

[0113] FIG. 9 shows a time series for the portfolio
described in FIG. 6 with the second most energetic eigenasset
overlaid in the dots;

[0114] FIG. 10 shows the KL energy spectrum of the port-
folio described in FIG. 2 consisting of 45 assets with 90%
invested in a single asset and the remaining 10% evenly
distributed among the other 44 assets;

[0115] FIG. 11 shows the KL energy spectrum of the port-
folio described in FIG. 2 consisting of 45 assets with 90%
invested in a single asset and the remaining 10% evenly
distributed among the other 44 assets;

[0116] FIG. 12 shows a plot of the KL energy dimension as
a function of weighting a single asset with value m and evenly
dividing the remaining (1-w) among all other assets for the
portfolio described in FIG. 2;

[0117] FIG. 13 shows a KL energy spectrum computed for
a weighted portfolio, ®=0.8 computed from time series data
rather than correlations;

[0118] FIG. 14 shows a KL energy spectrum computed for
a weighted portfolio where one asset has 80% of the invest-
ment allocated to it;

[0119] FIG. 15 shows an illustration of a one-dimensional
portfolio;
[0120] FIG. 16 shows the KL energy plot of eigenassets at

various confidence levels;

[0121] FIG. 17 shows a flow diagram for an exemplary
process relating to analyzing the diversification of a portfolio;
[0122] FIG. 18 shows a block diagram depicting an exem-
plary system configured to analyze the diversification of a
portfolio; and
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[0123] FIG. 19 shows a flow diagram for an exemplary
process relating to analyzing the diversification of a portfolio.

DETAILED DESCRIPTION OF THE INVENTION

[0124] The following description of certain examples
should not be used to limit the scope of the present invention.
Other examples, features, aspects, embodiments, and advan-
tages of the invention will become apparent to those skilled in
the art from the following description. As will be realized, the
invention is capable of other different and obvious aspects, all
without departing from the invention. Accordingly, the draw-
ings and descriptions should be regarded as illustrative in
nature and not restrictive.

[0125] The preferred embodiments of the invention can be
implemented on one or more computer(s) and or one or more
computer networks, such as a local area network (LAN), a
wide area network (WAN), the Internet, personal computer or
other device containing a sufficient processing resource.
[0126] Inwhole orin part, such a computer system contains
various embodiments, such as one or more server(s), client
computer(s), application computer(s) and/or other computer
(s) can be utilized to implement embodiments of the inven-
tion. [llustrative computers can include, e.g.: a central pro-
cessing unit; memory (e.g., RAM, etc.); digital data storage
(e.g., hard drives, etc.); input/output ports, data entry devices
(e.g., key boards, etc.); etc. The invention is designed but not
limited to operation on a conventional computer system, how-
ever embodiments of the invention may be used on other
processing devices such as servers, calculators, laptop com-
puters and mobile devices such as PDAs.

[0127] Client computers may contain, in some embodi-
ments, browser or similar software that can access the diver-
sification metrics and embodiments. In other embodiments,
the values are inputted to other systems or stored for archival
or future retrieval.

[0128] Insome preferred embodiments, the system utilizes
relational databases, such as, e.g., employing a relational
database management system to create, update and/or admin-
ister a relational database. Standard Query Language (SQL)
statements entered by an investor or called by another appli-
cation or process may create, update retrieve or manipulate
diversification metrics contained within the database or file as
well as the primary inputs to the diversification calculation.
[0129] Data in the system may originate in a flat file, data-
base, random access memory, XML file or similarly format-
ted conduit. Time series or relationship data often originates
from an exogenous system such as a financial data vendor or
an exchange. Further, portfolio-weighting information can
come from a custodian, brokerage or accounting system.
Generally, conditioning systems and confidence intervals
would be determined from an investor-designated process
implemented with a keyboard, mouse or other machine
human interface device, but it would also be possible for these
values to be inherited from another exogenous system.
[0130] Output and output embodiments may be published
to the same or different data storage and retrieval system.
Such a system would be accessed by applications or other
network and computer users. Publishing of the metrics may
be directly displayed to a computer monitor or published to a
database or webpage, thus configured as an input or display to
a remote computer, document or display device.

[0131] An example of an embodiment of the invention
executed on a computer is shown in FIG. 19.
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[0132] Step 1. Obtain or Create a Portfolio

[0133] The invention is executed on a computer system that
accepts a list or array of assets comprising the portfolio.
[0134] The collection of assets for a portfolio may stem
from other systems such as a portfolio accounting system,
broker dealer inventories, outputs of portfolio optimization or
asset allocation programs, results of sorts and filters, index
components, or other system collectively generating a port-
folio.

[0135] Certain embodiments of this invention may be used
recursively to produce the portfolio.

[0136] Step 2. Apply any Weighting to Assets

[0137] When an initial investment is not evenly distributed
over all assets in a portfolio we say the portfolio is weighted.
In this section, we introduce weighted portfolios.

[0138] In order to extend the geometric approach to
weighted portfolios we need to understand how weighting a
portfolio affects the geometry of the set P. Recall that in an
equally weighted portfolio we normalize all asset vectors to
have unit length, thus the SVD algorithm extracts only orien-
tation information. In simple terms, all assets reside on the
unit hyper sphere, the SVD extracts information about how
the assets are distributed onto the sphere. When a portfolio is
weighted, more value is assigned to a subset of the entire
portfolio. Thus, the intrinsic dimension of the portfolio
should resemble the intrinsic dimension of the subset. To cast
this observation into a geometric frame, it makes sense to
imagine that weighting an asset is equivalent to lengthening
the vector an appropriate amount. Therefore, shifting the
assets results in the centroid of the dataset moving in a direc-
tion favoring the weighted vectors and, in turn, the con-
strained optimization problem implicitly solved by the SVD
will rotate the orthonormal eigenbasis in such a way as to
minimize the projected residual of the weighted vector and
will thus lean more heavily in the direction of the weighted
asset(s). We say a set of vectors is orthonormal to mean, the
vectors are mutually orthogonal (completely uncorrelated)
and each vector has unit length (on the unit hypersphere). For
example, if P is a perfectly diversified portfolio. Then after
steps 1 and 2 of have been performed, the resulting set of
vectors is orthonormal.

[0139] Equivalently, when the set of asset vectors in P are
weighted the geometry of P changes in such a way that the KL,
dimension is altered by giving preference to particular direc-
tions in the ambient space.

W=fol 2 ... om-1 om] 14
be a vector of weights for a portfolio of m assets where
Sum(wi)=1, i=1,...,m 15)

[0140] Then the weighted portfolio is represented with the
weighted data matrix

Xo=folx] ©2x2 ...om-1xm-1 ... omxm]. (16)

[0141] Geometrically, we have stretched the vector lengths
in proportion to their concentration and contribution to the
portfolio; however, we have not changed the orientation of
assets and therefore have retained correlation information.
The weighted portfolio has a different geometry than the
equally weighted portfolio and again the SVD may be
employed in the same way to probe the geometry of this set.
[0142] In the case of the weighted portfolio, whose data
matrix Xw is defined in (16), the weighted temporal covari-
ance matrix is defined as

Co,t=(Xw) TXaw. (17)
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[0143] Asset weights are obtained independent of the time
series data, and thus a connection between Cw,t and Ct is
given. The symmetric mxm weights matrix SWM is shown in

(18).

wf WIWy ... W0y (18)
Wy w% cee Wy
swMm=| ° .
2
Wp] WpWy ... Wh
Then,
[0144]
Co,1=Cr**SWM 19)

where the ** operator is defined as component wise multipli-
cation

[0145] As an alternative embodiment, step 4 may be
replaced with an optimization process in which the array of
asset weights were variables and the assets are moved within
the vector space in a manner to engendering to minimize or
maximize a fitness function, such as maximizing the dimen-
sionality.

[0146] Weights of assets summing to over 1 (100%) are
said to be leveraged portfolios. The diversification metrics
can be calculated on the leveraged portfolio or notional port-
folios.

[0147] Portfolio weights are accepted into the system for
sources such as interface device like a keyboard or mouse, as
well as obtained from an external system such as a portfolio
accounting system, broker dealer inventories, outputs of port-
folio optimization or asset allocation programs, results of
sorts and filters, index components, or other system collec-
tively generating a portfolio.

[0148] Default assumptions may be made with portfolios
having no pre-defined weighting scheme.

[0149] Itis another embodiment of the invention to overlay
another allocation schema. Such overlays are common in
finance and may include a currency overlay, options overlay,
dynamic hedging strategies, tax overlay, allocation and trade
size rounding overlay, trader or manager overlay or other
overlay technique traditionally practiced in the art. Multiple
overlays may be applied and overlays may be applied in
conjunction with other systems. In the event that an overlay is
applied, the diversification metrics may be published with
and without the overlay to show the affect of the overlay
program.

[0150] It is appropriate to measure diversification in har-
mony with the same level of management discretion, e.g. a
decision to hire a manager who has ultimate authority of
assets under management, that would be operated as if all the
mangers holdings were one single asset.

[0151] Diversification metrics are calculated by combining
the overlay with the portfolio and portfolio assets. In one
embodiment, the system accepts an array of overlay weights
corresponding to the portfolio assets and multiplies the time
series of the assets by that of the normalized or mean sub-
tracted overlay time series, thus obtaining a new relationship
and weight matrix. In another embodiment, the overlay pro-
gram diversification is separately calculated.
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[0152] A further embodiment of the invention may allocate
subsets of the portfolios to entities wishing to hedge, pur-
chase, leverage or obtain exposure to a particular dimension.
In such a case, the assets of the portfolios or portions thereof
may be allocated to a particular dimension that most closely
relates to a particular variable sought by the obtaining entity.
Such an allocation is obtained by capturing the designated
energy of an isolated dimension by the principal methods
used in calculating the KL, energy spectrum.

[0153] Step 3. Obtain or Create a Relationship Measure for
the Assets.
[0154] Correlation may be the preferred relationship mea-

sure; however, other relationship measurements may also be
utilized.

[0155] Therelationship measure is equivalent whether built
from time series data or correlations. The process for per-
forming the calculations stemming from time series input
follows.

[0156] Each asset in a portfolio P is represented as a time
series consisting of n days of trading data. Let xi,j be the j-th
observation of asset i where i=1, . . ., [P| (IP| is the number of
assets in the portfolio) and j=1, . . ., n. For notational conve-
nience, we will drop the superscript j corresponding to obser-
vation unless it is necessary to reference a particular obser-
vation. The time series may contain index values, percent
change, or asset value. In any case, we embed each asset into
Rn by treating each asset time series as an n dimensional
vector. Thus, an entire portfolio of assets can be regarded as a
set of points (vectors) contained in Rn, i.e. P is a subset of Rn.
In this frame, we may bring to bear the full theoretical power
of linear algebra. In particular, correlations amongst assets
manifest themselves as well defined geometric structure in
the algebraic set P. The placement of the assets in said capac-
ity provides an ability to study the underlying geometry
induced by a portfolio in order to quantify features of a
portfolio.

[0157] In light of our representation of a time series as a
vector, it is natural to define the norm of a time series of length
$N§ using the standard two-norm definition from elementary
linear algebra, |[x||, denoted and defined as:

|xll2=sum[(x/)"2], /=1, .. ., N. 2)

[0158] The mean value of a time series xk consisting of N
observations is defined as:

<x>=1/N*sum(xkj),j=1, ..., N. 3)

[0159] It is standard practice to omit the vector time series
index k for terms inside the bracket. It is also customary to
mean subtract the time series and to work with the so-called
caricature of the time series.

DEFINITION

[0160] The quantity x'=xk-<x> is called the caricature, or
fluctuating field of the time series xk.

[0161] Calculating relationship measures from correlations
is a standard procedure detailed as follows.

[0162] Computing correlation matrices (or relations) from
time series data is a routine procedure. To compute a corre-
lation matrix from time series data:

[0163] 1. For each time series x,, corresponding to the jth
asset in portfolio P, compute the caricature X, =x,—<x>.
[0164] 2. Normalize each caricature X =X/|[X/|| so that ||
& |I=1. Geometrically, the portfolio is now characterized by a
set of points on the unit hypersphere.
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[0165] 3.Form the data matrix X=[%, X, . .. X5, X,/| where
N=IPI (number of assets in portfolio P).

[0166] 4. Compute the spatial covariance matrix X’X. By
construction, this is now a correlation matrix since the (i, j)th
element of the matrix is [X], J#(iT /(K| [1%])). When the time
series have zero mean, as the caricatures do, then [X], ; is the
cross correlation (this is the precise definition of correlation
found in nonlinear time series analysis and statistics) between
time series i and j. Geometrically, this is the dot product of two
unit vectors, which is equal to the cosine of the angle between
the two vectors.

[0167] The size of each matrix may be a function of the
number of investor-selected assets to be modeled. When an
investor has selected N assets, each matrix has a size of
N.times.N. The correlation matrix may be symmetric. A sym-
metric matrix here means that the elements of the upper right
are identical to the matrix elements in the lower left. The
diagonal separating the matrix is the correlation of each asset
with respect to itself, and in this embodiment may be equal to
one (1). The required inputs of the model may only require
unique relationships. There is no limit on the number of assets
that may be modeled using the present invention. N has no
upper limit. There is no lower limit, but any portfolio must be
comprised of at least 1 asset, such having a dimensionality of
1.

[0168] It is often the case that portfolio managers have
access to correlation matrices as opposed to time series data.
Alternatively, they have access to time series data; however,
the data has asynchronous starting and end dates, may have
missing values. Given this, it is necessary to make the con-
nection between the two. Recall proposition 1.2 that states
that the singular values of a data matrix X are equal to the
square roots of the eigenvalues of the temporal covariance
matrix Ct=XTX. In this frame, the temporal covariance
matrix is precisely the correlation matrix in question.

[0169] Step 4. Obtain or Create a Confidence Interval
[0170] Note that this definition may utilize making a selec-
tion of rank. Rank selection processes can be made by arbi-
trary methods, such as 90%, 95% or 99%, representing popu-
lar confidence intervals used in statistics and some risk
measurements. The rank selection can also be determined by
examining the derivates of the relationship measures. For
example, for a correlation of R, one or more data conditioning
techniques such as resampling or taking rolling observations
may be applied. From this data array, one embodiment cal-
culates a standard deviation to ascertain the variability of the
inputs. A ranking measurement can be then made relative to
the underlying data variability. Rank selection may also be
determined by portfolio objectives. For example, portfolios
having imposed stringent constraints, such as asset liability
ratios, time horizons or hurdle rates would have rank selection
related to the imposing constraints.

[0171] FIG. 16 shows various confidence levels associated
with a KL energy spectrum. The confidence interval of 90%
corresponds to 16 dimensions. CI=95% corresponds to 22
dimensions. CI=99% corresponds to 31 Dimensions. Finally
CI=99.5% corresponds to 36 dimensions.

[0172] Confidence intervals can be determined by investor
input using machine interface devices such as keyboards and
pointing device. CI may also be given by another system, or
omitted for certain embodiments not requiring the single
KLD value.

[0173] In addition to inputting confidence intervals deter-
mined by the solution quality of other optimizations, confi-
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dence intervals may also be measured versus benchmarks.
Benchmarks may be reflecting actual or hypothetical perfor-
mance of known portfolios. The tracking error of a portfolio
juxtapose its benchmark may qualify as a given confidence
interval. Managers with an edict to track a benchmark within
a specified level of tracking error could infer a confidence
interval relative to the level of tracking error.

[0174] The dimensionality of the original matrix can be
reduced using any optimization technique including a genetic
optimization such as the Technique described in Damschro-
der U.S. Pat. No. 7,472,084 the optimization reduces the
dimensionality while simultaneously accumulating an error
allowance that is the subject of a error minimizing fitness
function.

[0175] The total error value reflects the difference between
the sum of errors or squared errors of the relationship matrix
and the vector cosine matrix.

[0176] The optimization engenders to minimize the fitness
function that is equal to the sum of all errors. This is an error
minimization functions.

[0177] Themagnitude ofthe error expressed as a fraction of
the total potential error gives a fraction that becomes the basis
for a confidence interval. This fraction could first be amended
to reflect population sizes, derivatives of the matrix of its
values, or results of external or ancillary equations.

[0178] Step 5. Apply any conditioning systems

[0179] The core process can be subject to a variety of con-
ditioning systems.

[0180] Data conditioning may take place at one discrete
step, or may actually occur at one or more steps in the system.
At any point that an intermediate value is obtained or created
such a values or series of values may be affected by applying
a conditioning system.

[0181] Conditioning systems typically represent stored
routines executed on a computer processor that apply to mea-
surement inputs and outputs.

[0182] In addition to calculating relationship measures on
the asset directly, sometimes it can be advantageous to mea-
sure diversification only as it pertain to one element of analy-
sis (e.g., Factor.) For this purpose, the relationship measure(s)
can be applied to elements in common for portfolio assets.
For example, to analyze diversification solely as it pertains to
international exposure one can isolate these elements and
analyze only those parts. Traditional methods can be used to
isolate such elements, such as principal component analysis,
allocation weights or attribution exposures for common sta-
tistics such as risk or return.

[0183] This method may be applied to either the total expo-
sure to an element of analysis; such as one country among an
array of potential countries or it can be applied per asset by
combining the asset with asset weights and the elements and
element weights.

[0184] Correlations or other relationship measures may be
normalized to account for negative correlations. A negative
correlation takes the values between zero and —1. Such rela-
tionships move at least partially in opposition to one another.
In the core process, large negative values are considered
deterministic and would adversely affect the total portfolio
diversification, at least relative to a non-correlated asset.
However, for investment managers the impact of negative
correlation values on total diversification may be subjective.
[0185] To assume that negatively correlated assets increase
diversification a manager would be assuming, or otherwise
applying the idea that there would be some uncoupling
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between the assets expected prices, otherwise positive returns
from one asset would be negated by an equal negative move-
ment from it’s counterpart. This is an assumption that some
managers feel comfortable making while another manager
may not. To enable the investor who is comfortable predicting
the divergence of the historical values, they may be able to
achieve greater diversification by using negatively correlated
assets.

[0186] A correlation value may be conditioned to reflect
this disposition with the following operation:

=(1+Correlation)/2

[0187] The result of which could be further conditioned so
that the result would be fairly comparable to unconditioned
values. This could be calculated by a normalization function.

[0188] This embodiment has an additional characteristic in
that the assets having a significant, but negative relationship
with one another are may summarily be characterized as a
zero correlation.

[0189] Such techniques can also be a conditional filter,
based on the measurement, trend, value, or derivative of one
or more economic variables. For example, it could be desir-
able to measurement diversification for a portfolio during
periods of historically high inflation rates. In such case, rela-
tionship data could be filtered to those periods of history
specifically matching the filter.

[0190] Another conditioning system would involve com-
bining relationship measures of varying sampling frequen-
cies. The weightings of such calculations can be based on the
uncertainty of the future horizon for which we are creating the
analysis or measurement. Consider the circumstance where
an investor’s intended holding period was one year, plus or
minus three months. We can combine one sample of relation-
ship measures based on a price time series with a second
sample based on a return series. The return series and the
weight of the sample would be proportional to the certainty of
the time horizon. In this example, the investor would have a
minimum time horizon of nine months and a maximum time
horizon of 15 months. This range of six months is expressed
as a sample weight relative to the expected time horizon.
Therefore, in this example the investor would weigh the
return-based series 50% of the price-based series. The result
provides a relationship measure that is relative to the future
and the future uncertainty.

[0191] Diversification metrics may be built on a single
period, multi-period, or amalgamation of such periods. Peri-
ods may correspond to other variables besides time, such as
probability, or similar sort order.

[0192] The measurements of diversification may be
affected by a variety of statistical processes which may occur
at various times in the construction of the metrics. Simulation,
re-sampling, extrapolation: each may occur with the asset
time series, relationship measurement, dimensional reduc-
tion process and confidence interval determination. Alterna-
tively, simulations may be applied ex post to the results of the
dimensional measurement and publishing process.

[0193] Step 6. Model the Data in a Vector Space

[0194] To model the data as required for calculations, all
the input data is collected and the data can be interpreted as
being placed in a vector space. Implementations of this step
are often automatic provided that the dimension calculation
algorithms executed on computer processors interpret the
data in a geometric fashion. Other algorithms may require the
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asset weightings to be combined with the relationship mea-
sures to enable the geometric interpretation.

[0195] a. Compute the symmetric weights matrix SWM.
[0196] b. Compute the weighted temporal relationship
matrix Cw,t.

[0197] c. Compute the eigenvalues Al of Cw,t

[0198] Step 7. Apply the KL Expansion Process

[0199] From the following steps, we have assembled the

necessary inputs to compute the KL energy spectrum.
[0200] d. Compute sqrt(ii) for every i, these are the singu-
lar values of the unknown data matrix Xm.

[0201] In the preferred embodiment, the inputs are
obtained from a computer random access memory and a
computer processor executes a routine containing the Kar-
hunen-Loéve or equivalent algorithm as described in the defi-
nition for Karhunen-Loeéve (KL) expansion.

[0202] This process creates an output containing a series of
eigenassets (also know as the singular values) This output is
stored in a computer readable media and passed to step 8.
[0203] Step 8. Calculate the Karhunen-Loéve Dimension
[0204] The KL dimension is then given by the associated
rank of the assets corresponding to the inputted confidence
interval. Ifthe spectrum is continuous, then the KL dimension
calculation is provided by integrating the spectrum up to the
confidence interval.

[0205] The result of the KLL expansion are associated with
the confidence interval. In one embodiment, a calculation is
executed on a computer processor that accepts the output of
the KL energy spectrum as well as accepts the CI. The algo-
rithm simply counts the eigenassets ordered from greatest to
least and returns the value most closely associated with the
confidence interval. Other variations include returning the
last counted value prior to reaching the sum determined by the
CL

[0206] As an example, in a 100 asset portfolio, the sum of
the first 65 eigenassets equals 94.5% of the total energy. If the
inclusion of the 66? ranked eigenasset would cause the total
energy to sum to 95.3, the algorithm would stop at 65 and
return a KIL.D=65 provided a CI=95%.

[0207] TheKL energy spectrum can be interpreted as either
a discrete spectrum or continuous spectrum. In the discrete
case, the KLLD is computed by summation, and in the con-
tinuous case, the KLLD is computed by integration. This
enables fractional KLLD measurements. Fractional KLD met-
rics are especially useful in low dimension portfolios.
[0208] To transform a discrete KL spectrum one would
only need to apply an interpolation scheme to the spectrum.
[0209] As an alternative embodiment, steps 7 and 8 can be
replaced by the two symmetry quantification methods
described below.

[0210] A second method is provided for the diversification
measurement process wherein the amount of diversification is
a function of the degree in which a portfolio is symmetrical.
The portfolio is projected into a vector space by mapping
vectors cosines to correlations. The shape of the portfolio can
be determined by methods disclosed in U.S. Pat. No. 7,472,
084, which is incorporated herein by reference.

[0211] Another embodiment places the assets in a vector
space. Vectors are mapped by equating the direction from the
origin. Correlations of assets are mapped to cosines of the
vectors. Vector lengths are given by an investor defined utility
function.

[0212] With the polytope determined, one can understand
diversification by measuring the shape of the portfolio to a
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model of perfect symmetry. This measurement is known as
sphericty. Sphericty measures the volume to surface area ratio
of a polyhedron or polytope.

[0213] The computation may be taken as:

[0214] The hyperdimensional volume of the space which a
(n-1)-sphere encloses (the n-ball) is given by

{5 +1) = V7 g

where n!! denotes the double factorial.
[0215] From this, it follows that the value of the constant Cn
for a given n is:

P

Cp= )
r!

for even n such that n=2r, and

2(n+1 )/27r(n—1 W2

C, =
" nt!

for odd n.
[0216] The “surface area” of this (n-1)-sphere is

The following relationships hold between the n-spherical sur-
face area and volume:

V,/S, =R/

.o/ V,=27R

[0217] As an alternative to the sphericty as a measure of
symmetry, other measurement of symmetry may be substi-
tuted. FIG. 19 shows an embodiment of the invention using
symmetry quantification.

[0218] A further embodiment of the invention can be pro-
duced by dividing the KL.D obtained in step 8 by the intrinsic
dimension of that portfolio. The result produces a ratio
explaining the diversification level for a given set of assets,
relative to the total diversification potential for those assets.
This ratio would be equal to one if the KLLD and the Intrinsic
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dimension would be equal. This value would tend towards
zero as the portfolio became relatively less diversified. This is
similar to the IPC metric, but effectively perfect diversifica-
tion when all assets are uncorrelated, whereas the IPC inter-
prets perfect diversification when all assets are negatively
correlated.

[0219] Step 9. Publish the Diversification Value

[0220] The output of the diversification quantification pro-
cess is then published to another media, such as a printer,
computer display, database, external system. The output may
also be combined with other values and published.

[0221] This measurement may then be conjoined with other
measurements in either a time-weighted or capitalization-
weighted manner. The result of which would produce a diver-
sification measure transcending time and changes made the
composition, relationships and weightings of the portfolio.
[0222] Followingthe methodinA, it can be then augmented
to exhibit the passing of time. Here time can be modeled
continuously or at any interval given as an input to the system
or derived from other information. With each passing of time
providing a new location of each asset and its diversification.
[0223] Another output of the system can be configured to
produce a chart which displays a line or area graph of the
diversification metric over time. This can be applied to the
same portfolio with the same weights or with varying
weights.

[0224] Another output of the system can be configured to
produce a chart which displays a probability distribution the
diversification metric. Such a distribution may be produced
using simulation or sampling techniques or historically
observed.

[0225] Another output of the system can be configured to
produce a chart which displays a 3D contour surface of the
data displaying the diversification metric probability or con-
fidence interval of the measure, and time.

[0226] Another output of the system can be configured to
produce a chart which displays a graph of the diversification
metric and the probability level.

[0227] Another output of the system can be configured to
produce a tabular matrix comprised of the diversification
metrics and confidence intervals.

[0228] Another output of the system can be configured to
produce a chart which displays a comparative diversification
metric of multiple portfolios as a radar graph.

[0229] Another output of the system can be configured to
produce a chart which displays comparative diversification
metric of multiple portfolios over time as line graphs.
[0230] Another output of the system can be configured to
produce a chart which displays comparative diversification
metrics of portfolio components as a pie chart.

[0231] Another output of the system can be configured to
produce a chart which displays comparative diversification
metrics of multiple portfolios as a bar graph.

[0232] Another output of the system can be configured to
produce a chart which displays comparative diversification
metrics of multiple portfolios as well as portfolio risk and
return data as a 3D contour or surface chart.

[0233] Another output of the system can be configured to
produce a chart which displays comparative diversification
metrics including the KL.D, KLDM, IPC, and CC.

[0234] Another output of the system can be configured to
produce a chart which displays the relative diversification
contribution of each portfolio asset.
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[0235] Another output of the system can be configured to
produce a chart which displays comparative diversification
metrics of multiple portfolios, as well as assets’ other funda-
mental metrics, such as risk, return, fees, performance ratios,
valuation metrics or other forms of quantitative analysis.
[0236] Another output of the system can be configured to
produce a chart which displays comparative diversification
metrics of multiple portfolios where the diversification metric
determines the size of the display point. The display point
may be a circle, sphere, X or other object. The location of the
point may be given by other metrics.

[0237] Another output of the system can be configured to
produce a chart which displays the relative ranges of diversi-
fication corresponding to various confidence intervals and
shows how these ranges fluctuate over time.

[0238] Another output of the system can be configured to
produce a chart which displays the relative diversification
metrics against a population of other portfolios and their
diversification metrics.

[0239] Example outputs are shown in FIGS. 2-16. FIG. 2
depicts an output for an example portfolio consisting of 45
equally weighted assets observed over 104 trading days. The
time series represents the resealed caricatures of the original
time series. A band of highly correlated behavior is exists as
evidenced from the output.

[0240] FIG. 3 depicts a KL spectrum plot for the portfolio
depicted in FIG. 2 consisting of 45 equally weighted assets
observed over 104 trading days. The plot is a normalized
energy plot. The largest value (far left) is about 0.28 which
implies 28% of the portfolio’s variance is described in the
dominant eigenasset direction, 95% of the variance is cap-
tured by 27 eigenassets and the rank of the portfolio is 44
(number of nonzero singular values). FIG. 4 depicts the total
portfolio from FIG. 2 with the dominant eigenasset overlaid
in dots. Approximately 28% of the portfolio is explained by
the performance of the dotted trend line.

[0241] FIG. 5 depicts the asset allocation portfolio shown
in FIG. 4 with the second most energetic eigenasset overlaid
in the dotted line. Approximately 9% of the portfolio’s vari-
ance is captured by the dotted trend line. Adding eigenassets’
together until the sum of the variances meets the confidence
interval is a way to determine the dimension.

[0242] To contrast the previous example, consider a new
example having fewer assets. FIG. 6 depicts an asset alloca-
tion portfolio consisting of 17 equally weighted assets con-
sisting of hedge fund indices observed over 181 trading peri-
ods. The time series represents the resealed caricatures of the
original time series. This portfolio is less diversified than the
example in FIG. 2, in the sense that the KD is lower. How-
ever, the amount of diversification relative to the portfolio’s
potential is greater, thus it has a greater KLDM.

[0243] FIG. 7 depicts the KL spectrum plot for the hedge
fund indices portfolio relating to FIG. 6 that consists of 17
equally weighted assets observed over 181 trading days. This
is a normalized energy plot. The largest value is about 0.23
which implies 23% of the portfolio’s variance is described in
the dominant eigenasset direction, 95% of the variance is
captured by 14 eigenassets and the rank of the portfolio is 16
(number of nonzero singular values).

[0244] FIG. 8 depicts the portfolio relating to FIG. 6 that
consists of 17 equally weighted assets consisting of hedge
fund indices observed over 181 trading days. The time series
represents the resealed caricatures of the original time series.
The dominant eigenasset is overlaid in dots and contains 23%
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of'the portfolio’s variance. Whereas FIG. 9 depicts the hedge
fund indices portfolio with the second most energetic eige-
nasset overlaid in the dots. Approximately 12% of the port-
folio’s variance is captured by the dotted trend line, each dot
representing the periodic eigenasset.

[0245] As shown in FIG. 10, the first eigenasset contains
90% of the portfolio’s resources and the remaining 10% is
evenly distributed to the remaining 44 assets. This is not a
diversified portfolio. This portfolio is almost 1 dimensional
and the KT energy dimension confirms this intuition. FIG. 10
shows the KL energy spectrum of the weighted portfolio. A
portfolio consisting of 45 assets with 90% invested in a single
asset and the remaining 10% evenly distributed among the
other 44 assets. The dominant eigenasset overlaid in the dot-
ted line contains nearly 98% of the portfolio’s variance. It is
visually apparent that the dominant eigendirection is nearly
identical to the highly weighted asset as expected.

[0246] FIG. 11 depicts a KL. energy spectrum of a portfolio
consisting 0of 45 assets with 90% invested in a single asset and
the remaining 10% evenly distributed among the other 44
assets. The heavy weighting in one direction is apparent and
severely reduces the KL. energy dimension of the portfolio.
This portfolio is 1 dimensional at the 95% confidence interval
since the dominant eigenasset contains over 95% of the vari-
ance. The dominant eigenasset is shown on the far left of FIG.
11.

[0247] FIG. 12 depicts a plot of the KL energy dimension as
a function of weighting a single asset with value m and evenly
dividing the remaining (1-m) among all other assets. Com-
puting the KL energy dimension is achieved by taking the
portfolio in FIG. 2 and weighting a selected asset by wi and
then evenly allocating the remaining (1-wi) amongst the
remaining assets in the portfolio. In FIG. 12, ®=0 represents
the KL. dimension of an equally weighted portfolio. The ini-
tial jump shown in FIG. 12 shows where diversification is
maximized for the weighting of the principal asset. For the
portfolio studied here, the equally weighted portfolio has a
KL energy dimension of 27. The KL energy dimension
decays at a nearly linear rate with respect to weight.

[0248] FIG. 13 depicts a KL energy spectrum computed for
a weighted portfolio, ®=0.8 computed from time series data
rather than correlations. The remaining 20% is evenly distrib-
uted among the other assets. FIG. 14 depicts a KL, energy
spectrum computed for a weighted portfolio, one asset has
80% of the investment allocated to it. The same assets and
same weights are used as applied in FIG. 13 but this portfolio
is built from correlations. The results are identical as those
obtained directly from time series observations.

[0249] While FIG. 15 depicts an illustration of a one-di-
mensional portfolio, FIG. 16 shows the KL. energy plot of the
eigenassets. Confidence intervals of 90, 95, 99 and 99.5%
have been depicted.

[0250] FIG. 17 shows a process flow diagram of the inven-
tion executed on a system such as that shown in FIG. 18
wherein system (10) includes an input device (20) in commu-
nication with a processor (30). Processor (30) is operatively
connected with a computer readable medium (35).

[0251] The term “computer readable medium” should be
read broadly to include any object, substance, or combination
of objects or substances, capable of storing data or instruc-
tions in a form in which they can be retrieved and/or pro-
cessed by a device. A computer readable medium should not
be limited to any particular type or organization, and should
be understood to include distributed and decentralized sys-
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tems however they are physically or logically disposed, as
well as storage objects of systems which are located in a
defined and/or circumscribed physical and/or logical space.
[0252] When used in the claims, “operatively connected”
may be understood to refer to a relationship where a thing is
able to control or influence the operation of the thing to which
it is connected. Examples to illustrate the meaning of “opera-
tively connected” include a processor operatively connected
to a computer-readable medium (where the medium stores
instructions which can control the tasks performed by the
processor), a printer operatively connected to a server (for
example, where a server communicates over a network with a
printer to indicate what should be printed), and a monitor
operatively connected to a program (where the program
might control, perhaps in combination with a medium and a
processor, what is displayed on the monitor).

[0253] As shown in FIG. 17, an investor may input asset
data to create a portfolio. This may be achieved in a variety of
ways including for example using an input device (20) having
a user interface. An exemplary user interface may be under-
stood to refer to one or more tools which allows a user to
interact with an automated system. However, any suitable
user interface may be used that allows a user to input assets
into a portfolio.

[0254] Several events occur after the portfolio is in exist-
ence including the retrieval of a time series from a database or
storage device.

[0255] Correlations or relationship measures are then also
computed using a processor (30). Any suitable technique may
be used for computing correlations and relationship measures
including those described earlier in “Step 3. Obtain or create
a relationship measure for the assets.” The verb “retrieve”
(and the various forms thereof) when used in the context of
data should be understood to mean reading the data
“retrieved” from a location in which that data is stored,
including for example a database (40). Database may be
understood to refer to an organized collection of data. Simi-
larly, a “data source” may be understood to refer to a com-
puter-readable data structure for storing a collection of data
including, but not limited to, databases, data warehouses and
datamarts.

[0256] Likewise, any suitable processor may be used. For
example, a processor may include a component integrated
into a computer, which performs calculations, logical opera-
tions, and other manipulations of data. A computer may be
understood to refer to a device or group of devices which is
capable of performing one or more logical and/or physical
operations on data to produce a result. Computer executable
instructions may be understood to refer to data, whether
stored as hardware, software, firmware, or some other man-
ner, which can be used to specify physical or logical opera-
tions to be performed by a computer or processor.

[0257] Also occurring after a portfolio is in existence, asset
weightings may be inputted using for example an input device
(20) that may or may not be the same as the device used to
create the portfolio. Any suitable device or technique may be
used to input data into the system. The input of data may be
automatic or manual including the input of asset weightings.
The term “data” should be understood to mean information
which is represented in a form which is capable of being
processed, stored and/or transmitted. Hence, data would
include but not be limited to asset information, time series
information, asset weightings, data conditioning process
information, and so on. Any suitable technique may be used
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for weighing assets including those described earlier under
“Step 2. Apply any weighing to assets.” Likewise, any suit-
able technique may be used for applying any condition sys-
tems including those described earlier in “Step 5. Apply any
condition systems.”

[0258] Intheexampleshown inFIG. 17, all ofthe input data
is assembled for processing wherein processing includes
modeling the data as required for calculations. The data may
be modeled in vector space using any suitable technique
including those described earlier in “Step 6. Model the data in
vector space.” For this example, input data would include but
not be limited to correlations, relationship measures, asset
data, asset weightings, data condition process information.
[0259] After the data is assembled, the KL, expansion rou-
tine is applied as executed by processor (30). Processor (30)
may also accept or determine a confidence level based on the
investors input or a database (40). Any suitable technique may
be used to apply the KL expansion including those described
earlier in “Step 7. Apply the KL expansion process.” Any
suitable technique may be used to determine a confidence
level including those described earlier in “Step 4. Obtain or
create a confidence interval.”

[0260] After the KL expansion is applied, processor (30)
calculates the KL dimension. Any suitable technique may be
used to calculate the KI. dimension including those described
earlier in “Step 8. Calculate the Karhunen-Loeve Dimen-
sion.” The output of the diversification quantification process
is then sent to a database (40). Any suitable output may be sent
including a chart, tabular matrix including those described
earlier in “Step 9. Publish the diversification value.” Visual-
izations, reports, etc. may then be displayed including for
example on the user interface of an input device (20). The
visualizations, reports, etc. may be displayed on an output
device (50). The output device may be understood to mean a
device which presents data to a user. Examples of output
devices include monitors (which present data in a visual
form), and speakers (which present data in auditory form).
Any suitable output device may be used that displays data to
a user. The output data will remain stored in a database (40)
for use by external systems.

[0261] FIG. 19 shows a process flow diagram of the inven-
tion using symmetry quantification as an alternative embodi-
ment. The numbers associated with the flow diagram are not
necessarily indicative of any particular order in which the
process occurs. As shown, a determination of a portfolio is
made where the portfolio includes more than one asset. Any
suitable system, technique, or structure may be used to make
this determination. For example, a user may utilize a user
interface through an input device (20) to create a portfolio. An
automated system may applied that creates a portfolio. After
the portfolio is in existence, asset weightings may be applied.
Likewise, relationship measures may be created or obtained.
Similar to the creation of the portfolio, the application of asset
weightings and relationship measures may be automatic or
manual, or a combination of both. With respect to the rela-
tionship measures and asset weightings, data condition pro-
cesses may be applied to each as well.

[0262] The assets may then be modeled in vector space by
aprocessor (30) after applying the asset weightings and rela-
tionship measures. Further, a polytope representation of the
portfolio may be created based in part on accepting or deter-
mining a confidence level. Once the representation is com-
plete, the portfolio symmetry is calculated. The diversifica-
tion metrics and other related outputs are then made available
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based on the calculated portfolio symmetry. The output data
may be displayed on an output device (50).

[0263] A further embodiment of the inventions calculates a
composite diversification metric. Such a diversification met-
ric may either treat a portfolio of assets as a single asset, or
reach inside and create a composite of the individual assets
depending on the investor selection or business process.
[0264] It is an embodiment of the invention to perform a
diversification search. In this embodiment, steps 1 and or 2
are iterated with changes made to the assets or weights. A
diversification search, may represent a process wherein an
investor seeking to add diversification to a portfolio may
query a universe of investment candidates and rank the result
in order to learn which assets provide incrementally more
diversification to a portfolio. A diversification search is there-
fore useful to help investor change and improve a portfolio.
The search may be performed by calculating the KL dimen-
sion for the portfolio and iteratively add assets, recalculate the
KL dimension. Assets are then arranged by how they affect
the overall dimension. This process can be readily adapted to
account for asset weighted by multiplying the asset by the
weight in the manner described in step 2. The process may
also be adapted by multiplying the assets by autility function.
Standard optimization processes such as gradient searches,
linear programming and evolutionary search can replace the
iterative cycle to improve performance.

[0265] Ifweuseautility function instead of a weight array,
then compute, then we re-compute without the utility func-
tion the difference in the SVD could explain an optimal step
[0266] Itis further an embodiment of the invention that an
investor could designate a certain quantity of assets to invest
in. Otherwise, such a portfolio constraint may be arrived at
with an exogenous system. With such a criteria in place, the
iterative search feature described in the prior paragraph may
also be looped until a constraint is reached. Additionally if the
investor selected a preference for more or less quantity of
holdings then they could arrive at the diversification level by
summing the energy levels of the assets from largest to small-
est or smallest allocation weight to largest weight until the
designated diversification measurement was ascertained.
[0267] An alternative method to publish the results would
display the diversification metrics relative to the individual
assets, rather than the portfolio.

[0268] Once a portfolio has been processed and diversifi-
cation metrics acquired, it is possible to attribute the amount
of portfolio diversification to the various assets, factors, peri-
ods or statistical categories. The invention can be iterated with
each asset removed or the weight set to zero, in such a process
the new KLLD measurements can be related to the original
KLD value and the difference attributed to the asset that was
changed and then the difference may be divided the total
portfolio dimensionality. This fraction helps investors under-
stand how any asset may affect diversification.

[0269] Most rudimentary is a process to determine the
amount of diversification given to an asset. For example,
given a 9 dimensional portfolio comprised of 20 equally
weighted assets, we know that asset G which has 5% of the
total allocation weight. Using the attribution process, an
investor could learn that asset G adds 1 dimension to the
portfolio giving it an attribution of %6=11.11%.

[0270] Having shown and described various embodiments
of the present invention, further adaptations of the methods
and systems described herein may be accomplished by appro-
priate modifications by one of ordinary skill in the art without
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departing from the scope of the present invention. Several of
such potential modifications have been mentioned, and others
will be apparent to those skilled in the art. For instance, the
examples, embodiments, ratios, steps, and the like discussed
above are illustrative and are not required. Accordingly, the
scope of the present invention should be considered in terms
of'the following claims and is understood not to be limited to
the details of structure and operation shown and described in
the specification and drawings.

What is claimed is:

1. A machine comprising:

(a) a means for calculating a diversification value for a
portfolio based on at least one dimension derived from a
Karhunen-Loeéve expansion for the portfolio; and

(b) a means for publishing the diversification value.

2. The machine of claim 1 wherein the means for calculat-
ing the diversification value for the portfolio is configured to:

(a) receive the portfolio as input, wherein the portfolio
comprises a plurality of assets;

(b) obtain a set of weight data by weighting each of the
plurality of assets within the portfolio according to an
investment value allocated to each of said assets;

(c) obtaining relationships between each of the plurality of
assets and the set of weight data; and

(d) model the portfolio in a geometric space based on asset
relationship and the set of weight data.

3. The machine of claim 1 wherein the means for calculat-

ing the diversification value for the portfolio is configured to:

(a) receive the portfolio as input, wherein the portfolio
comprises a plurality of assets;

(b) weight each of the plurality of assets within the portfo-
lio according to an investment value allocated to each of
said assets;

(c) obtain relationships between each asset from the plu-
rality of assets and at least one other asset from the
plurality of assets by performing an act taken from the
set of acts comprising:
calculating the relationships between each asset from

the plurality of assets and at least one other asset; and,
receiving the relationships between each asset from the
plurality of assets and at least one other asset;

(d) model the portfolio in a geometric space based on asset
relationship and weight data.

4. The machine of claim 1, wherein the means for calcu-
lating the diversification value for the portfolio is configured
to create a rolling time series of the at least one dimension.

5. The machine of claim 1, wherein the means for publish-
ing the diversification value is configured to create a chart
based on combining the diversification value with a set of
portfolio statistical data.

6. The machine of claim 1, wherein the means for calcu-
lating the diversification value for the portfolio is configured
to create ratios of dimensions at one or more confidence
intervals.

7. The machine of claim 1, wherein the means for calcu-
lating the diversification value for the portfolio is configured
to determine relative contributions of each asset in the port-
folio to the diversification value for the portfolio, based on
measuring the portfolio dimensionality with and without each
asset.

8. The machine of claim 1, wherein the means for calcu-
lating the diversification value for the portfolio is configured
to create a ratio of a dimension at a selected confidence
interval to the portfolios” ambient dimension.
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9. A system for measuring the diversification of a portfolio,
the system comprising a computer processor and a set of
computer-executable instructions configuring the system to
perform a set of steps, the set of steps comprising:

1. receiving, as input, a portfolio comprising a plurality of

assets, asset relationship and weight data;

ii. modeling the portfolio in a geometric space using the
asset relationships and weight data;

iii. computing one or more dimensions for the portfolio
based on a Karhunen Loeve expansion for the portfolio;
and

iv. producing a diversification metric using the one or more
dimensions.

10. The system of claim 9 wherein the set of steps further

comprises:

(a) creating a rolling time series of the one or more dimen-
sions; and

(b) using the rolling time series to detect changes in one or
more elements taken from the set consisting of:

1. diversification;
il. systematic risk; and
iii. idiosyncratic risk.

11. The system of claim 9, wherein the set of steps further

comprises:

(a) combining the diversification metric with portfolio sta-
tistical data; and

(b) creating a 3d contour surface, with the 3 dimensions
depicting values for portfolio risk, portfolio return and
the diversification metric.

12. The system of claim 9, wherein the set of steps further
comprises creating a ratio of dimensions taken from the Kar-
hunen-Loéve expansion.

13. The system of claim 9, wherein the set of steps further
comprises determining relative contributions of each asset in
the portfolio to the diversification metric, based on measuring
the one or more dimensions with and without each asset.

14. The system of claim 9, wherein the set of steps further
comprises comparing the one or more dimensions for the
portfolio versus portfolio dimension data taken from the set
consisting of:

(a) a second portfolio;

(b) a sample of other portfolio diversification metrics;

(c) a population of other portfolio diversification metrics;

and
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(d) a variation of a conditioning system applied to the

portfolio.

15. The system of claim 9, wherein the set of steps further
comprises the application of a conditioning system to input
data.

16. The system of claim 9, wherein the set of steps further
comprises creating one or more ratios of dimensions, wherein
a ratio is determined from the ratio set and is taken as the
diversification metric.

17. A holistic portfolio diversification analysis system
which comprises a computer processor and is operable to
produce an analytical framework for evaluating integrated
risks from both systemic and non-systemic sources, the sys-
tem configured according to a set of computer executable
instructions encoded on a computer readable medium to per-
form a set of steps comprising:

1. receiving, as input, a portfolio comprising a plurality of

assets;

ii. obtaining a set of asset relationship and weight data for

the portfolio;

iii. modeling the portfolio in a geometric space using the

asset relationship and weight data; and

iv. computing an array of dimensions for the portfolio

based on a Karhunen-Loéve expansion for the portfolio.

18. The system of claim 17 wherein the set of steps further
comprises:

(a) creating a rolling time series of the array of dimensions;

and

(b) using the rolling time series of the array of dimensions

to detect changes in diversification.

19. The system of claim 17, wherein the set of steps further
comprises:

(a) creating a rolling time series of the array of dimensions;

and

(b) using the rolling time series of the array of dimensions

to detect changes in systematic risk.

20. The system of claim 17, wherein the set of steps further
comprises creating ratios of dimensions.

21. The system of claim 17, wherein the set of steps further
comprises determining relative contributions of each asset in
the portfolio to a diversification value for the portfolio, based
on measuring the array of dimensions with and without each
asset.



