
(19) United States
US 201201 02386A1

(12) Patent Application Publication (10) Pub. No.: US 2012/0102386 A1
Campbell et al. (43) Pub. Date: Apr. 26, 2012

(54) CUSTOMIZATION OF DISPLAY TEMPLATES

(75) Inventors: Jonathan Thomas Campbell,
Redmond, WA (US); Zhenguang
Chen, Sammamish, WA (US);
Anthony Lawrence Jackson,
Seattle, WA (US); Ping Jiang,
Redmond, WA (US); Arun
Krishnamoorthy, Sammamish, WA
(US); Boxin Li, Sammamish, WA
(US); Charles Reeves Little, II,
Bellevue, WA (US); Charles Keller
Smith, Seattle, WA (US); Brian
William Timm, Seattle, WA (US);
Andrew Joseph Violino, Seattle,
WA (US); Kerem Yuceturk,
Seattle, WA (US)

MICROSOFT CORPORATION,
Redmond, WA (US)

(73) Assignee:

(21) Appl. No.: 13/173,435

(22) Filed: Jun. 30, 2011

Related U.S. Application Data

(60) Provisional application No. 61/405,067, filed on Oct.
20, 2010.

Publication Classification

(51) Int. Cl.
G06F 7700 (2006.01)

(52) U.S. Cl. ... 715/229; 715/234
(57) ABSTRACT

A server system enables users to configure user interfaces. A
generic presentation string is stored at a data storage system.
The generic presentation string is renderable to present an
unfilled template that may include one or more slots. A tem
plate module is generated from the generic presentation
string. The generic presentation string specifies a transforma
tion operation. A template execution operation generates pre
sentation Strings renderable to present filled templates. In the
filled templates, databased on objects belonging to a given
type replace the slots of the unfilled template.

8883 :8:8

S:::::::::

8.888: 8:::::::::::38

Patent Application Publication Apr. 26, 2012 Sheet 1 of 20 US 2012/0102386 A1

• 383

&s: t:kes: 88:888 systè8:

-* ».38
-* ^

^ ^

? *
x. ×
^. ---

**. ·M*
*x. -----

888 &&&

Figure 1.

Patent Application Publication Apr. 26, 2012 Sheet 2 of 20 US 2012/0102386 A1

Server system

Data storage systern

Metadata

- 208
Schena

--------------------- 206A - 206N

Template module Template module

-210

s Web server

Figure 2

Patent Application Publication Apr. 26, 2012 Sheet 3 of 20 US 2012/0102386 A1

C8x8:88: 888: 888

:::::: 3:33:38:

Figure 3

s eunºi:

US 2012/0102386 A1

§§§?333333333333333ff;}
Apr. 26, 2012 Sheet 5 of 20 Patent Application Publication

Patent Application Publication Apr. 26, 2012 Sheet 6 of 20 US 2012/0102386 A1

:*::::::::::: *::::::::::: * ~... 8.33
838.

8:8:38.88: 888
:88:::::::::::::::::::::::::::::::::::::

8

s

Figure 6

Patent Application Publication Apr. 26, 2012 Sheet 7 of 20 US 2012/0102386 A1

&cissis :x:8

&:8: 8:::::::::::::

88:8

s s s s s s s s s S.

{88: 88xxx:

Figure 7

Patent Application Publication Apr. 26, 2012 Sheet 8 of 20 US 2012/0102386 A1

$38: $88.888 &y8388:

&:::::::::

88giate 8:x: ::::::::::::::: 8xxi.;:

3888: 888:888 3888: 888:88
:

aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa- Saaa

2.

Patent Application Publication Apr. 26, 2012 Sheet 9 of 20 US 2012/0102386 A1

Patent Application Publication Apr. 26, 2012 Sheet 10 of 20 US 2012/0102386 A1

it:

xx 8 8-six: xxiii: 3 x
ge.8 x E88: 8 is:

8:8; 8 xixt: w(xxix} {x g8 8.
{{{{g}:8 8xxx 808

- 102
3888.8 xis: 8x x&six}} {{

388x38 exist:

8x8:x: xxixte 8xxxxt

xxx xxxt{ i 8:8 xxixe:
:::::::::::::

Figure 10

Patent Application Publication Apr. 26, 2012 Sheet 11 of 20 US 2012/0102386 A1

Patent Application Publication Apr. 26, 2012 Sheet 12 of 20 US 2012/0102386 A1

receiw8 saw8 it it

Patent Application Publication Apr. 26, 2012 Sheet 13 of 20 US 2012/0102386 A1

Figure 13

Patent Application Publication Apr. 26, 2012 Sheet 14 of 20 US 2012/0102386 A1

:::::::::::::::X.

8:

---. -- - - ...& - $838: 8xxii:8 *:::38:8

38 -3.38

3888 888 age syst88: - 8: $88w8:

--

Figure 14

US 2012/0102386 A1 Apr. 26, 2012 Sheet 15 of 20 Patent Application Publication

************************************* �.g ***********************(**)* x3x4; 3338

US 2012/0102386 A1 Apr. 26, 2012 Sheet 16 of 20 Patent Application Publication

xxx xxxx xxxx xxxx xxxx xxxx xxxxx

§******************

Patent Application Publication Apr. 26, 2012 Sheet 17 of 20 US 2012/0102386 A1

88x8w8:8883: {{*:::::::::::::::
*::::

X--- ---

3.x:8:8:38.8 xxix:

8xxxxixi: 888: 8:8:::::::::::::8 83
8xis x: {:Xix:8

88:88x8 8:8 is:
'8sss

88:x: 888: 8xxx:::::::::::::

88:8x8 g8::ty 8888.8x8 is:

8:88 88: x gix88: 88: {y:x:

Figure 17

Patent Application Publication Apr. 26, 2012 Sheet 18 of 20 US 2012/0102386 A1

*::::::::::

::::
::::::::::::::::::::::::::::::::::

Patent Application Publication Apr. 26, 2012 Sheet 19 of 20 US 2012/0102386 A1

88x8xx $83 c. 888:88:

:

iciety exit typx.8 for 88c.
883: $88.8:

3.

'88xxica: 388xx:
&838: 888::s

8xxxxix. 8 '8:88: 8: 888:8
8xxxix8.

* {xxie karsg:x: {{xisks tax ci:8:
{xxx:8

Figure 19

Patent Application Publication Apr. 26, 2012 Sheet 20 of 20 US 2012/0102386 A1

-3.3 38

:32:3
''

:

-3.338

83&S

org,
{:8:::::::g:x:38:::

-3.32:

::s:::::::::::::

tood

:
:

:::::8ss: : 88: & &c::::::::::::: : we sys: 8:8: : 88.88: 8:8
8:888 :

:

88sg: 33:8:

Figure 20

US 2012/0102386 A1

CUSTOMIZATION OF DISPLAY TEMPLATES

CROSS REFERENCE TO RELATED
APPLICATIONS

0001. This application claims priority to U.S. Provisional
Patent Application Ser. No. 61/405,067, filed Oct. 20, 2010,
the entire content of which is hereby incorporated by refer
ence, and is related to U.S. patent application Ser. No.

, Attorney Docket No. 14917.1812USU1/331879.01,
titled “Result Types for Conditional Data Display, filed on
Jun. 30, 2011, and U.S. patent application Ser. No. s
Attorney Docket No. 14917.1851USU1/331457.02, titled
“Templates for Displaying Data filed on Jun. 30, 2011, the
entirety of each of which is incorporated by reference herein.

BACKGROUND

0002. As computer networks and computers have
increased in speed and complexity, web designers have been
able to create increasingly complex websites. Such complex
websites can provide greater utility to users and can be more
visually compelling. However, complex websites can be
more difficult and expensive to design.
0003 Moreover, it can be difficult and expensive to make
changes to such complex websites after they are designed. For
example, a website may utilize data from a given database. In
this example, multiple parts of the website may need to be
redesigned if a schema of the database is changed to include
additional properties. In another example, a designer may
want to change an appearance of a feature that appears in
multiple webpages in a website. In this example, the designer
may need to change separate pieces of code associated with
each of the webpages.

SUMMARY

0004. A server system enables users to configure user
interfaces. A generic presentation string is stored at a data
storage system. The generic presentation string is renderable
to present an unfilled template that includes one or more slots.
A template module is generated from the generic presentation
string. The generic presentation string specifies a transforma
tion operation. A template execution operation generates pre
sentation Strings renderable to present filled templates. In the
filled templates, data based on content resource objects
belonging to a given content resource type replace the slots of
the unfilled template.
0005. This Summary is provided to introduce a selection
of concepts in a simplified form that are further described
below in the Detailed Description. This Summary is not
intended to identify key features or essential features of the
claimed subject matter, nor is it intended to be used to limit
the scope of the claimed subject matter.

BRIEF DESCRIPTION OF THE DRAWINGS

0006 FIG. 1 is a block diagram illustrating an example
system.
0007 FIG. 2 is a block diagram illustrating example
details of a server system.
0008 FIG. 3 is a block diagram illustrating example
details of a client device.
0009 FIG. 4 is illustrates a flowchart for an example
operation of the client application and a flowchart for an
operation performed when a content generation Script is per
formed.

Apr. 26, 2012

0010 FIG. 5 illustrates a flowchart for an example tem
plate execution operation and a flowchart for an example
operation to generate a presentation string for a child context
object.
0011 FIG. 6 is a screen illustration of an example search
results interface.
0012 FIG. 7 is a block diagram illustrating an alternate
example system.
0013 FIG. 8 is a block diagram illustrating example com
ponents of the alternate embodiment of the server system.
0014 FIG. 9 is a block diagram illustrating an example
unfilled template.
0015 FIG. 10 is a flowchart illustrating an example opera
tion of the server system.
0016 FIG. 11 is a flowchart illustrating an example trans
formation operation to generate a template module from a
generic presentation string.
0017 FIG. 12 is a flowchart illustrating an example opera
tion of an editor application.
0018 FIG. 13 is a screen illustration showing a browser
window containing an example search interface presented by
the client device.
0019 FIG. 14 is a block diagram illustrating example
components of another alternate embodiment of the server
system.
0020 FIG. 15 illustrates example content of a content
index and example contents of an admin database.
0021 FIG. 16 illustrates an example scope hierarchy.
0022 FIG. 17 is a flowchart illustrating an example opera
tion to configure a result type.
0023 FIG. 18 is a screen illustration of a browser window
containing an example type configuration interface.
0024 FIG. 19 is a flowchart illustrating an example opera
tion to search for resources in a target website.
0025 FIG. 20 is a block diagram illustrating example
components of a computing device.

DETAILED DESCRIPTION

0026. The following detailed description and the attached
figures illustrate example embodiments. The reader will
understand that other embodiments exist and are within the
Scope of the attached claims. In the attached figures, stacked
blocks represent one or more similar, but not necessarily
identical, items. In addition, ellipses between items represent
one or more similar, by not necessarily identical, items. Items
having the same reference numbers with different alphabeti
cal suffixes (e.g., “A” through "N') are not intended to indi
cate the existence of a specific number of items.
0027 FIG. 1 is a block diagram illustrating an example
system 100. As illustrated in the example of FIG. 1, the
system 100 comprises a server system 102, a client device
104, and a network 106. In other embodiments, the system
100 can include more or fewer components. For example,
some embodiments of the system 100 include client devices
in addition to the client device 104.
(0028. The server system 102 and the client device 104
each comprise one or more computing devices. A computing
device is a physical device for processing information. In
various embodiments, the server system 102 and the client
device 104 comprise various types of computing devices. For
example, the server system 102 and/or the client device 104
can comprise one or more personal computers, standalone
server devices, laptop computers, blade server devices, Smart
phones, tablet computers, network-enabled televisions or

US 2012/0102386 A1

television set top boxes, game consoles, telephones, in-car
computers, appliances, intermediate network devices, and/or
other types of computing devices.
0029. The network 106 facilitates communication
between the client device 104 and the server system 102. In
the example of FIG. 1, the network 106 is represented as a
cloud. However, the network 106 can comprise various num
bers of computing devices and links between the computing
devices. In various embodiments, the network 106 can be
structured in various ways. For example, the network 106 can
be the Internet, an intranet, a local area network, a metropoli
tan area network, a wide area network, or another type of
network. In some instances, some links within the network
106 are wireless and other links within the network 106 are
wired.

0030. A user 108 uses the client device 104. The user 108
can be various types of people. For example, the user 108 can
be an employee of a company or a partner of that company. In
another example, the user 108 can be a member of the general
public.
0031. The client device 104 provides a client application
110. In various embodiments, the client application 110 com
prises various types of applications. For example, the client
application 110 can be a web browser application, Such as
INTERNET EXPLORER(R) from Microsoft Corp., FIRE
FOXOR) from the Mozilla Foundation, or CHROME(R) from
Google, Inc. In another example, the client application 110
can be a productivity application, such as a word processor
application, a spreadsheet application, a slide presentation
application, and so on.
0032. The server system 102 hosts at least one website
112. In other words, the server system 102 provides function
ality that enables clients to access resources in the website
112. The website 112 comprises a plurality of resources that
can be accessed through a network, Such as the network 106.
For example, the website 112 can comprise webpages, word
processor documents, PDF documents, spreadsheet docu
ments, presentation documents, data sources, and other types
of resources.

0033. In various embodiments, the website 112 can be
various types of website. For example, the website 112 can be
a public Internet website for a company. In another example,
the website 112 can be a private internal intranet website for
a company. In yet another example, the website 112 can be a
private collaboration website accessible by employees of
multiple companies.
0034. The client application 110 sends resource requests

to the server system 102. The resources requests comprise
requests to access resources in the website 112. In response to
the resource requests, the server system 102 sends resource
data to the client device 104. The client application 110 pro
cesses the resource data to present the resources to the user
108.

0035. As described in detail elsewhere in this document,
when the client application 110 sends a request for some
resources in the website 112, the client application 110
receives a dataset and a set of template modules. The dataset
comprises a set of objects. Each of the objects belongs to a
content resource object type. For example, the dataset can
include an object that belongs to a “phone number content
resource object type and an object that belongs to a 'street
address' content resource object type. Multiple elements in
the dataset can have the same element type.

Apr. 26, 2012

0036. The template modules correspond to different con
tent resource object types. For example, the dataset can
include a content resource object that belongs to a "phone
number content resource object type and a content resource
object that belongs to a “street address' content resource
object type. In this example, the set of template modules
includes a template module that corresponds to the “phone
number content resource object type and a template module
that corresponds to the “street address' content resource
object type.
0037. The template modules specify conversion opera
tions. A template module's template execution conversion
operation, herein referred to as a template execution opera
tion, transforms a conversion script which may be a collection
oftemplate modules into a presentation string when given an
object belonging to the content resource object type corre
sponding to the template module. The presentation string is a
character string that the client application 110 can render to
create one or more onscreen features.
0038. In various embodiments, presentation strings can
conform to various presentation languages. For example, in
Some embodiments, the presentation Strings conform to the
Hypertext Markup Language (HTML). In other example, the
presentation strings conform to a non-standardized language.
0039. The client application 110 performs the template
execution operations specified by the corresponding template
modules on the content resource objects in the dataset. For
example, the dataset can include an object that belongs to a
“phone number” content resource object type. In this
example, a given template module corresponds to the “phone
number content resource object type. In this example, the
client application 110 generates a presentation string for the
object by performing the template execution operation speci
fied by the given template module. In this way, the client
application 110 generates presentation strings needed to ren
der a resource.
0040 FIG. 2 is a block diagram illustrating example com
ponents of the server system 102. As illustrated in the
example of FIG. 2, the server system 102 comprises a data
storage system 200. The data storage system 200 comprises
one or more computer storage media. The term "computer
storage media encompasses devices or articles of manufac
ture that store computer-readable data or instructions. In
Some embodiments, the computer storage media in the data
storage system 200 are geographically dispersed. In other
embodiments, the computer storage media in the data storage
system 200 are located within a single device or data center.
0041. The data storage system 200 stores data for subse
quent retrieval. The data storage system 200 stores content
resources 202, metadata 204, a schema 208, and template
modules 206A-206N (collectively, “template modules 206).
The content resources 202 can include some or all of the
resources of the website 112. For example, the content
resources 202 can include web page documents, word pro
cessor documents, PDF documents, digital images, video,
spreadsheet documents, and so on.
0042. The metadata 204 comprises data regarding the con
tent resources 202. For example, the content resources 202
can include a word processor document. In this example, the
metadata 204 can include data indicating an author, a creation
time, a modified time, a title, and a Summary of the word
processor document.
0043. Each of the template modules 206 comprises a set of
Software instructions that specifies a template execution

US 2012/0102386 A1

operation. The template execution operations take objects in
datasets and generate corresponding presentation strings. In
various embodiments, the software instructions can conform
to various programming languages. For example, the Soft
ware instructions in one or more of the template modules 206
can conform to the JavaScript programming language. In
other words, one or more of the template modules 206 can
specify the template execution operations as sets of JavaS
cript instructions. In another example, the Software instruc
tions in the template modules 206 can conform to the Perl
programming language.
0044 Some embodiments store the template modules 206
in template module files. In some Such embodiments, the
template module files have file name extensions that corre
spond to the programming language used in the template
modules 206. For example, if one of the template modules
206 contains software instructions conforming to the JavaS
cript programming language, the template module file con
taining the template module can have the file name extension
“js”.
0045. The schema 208 specifies allowable content
resource types in datasets sent by the server system 102 to the
client device 104. In various embodiments, the schema 208
specifies that various content resource types are allowable in
the datasets. For example, the schema 208 can specify that
datasets must include a collection of content resource objects
belonging to a certain content resource type. In this example,
the schema 208 can specify that the collection of content
resource objects includes one or more objects belonging to a
"person' content resource type. In this example, the schema
208 can further specify that content resource objects belong
ing to the “person content resource type include a “name’
content resource object or data element, which is of a string
content resource object type or data element type, a “phone
number content resource objector data element belonging to
a “phone number content resource object type or data ele
ment type, and a 'street address' content resource object or
data element belonging to a “location address' content
resource object type or data element type. The term “content
resource object will herein be used to describe a data element
(e.g., name, phone number, Street address, etc.) of a specified
content resource type (e.g., “person' content resource type) in
a dataset. The term “content resource object type' will herein
be used to describe a type of a content resource object (e.g., a
string, a phone number, a location address, etc.).
0046. Furthermore, the schema 208 maps content resource
object types to the template modules 206. Continuing the
example of the previous paragraph, the schema 208 can map
the top-level collection in the dataset to the template module
206A, map the “person' content resource type to the template
module 206B, map the “location address' content resource
object type to the template module 206N, and so on.
0047. In various embodiments, the schema 208 is format
ted in various ways. For example, in Some embodiments, the
datasets sent by the server system 102 are formatted as XML.
In this example, the schema 208 can be formatted in Docu
ment Type Definition (DTD) language, the XML Schema
language, the RELAX NG language, or another schema lan
guage for XML. In other embodiments, the datasets are not
formatted as XML and the schema 208 is formatted using
other schema definition languages.
0048. In addition to the data storage system 200, the server
system 102 provides a web server 210. Some embodiments of
the server system 102 provide the web server 210 by execut

Apr. 26, 2012

ing instructions stored on one or more computer storage
media. The web server 210 is configured to provide resources
hosted by the server system 102 to the client application 110
in response to resource requests. For example, the web server
210 can provide the content resources 202, data sets, the
template modules 206, the schema 208, and other resources in
response to resource requests.
0049 FIG. 3 is a block diagram illustrating example
details of the client device 104. As illustrated in the example
of FIG.3, the client device 104 comprises a cache 300 and the
client application 110.
0050. When the client application 110 receives content
resources 202, the template modules 206, or the schema 208,
the client application 110 stores copies of the content
resources 202, the template modules 206, and the schema 208
in the cache 300. Various embodiments implement the cache
300 in various ways. For example, some embodiments imple
ment the cache 300 as a folder or directory in a file system.
Other example embodiments implement the cache 300 as a
relational database.
0051 FIG. 4 is illustrates a flowchart for an example
operation 400 of the client application 110 and a flowchart for
an operation 450 performed when a content generation script
is performed. Various embodiments of the client application
110 can perform the operation 400 in response to various
events. For example, the client application 110 can perform
the operation 400 when the user 108 enters a URL in an
address bar of the client application 110. In another example,
the client application 110 can perform the operation 400
when the user 108 selects a link in another webpage.
0052. After the operation 400 starts, the client application
110 sends a resource request to the web server 210 (402). The
resource request requests a user interface. Such as a webpage
in the website 112. In various embodiments, the resource
request conforms to various protocols. For example, in some
embodiments, the resource request conforms to the Hypertext
Transfer Protocol (HTTP). In other example embodiments,
the resource request conforms to another protocol. Such as
SOAP.

0053. The client application 110 receives base resource
data from the web server 210 in response to the resource
request (404). The base resource data includes a content gen
eration script. When the client application 110 performs the
content generation script, the content generation script inserts
content into the user interface.

0054. In various embodiments, the base resource data
comprises various data in addition to the content generation
Script. For example, the base resource data can comprise
HTML data, additional scripts, and so on.
0055. After the client application 110 receives the base
resource data, the client application 110 performs the content
generation script in the base resource data (406). Performance
of the content generation script causes the client application
110 to generate a presentation String. After the client appli
cation 110 generates the presentation String, the client appli
cation 110 renders the presentation string (408). Rendering
the presentation string comprises rendering presentation
strings within the presentation string. When the client appli
cation 110 renders presentation strings, the client application
presents sets of on-screen features to the user 108.
0056. In some embodiments, performance of the content
generation script causes the client application 110 to perform
the operation 450. After the operation 450 starts, the client
application 110 sends a dataset request (452). The dataset

US 2012/0102386 A1

request comprises a request for a dataset. In response, the web
server 210 generates the dataset and sends the dataset to the
client application 110. Subsequently, the client application
110 receives the dataset (454). In other words, the client
application 110 downloads the dataset.
0057. In various embodiments, the web server 210 gener
ates the dataset in various ways. For example, the web server
210 can use the content resources 202 and/or the metadata
204 to generate the dataset. In this example, the content
resources 202 can include entries in a company's employee
directory. In this example, the resource request can comprise
a search query for employees having the last name “Jones. In
this example, the web server 210 obtains a list of search
results. The search results are ones of the content resources
202 that satisfy the search query. In this example, the web
server 210 generates a dataset that contains data regarding the
search results. For instance, in this example, the web server
210 can generate the following dataset:

Search Results {
Person {

Name::Steven Jones:
Email addr::sjones(a)contoso.com;

Person {
Name::Jane Jones:
Email addr::iones(a)contoso.com

0058 As mentioned above, the dataset comprises one or
more collections of content resource types containing content
resource objects. In some instances, other collections of con
tent resource types are nested in the content resource objects
of the content resource types in the top level dataset. In other
words, the content resource objects in the collections of the
top level dataset can contain child objects of simple or com
plex content resource object types. In the example dataset
shown above, the “Search Results’ object is a data collection
in the top level dataset. The two “Person' content resource
types are contained in the “Search Results’ collection. The
“Name” content resource object and the “Email addr” con
tent resource object are content resource objects of the “Per
Son' content resource type.
0059. In other embodiments, the client application 110
does not generate the dataset request. In Such embodiments,
the base resource data can include the dataset.
0060. In addition, the client application 110 generates a
schema request (456). The schema request comprises a
request for the schema 208. In other embodiments, the client
application 110 does not generate schema requests. In Such
embodiments, the base resource data includes the schema
208.
0061. When the client application 110 generates the
schema request, the client device 104 determines whether the
cache 300 includes a copy of the schema 208. If the cache 300
does not include a copy of the schema 208, the client device
104 forwards the schema request to the web server 210. The
web server 210 returns the schema 208 to the client device
104 in response to the schema request. In other words, the
client device 104 downloads the schema 208. The client
device 104 then provides the schema 208 to the client appli
cation 110. On the other hand, if the cache 300 stores a copy
of the schema 208, the client device 104 provides the copy of

Apr. 26, 2012

the schema 208 to the client application 110. In either case,
the client application 110 receives the schema 208 (458).
0062. After the client application 110 receives the dataset
and the schema 208, the client application 110 uses the
schema 208 to identify a template module that corresponds to
the type and a level of the content resource types and content
resource objects of the dataset (460). As mentioned above, the
schema 208 maps resource, level and content resource object
types to the template modules 206. The client application 110
uses the schema 208 to identify the template module that
corresponds to the type and level of the content resource types
and content resource objects by determining, due to the
schema 208 mapping a given template module to a content
resource type or level or content resource object type, that the
given template module corresponds to a current template
execution operation on the dataset. For ease of explanation,
this document can refer to a current content resource object or
data elementata current level as a current context object, and
the template module that corresponds to the current context
object as that object's template module.
0063. After identifying the current context object's tem
plate module, the client application 110 generates a template
request (462). The template request comprises a request for
the current context object's template module. When the client
application 110 generates the template request, the client
device 104 determines whether the cache 300 stores the cur
rent context object's template module. If the cache 300 does
not store the current context object's template module, the
client device 104 does not forward the template request to the
web server 210. Rather, the client device 104 provides the
cached copy of the current context object's template module
to the client application 110 in response to the template
request. Otherwise, if the cache 300 does not store the current
context object's template module, the client device 104 sends
the template request to the web server 210. Subsequently, the
client device 104 receives the current context object's tem
plate module from the web server 210. In other words, the
client device 104 downloads the current context object's tem
plate module. In either case, the client application 110
receives the current context object's template module in
response to the template request (464).
0064. After the client application 110 receives the current
context object's template module, the client application 110
generates a presentation string for the current context object
(466). The client application 110 generates the presentation
string for the current context object by performing the tem
plate execution operation of the current context object's tem
plate module on the current context object. As mentioned
above, the presentation String can comprise HTML data. In
Some instances, the presentation String can also comprise one
or more Scripts.
0065. The client application 110 can perform the opera
tion 400. Between times that the client application 110 per
forms the operation 400, the schema 208 can change. For
example, an administrator can change the schema 208 to
change the allowable content resource object types in datasets
generated by the server system 102. Consequently, in this
example, when the client application 110 performs the opera
tion 400 again, the client application 110 can download a
dataset that includes one or more objects belonging to content
resource object types that were not previously allowable.
Because the template modules 206 are separate from the
schema, a developer may only need to update the template

US 2012/0102386 A1

modules corresponding to the changed object types and not
other ones of the template modules 206.
0.066. In another example, an administrator can change the
schema208 to change the mappings between object types and
template modules. Consequently, in this example, when the
client application 110 performs the operation 400 again, the
client application 110 can download a second dataset that
includes content resource objects or data elements belonging
to a given type. Whereas when the client application 110
previously performed a template execution operation of a
given template module on objects of the given type at a given
level, the client application 110 now generates presentation
strings for objects of the given type by performing a template
execution operation of a different template module on the
objects of the given content resource object type. The client
application 110 can then render these presentation Strings. In
Some instances, it may not be necessary for a programmer to
rewrite the code of any of the template modules 206 in
response to Such a change to the schema 208.
0067 FIG. 5 illustrates a flowchart for an example tem
plate execution operation 500 and a flowchart for an example
operation 550 to generate a presentation string for a child
object. For ease of explanation, this document explains the
template execution operation 500 and the operation 550 with
reference to the template module 206A. In some embodi
ments, the template execution operations of each of the tem
plate modules 206 are similar to the template execution
operation 500.
0068. The template execution operation 500 starts when
the client application 110 or the template execution operation
of another template module invokes the template execution
operation 500 of the template module 206A. For example, if
the template module 206A corresponds to a root level presen
tation of relevant types of content resources in the dataset, the
client application 110 invokes the template execution opera
tion 500. However, if the template module 206A corresponds
to some other level or object type in the dataset, the template
execution operation of another template module invokes the
template execution operation 500.
0069. When the template execution operation 500 is
invoked, the template module 206A receives a current context
object in the dataset (502). In various embodiments, the tem
plate module 206A receives the current context object in
various ways. For example, some embodiments of the tem
plate execution operation 500 receive the current context
object as a parameter.
0070. After receiving the current context object, the tem
plate module 206A generates the current context object's
presentation string (504). In instances where the current
object has one or more child objects, the current object's
presentation string can include the child object's presentation
Strings.
0071. When the template module 206A generates the cur
rent context object's presentation string, the template module
206A can include one or more pre-determined strings into the
current cxt object's presentation string. For example, the tem
plate module 206A can include a string that comprises a series
of tags into the current context object's presentation String.
This series of tags can define a layout or formatting.
0072 Furthermore, as part of generating the current con
text object's presentation string, the template module 206A
can perform the operation 550 one or more times to generate
the child objects presentation strings. After the operation 550
starts, the template module 206A uses the schema 208 to

Apr. 26, 2012

identify a template module that corresponds to a given child
object of the current context object (552). For instance, the
template module 206A can determine, based on the schema
208 mapping a content resource object type of the given child
object to the template module, that the template module cor
responds to the given object. For ease of explanation, this
document can refer to the template module corresponding to
the given child object as the given child object's template
module.

0073. After identifying the given child object's template
module, the template module 206A requests the given child
object's template module (554). If the cache 300 stores a
given child object's template module, the template module
206A retrieves the given child object's template module from
the cache 300 without sending a request for the given child
object's template module to the web server 210. On the other
hand, if the cache 300 does not store the given child object's
template module, the template execution operation 500 sends
a request to the web server 210 for the given child object's
template module. In either case, the client application 110
Subsequently receives the given child object's template mod
ule (556). In other words, the client application 110 down
loads the given child object's template module.
0074. After receiving the given child object's template
module, the template module 206A generates a presentation
string for the given child object (558). The template module
206A generates the presentation string for the given child
object by invoking the template execution operation of the
given child object's template module on the given child
object.
0075 For example, the following string can represent the
current context object:

Person {
Name::Steven Jones:
Email addr::siones(a)contoso.com

In this example, the current context object is of a “person'
content resource type, a first child object is of the “Name'
content resource object type, and a second child object is of
the “Email addr” content resource object type. In this
example, the template module 206A generates a presentation
string for the first child object by performing the template
execution operation of the template module corresponding to
the “Name” content resource object type. For example, the
template module 206A can generate the following presenta
tion string for the first child object:
0.076 Name: STEVENJONES
In this example, the template module 206A generates a pre
sentation String for the second child object by performing the
template execution operation of the template module corre
sponding to the “Email addr” content resource type. For
example, the template module 206A can generate the follow
ing presentation String for the second child object:
0077 <i> Email address: </i> <a href="mailto:
sjones(a)contoso.com'> sjones(a)contoso.com </ad
0078 Continuing the example from the previous para
graph, the template module 206A can generate the following
presentation string for the current context object:

US 2012/0102386 A1

<table>
<tric

<t-Name:
 STEVENJONES <Ab> <At
<td <i> Email address: <i>

<a href=mailto:siones(a)contoso.com'sjones(a)contoso.comsa

The reader will notice that the current cxt object's presenta
tion string includes the child objects presentation strings as
shown above. In some embodiments, the template module
206A can modify one or more of the child objects presenta
tion strings.
0079. After generating the presentation string for the cur
rent context object, the template module 206A returns the
current context object's presentation string to an operation
that invoked the template execution operation 500 (506). For
example, if the client application 110 invoked the template
execution operation 500, the template module 206A returns
the current context object's presentation string to the client
application 110. If another template module's template
execution operation invoked the template execution operation
500, the template execution operation 500 returns the current
context object's presentation string to the other template
module's template execution operation.
0080 FIG. 6 is a screen illustration of an example search
results interface 600. The client application 110 can present
the search results interface 600 to the user 108 when the user
108 inputs a search string into a user interface presented by
the client application 110. In the example of FIG. 6, the search
results interface 600 includes a search string field 602, a filled
template 604, and a filled template 606. The filled template
604 is a set of on-screen features describing a resource that
satisfies the search string. The filled template 606 is another
set of on-screen features describing another resource that
satisfies the search string. The filled template 604 includes
fields 608A through 608C (collectively, “fields 608). The
filled template 606 includes fields 610A through 610E (col
lectively, “fields 610).
0081. In the example of FIG. 6, the client application 110
can receive the following dataset after sending the search
string to the server system 102:

Search Results {
Search String::Contoso;
Word processor search result {

type image::ingSiw.jpg:
title:Memorandum on Contoso Co. Account;
Snippet::The Contoso account is very important to
Northwind Traders.
During the last quarter, Northwind received $10k in
orders from Contoso. In order to...:

Presentation search result {
type image::ingSip.jpg:
title:Contoso Sales Presentation;
Summary::Presentation given to Jackie Fellows, Contoso
COO, regarding our new line of doors and windows.
created:03/16/2011;
modified:04/24/2011;
author::Bill Smith:
author img::ingsbillsmith.jpg:

Apr. 26, 2012

Readers will understand that this dataset is for purposes of
explanation only. In other embodiments, datasets have other
formats and content.

I0082. After the client application 110 receives this dataset,
the client application 110 generates the presentation string
representing the search results interface 600. The client appli
cation 110 generates the presentation string representing the
search results interface 600 by performing a template execu
tion operation of a template module that corresponds to the
“Search Results' content resource type.
I0083) To generate the presentation string representing the
search results interface 600, the client application 110 gener
ates a presentation string representing the search String field
602 by performing a template execution operation of a tem
plate module that corresponds to the “Search string content
resource type. In addition, the client application 110 gener
ates a presentation string representing the filled template 604
by performing a template execution operation of a template
module that corresponds to the “Word processor search
result content resource type. In this way, the filled template
604 is based on the template module that corresponds to the
“Word processor search result content resource type. As
part of generating the presentation string representing the
filled template 604, the client application 110 generates pre
sentation strings representing the fields 608 by performing
template execution operations of template modules that cor
respond to the “type image, the “title.” and the "snippet”
content resource types.
I0084. The client application 110 generates a presentation
string representing the filled template 606 by performing a
template execution operation of a template module that cor
responds to the “Presentation search result content
resource type. In this way, the filled template 606 is based on
the template module that corresponds to the “Presentation
search result content resource type. As part of generating
the presentation string representing the filled template 606,
the client application 110 generates presentation strings rep
resenting the fields 610 by performing template execution
operations of the template modules that correspond to the
“type image.” “title.” “summary.” “created.” “modified.”
“author, and “author img content resource types.
I0085 FIG. 7 is a block diagram illustrating an alternate
example system 700. As illustrated in the example of FIG. 7,
the system 700 comprises the server system 102, the client
device 104, the network 106, and the user 108. As in the
system 100, the server system 102 hosts the website 112 and
the client device 104 provides the client application 110.
However, the system 700 also includes an admin device 702
and an admin 704. In other embodiments, the system 700 can
include more or fewer components. For example, some
embodiments of the system 700 include client devices in
addition to the client device 104.

US 2012/0102386 A1

I0086. The admin device 702 comprises one or more com
puting devices. In various embodiments, the admin device
702 can comprise various types of computing devices. For
example, the admin device 702 can comprise one or more
personal computers, standalone server devices, laptop com
puters, blade server devices, Smartphones, tablet computers,
network-enabled televisions or television set top boxes, game
consoles, telephones, in-car computers, appliances, interme
diate network devices, and/or other types of computing
devices. The admin device 702 is able to communicate with
the server system 102 using the network 106 or another net
work.

0087. The admin 704 uses the admin device 702. The
admin 704 is a person responsible for performing adminis
trative tasks on the website 112. For example, the admin 704
can be responsible for creating, configuring, and deleting
resources in the website 112. The admin 704 can be various
types of people. For example, the admin 704 can be an
employee or contractor of a company associated with the
website 112 or an employee of another company.
0088 Among other the administrative tasks that the admin
704 performs on the website 112, the admin 704 manages the
template modules 206 of the website 112. For example, the
admin 704 can develop or modify the template modules 206
of the website 112. As described in detail elsewhere in this
document, the admin 704 can edit the template modules 206
by modifying generic presentation strings for the template
modules 206.

0089. The generic presentation string of a given template
module is a presentation string is renderable to present an
unfilled template. In various embodiments, the presentation
string conforms to various presentation languages. For
example, the generic presentation string can conform to
HTML.

0090 The unfilled template includes one or more slots.
The slots indicate locations into which databased on content
resource objects in a dataset can be filled. Presentation strings
generated by performing the template execution operation of
the given template module on content resource objects
belonging to a given content resource type are renderable by
the client application 110 to present filled versions of the
given template. The filled templates are on-screen features
displayed to the user 108. In the filled templates, databased
on the objects belonging to the given content resource object
type replace the slots in the unfilled template. In other words,
the slots in the unfilled template are replaced by databased on
the objects. A filled template is based on a template module
where the filled template rendering is a presentation string
generated by the template execution operation of the template
module.

0091. Furthermore, in some embodiments, the admin
device 702 provides an editor application 706. The editor
application 706 enables users to edit the generic presentation
strings for the template modules 206 by editing the generic
on-screen features of the template modules 206. Because the
editor application 706 enables users to edit the generic on
screen features instead of the underlying presentation strings
or the template modules 206, the editor application 706 may
be characterized as a What-You-See-Is-What-You-Get
(WYSIWYG) editor application. Example WYSIWYG edi
tor applications include VISUAL STUDIOR from Microsoft
Corp., EXPRESSIONR) from Microsoft Corp., DREAM
WEAVER(R) from Adobe Systems, and so on. As described

Apr. 26, 2012

elsewhere in this document, the admin 704 can use the editor
application 706 to edit the template modules 206.
0092 FIG. 8 is a block diagram illustrating example com
ponents of an alternate embodiment of the server system 102.
As illustrated in the example of FIG. 8, the server system 102
comprises the data storage system 200. AS in the example of
FIG. 2, the data storage system 200 stores the content
resources 202, the metadata 204, the schema 208, and the
template modules 206.
0093. In addition, the data storage system 200 stores
generic template files 800A through 800N (collectively,
“generic template files 800'). Each of the generic template
files 800 corresponds to a different one of the template mod
ules 206. Each of the generic template files 800 stores the
generic presentation string for the corresponding template
module. For example, the generic template file 800A can
store the generic presentation string for the template module
206A and the generic template file 800N can store the generic
presentation string for the template module 206.N.
0094. In some embodiments, the generic template files
800 have file name extensions that correspond to formats of
the generic presentation Strings in the files. For example, if the
generic presentation strings in the generic template files 800
are formatted as HTML data, the generic template files 800
can have the file name extensions".html or “.htm.
(0095. As illustrated in the example of FIG. 8, the server
system 102 provides the web server 210. In addition, the
server system 102 provides a conversion system 802. The
server system 102 can provide the conversion system 802 by
reading computer-executable instructions from one or more
computer readable media and executing the computer-ex
ecutable instructions. As described in detail elsewhere in this
document, the conversion system 802 uses the generic pre
sentation Strings in the generic template files 800 to generate
the template modules 206.
0096 FIG. 9 is a block diagram illustrating an example
unfilled template 900. For ease of explanation, this document
describes FIG. 9 with reference to the generic template file
800A and the template module 206A. Readers will under
stand that the description of FIG.9 may be applicable to other
ones of the generic template files 800 and template modules
206.
(0097. The editor application 706 can generate the unfilled
template 900 by rendering a generic presentation string in the
generic template file 800A. In the example of FIG. 9, the
unfilled template 900 comprises slots 902A-902C (collec
tively, “slots 902). In filled templates corresponding to the
unfilled template 900, the slots 902 are replaced by databased
on objects in a dataset. The generic presentation string defines
sizes and positions of the slots 902 in the unfilled template
900.
(0098. When the editor application 706 displays the
unfilled template 900, the admin 704 can use surrounding
static literal presentation String content to define the position
and size of the slots 902 within the unfilled template 900.
Furthermore, the admin 704 can add fields to or remove fields
from the unfilled template 900 or add other static literal pre
sentation String content or template module execution logic.
0099 Each of the slots 902 is associated with a different
object of the given type and level. For example, a content
resource object belonging to the given type can include con
tent resource objects such as “title', “type image', "snippet.”
and “URL each of which has a particular content resource
object type. In this example, the admin 704 can interact with

US 2012/0102386 A1

the editor application 706 to associate the slot 902A with the
“type image' content resource object, the slot 902B with the
"title' content resource object, and slot 902C with the "snip
pet content resource object.
0100. After the admin 704 associates the slots 902 with
child object types, the admin 704 can configure the slots 902.
For example, the admin 704 can configure the slot 902C such
that text in the slot 902C has a particular style, such as italic.
In another example, the given content resource object type
can include a child object belonging to a “URL content
resource object type. In this example, the admin 704 can use
one or more graphical user interfaces to configure the slot
902A such that text within the slot 902A is a hyperlink to a
URL specified by the child object belonging to the “URL
content resource object type.
0101. Furthermore, the admin 704 can add fixed text 904
or other static features to the unfilled template 900. In the
example of FIG. 9, the admin 704 has added the fixed text
“Presentation Document” to the unfilled template 900. Con
sequently, when the client application 110 presents filled
templates based on the template module 206A, the text “Pre
sentation Document appears as an on-screen object in the
filled templates.
0102) When the admin 704 edits the unfilled template 900,
the editor application 706 updates the generic presentation
string of the given template module to reflect the changes to
the unfilled template 900. For example, the generic presenta
tion string can include <div> tags for each of the slots 902. In
this example, id attributes of the <div> tags indicate the child
object types associated with the slots 902. In this example,
when the admin 704 changes child object types associated
with the slots 902, the editor application 706 change the
values of the id attributes of the <div> tags to reflect the new
child object types.
0103 FIG. 10 is a flowchart illustrating an example opera
tion 1000 of the server system 102. The example of FIG. 10 is
explained with reference to the template module 206A and
the generic template file 800A. Readers will understand that
the server system 102 can perform similar operations with
regard to other ones of the template modules 206 and other
ones of the generic template files 800.
0104. After the operation 1000 begins, the server system
102 stores the template module 206A and the generic tem
plate file 800A in the data storage system 200 (1002). In
various embodiments, the server system 102 performs vari
ous actions to store the template module 206A and the generic
template file 800A in the data storage system 200. For
example, some embodiments of the server system 102 receive
the template module 206A without receiving the generic tem
plate file 800A. In this example, the server system 102 can
generate the generic template file 800A from the template
module 206A and store both the template module 206A and
the generic template file 800A to the data storage system 200.
In another example, some embodiments of the server system
102 receive the generic template file 800A without receiving
the template module 206A. In this example, the conversion
system 802 can generate the template module 206A from the
generic template file 800A and store both the template mod
ule 206A and the generic template file 800A to the data
storage system 200.
0105 Next, the web server 210 receives a generic template
request from the editor application 706 (1004). The generic
template request comprises a request to retrieve the generic
template file 800A. In response to the generic template

Apr. 26, 2012

request, the web server 210 sends the generic template file
800A to the editor application 706 (1006). After the editor
application 706 receives the generic template file 800A, the
editor application 706 can update the generic presentation
string in the generic template file 800A, thereby creating an
updated version of the generic template file 800A.
0106 The updated version of the generic presentation
string can differ from the earlier version of the presentation
string in various ways. For example, the updated version of
the generic presentation String can be renderable to present an
updated version of the unfilled template. In this example, the
slots of the updated version of the unfilled template may be
different that the slots of the earlier version of the unfilled
template. In another example, the updated version of the
unfilled template may include different text or images than
the earlier version of the unfilled template.
0107 Subsequently, the web server 210 receives a save
request from the editor application (1008). Upon receiving
the save request, the web server 210 uses data in the save
request to store the updated version of the generic template
file 800A in the data storage system 200 (1010). In various
embodiments, the save request comprises various data. For
example, in Some embodiments, the save request comprises a
copy of the updated version of the generic template file 800A.
In this example, the web server 210 copies the updated ver
sion of the generic template file 800A to the data storage
system 200. In another example, the save request comprises
data that indicate differences between the initial version of the
generic template file 800A and the updated version of the
generic template file 800A. In this example, the web server
210 uses the differences to recreate the updated version of the
generic template file 800A. In this example, the web server
210 then stores the recreated updated version of the generic
template file 800A in the data storage system 200.
0108. After receiving the save request, the conversion sys
tem 802 uses the edited version of the generic template file
800A to generate an updated version of the template module
206A (1012). In some instances, the web server 210 replaces
an earlier version of the template module 206A in the data
storage system 200 with the updated version of the template
module 206A.

0109 Various embodiments of the conversion system 802
generate the updated version of the template module 206A in
various ways. FIG. 11, described in detail below, illustrates
one example way that the conversion system 802 can generate
the updated version of the template module 206A. Readers
will understand that the conversion system 802 can perform
other operations to generate the updated version of the tem
plate module 206A.
0110. At some time after the conversion system 802 gen
erates the updated version of the template module 206A, the
web server 210 receives a template request from the client
application 110 (1014). The template request comprises a
request for the template module 206A. In response to receiv
ing the template request, the web server 210 sends the
updated version of the template module 206A to the client
application (1016). The client application 110 can then use
the updated version of the template module 206A to generate
presentation strings renderable to present filled templates.
Slots in the unfilled template are replaced by data in the filled
templates.
0111. In an alternate embodiment, the editor application
706 converts the updated version of the generic template file

US 2012/0102386 A1

800A to a template module. In this example, the save request
can comprise the template module.
0112 FIG. 11 is a flowchart illustrating an example trans
formation operation 1100 to generate a template module from
a generic presentation string. After the operation 1100 starts,
the conversion system 802 parses the generic presentation
string to find different kinds of logical sections. In one
embodiment these sections are delimited by several string
tokens that are recognized by the conversion system 802.
Different kinds of logical sections that might be recognized
include, but are not limited to conditional logic, looping logic,
variable declarations, data binding expressions, rendering
expressions, other metadata or information about the tem
plate module logic and literal presentation content (1102).
0113. In this example, the logical sections belong to a
plurality of types. For example, sections associated with vari
able declaration, conditional logic choices or data structure
looping can be treated as one type, sections associated with
data binding or data rendering expressions can be treated as
another type, and literal content sections can be treated as yet
another type. Each section type is associated with a different
output operation. The output operations generate output
strings based on content of the section.
0114. After the conversion system 802 generates the logi
cal sections, the conversion system 802 invokes the transfor
mation and output operation of the each of the sections
(1104).
0115 The logical section content strings can be static
strings or script strings. Static strings do not include instruc
tions evaluated during the execution of the template module
206A. For example, "-table>' can be a static string. Script
strings are evaluated during the execution operation of the
template module 206A.
0116. After transforming the logical sections, the conver
sion system 802 generates the output strings (1106). The
conversion system 802 writes the logical section output
strings to the template module 206A (1108). When the tem
plate execution operation of the template module 206A is
invoked, the template module 206A generates a presentation
string by evaluating the script strings in the logical sections
associated with variable declaration, conditional choices and
looping to control the template execution logic and the sec
tions associated with data binding and rendering are executed
to retrieve the data elements from the content resources and
combine them with the static literal content string sections.
The template module 206A then combines the resulting
strings into the filled template presentation string. For
example, the following may be a portion of a databinding and
rendering expression section:
<H2> Title: +SurlHtmlEncode(ctX.CurrentItem"Title')+

* </H2s.
In this example, the template module 206A can evaluate the
databinding and rendering expression and find the “Title'
content resource object of the current context object and
generate the presentation String by combining its value with
the literal presentation content strings. The client application
110 can render this string to show an H2 element containing
the text “Title: Sales Figures 2009 as header content recog
nized as level 2.
0117 FIG. 12 is a flowchart illustrating an example opera
tion 1150 of the editor application 706. The example of FIG.
12 is explained with reference to the template module 206A
and the generic template file 800A. Readers will understand
that the server system 102 can perform similar operations

Apr. 26, 2012

with regard to other ones of the template modules 206 and
other ones of the generic template files 800.
0118. After the operation 1150 starts, the editor applica
tion 706 starts (1152). In various embodiments, the editor
application 706 starts in response to various events. For
example, in some embodiments, the editor application 706
starts in response to input from the admin 708.
0119. After the editor application 706 starts, the editor
application 706 sends a generic template request to the web
server 210 (1154). The presentation data request comprises a
request for the generic template file 800A. After sending the
generic template request to the web server 210, the editor
application 706 receives the generic template file 800A from
the server system 102 (1156).
I0120 In various embodiments, the generic template
request conforms to various communication protocols. For
example, in some embodiments, the generic template request
conforms to the WebDAV protocol. In another example, the
generic template request conforms to the File Transfer Pro
tocol, the HTTP protocol, or another communication proto
col.
I0121. After receiving the generic template file 800A, the
editor application 706 renders the generic presentation string
in the generic template file 800A to present an unfilled tem
plate (1158). During the time that the editor application 706
displays the unfilled template, the editor application 706
receives input from the admin 704 to edit the unfilled template
(1160). For example, the editor application 706 can receive
input to add, remove, reposition, or resize slots in the unfilled
template. In another example, the editor application 706 can
receive input to add Static text, images, tables, or formatting to
the unfilled template.
I0122) Subsequently, the editor application 706 receives
save input from the admin 704 (1162). In response to receiv
ing the save input, the editor application 706 sends a save
request to the web server 210 (1164). As described above, one
or more systems within the server system 102 will process the
data in the save request to store the updated version of the
generic template file 800A in the data storage system 200.
I0123 FIG. 13 is a screen illustration showing a browser
window 1200 containing an example search interface 1202
presented by the client device 104. The user 108 uses one or
more search interfaces such as the search interface 1202 to
search for resources in the website 112. The search interfaces
enable the user 108 to enter search strings and submit search
requests. The search requests comprise requests for lists of
resources in the website 112 that satisfy the search strings.
After receiving and accepting a search request, the server
system 102 provides a dataset to the client device 104. The
dataset includes data regarding the resources that satisfy the
search String of the search request.
0.124. As illustrated in the example of FIG. 13, the search
interface 1202 includes a textbox 1204 into which the user
108 can enter a search string. The search interface 1202 also
includes a submit button 1206. The user 108 can select the
submit button 1206 to provide a search request to the server
system 102. The search request specifies the search String
entered in the textbox 1204. As illustrated in the example of
FIG. 13, the search interface 1202 can also include other
features 1208. Such as a title, text, images, and so on. Further
more, as illustrated in the example of FIG. 13, presentation of
the search features (i.e., the textbox 1204 and the submit
button 1206) of the search interface 1202 may not be the
primary purpose of the search interface 1202. Alternatively, a

US 2012/0102386 A1

search request can be preconfigured and stored in the system
instead of being directly submitted by the user 108.
0125 FIG. 14 is a block diagram illustrating example
components of an alternate embodiment of the server system
102. As illustrated in the example of FIG. 14, the server
system 102 comprises the data storage system 200 and the
web server 210. Although not illustrated in the example of
FIG.14 for the sake of clarity, the data storage system 200 can
store the content resources 202, the metadata 204, the tem
plate modules 206, the schema 208, the generic template files
800, and other data. Furthermore, the server system 102 can
provide the conversion system 802.
0126. In addition to the data storage system 200 and the
web server 210, the server system 102 provides a search
system 1300. The web server 210 and the search system 1300
can be provided by the same or different computing devices
within the server system 102. The server system 102 can
provide the search system 1300 by executing instructions
Stored on one or more computer storage media.
I0127. The search system 1300 accesses a data storage
system 1302. The data storage system 1302 comprises one or
more computer storage media. In some embodiments, the
computer storage media in the data storage system 1302 are
geographically dispersed. In other embodiments, the com
puter storage media in the data storage system 1302 are
located within a single device or data center. Furthermore, in
some embodiments, the data storage system 1302 is part of
the data storage system 200, or vice versa.
0128. The data storage system 1302 stores a content index
1304, an admin database 1306, and a result type cache 1308.
The content index 1304 comprises data structures for storing
a set of entries. Each of the entries in the content index 1304
stores properties of different ones of the content resources
202. The admin database 1306 comprises data structures that
Store information regarding result types.
0129 FIG. 15 illustrates example contents of the content
index 1304 and example contents of the admin database 1306.
As illustrated in the example of FIG. 15, the content index
1304 comprises a table having rows 1400A-C (collectively,
“rows 1400") and columns 1402A-G (collectively, “columns
1402). The rows 1400 and the columns 1402 define an array
of cells. The cells in each of the rows 1400 correspond to a
different entry in the content index 1304. The rows 1400
include entries for the content resources 202. For example,
the row 1400A corresponds to a particular resource and the
row 1400B corresponds to another resource. It will be appre
ciated that the content index 1304 can include more or fewer
than three entries. The ellipses in the example of FIG. 15
indicate that the content index 1304 can include additional
rows. Alternatively, the content index may store the data and
resources in a format that does not correspond to a table, and
will return collections of content resources 202 by accessing
that data store to return content resource objects.
0130. Each of the columns 1402 corresponds to a different
property. In the example of FIG. 15, the columns 1402A-G
correspond to an "identifier property, a “name” property, a
"storage location” property, a "date created” property, a “date
modified property, and a "snippet property, and an “author
property, respectively. Other embodiments of the content
index 1304 include columns for more, fewer, or different
properties.
0131. As illustrated in the example of FIG. 15, the admin
database 1306 includes a table having rows 1404A-C (collec
tively, "rows 1404") and columns 1406A-G (collectively,

Apr. 26, 2012

“columns 1406”). The rows 1404 and the columns 1406
define an array of cells. The cells in each of the rows 1404
correspond to a different result type. For example, the row
1404A corresponds to one result type and the row 1404B
corresponds to a different result type. Each of the columns
1406 corresponds to different data element properties of the
result types. In the example of FIG. 15, the columns 1406A-F
correspond to an "identifier” property, a “name” property, a
"description' property, a "rule' property, a “template mod
ule' property, a "priority property, and an “applicable prop
erties” property, respectively. The values for the “rule” prop
erty in column 1406D specify rules that define which
resources belong to a result type. The values for the “template
module” property in column 1406E identify one of the tem
plate modules 206 corresponding to the result types. Other
embodiments of the admin database 1306 include columns
for more, fewer, or different properties.
(0132) Continuing reference is now made again to the
example of FIG. 14. In addition to the data storage system
1302, the search system 1300 provides a type management
module 1310 and a search module 1312. The search system
1300 can provide the type management module 1310 and the
search module 1312 by reading computer-executable instruc
tions from one or more computer-readable media and execut
ing the computer-executable instructions. The type manage
ment module 1310 creates, edits, and deletes at least some of
the result type entries in the admin database 1306 in response
to the administrative input from the admin 704. For example,
the type management module 1310 can, in response to receiv
ing the administrative input from the admin 704, change a rule
of a result type or change which of the template modules 206
corresponds to a result type. By causing the type management
module 1310 to create, edit, or delete result type entries in the
admin database 1306, the admin 704 can configure search
result interfaces in the website 112 to display information
about different types of search results in different ways.
0133. The search module 1312 receives the search
requests from the user 108. The user 108 can submit the
search requests using search interfaces, such as the search
interface 1202. Upon receiving from the client device 104 a
search request for resources in the website 112 that satisfy a
search string, the search module 1312 accesses entries in the
admin database 1306 to retrieve the rule properties of the
result types. Some embodiments use the result type cache
1308 to accelerate retrieval of the properties of the result types
from the admin database 1306. Upon receiving the rules of the
result types, the search module 1312 uses the content index
1304 to identify ones of the content resources 202 in the
website 112 that satisfy conditions specified by the search
string. The search module 1312 retrieves, for each of the
result types, the properties of the identified resources needed
to evaluate the rules of the result types.
0134. The search module 1312 evaluates the rules of the
result types against the retrieved properties of the identified
resources to determine result types of the identified resources.
The search module 1312 can use various algorithms to evalu
ate the rules. For example, the search module 1312 can be
implemented as a forward-chaining rules engine.
I0135) After determining that a given resource belongs to a
given result type, the search module 1312 generates a content
resource object belonging to a type that corresponds to the
given result type's template module. The given resource's
content resource object includes each applicable data element
property of the given resource. The given resource's appli

US 2012/0102386 A1

cable properties are the properties of the identified resource
that are applicable to the identified resource's result type. For
example, if the “applicable properties' property 1406G of
identified resource's result type designates the "snippet”
property 1402F, the identified resource's data element
includes the identified resource's "snippet” property.
0136. After generating data elements for each of the iden

tified resources, the search module 1312 sends a dataset to the
client device 104. The dataset includes the rows and their data
element for the identified resources. In some embodiments
the received data can include schema and template modules
data in the same package with the dataset, in other embodi
ments the schema and template modules may be cached in the
client application or retrieved in a separate step. When the
client device 104 receives the dataset, the client application
110 processes the dataset in the manner described above.
0.137 FIG. 16 illustrates an example scope hierarchy
1500. In some embodiments, the server system 102 hosts
multiple distinct websites. The server system 102 can host
these websites on behalf of a single organization. Alternately,
a service provider entity can operate the server system 102
and the server system 102 can host these websites on behalf of
multiple tenants. Tenants include organizations, such as com
panies, or individuals that arrange with a service provider
entity of the server system 102 for the provider to host web
sites for the tenants. From the point of view of a tenant, the
server system 102 only hosts the tenant's websites and not the
websites of other tenants. In some instances, the server sys
tem 102 can host multiple websites for a single one of the
tenants. In such instances, the tenant can group two or more of
its websites into site groups. The tenant can authorize the
admin 704 to perform administration tasks on one or more of
the tenant's websites, such as the website 112.
0.138. As illustrated in the example of FIG. 16, a tenant
1502 has two site groups 1504A and 1504B (collectively,
“site groups 1504). The site group 1504A includes websites
1506A and 1506B. The site group 1504B includes websites
1506C, 1506D, and 1506E. This document can refer to the
websites 1506A, 1506B, 1506C, 1506D, and 1506E collec
tively as “websites 1506. The website 112 can be one of the
websites 1506.
0.139. The server system 102 can provide multiple admin
interfaces. Each of the admin interfaces has a different scope.
For example, a first admin interface can have a tenant-wide
Scope, a second admin interface can have a site group-wide
Scope, a third admin interface can have a website-wide scope,
and so on. In the example of FIG. 16, the server system 102
can provide an admin interface for the tenant 1502, an admin
interface for the site group 1504A, an admin interface for the
site group 1504B, and separate admin interfaces for each of
the websites 1506. The admin interface for the tenant 1502
enables the admin 704 to configure settings that are generally
applicable to the tenant 1502. The admininterfaces for the site
groups 1504 enable the admin 704 to independently configure
the site groups 1504. The admin interfaces for the websites
1506 enable the admin 704 to independently configure the
websites 1506.

0140. The admin interfaces include type configuration
interfaces. Each type configuration interface is a user inter
face, such as a GUI, that includes features that enable the
admin 704 to configure (e.g., create or modify) result types
applicable within the type configuration interface's scope.
The type configuration interface's scope is the same as the
Scope of the admin interface that includes the type configu

Apr. 26, 2012

ration interface. For example, the admin 704 can use the type
configuration interface within the admin interface for the
website 1506A to configure result types applicable to the
website 1506A. When the admin 704 uses a type configura
tion interface within the admin interface for one of the site
groups 1504, the given result type is applicable to each web
site in the site group. For example, the admin 704 can use the
type configuration interface within the admin interface for the
site group 1504B to configure result types applicable to web
sites in the site group 1504B, but not result types applicable to
websites in the site group 1504A.
0141 FIG. 17 is a flowchart illustrating an example opera
tion 1600 to configure a result type. In the operation 1600, the
type management module 1310 receives template configura
tion input from the admin device 702 (1602). The template
configuration input specifies information about a new or
existing template module. The type management module
1310 updates the template modules 206 in response to the
template configuration input (1604). For instance, the type
management module 1310 can store a new template module
in the data storage system 200 or modify an existing one of the
template modules 206 in the data storage system 200.
0142. In various embodiments, the type management
module 1310 receives the template configuration input in
various ways. For example, in Some embodiments, the type
management module 1310 receives the template configura
tion input from a separate application, such as a web design
Suite or an integrated development environment. In other
embodiments, the type management module 1310 provides
data representing a template configuration interface to the
admin device 702. For example, the type management mod
ule 1310 can provide HTML data, CSS data, scripting data,
and or other types of data that the admin device 702 can render
or interpret to present the template configuration interface to
the admin 704. The template configuration interface includes
features that enable the admin 704 to create a new template
module or edit an existing one of the template modules 206.
0.143 Furthermore, in the operation 1600, the type man
agement module 1310 provides admin interface data to the
admin device 702 (1606). The admin interface data represents
a type configuration interface within an admin interface. For
instance, the admin interface data can represent a type con
figuration interface within an admin interface for the tenant
1502, admin interfaces for the site groups 1504, or admin
interfaces for the websites 1506.

0144. The type configuration interface is a user interface
that enables the admin 704 to configure a given result type. In
various embodiments, the type configuration interface com
prises various types of user interfaces. For example, the type
configuration interface can comprise a GUI that includes
features, such as data entry features, that enable the admin
704 to configure (e.g., create or modify) a given result type. In
another example, the type configuration interface can be a
command line interface, such as a POWERSHELLTM inter
face.

(0145. In various embodiments, the admin interface data
can include various types of data. For example, the admin
interface data can include Hypertext Markup Language
(HTML) data, Cascading Style Sheet (CSS) data, scripting
data, and other types of data. In this example, a web browser
application or another application operating on the admin
device 702 renders or processes the admin interface data to
present the type configuration interface.

US 2012/0102386 A1

0146 FIG. 18 is a screen illustration of a browser window
1700 containing an example type configuration interface
1702. The type management module 1310 can provide the
admin interface data representing the type configuration
interface 1702 to the admin device 702. Abrowser application
running on the admin device 702 renders the admin interface
data to display the type configuration interface 1702. This
document describes features of the example type configura
tion interface 1702 in relation to steps in the operation 1600.
0147 Continuing reference is now made again to the
example of FIG. 17. After providing the admin interface data
to the admin device 702, the type management module 1310
receives name input, description input, and priority input
from the admin 704 (1608). The name input specifies a dis
play name for the given result type. For example, the name
input can specify “Technical Specification Type' or "Side
show Type' as display names for the given result type. The
description input specifies a textual description of the given
result type. For example, the description input can specify
“The Technical Specification Type is used in search result
pages to display information about technical specification
documents.” The priority input specifies a priority for the
given result type. For example, the admin 704 can assign a
priority of “10 to the given result type and assign a priority of
“4” to another result type. The search module 1312 can use
the priorities of the result types to select a result type for a
resource from among multiple result types applicable to the
SOUC.

0.148. In various embodiments, the type management
module 1310 receives the name input, the description input,
and the priority input in various ways. For example, the type
configuration interface 1702 of FIG. 18 includes a display
name feature 1704, a description feature 1705, and a priority
feature 1710. The admin 704 is able to enter a display name
for the given result type in the display name feature 1704. The
admin 704 is able to entera description of the given result type
in the description feature 1705. The admin 704 is able to use
the priority feature 1710 to select a priority level. In addition,
the type configuration interface 1702 includes a save control
1706. When the admin 704 selects the save control 1706, the
admin device 702 provides data entered in the controls of the
type configuration interface 1702 to the type management
module 1310. In this way, the type management module 1310
receives name input specifying the display name entered by
the admin 704 in the display name feature 1704, description
input specifying the description entered by the admin 704 in
the description feature 1705, and priority input specifying the
priority level selected by the admin 704 in the priority feature
1710. In some instances, this document refers to data entered
in a data entry control as data corresponding to the data entry
control.

0149 Reference is made again to the example of FIG. 17.
Furthermore, the type management module 1310 receives
rule input from the admin 704 (1610). The rule input specifies
a rule containing one or more conditions that resources must
satisfy in order to be considered to belong to the given result
type. In various embodiments, the type management module
1310 receives the rule input in various ways.
0150. For example, the type configuration interface 1702
of FIG. 18 includes a rule feature 1708. The admin 704 can
enter a rule for the given result type in the rule feature 1708.
For example, the admin 704 can make the given result type
applicable to resources having a given file name extension by
entering the given file name extension in the rule feature

Apr. 26, 2012

1708. In this example, the admin 704 can enter the file name
extensions “...docx and “...doc' in the rule feature 1708 to
make resources having file name extensions".docx' or “...doc
belong to the given result type.
0151. In another example, the admin 704 can enter one or
more URL patterns in the rule feature 1708. For example, the
admin 704 can enter the URL pattern “/docs/spec in the
rule feature 1708. In this example, resources having URLs
that start with the sub-string"/docs/spec can belong to the
given result type. Use of URL patterns as conditions in a rule
for a result type can be helpful when an entity uses particular
directories or file naming conventions to distinguish different
types of resources. For example, the entity can use a file
naming convention that requires all technical specification
documents to begin with the string “spec' and requires all
invention records to begin with the string “invent.” In this
example, the admin 704 can take advantage of this file naming
convention to associate technical specification documents
and invention records with different result types. This is one
example way that resources having the same file format can
belong to different result types. For instance, a first resource
and a second resource can both be word processor documents,
slide presentation documents, webpages, PDF documents,
spreadsheet documents, images, audio files, video files, or
other types of documents having the same file format, but
belong to different result types.
0152. In other examples, the admin 704 can specify rules
having conditions based on other types of conditions and
combinations of conditions. For example, the admin 704 can
specify a rule having conditions based on creation times, edit
times, titles, or other properties of the content resources 202.
0153. When the admin 704 selects the save control 1706,
the admin device 702 provides the information entered into
the rule feature 1708 to the type management module 1310. In
this way, the type management module 1310 receives rule
input specifying the rule entered by the admin 704 in the rule
feature 1708.

0154 Continuing reference is now made again to FIG. 17.
Furthermore, the type management module 1310 receives
template selection input from the admin 704 (1612). The
template selection input associates the given result type with
one of the template modules 206 stored in the data storage
system 200. In some instances, the template selection input
can indicate the template module that the admin 704 created
or edited in step 1602.
0.155. In various embodiments, the type management
module 1310 receives the template selection input in various
ways. For example, the type configuration interface 1702 of
FIG. 18 includes a template selection control 1712. The
admin 704 is able to enter a URL or other identifier of a
template module in the template selection control 1712. In the
example of FIG. 18, the template selection control 1712 is a
textbox. However, in other embodiments, the template selec
tion control 1712 is a drop box. In such embodiments, the
template selection control 1712 displays a list of names of the
template modules 206. The admin 704 can then select one of
the template modules from among the list of names of the
template modules 206 in the template selection control 1712.
When the admin 704 selects the save control 1706, the admin
device 702 provides template selection input to the type man
agement module 1310. The template selection input indicates
the template module selected in the template selection control
1712 by the admin 704.

US 2012/0102386 A1

0156 Reference is now made again to the example of FIG.
17. The type management module 1310 receives property
selection input from the admin 704 (1614). The property
selection input indicates the applicable properties of the given
result type.
0157. In various embodiments, the type management
module 1310 receives property selection input from the
admin 704 in various ways. For example, the type configura
tion interface 1702 of FIG. 18 includes an available properties
field 1714 and an applicable properties field 1716. The avail
able properties field 1714 contains a list of properties of
resources. The applicable properties field 1716 contains a list
of the applicable properties of the given result type. The
admin 704 can make one of properties listed in the available
properties field 1714 into an applicable property of the given
result type by moving the property from the available prop
erties field 1714 to the applicable properties field 1716.
0158. When the admin 704 selects the save control 1706,
the admin device 702 provides the list of properties in the
applicable properties field 1716 to the type management
module 1310. In this way, the type management module 1310
receives property selection input specifying the applicable
properties of the given result type.
0159. Subsequently, the type management module 1310
stores in the admin database 1306 a new or updated entry for
the given result type (1616). The entry for the given result
type includes a set of properties. These properties include a
name property that specifies the type name indicated by the
name input, a description property that specifies the descrip
tion specified by the description input, a priority property that
specifies the priority level specified by the priority input, a
rule property that specifies a rule indicated by the rule input,
a template property that specifies the template module indi
cated by the template selection input, and an applicable prop
erties property that specifies the properties indicated by the
property selection input.
0160. It should be appreciated that the server system 102
can perform some or all of the operation 1600 multiple times.
As a result, the server system 102 can provide admin interface
data to the admin device 702 multiple times and receive name
input, rule input, priority selection input, template configura
tion input, and template selection input multiple times for
multiple different result types. Thus, by performing at least
some of the operation 1600 multiple times, the admin 704 can
provide administrative input associating a first template mod
ule with a first result type and administrative input associating
a second template module with a second result type. Like
wise, by performing at least some of the operation 1600
multiple times, the admin 704 can provide administrative
input to associate a given name, rule, template module, or
priority with a first result type and then later provide addi
tional administrative input to associate a different name, rule,
template module or priority with the first result type.
0161 FIG. 19 is a flowchart illustrating an example opera
tion 1800 to search for resources in a target website. In the
operation 1800, the search module 1312 receives a search
request from the user 108 (1802). The search request requests
a list of resources in the target website that satisfy a search
string specified by the search request. For ease of explanation,
this document assumes that the target website is the website
112. In some embodiments, the search module 1312 receives
the search request when the user 108 selects the submit button
1206 in the search interface 1202 (FIG. 12).

Apr. 26, 2012

0162 The search string in the search request specifies one
or more conditions. For example, the search request can com
prise the following search string: "Contoso. In this example,
resources associated with the word “Contoso' satisfy the
search String. In another example, the search request can
comprise the following search string: “Contoso and created
before: Jul. 1, 2009. In this example, resources that are
associated with the word “Contoso’ and that were created
before Jul. 1, 2009 satisfy the conditions of the search string.
In various embodiments, the search module 1312 can accept
search Strings conforming to various query formats. For
example, some embodiments of the search module 1312 can
accept search Strings conforming to the Advanced Query
Syntax (AQS).
0163. After receiving the search request, the search mod
ule 1312 retrieves result types from the admin database 1306
(1804). The search module 1312 identifies search results for
the search request (1806). The search results for the search
request are resources of the website 112 that satisfy condi
tions specified by the search String in the search request. For
example, the search module 1312 can determine that a first
resource of the website 112 and a second resource of the
website 112 satisfy the conditions specified by the search
string. In this example, the first resource and the second
resource are search results for the search request.
0164. As discussed above, the server system 102 can host
multiple websites. These websites can be associated with one
or more tenants. In many instances, the search module 1312
does not identify or provide information about resources that
satisfy the search String of the search request but that are not
in the target website for the search request (e.g., the website
112). If the search module 1312 were to provide search results
from websites other than the target website, the user could
become confused, private information could be revealed, or
other negative consequences could occur.
0.165 Various embodiments of the search module 1312
identify search results for the search request in various ways.
For example, the search module 1312 can perform a linear
scan of the content index 1304 to identify the search results.
In another example, the search module 1312 can use another
index to identify the search results.
(0166. After the search module 1312 identifies the search
results for the search request, the search module 1312 iden
tifies result types for each of the search results (1808). To
identify a result type for a search result, the search module
1312 evaluates rules for result types. The result type entries in
the admin database 1306 include properties that specify the
rules for the result types. If the search result satisfies a rule for
a result type, the search result belongs to that result type. To
determine whether a search result satisfies a rule for a result
type, the search module 1312 may need to retrieve one or
more properties of the search result from the content index
1304.

0167. In some instances, a search result can belong to
multiple result types. In other words, the search result can
satisfy the conditions of rules for multiple result types. For
example, search results can belong to a first result type when
the search results have the file name extension "...pptx. Fur
thermore, in this example, search results can belong to a
second result type when the search results have URLs that
include the string “spec. In this example, a particular search
result can have the file name extension".pptx' and have also
have a URL that includes the string “spec.”

US 2012/0102386 A1

0168 Because search results can belong to multiple result
types, the search module 1312 performs conflict resolution
operations as needed to select one result type for the search
results from among the multiple applicable result types
(1810). In various embodiments, the search module 1312 can
perform various conflict resolution operations to select a par
ticular one of the result types for the search result. For
example, the search module 1312 can perform a conflict
resolution operation that involves hierarchical collections of
websites. As described above, the server system 102 can host
multiple websites 1506 for the tenant 1502. In this example,
the tenant 1502 has grouped the websites 1506 into the site
groups 1504. Furthermore, in this example, result types asso
ciated with elements lower on the scope hierarchy 1500 take
precedence in the conflict resolution operation over relatively
higher elements in the scope hierarchy 1500. For instance, the
admin 704 can specify that the scope of a first result type is the
website 1506A and can specify that the scope of a second
result type is the site group 1504A. In this instance, if a search
result belongs to both the first result type and the second result
type, the conflict resolution operation chooses the first result
type for the search result instead of the second result type
because the first result type is associated with a lower element
in the scope hierarchy 1500.
0169. In another example conflict resolution operation,
the admin 704 can assign numerical priorities to result types.
For instance, the admin 704 can assign a priority of “10 to a
first result type and a priority of “4” to a second result type. In
this instance, a search result can satisfy the rules for the first
result type and the second result type. However, the conflict
resolution operation assigns the first result type to the search
result and not the second result type because the first result
type has a higher priority number than the second result type.
In yet another example conflict resolution operation, the
search module 1312 chooses the result type that was created
earlier or listed earlier in the content index 1304.

0170 After identifying the result types, the search module
1312 retrieves applicable properties of the search results from
the content index 1304 (1812). The applicable properties of a
search result are properties of the search result designated as
the applicable properties of the search result's result type. For
example, the search result's result type can designate a
“URL property and a “Snippet” property as applicable prop
erties. In this example, the search module 1312 retrieves the
value of the “URL property and the value of the “Snippet”
property from the search result's entry in the content index
1304.

0171 After the search module 1312 retrieves the appli
cable properties of the search result, the search module 1312
generates a dataset and sends the dataset to the client device
104 (1814). The dataset includes result data for at least some
of the identified search results. The result data for a search
result includes the applicable properties of the search result.
0172. After the search module 1312 provides the dataset to
the client device 104, the web server 210 receives requests
from the client device 104 for the template modules 206 that
correspond to the types of content resource objects in the
dataset (1816). In response to the requests, the web server 210
retrieves the template modules from the data storage system
200 and sends the template modules to the client device 104
(1818). After the client device 104 receives the template mod
ules, the client application 110 performs the content genera
tion Script. Performance of the content generation script
causes the template execution operations of the template

Apr. 26, 2012

modules to be performed on content resource objects in the
dataset, thus generating presentation strings for different ones
of the identified resources. The client application 110 renders
the presentation strings for the search results to present sets of
on-screen features describing the identified resources.
0173. In some embodiments, the search module 1312 pro
vides the dataset to the client device 104 at the same time as
parts of a larger set of data representing a search result web
page. In other embodiments, the search module 1312 sends
the dataset to the client device 104 separate from a webpage
that contains a listing of the search results. In some Such
embodiments, the search module 1312 can provide the
dataset to the client device 104 using AJAX technology.
0.174. It will be appreciated that the server system 102 can
perform the operation 1800 multiple times. Consequently, the
server system 102 can receive multiple search requests for
multiple webpages and can provide different datasets as a
result of different search strings, changes to result types,
changes to template modules, and various other factors.
0.175 Reference is now made again to the example of FIG.
6. As discussed above, the client application 110 can display
the search results interface 600 after the client application 110
sends a search request to the server system 102 and the client
application 110 receives data from the server system 102
representing the search results interface 600.
(0176 The search results interface 600 includes the filled
template 604 and the filled template 606. The filled template
604 corresponds to a first search result and the filled template
606 corresponds to a second search result. In some instances,
the user 108 can expose filled templates for additional search
results by scrolling the search results interface 600. Further
more, in some instances, search results are paginated across
multiple webpages. In Such instances, the user 108 can expose
additional filled template modules by clicking on a link (not
shown) to a next webpage or performing another action to
expose the filled template modules for additional search
results.
(0177. As illustrated in the example of FIG. 6, the search
results interface 600 presents different information for differ
ent types of search results. Presenting different information
for different types of search results can be advantageous for
several reasons. For example, it might not be useful to provide
a snippet from a slide presentation document because slide
presentation documents might not include text representative
of the content of the slide presentation document. In contrast,
word processor documents are more likely to include text that
is representative of the content of the word processor docu
ments. In this example, it may be more helpful to a user to see
Snippets of word processor documents than slidepresentation
documents. Thus, the ability of the admin 704 to configure the
server system 102 to present different information for differ
ent types of search results in a website may enable users to get
useful information in search result interfaces. Furthermore,
because the admin 704 is able to configure and create result
types and to define which resources belong to particular result
types, the admin 704 may be able to configure the server
system 102 to present information about search results in
ways that are unique to the admin's organization.
0.178 Furthermore, the use of user interfaces, such as
GUIs, to configure the server system 102 may enable less
experienced admins to quickly and cheaply configure the
server system 102 to present different information for differ
ent types of search results. For instance, the admin 704 does
not need to understand or know how to edit XSLT code,

US 2012/0102386 A1

JavaScript, HTML, CSS, C++, Perl, or other formal machine
interpretable code in order to configure the server system 102
to provide different information for different types of search
results. Rather, the above description explains how the admin
704 can use data entry controls in GUIs to configure the server
system 102. Example data entry controls include textboxes,
drop boxes, check boxes, text area elements, radio buttons,
text areas, buttons, other features of HTML forms, and other
user interface features that enable entry of data.
0179 FIG. 20 is a block diagram illustrating an example
computing device 1900. In some embodiments, the server
system 102, the client device 104, and the admin device 702
are implemented as one or more computing devices like the
computing device 1900. It should be appreciated that in other
embodiments, the server system 102, the client device 104,
and the admin device 702 are implemented using computing
devices having hardware components other than those illus
trated in the example of FIG. 20.
0180. As used herein, the term computer readable media
may include computer storage media and communication
media. As used in this document, a computer storage medium
is a device or article of manufacture that stores data and/or
computer-executable instructions. A computer storage
medium does not consist of transitory signals. Computer
storage media may include Volatile and nonvolatile, remov
able and non-removable devices or articles of manufacture
implemented in any method or technology for storage of
information, such as computer readable instructions, data
structures, program modules, or other data. By way of
example, and not limitation, computer storage media may
include dynamic random access memory (DRAM), double
data rate synchronous dynamic random access memory
(DDR SDRAM), reduced latency DRAM, DDR2 SDRAM,
DDR3 SDRAM, solid state memory, read-only memory
(ROM), electrically-erasable programmable ROM, optical
discs (e.g., CD-ROMs, DVDs, etc.), magnetic disks (e.g.,
hard disks, floppy disks, etc.), magnetic tapes, and other types
of devices and/or articles of manufacture that store data.
Communication media may be embodied by computer read
able instructions, data structures, program modules, or other
data in a modulated data signal. Such as a carrier wave or other
transport mechanism, and includes any information delivery
media. The term “modulated data signal may describe a
signal that has one or more characteristics set or changed in
Such a manner as to encode information in the signal. By way
of example, and not limitation, communication media may
include wired media such as a wired network or direct-wired
connection, and wireless media Such as acoustic, radio fre
quency (RF), infrared, and other wireless media.
0181. In the example of FIG. 20, the computing device
1900 comprises a memory 1902, a processing system 1904, a
secondary storage device 1906, a network interface card
1908, a video interface 1910, a display unit 1912, an external
component interface 1914, and a communications medium
1916. The memory 1902 includes one or more computer
storage media capable of storing data 1918 and/or computer
executable instructions 1920.

0182. The secondary storage device 1906 includes one or
more computer storage media. The secondary storage device
1906 stores data 1922 and computer-executable instructions
1924 not directly accessible by the processing system 1904.
In other words, the processing system 1904 performs an I/O
operation to retrieve data and/or software instructions from
the secondary storage device 1906.

Apr. 26, 2012

0183 The processing system 1904 includes one or more
processing units. A processing unit is a physical device or
article of manufacture comprising one or more integrated
circuits that read data and instructions from computer read
able media, such as the memory 1902 and the secondary
storage device 1906, and selectively execute the instructions.
In various embodiments, the processing system 1904 is
implemented in various ways. For example, the processing
system 1904 can be implemented as one or more processing
cores. In another example, the processing system 1904 can
comprise one or more separate microprocessors. In yet
another example embodiment, the processing system 1904
can comprise an application-specific integrated circuit
(ASIC) that provides specific functionality. In yet another
example, the processing system 1904 provides specific func
tionality by using an ASIC and by executing computer-ex
ecutable instructions.

0.184 The network interface card 1908 is a device or
article of manufacture that enables the computing device
1900 to send data to and receive data from a communication
network. In different embodiments, the network interface
card 1908 is implemented in different ways. For example, the
network interface card 1908 can be implemented as an Eth
ernet interface, a token-ring network interface, a fiber optic
network interface, a wireless network interface (e.g., Wi-Fi,
WiMax, etc.), or another type of network interface.
0185. The video interface 1910 enables the computing
device 1900 to output video information to the display unit
1912. The display unit 1912 can be various types of devices
for displaying video information, Such as a cathode-ray tube
display, an LCD display panel, a plasma screen display panel,
a touch-sensitive display panel, an LED screen, or a projector.
The video interface 1910 can communicate with the display
unit 1912 in various ways, such as via a Universal Serial Bus
(USB) connector, a VGA connector, a digital visual interface
(DVI) connector, an S-Video connector, a High-Definition
Multimedia Interface (HDMI) interface, or a DisplayPort
COnnectOr.

0186 The external component interface 1914 enables the
computing device 1900 to communicate with external
devices. For example, the external component interface 1914
can be a USB interface, a FireWire interface, a serial port
interface, a parallel port interface, a PS/2 interface, and/or
another type of interface that enables the computing device
1900 to communicate with external devices. In various
embodiments, the external component interface 1914 enables
the computing device 1900 to communicate with various
external components, such as external storage devices, input
devices, speakers, modems, media player docks, other com
puting devices, Scanners, digital cameras, and fingerprint
readers.

0187. The communications medium 1916 facilitates com
munication among the hardware components of the comput
ing device 1900. In the example of FIG. 20, the communica
tions medium 1916 facilitates communication among the
memory 1902, the processing system 1904, the secondary
storage device 1906, the network interface card 1908, the
video interface 1910, and the external component interface
1914. The communications medium 1916 can be imple
mented in various ways. For example, the communications
medium 1916 can comprise a PCI bus, a PCI Express bus, an
accelerated graphics port (AGP) bus, a serial Advanced Tech
nology Attachment (ATA) interconnect, a parallel ATA inter

US 2012/0102386 A1

connect, a Fiber Channel interconnect, a USB bus, a Small
Computing system Interface (SCSI) interface, or another type
of communications medium.
0188 The memory 1902 stores various types of data and/
or software instructions. For instance, in the example of FIG.
12, the computer-executable instructions 1920 in the memory
1902 can include Basic Input/Output System (BIOS) instruc
tions 1926 and operating system instructions 1928. Execution
of the BIOS instructions 1926 by the processing system 1904
causes the computing device 1900 to boot up. Execution of
the operating system instructions 1928 causes the computing
device 1900 to provide an operating system that coordinates
the activities and sharing of resources of the computing
device 1900. Furthermore, the memory 1902 stores applica
tion software 1930. Execution of the application software
1930 by the processing system 1904 causes the computing
device 1900 to provide one or more applications. The
memory 1902 also stores data 1918. The data 1918 is data
used by programs that execute on the computing device 1900.
(0189 The various embodiments described above are pro
vided by way of illustration only and should not be construed
as limiting. Those skilled in the art will readily recognize
Various modifications and changes that may be made without
following the example embodiments and applications illus
trated and described herein. For example, the operations
shown in the figures are merely examples. In various embodi
ments, similar operations can include more or fewer steps
than those shown in the figures. Furthermore, in other
embodiments, similar operations can include the steps of the
operations shown in the figures in different orders. Although
the Subject matter has been described in language specific to
structural features and/or methodological acts, it is to be
understood that the subject matter defined in the appended
claims is not necessarily limited to the specific features or acts
described above. Rather, the specific features and acts
described above are disclosed as example forms of imple
menting the claims.

1. A method for enabling users to configure user interfaces,
the method comprising:

storing a first generic presentation string, the first generic
presentation string being renderable to present a first
unfilled template, the first unfilled template including
one or more slots;

generating, at a server system, a first template module from
the first generic presentation string, the first template
module specifying a first template execution operation,
the first template execution operation generating presen
tation strings for content resource objects belonging to a
first content resource object type, the presentation
Strings for the content resource objects belonging to the
first content resource object type being renderable to
present filled templates,

wherein, in the filled templates, databased on the content
resource objects belonging to the first content resource
object type replace the one or more slots in the first
unfilled template:

sending the first template module to a client application;
sending a dataset to the client application, the dataset

including one or more collections of content resource
objects belonging to the first content resource object
type; and

sending a content generation script to the client applica
tion, performance of the content generation script caus

Apr. 26, 2012

ing the first template execution operation to be per
formed on the first content resource object.

2. The method of claim 1, further comprising: receiving the
first generic presentation string from a WYSIWYG editor
application.

3. The method of claim 2,
wherein the first template module is a current version of the

first template module and the first generic presentation
String is a current version of the first generic presentation
string; and

wherein the method further comprises:
sending an earlier version of the first generic presenta

tion string to the WYSIWYG editor application prior
to receiving the current version of the first generic
presentation string from the WYSIWYG editor appli
cation, the earlier version of the first generic presen
tation string defining an earlier version of the first
unfilled template; and

replacing an earlier version of the first template module
with the current version of the first template module
after generating the current version of the first tem
plate module.

4. The method of claim3, wherein the earlier version of the
first generic presentation string is renderable to produce an
earlier version of the first unfilled template, the earlier version
of the first unfilled template having a different set of slots than
the current version of the first unfilled template.

5. The method of claim 2,
wherein the first generic presentation string conforms to a

Hypertext Markup Language (HTML); and
wherein the first template module specifies the first con

Version operation as a set of JavaScript instructions.
6. The method of claim 1, further comprising:
receiving a request from the client application for a user

interface; and
sending base resource data to the client application in

response the request, the base resource data comprising
the content generation script.

7. The method of claim 6, further comprising:
receiving a dataset request from the client application after

sending the base resource data to the client application,
the dataset request requesting the dataset;

sending the dataset to the client application in response to
the dataset request;

receiving a template request from the client application
after sending the dataset to the client application, the
template request requesting the first template module:
and

sending the first template module to the client application
in response to the template request.

8. The method of claim 7, wherein the method further
comprises:

prior to receiving the template request, sending a schemato
the client application, the schema specifying allowable
content resource object types in the dataset, the schema
mapping at least some of the allowable content resource
object types to template modules, the schema mapping
the first content resource type to the first template mod
ule; and

wherein performance of the content generation script
causes the first template module to be identified, based
on the schema mapping the first content resource object
type to the first template module, as corresponding to the
first content resource object, performance of the content

US 2012/0102386 A1

generation script further causing the first template mod
ule to be requested from the server system.

9. The method of claim 1, further comprising:
storing, at a data storage system, the first generic presen

tation string in a generic template file; and
storing, at the data storage system, the first template mod

ule in a template module file.
10. The method of claim 9,
wherein the first template module is a current version of the

first template module; and
wherein storing the template module file in the first tem

plate module comprises replacing an earlier version of
the first template module with the current version of the
first template module.

11. The method of claim 1, further comprising:
storing a second generic presentation string, the second

generic presentation string being renderable to present a
second unfilled template, the second unfilled template
including one or more slots, the slots of the second
unfilled template being different than the slots of the first
unfilled template:

storing a second template module, the second template
module specifying a second template execution opera
tion, the second template execution operation generating
presentation strings for content resource objects belong
ing to a second content resource object type, wherein in
filled templates based on the second template module,
databased on the content resource objects belonging to
the second content resource object type replace the slots
of the second unfilled template:

wherein the dataset includes a second content resource
object, the second content resource object belonging to
the second content resource object type; and

wherein performance of the content generation script
causes the second template execution operation to be
performed on the second content resource object.

12. The method of claim 10, wherein generating the first
template module from the first generic presentation string
comprises:

parsing the first generic presentation string to locate logical
sections within the first generic presentation String;

invoking a transformation and output operation for each of
logical section, the transformation and output operation
generating an output string, the output operation gener
ating the output string at least in part by transforming the
content of the logical sections in the generic presentation
String:

writing the output string to the first template module.
13. The method of claim 1,
wherein the first generic presentation String defines sizes

and positions of the slots in the first unfilled template,
Surrounding fixed text, and metadata and information
about presentation and template module logic;

wherein the first unfilled template includes fixed text; and
wherein each of the filled templates based on the first

template module include the fixed text and rendered data
based on the template module logic.

14. A computing device comprising:
a processing system that reads computer-executable

instructions from one or more computer readable media
and executes the computer-executable instructions,
execution of the computer-executable instructions caus
ing the computing device to:

17
Apr. 26, 2012

store a generic presentation String, the generic presenta
tion string conforming to a presentation language, the
generic presentation string being renderable to
present an unfilled template, the unfilled template
including one or more slots;

generate a template module from the generic presenta
tion string, the template module specifying a template
execution operation, the template execution operation
generating presentation strings for content resource
objects belonging to a given content resource object
type, the presentation strings generated by the tem
plate execution operation conforming to the presen
tation language, the presentation strings generated by
the template execution operation being renderable to
present filled templates,
wherein the one or more slots in the unfilled template

are replaced in the filled templates with databased
on the content resource objects belonging to the
given content resource object type;

send base resource data to a client application in
response to a resource request from the client appli
cation, the resource request comprising a request for a
user interface, the base resource data comprising a
content generation script; and

send a dataset to the client application, the dataset
including a given content resource object, the given
cent resource object belonging to the given content
resource object type, performance of the content gen
eration script causing the template execution opera
tion to be performed on the given content resource
object.

15. The computing device of claim 14, wherein the com
puting device sends the dataset to the client application in
response to the resource request.

16. The computing device of claim 14,
wherein execution of the computer-executable instructions

by the processing system further causes the computing
device to:

send an earlier generic presentation string to an editor
application in response to a generic template request
from the editor application, the generic template
request requesting the generic presentation string, the
earlier generic presentation string being an earlier
version of the generic presentation string;

receive a save request from the editor application; and
store the current version of the generic presentation

string to a data storage system in response to receiving
the save request from the editor application.

17. The computing device of claim 16, wherein the editor
application is a WYSIWYG editor application capable of
rendering the generic presentation string to present the
unfilled template and to edit the generic presentation String in
response to edits to the unfilled template.

18. The computing device of claim 16, wherein the generic
presentation string is renderable to present a current unfilled
template and the earlier generic presentation string is render
able to present an earlier unfilled template, the current
unfilled template including one or more slots not present in
the earlier unfilled template.

19. The computing device of claim 16, wherein the generic
presentation string is renderable to present a current unfilled
template and the earlier generic presentation string is render

US 2012/0102386 A1
18

able to present an earlier unfilled template, the current
unfilled template including text oran image not present in the
earlier unfilled template.

20. A computer storage medium that stores computer-ex
ecutable instructions, the computer storage medium not con
sisting of transitory signals, execution of the computer-ex
ecutable instructions by a processing system of a computing
device causing the computing device to:

send a first version of a generic presentation string to an
editor application in response to a request from the edi
tor application for the generic presentation string, the
first version of the generic presentation string being
renderable by the editor application to present a first
unfilled template, the first unfilled template including
one or more slots;

receive a save request from the editor application;
store a second version of the generic presentation String to

a data storage system in response to receiving the save
request from the editor application, the second version
of the generic presentation String being renderable to
present a second unfilled template, the second unfilled
template being different than the first unfilled template:

generate a template module from the second version of the
generic presentation string, the template module speci
fying a template execution operation, the template

Apr. 26, 2012

execution operation generating presentation Strings for
content resource objects belonging to a given content
resource object type, the presentation strings generated
by the template execution operation being renderable to
present filled templates,
wherein the one or more slots in the second unfilled

template are replaced in the filled templates with data
based on the content resource objects belonging to the
given content resource object type;

send base resource data to a client application in response
to a resource request from the client application, the
resource request requesting a user interface, the base
resource data comprising a content generation Script;
and

send a dataset to the client application, the dataset includ
ing a given content resource object, the given content
resource object belonging to the given content resource
object type, performance of the content generation script
causing the template execution operation to be per
formed on the given content resource object, thereby
generating a presentation string renderable by the client
application to present a filled template to a user of the
client application.

