

(43) International Publication Date
27 June 2013 (27.06.2013)

W I P O | P C T

(51) International Patent Classification:
H02J 7/04 (2006.01) H02J 17/00 (2006.01)

(72) Inventors: TERRY, Stephen, C ; 5004 Berkley Drive, Mckinney, TX 75070 (US). BROHLIN, Paul; 6004 Rathbone Drive, Parker, TX 75002 (US).

(21) International Application Number:

PCT/US20 12/070021

(74) Agents: FRANZ, Warren, L. et al; Texas Instruments Incorporated, Deputy General Patent Counsel, P. O. Box 655474, Mail Station 3999, Dallas, TX 75265-5474 (US).

(22) International Filing Date:
17 December 2012 (17.12.2012)

(25) Filing Language: English

(26) Publication Language: English

(30) Priority Data:
13/334,700 22 December 2011 (22.12.2011) US(63) Related by continuation (CON) or continuation-in-part (CIP) to earlier application:
US 13/334,700 (CON)
Filed on 22 December 2011 (22.12.2011)

(71) Applicant: TEXAS INSTRUMENTS INCORPORATED [US/US]; P. O. Box 655474, Mail Station 3999, Dallas, TX 75265-5474 (US).

(71) Applicant (for JP only): TEXAS INSTRUMENTS JAPAN LIMITED [JP/JP]; 24-1, Nishi-Shinjuku 6-chome, Shinjuku-ku, Tokyo 160-8366 (JP).

(81) Designated States (unless otherwise indicated, for every kind of national protection available): AE, AG, AL, AM, AO, AT, AU, AZ, BA, BB, BG, BH, BN, BR, BW, BY, BZ, CA, CH, CL, CN, CO, CR, CU, CZ, DE, DK, DM, DO, DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, GT, HN, HR, HU, ID, IL, IN, IS, JP, KE, KG, KM, KN, KP, KR, KZ, LA, LC, LK, LR, LS, LT, LU, LY, MA, MD, ME, MG, MK, MN, MW, MX, MY, MZ, NA, NG, NI, NO, NZ, OM, PA, PE, PG, PH, PL, PT, QA, RO, RS, RU, RW, SC, SD, SE, SG, SK, SL, SM, ST, SV, SY, TH, TJ, TM, TN, TR, TT, TZ, UA, UG, US, UZ, VC, VN, ZA, ZM, ZW.

(84) Designated States (unless otherwise indicated, for every kind of regional protection available): ARIPO (BW, GH, GM, KE, LR, LS, MW, MZ, NA, RW, SD, SL, SZ, TZ, UG, ZM, ZW), Eurasian (AM, AZ, BY, KG, KZ, RU, TJ, TM), European (AL, AT, BE, BG, CH, CY, CZ, DE, DK, EE, ES, FI, FR, GB, GR, HR, HU, IE, IS, IT, LT, LU, LV, MC, MK, MT, NL, NO, PL, PT, RO, RS, SE, SI, SK, SM,

[Continued on nextpage]

(54) Title: INDUCTIVELY COUPLED CHARGER

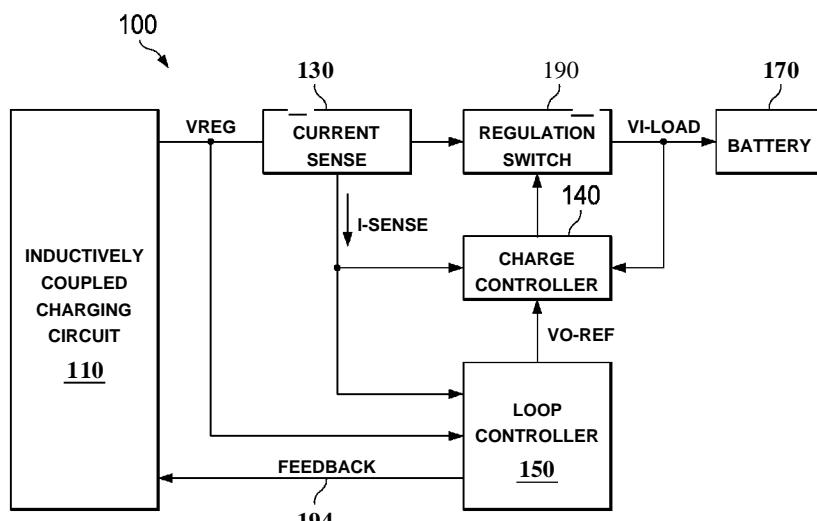


FIG. 1

(57) Abstract: A device (100) includes a charge controller (140) to regulate a battery output voltage based on an input voltage and an input current received from a charging circuit (110). A loop controller (150) monitors the input voltage and the input current to generate a feedback signal (194) to adjust the input voltage to the charge controller.

TR), OAPI (BF, BJ, CF, CG, CI, CM, GA, GN, GQ, GW, ML, MR, NE, SN, TD, TG).

Declarations under Rule 4.17:

- *as to applicant's entitlement to apply for and be granted a patent (Rule 4.17(H))*
- *as to the applicant's entitlement to claim the priority of the earlier application (Rule 4.17(Hi))*

Published:

- *with international search report (Art. 21(3))*
- *before the expiration of the time limit for amending the claims and to be republished in the event of receipt of amendments (Rule 48.2(h))*

INDUCTIVELY COUPLED CHARGER

BACKGROUND

[0001] Inductive chargers utilize an electromagnetic field to transfer energy. A charging station sends energy through inductive coupling to an electrical device, which stores the energy in batteries, for example. Inductive chargers typically use a first induction coil to provide an alternating electromagnetic field from within a charging base station, and a second induction coil in a portable device that receives power from the electromagnetic field and converts it back into electrical current to charge the battery. The two induction coils in proximity combine to form an electrical transformer.

SUMMARY

[0002] An inductively coupled charger is provided. In one example, a device is provided that includes a charge controller to regulate a battery output voltage based on an input voltage and an input current received from a charging circuit. A loop controller can be provided that monitors the input voltage and the input current to generate a feedback signal to adjust the input voltage to the charge controller.

[0003] In another example, a device includes a charge controller to regulate a battery based on an input voltage and an input current received from a charging circuit. A first loop controller monitors the input voltage to generate a first feedback signal to adjust the input voltage to the charge controller. A second loop controller monitors the input current to generate a second feedback signal to adjust the input voltage to the charge controller.

[0004] In yet another example, a method is provided. The method includes controlling a battery voltage and current via an inner control loop based on an input voltage and an input current received from a charging circuit. This includes employing a transmitter controller to control the input voltage and the input current in the charging circuit. The method includes employing a first outer control loop to monitor the input voltage and to generate a first feedback signal to adjust the input voltage to the charge controller. The method also includes employing a

second outer control loop to monitor the input current and to generate a second feedback signal to adjust the input voltage to the inner control loop.

BRIEF DESCRIPTION OF THE DRAWINGS

- [0005] FIG. 1 illustrates an example of an inductively coupled charger device.
- [0006] FIG. 2 illustrates an example of an inductively coupled charger device that employs a single outer loop controller to control battery load voltage and current.
- [0007] FIG. 3 illustrates an example of an inductively coupled charger device that employs two outer loop controllers to control battery load voltage and current.
- [0008] FIG. 4 illustrates an example transmitter and receiver circuit that can be utilized as part of an inductively coupled charger device.
- [0009] FIG. 5 illustrates an example method for charging a battery via inductively coupled charging.

DETAILED DESCRIPTION OF EXAMPLE EMBODIMENTS

- [0010] FIG. 1 illustrates an example of an inductively coupled charger device 100. The inductively coupled charger device 100 (also referred to as charger device) provides multiple levels of closed-loop voltage, current, and/or temperature control to efficiently control operations of the charger (e.g., wireless cell phone battery charger). The charger device 100 can include an inductively coupled charging circuit 110 (also referred to as charging circuit) that supplies regulated DC power shown as VREG. The charging circuit 110 can include a transformer (not shown) to wirelessly transmit power and can include a transmitter controller (not shown) to control voltage supplied to the transformer. An example of the charging circuit will be described below with respect to FIG. 4. The regulated voltage VREG can be sensed via current sense circuit 130 which supplies current I-SENSE to a charge controller 140 and loop controller 150 that act in conjunction to control a load voltage and current VI-LOAD supplied to a battery 170. The charge controller 140 receives a reference voltage VO-REF from the loop controller 150 while monitoring I-SENSE and VI-LOAD. The charge controller 140 controls the load voltage and current VI-LOAD via a regulation switch 190 that supplies both voltage and current to charge the battery 170.

[0011] As an example, the charge controller 140 acts as an inner-loop controller for the output voltage and current VI-LOAD whereas the loop controller 150 acts as an outer-loop controller that controls input voltages generated at the charging circuit 110 via feedback 194. Thus, the charge controller 140 and loop controller 150 cooperate with the transmitter controller in the charging circuit 110 to control the output voltage and current VI-LOAD in a closed-loop manner. As shown, the loop controller 150 monitors current from I SENSE and voltage VREG to generate the feedback 194 to the charging circuit 110.

[0012] As will be described below with respect to FIG. 3, a second loop controller (not shown) can be added to the charger device 100 to provide additional controls for more efficient generation and control of VI-LOAD at the battery 170. For example, one controller can be dedicated to monitor VREG and generate feedback 194 whereas the second controller can monitor I SENSE and generate a second feedback (not shown) to the charging circuit as will be illustrated and described with respect to FIG. 3.

[0013] The charge controller 140 can include discrete devices configured to respond to both current and voltage feedback from I SENSE and the loop controller 150 to control VI-LOAD via the regulation switch 190. The loop controller 150 can include a processor to execute a control algorithm and can include other elements such as an analog-to-digital converter (ADC) (e.g., can be an integrated processor and ADC among other circuit components in the loop controller). The control algorithm can be employed as a global control loop that couples the transmitter and receiver (shown below with respect to FIG. 4), where the transmitter refers to the primary side of the inductively coupled charging circuit 110 and the receiver refers to the secondary side of the charging circuit. In one example, the receiver can monitor and control substantially any variable (e.g., rectifier voltage, output current, and so forth). The receiver can calculate the % difference between the measured control variable, and the target value for the control variable, and sends this value to the transmitter (e.g., $\% \text{Error} = 100 \times (\text{Desired} - \text{Actual})/\text{Desired}$). Upon receiving the % error message via feedback 194, the transmitter can execute a local PID (proportional-integral-derivative) loop which can move a control variable and attempt to shift the measured peak primary current by the % error value calculated by the receiver. This

can change the power delivered to the receiver, and thus can drive the receiver control variable closer to its target value.

[0014] For purposes of simplification of explanation, in the present example, different components of the device 100 are illustrated and described as performing different functions. However, one of ordinary skill in the art will understand and appreciate that the functions of each of the described components can be performed by one or more different components, or the functionality of several components can be combined and executed on a single component.

[0015] FIG. 2 illustrates an example of an inductively coupled charger device 200 that employs a single outer loop controller 204 to control battery load voltage and current. The charger device 200 includes an inductively coupled charging circuit 210 that generates a regulated DC output voltage VREG. A current sense circuit 220 supplies voltage and current to a regulation switch 224 that in turn controls voltage and current delivered to a battery 230. A charge controller 234 controls the regulation switch 224. The charge controller 234 includes an amplifier 240 to monitor sensor signal I-SENSE from current sense 220 and an amplifier 244 that monitors battery output voltage. The charge controller 234 includes a current source 250 (e.g., charge pump) that biases the regulation switch 224. Output from amplifiers 240 and 244 are logically OR'd via diodes 260 and 264, respectively to control the regulation switch 224 at the output of the current source 250. A resistor 270 can be employed to establish a reference voltage that is proportional to I-SENSE generated by current sense 220. The reference voltage can be utilized as a reference to amplifier 240 and as an input reference to outer loop controller and ADC 274.

[0016] The amplifier 240 can monitor various switched inputs at 280 and can include a charging reference signal input 1-1, a pre-charging reference signal input 1-2, or a thermal-charging reference signal input 1-3, for example, to facilitate control of the regulation switch 224. The inputs at 280 sense current, such as can be converted to voltages for comparison with I-SENSE reference voltage 270 at amplifier 240. The loop controller can include an analog to digital converter (ADC) and can monitor I SENSE and VREG in addition to an external reference voltage VREF to bias the internal workings of the loop controller and ADC. A

feedback signal 290 can be generated by the loop controller 204, wherein such feedback can be provided as a digital signal that can be communicated via inductive primary and secondary elements of the inductively coupled charging circuit 210. As shown, a voltage input signal 294 connected to the battery output voltage can be processed by the loop controller 204. The loop controller 204 measures input voltage VREG and the battery output voltage and drives the input voltage above the output voltage by a suitable amount to operate the regulation switch 224 in saturation.

[0017] In an example, the charge controller 234 can be a linear charge controller utilizing input current sense 220. As shown, two analog loops can be OR'd together at the output of current source 250, where one analog loop can regulate current via amplifier 240 and one analog loop can regulate voltage via amplifier 244. The device 200 can provide a wireless control loop to connect a receiver to a transmitter (inside inductively coupled charging circuit 210), wherein the receiver sends commands to the transmitter via feedback 290 to control the receiver input voltage.

[0018] As an example, the wireless control loop can operate as follows: the loop controller 204 and ADC can monitor the input voltage, output (battery) voltage, and output current. The loop controller can send feedback 290 to the transmitter in the charging circuit 210 to control the rectifier voltage (see FIG. 4 below) to the desired value. If the charge controller 234 is in current regulation, then the loop controller 204 can send digital packets via feedback 290 to control the rectifier voltage to be above the battery voltage by a given margin that can hold the regulation switch 224 (e.g., FET) in saturation when VDS (voltage drain to source) is greater than VDSAT (drain saturation voltage). In this case, the internal analog loop of the charge controller 234 sets the value of the output current to the battery 230. Similarly, in a pre-charge or thermal fold-back condition, the internal analog loop of the charge controller 234 can set the output current, and the wireless loop thus should control the input voltage to hold the regulation switch 224 in saturation. When voltage regulation is active, then the wireless loop can set the rectifier voltage VREG to a constant level (e.g., 5 V).

[0019] FIG. 3 illustrates an example of an inductively coupled charger device 300 that employs two outer loop controllers 304 and 306 to control battery load voltage and current. Similar to the charger in FIG. 2, the charger device 300 includes an inductively coupled charging circuit 310 that generates a regulated DC output voltage VREG. A sense circuit 320 supplies voltage and current to a regulation switch 324 that in turn controls voltage and current delivered to a battery 330. A charge controller 334 controls the regulation switch 324. The charge controller 334 includes an amplifier 340 to monitor current I SENSE and an amplifier 344 that monitors battery output voltage. The charge controller 334 includes a current source 350 (e.g., charge pump) that biases the regulation switch 324. Output from amplifiers 340 and 344 are OR'd via diodes 360 and 364, respectively to control the regulation switch 324 at the output of the current source 350. A resistor 370 can be employed to establish a reference voltage that is proportional to current I SENSE. The reference voltage can be utilized as a reference to amplifier 340 and as an input reference to a first outer loop controller 1 304.

[0020] The amplifier 340 can monitor various switched current inputs at 380 and can include a charging reference signal input 1-1, a pre-charging reference signal input 1-2, or a thermal-charging reference signal input 1-3, for example, to facilitate control of the regulation switch 324 during different modes of operation. The inputs at 380 sense current, such as can be converted to voltages for comparison with I-SENSE reference voltage 370 at amplifier 340. The first outer loop controller 1 304 can monitor VREG in addition to an external reference voltage VREF 384 to bias the internal workings of the ADC. A first feedback signal 390 can be generated by the loop controller, wherein such feedback can be provided as a digital signal that is communicated via inductive primary and secondary elements of the inductively coupled charging circuit 310. A voltage output signal 392 can be generated by the loop controller 1 304 and employed as a reference signal (e.g., signal to communicate the desired battery voltage level) by the amplifier 344.

[0021] As shown, the device 300 can include a second outer loop controller 2 at 306 to monitor current I SENSE and monitor switched input currents 380 via voltage point 396 and input 397. A second feedback 398 is provided to the charging circuit 310 representing control

feedback for current. It is noted that the first feedback 390 and the second feedback 398 could alternatively be multiplexed into the same communications channel communicating back to the inductively coupled charging circuit 310.

[0022] As shown, the loop controller of FIGS. 1 and 2 can be segmented into an I-channel controller represented as the second controller 306 and V-channel controller represented as the first controller 304. One difference in the charger 300 and the charger 200 depicted in the example of FIG. 2 is in how the feedback messages at 390 and 398 are computed and sent. In the charger of FIG. 2, the feedback can be sent to control the rectifier voltage to a certain level, and to ensure the regulation switch stays in saturation. In the charger 300, the rectifier voltage VREG can still be controlled while the voltage loop is active via amplifier 344. Additionally, the output current can be controlled directly when the current loop is active via amplifier 340.

[0023] As a further example, in the charger 300, the output current to the battery 330 can be controlled as follows: In general, the loop controller 2 at 306 can have a certain reference voltage at 399 (e.g., 1.1V which is below analog loop regulation voltage). When the loop controller 2 at 306 detects that the current has reached a defined regulation threshold, then it can send messages to the transmitter to control the current to this level via feedback 398, irrespective of the actual rectifier voltage.

[0024] In practice, the loop controlled by loop controller 306 may be attempting to reduce the output current, thus to perform this function, the loop may have to reduce the rectifier voltage. Since the loop controller 306 current threshold is generally below the analog current regulation threshold, the regulation switch 324 should operate in triode-mode to reach this operating point. This helps to ensure that for a given regulation switch RDS-ON parameter, for example, the receiver should be maximally efficient at any current regulation point.

[0025] In some conventional battery chargers, thermal regulation can be implemented by reducing the charge current regulation threshold in proportion to increasing die temperature of the regulation switch, when the die temperature exceeds a certain threshold (e.g., 125°C), which may be an inefficient and unstable means of operation. In practice, this type of control can drive the output current to a low value while concurrently driving VREG to a high value, which can

cause temperature to drop out of the thermal regulation region. This may cause the charge current to return to its original value, which may cause the receiver to enter the thermal regulation region in a subsequent cycle. In this manner, the receiver may oscillate in and out of thermal regulation. In the device 300, such stability and efficiency problems are mitigated with a thermal regulation loop provided by the second loop controller 306, and thus can suitably operate at the thermal limit (e.g., maximum current) for a given system as described below.

[0026] Regarding thermal regulation, when the receiver temperature operates above the thermal limit, the current regulation threshold can drop to reduce the charge current via regulation switch 324. Since this voltage is also the reference voltage 397 for the I-channel controller 306, however, the wireless loop can automatically send messages via feedback 398 to the transmitter to reduce the charge current to reduce temperature. In general, the only manner for the system to reduce charge current is to reduce input voltage at the transmitter, which implies receiver power dissipation is reduced. Since the thermal loop operates in a manner that power dissipation is monotonically reduced, this thermal control loop is substantially stable.

[0027] FIG. 4 illustrates an example transmitter and receiver circuit 400 that can be utilized as part of an inductively coupled charger device, such as disclosed herein (e.g., FIGS. 1-3). An inductively coupled charging circuit as previously described in FIGS. 1-3 is represented by dashed line 402. A transformer 404 couples energy between a transmitter 408 and receiver 410 that are employed to charge a battery 414. The transmitter 408 includes a controller 416 (e.g., PID controller) that drives power transistors 418 and 420 which in turn drive the primary side of the transformer 404. An impedance matching capacitor 424 can be provided. Feedback 428 is received from the receiver 410 and can be developed across resistor 430. The receiver 410 can include a matching capacitor 434 which supplies secondary voltage from the transformer 404 to a rectifier 440 to generate rectified DC voltage VREG. The voltage VREG is supplied to a charge controller 450 which regulates voltage and current to the battery 414 via analog controls as previously described. A regulator smoothing capacitor can be provided at 454. As shown, a loop controller 460 (e.g., loop controller 150 of FIG. 1) can be provided which supplies feedback via transistors 464 and 470. Capacitors 474 and 480 can be employed to couple the feedback to

the secondary of the transformer 404. The feedback via transistors 464 and 470 can correspond to the feedback 290 shown in FIG. 2.

[0028] In view of the foregoing structural and functional features described above, an example method will be better appreciated with reference to FIG. 5. While, for purposes of simplicity of explanation, the method is shown and described as executing serially, it is to be understood and appreciated that the method is not limited by the illustrated order, as parts of the method could occur in different orders and/or concurrently from that shown and described herein. Such method can be executed by various components configured in an IC or a controller, for example.

[0029] FIG. 5 illustrates an example method for charging a battery via inductively coupled charging. Proceeding to 510, the method 500 includes controlling a battery voltage and current via an inner control loop (e.g., charge controller 140 of FIG. 1) based on an input voltage and an input current received from a charging circuit at 510. At 520, the method 500 includes employing a transmitter controller (e.g., controller 416 of FIG. 4) to control the input voltage and the input current in the charging circuit. At 530, the method 500 includes employing a first outer control loop (e.g., controller 304 of FIG. 3) to monitor the input voltage and to generate a first feedback signal to adjust the input voltage to the charge controller. At 540, the method 500 includes employing a second outer control loop (e.g., controller 306 of FIG. 3) to monitor the input current and to generate a second feedback signal to adjust the input voltage to the inner control loop. The transmitter controller can utilize a PID loop to control the input voltage and the input current in the charging circuit, for example. The method 500 can also include utilizing a regulation switch to control the battery voltage.

[0030] Those skilled in the art to which the invention relates will appreciate that modifications may be made to the described examples, and also that many other embodiments are possible, within the scope of the claimed invention.

CLAIMS

What is claimed is:

1. A method, comprising:

controlling a battery voltage and current via an inner control loop based on an input voltage and an input current received from a charging circuit;

controlling, via a transmitter, the input voltage and the input current in the charging circuit;

monitoring the input voltage, via a first outer control loop, to generate a first feedback signal to adjust the input voltage to the charge controller; and

monitoring the input current, via a second outer control loop, to generate a second feedback signal to adjust the input voltage to the inner control loop.

2. The method of claim 1, wherein the transmitter controller utilizes a PID (proportional-integral-derivative) loop to control the input voltage and the input current in the charging circuit.

3. The method of claim 1, further comprising utilizing a regulation switch to control the battery voltage.

4. A device, comprising:

a charge controller configured to regulate a battery based on an input voltage and an input current received from a charging circuit;

a first loop controller configured to monitor the input voltage to generate a first feedback signal to adjust the input voltage to the charge controller; and

a second loop controller configured to monitor the input current to generate a second feedback signal to adjust the input voltage to the charge controller.

5. The device of claim 4, the charging circuit further comprising a transmitter circuit and a receiver circuit that inductively couples energy to the charge controller and the first and second loop controllers.

6. The device of claim 5, the transmitter circuit executes a PID (proportional-integral-derivative) algorithm to control voltages and currents based on the first feedback signal and second feedback signal.

7. The device of claim 4, further comprising a regulation switch that receives a regulated input voltage to regulate voltage and current at the battery.

8. The device of claim 7, further comprising a current source to bias the regulation switch.

9. The device of claim 7, wherein the charge controller further comprises a current sense amplifier to monitor input current and a voltage sense amplifier monitor output voltage to control the regulation switch.

10. The device of claim 9, wherein the current sense amplifier utilizes the input current as a reference and compares the reference to a charging reference signal, a pre-charging reference signal, or a thermal-charging reference signal to control of the regulation switch.

11. A device, comprising:

a charge controller configured to regulate a battery output voltage based on an input voltage and an input current received from a charging circuit; and

a loop controller configured to monitor the input voltage and the input current to generate a feedback signal to adjust the input voltage to the charge controller.

12. The device of claim 11, wherein the loop controller is a first loop controller, the device further comprising a second loop controller to regulate the input current.

13. The device of claim 12, wherein the feedback signal is a first feedback signal, the device further comprising a second feedback signal that is generated by the second loop controller and provided to the charging circuit to facilitate regulation of the battery output voltage.

14. The device of claim 13, wherein the charging circuit is configured to execute a control algorithm to process the feedback signal and the second feedback signal to adjust the input voltage to the charge controller.

15. The device of claim 12, wherein the second loop controller is employed to control die temperature of a regulation switch that drives the battery output voltage..

16. The device of claim 15, wherein the regulation switch receives a regulated input voltage and is controlled by the charge controller to regulate the battery output voltage.

17. The device of claim 16, the charge controller further comprising a first amplifier to monitor current and a second amplifier to monitor voltage, where outputs of the respective amplifiers are connected in a wired-OR configuration to control the regulation switch.

18. The device of claim 17, further comprising a current source to supply current to the wired-OR configuration to facilitate control of the regulation switch.

19. The device of claim 17, wherein the first amplifier to monitor current receives at least one input that includes a charging reference signal, a pre-charging reference signal, or a thermal-charging reference signal to facilitate control of the regulation switch.

20. The device of claim 11, wherein the loop controller further comprises an analog-to-digital converter to supply a reference voltage for the charge controller.

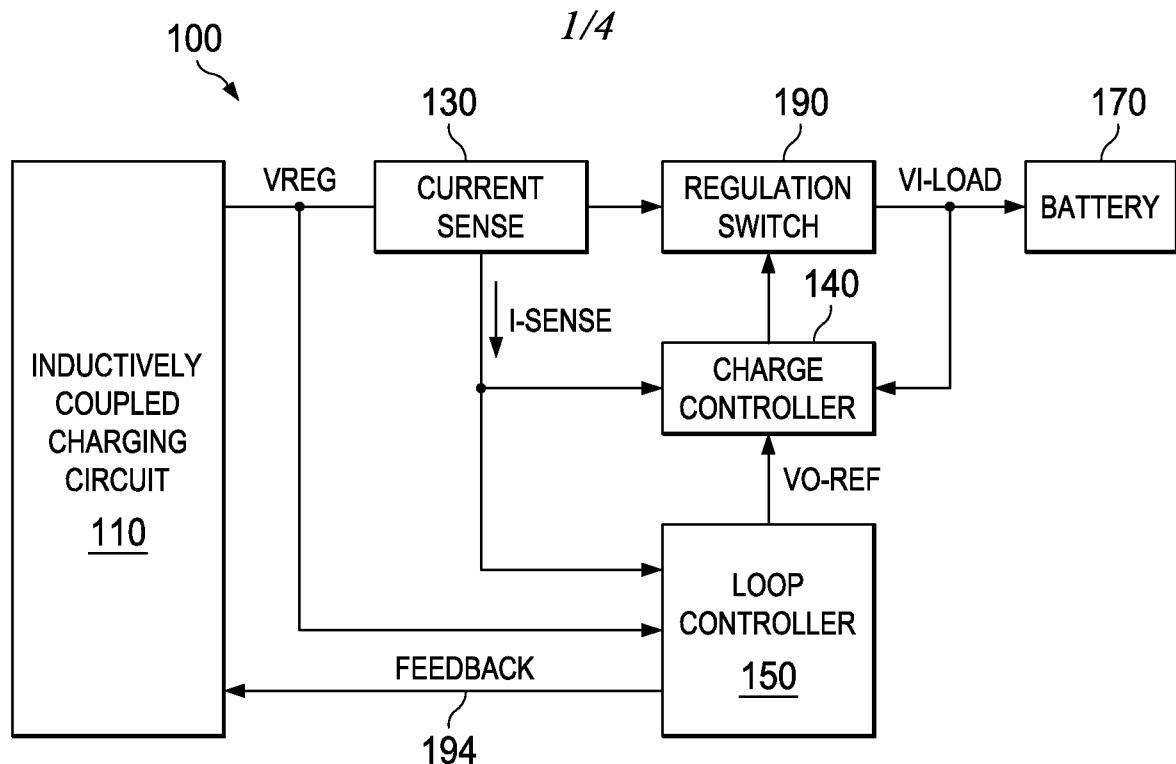


FIG. 1

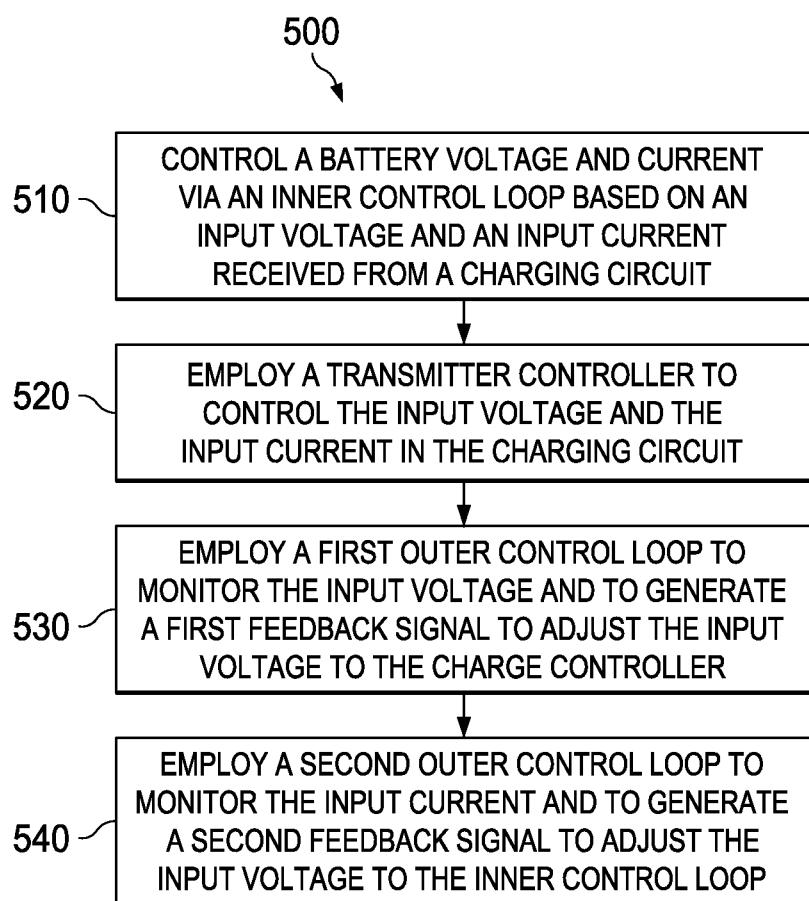
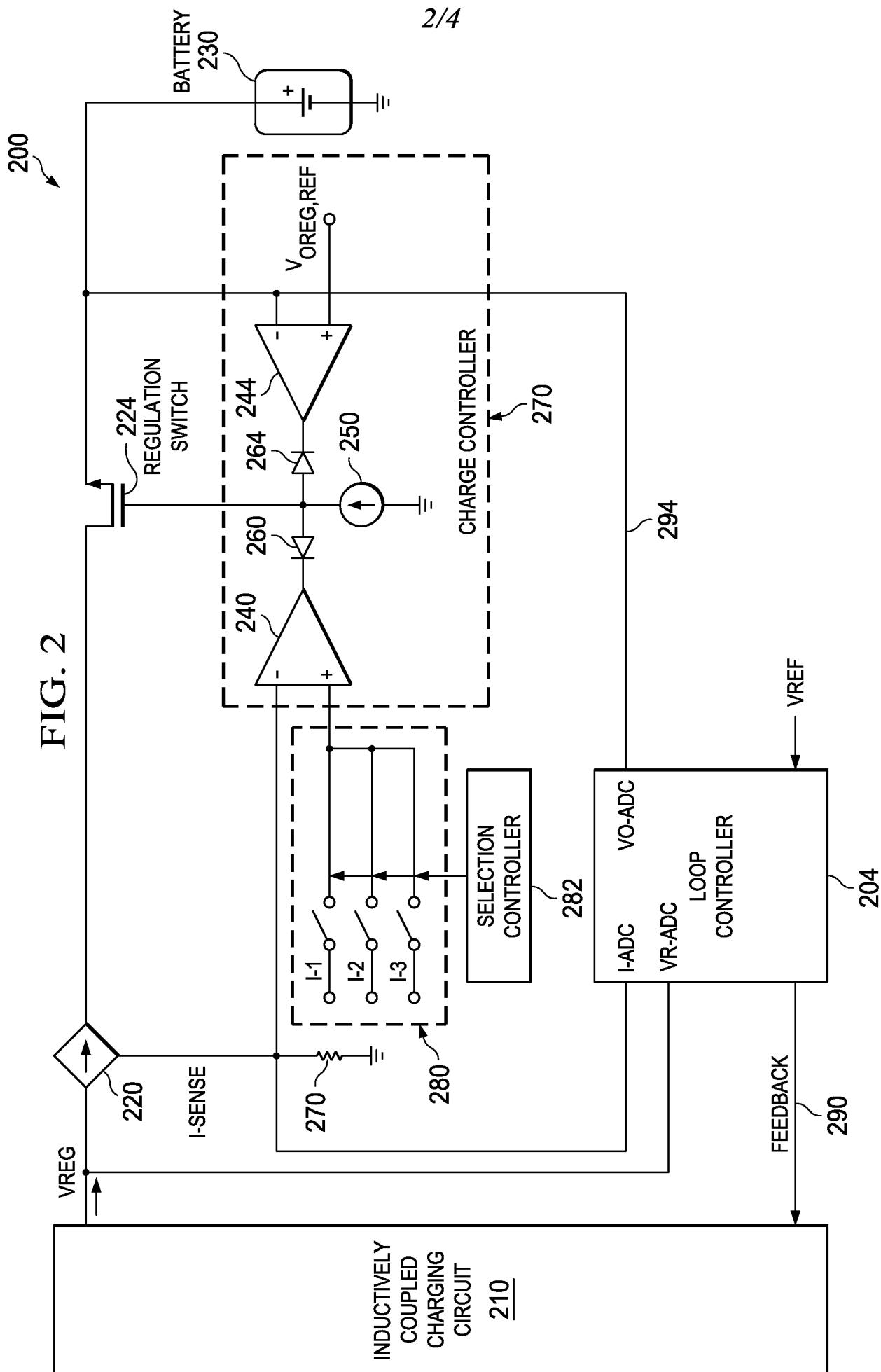



FIG. 5

FIG. 2

2/4

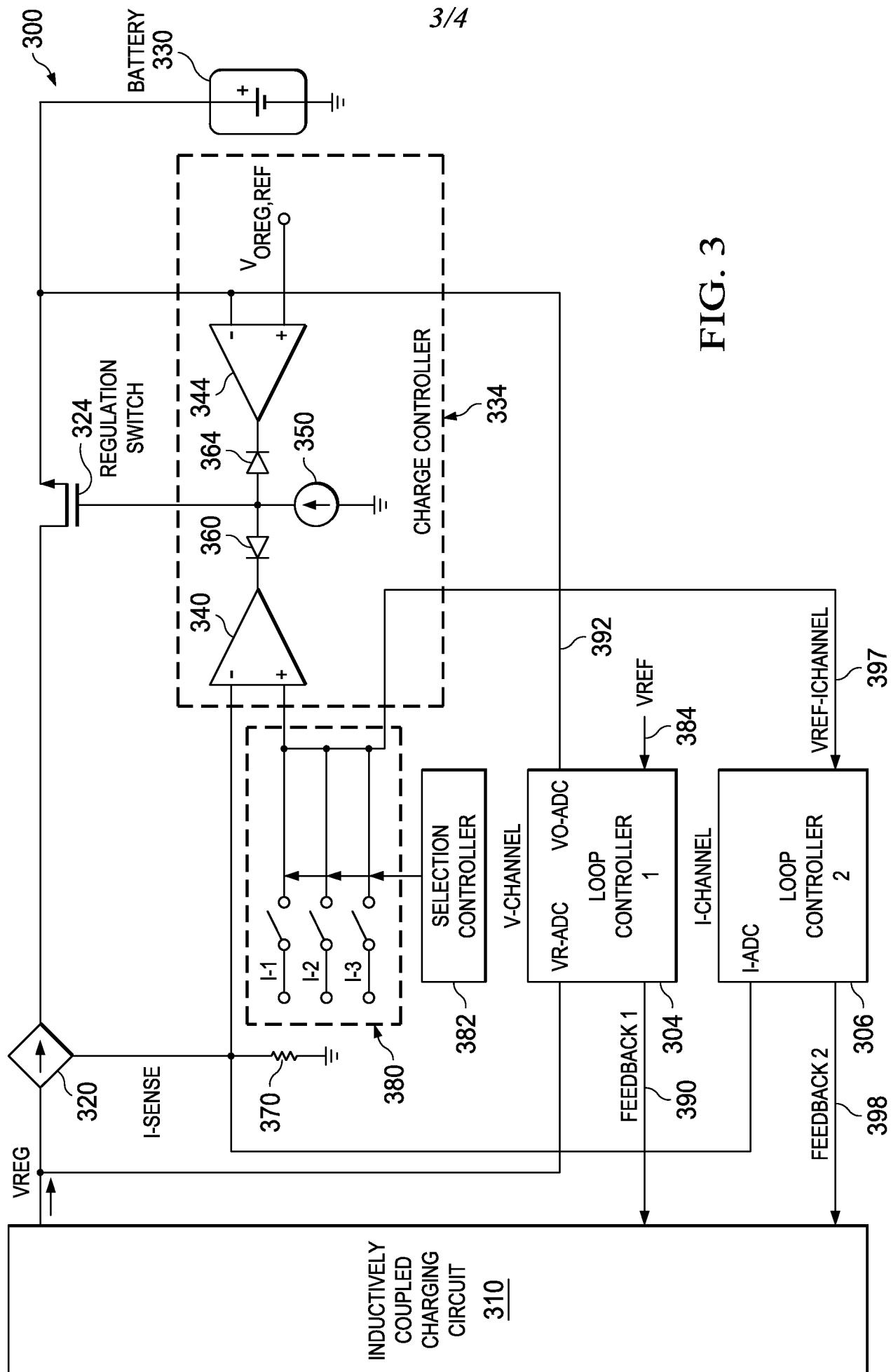
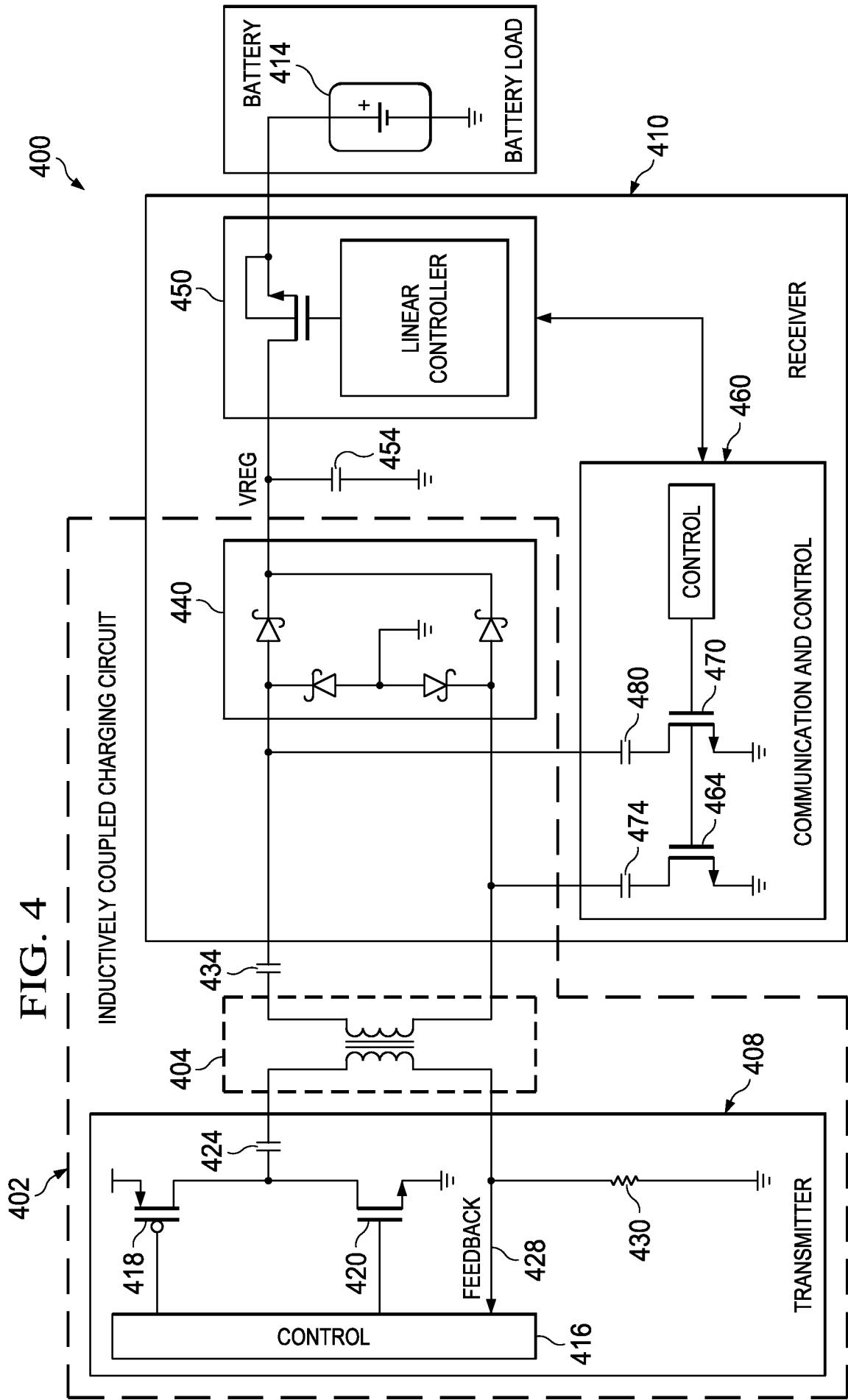



FIG. 3

4/4

FIG. 4
INDUCTIVELY COUPLED CHARGING CIRCUIT

INTERNATIONAL SEARCH REPORT

International application No.
PCT/US2012/070021

A. CLASSIFICATION OF SUBJECT MATTER

H02J 7/04(2006.01)i, H02J 17/00(2006.01)I

According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols)

H02J 7/04; H02J 7/10; H02J 7/00; H02J 17/00

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched
Korean utility models and applications for utility models
Japanese utility models and applications for utility modelsElectronic data base consulted during the international search (name of data base and, where practicable, search terms used)
eKOMPASS(KIPO internal) & Keywords: monitoring, voltage, current, charge, control, loop, battery

C. DOCUMENTS CONSIDERED TO BE RELEVANT

Category*	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.
Y	US 6225782 B1 (MARK J. MERCER et al.) 01 May 2001 See abstract, column 4, line 13 - column 5, line 16, claims 1, 12 and figure 2.	1,3-5,7-8,11-13,20
A		2,6,9-10,14-19
Y	US 2010-0001685 A1 (JEFFREY RAYMOND EASTLACK) 07 January 2010	1,3-5,7-8,11-13,20
A	See abstract, paragraph [0098], claims 1, 20 and figure 14.	2,6,9-10,14-19
A	KR 10-2008-0032519 A (LS CABLE LTD.) 15 April 2008 See abstract, paragraphs [0380]-[0381] and figure 24.	1-20
A	US 2009-0256521 A1 (TATSUKI MORI et al.) 15 October 2009 See abstract, paragraphs [0161]-[0163], claim 1 and figures 6, 8.	1-20
A	US 2008-0258688 A1 (M. ABID HUSSAIN et al.) 23 October 2008 See abstract, claims 1, 12 and figures 1-2, 4-5.	1-20

 Further documents are listed in the continuation of Box C. See patent family annex.

* Special categories of cited documents:

"A" document defining the general state of the art which is not considered to be of particular relevance
 "E" earlier application or patent but published on or after the international filing date
 "L" document which may throw doubts on priority claim(s) or which is cited to establish the publication date of citation or other special reason (as specified)
 "O" document referring to an oral disclosure, use, exhibition or other means
 "P" document published prior to the international filing date but later than the priority date claimed

"T" later document published after the international filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the invention

"X" document of particular relevance; the claimed invention cannot be considered novel or cannot be considered to involve an inventive step when the document is taken alone

"Y" document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such documents, such combination being obvious to a person skilled in the art

"&" document member of the same patent family

Date of the actual completion of the international search
18 April 2013 (18.04.2013)

Date of mailing of the international search report

19 April 2013 (19.04.2013)

Name and mailing address of the ISA/KR

Korean Intellectual Property Office
189 Cheongsa-ro, Seo-gu, Daejeon Metropolitan
City, 302-701, Republic of Korea

Facsimile No. 82-42-472-7140

Authorized officer

PARK, Hye Lyun

Telephone No. 82-42-481-3463

^7

INTERNATIONAL SEARCH REPORT

Information on patent family members

International application No.

PCT/US2012/070021

Patent document cited in search report	Publication date	Patent family member(s)	Publication date
US 6225782 B1	01.05.2001	None	
US 2010-0001685 A1	07.01.2010	US 2010-000 1684 A1 US 8232775 B2 US 8358103 B2 WO 2010-003 148 A2 WO 2010-003 158 A2 WO 2010-003 158 A3	07.01.2010 31.07.2012 22.01.2013 07.01.2010 07.01.2010 29.04.2010
KR 10-2008-00325 19 A	15.04.2008	WO 2008-044875 A1	17.04.2008
US 2009-025652 1 A1	15.10.2009	JP 2009-26 1092 A	05.11.2009
US 2008-0258688 A1	23.10.2008	CN 101675570 A EP 2 137802 A1 US 7990106 B2 WO 2008-13 1334 A1	17.03.2010 30.12.2009 02.08.2011 30.10.2008