发明名称
制剂设定机构和使用该机构的方法

摘要
本发明涉及用于药物输送设备的制剂设定机构和使用该机构的方法。所述机构包括药物输送设备主体(17)，至少部分地定位在壳体(17)中并且在设定剂量和输送剂量时可旋转的剂量调节套管(9)，在设定剂量时可旋转并且在输送剂量时不可旋转的离合器(13)，以及离合器螺母(15)，所述离合器螺母与离合器(13)螺纹啮合并且用花键与壳体(17)配合以防止离合器螺母(15)旋转。
1. 一种用于药物输送设备的剂量设定机构，所述机构包括：
药物输送设备壳体 (17)；
至少部分地定位在所述药物输送设备壳体 (17) 中并且在设定剂量和输送剂量时旋转
的剂量调拨套管 (9)，
在设定剂量时旋转并且在输送剂量时不可旋转的离合器 (13)；和
离合器螺母 (15)，所述离合器螺母与离合器 (13) 螺纹啮合并且用花键与壳体 (17) 配
合以防止所述离合器螺母 (15) 旋转。
2. 根据权利要求 1 所述的机构，其中所述离合器螺母 (15) 可释放地联接于剂量调拨套
管 (9) 从而防止离合器螺母 (15) 和剂量调拨套管 (9) 之间在至少一个旋转方向上的相对
旋转。
3. 根据前述权利要求中的任一项所述的机构，其中从剂量零至预定最小剂量，所述离
合器螺母 (15) 通过互相作用的花键或通过单方向联接 (11, 17') 或棘齿固定于所述剂量调
拨套管 (9)。
4. 根据权利要求 3 所述的机构，其中所述离合器螺母 (15) 与剂量调拨套管 (9) 以棘齿
接合，从而使剂量调拨套管 (9) 仅在单方向上旋转。
5. 根据前述权利要求中的任一项所述的机构，其中从大于预定最大剂量的剂量，所述
离合器螺母 (15) 通过互相作用的花键或通过单方向联接 (11, 17') 须棘齿固定于所述剂量
调拨套管 (9)。
6. 根据前述权利要求中的任一项所述的机构，其中所述离合器螺母 (15) 通过挠性拨
爪 (19) 与离合器 (13) 螺纹啮合。
7. 根据前述权利要求中的任一项所述的机构，还包括用于开始和 / 或执行设定剂量的
注射的剂量按钮 (30)，其中在剂量大于已设定的预定最小剂量情况下，按压剂量按钮 (30)
时离合器螺母 (15) 不与剂量调拨套管 (9) 啮合。
8. 根据前述权利要求中的任一项所述的机构，还包括用于开始和 / 或执行设定剂量的
注射的剂量按钮 (30)，其中在剂量小于已设定的预定最大剂量情况下，按压剂量按钮 (30)
时离合器螺母 (15) 不与剂量调拨套管 (9) 啮合。
9. 根据前述权利要求中的任一项所述的机构，其中如果设定剂量是从零至小于预定最
小剂量的话，那么在试图进行剂量输送时所述剂量调拨套管 (9) 是不可旋转的而且在远端
方向上的移动被锁定。
10. 根据前述权利要求中的任一项所述的机构，其中如果设定剂量超出预定最大剂量，
那么在试图进行剂量输送时所述剂量调拨套管 (9) 是不可旋转的而且在远端方向上的移
动被锁定。
11. 一种输送至少预定最小剂量的药剂的方法，包括
相对于设备壳体 (17) 在第一方向上旋转剂量调拨套管 (9)，其中剂量调拨套管 (9) 与
离合器螺母 (15) 以棘齿接合；
防止离合器螺母 (15) 相对于壳体 (17) 的旋转；以及
当设定了从零至小于预定最小剂量的剂量和 / 或超出预定最大剂量的剂量时，防止剂
量调拨套管 (9) 通过离合器螺母 (15) 在与第一方向相反的第二方向上的旋转。
12. 一种输送至少预定最小剂量的药剂的方法，包括
相对于设备壳体 (17) 在第一方向上旋转剂量调拨套管 (9)，其中剂量调拨套管 (9) 与
离合器螺母 (15) 以棘齿接合。

在设定剂量时，相对于剂量调拨套管 (9) 在轴向远端方向上移动离合器螺母 (15)；
当剂量超出预定最小剂量且已设定时，使离合器螺母 (15) 与剂量调拨套管 (9) 分开；
以及
按压剂量按钮 (30) 以输送剂量。
剂量设定机构和使用该机构的方法

技术领域
[0001] 本专利申请主要涉及用于药物输送设备的剂量设定机构以及使用该机构的方法，所述药物输送设备控制最小和 / 或最大剂量设定，例如通过设定和 / 或输送至少是预定最小剂量的药剂。具体地，本专利申请主要涉及药物输送设备，例如当治疗要求患者接受至少特定药剂的某一最小剂量且不超过某一最大剂量的笔型药物输送设备。这种设备用于来自多剂量药筒的药物产品的自行给药并且包括用于设定最小和 / 或最大剂量的剂量限制机构。本申请可应用于一次性使用类型的以及可重复使用类型的药物输送设备。但是，本发明的各个方面也可等同地适用于其它情况。

背景技术
[0002] 通常使用药剂可变的注射设备输送自行给药的可注射药剂。从 W02004/078239A1 中已知这种设备。在注射之前，根据设定剂量和 / 或目前的身体情况或期望的未来身体情况，使用者选择他们所需的剂量。典型的例子是用于糖尿病患者的胰岛素输送，其中患者的剂量依照他们的设定剂量和他们所期望的食物摄入量以及活动水平来确定。典型地，这种设备允许使用者可以从 1 单位直到设备所能输送的最大单位选择任何剂量，对于手动设备例如笔型或注射器注射设备来说，典型的剂量是 60 单位或 80 单位。

[0003] W02004/078239A1 的药物输送设备包括壳体，所述壳体用于容纳剂量设定机构、药筒、具有剂量调拨手柄的剂量调拨套管、棘爪、驱动套管、用于联接和分离剂量调拨套管和驱动套管的离合器、可旋转活塞杆，以及被按压从而用于注射设定剂量的按钮。W02004/078239A1 中所公开的笔型注射设备的完整描述通过引用并入本文。

发明内容
[0004] 为调拨剂量，使用者旋转剂量调拨手柄。棘爪与离合器装置啮合，驱动套管、棘爪、离合器装置和剂量调拨套管相对于壳体并且相对于活塞杆随着剂量调拨手柄旋转。所调拨的剂量的听觉和触觉反馈由棘爪和离合器装置提供。转矩通过棘爪和离合器装置之间的锯齿传送。

[0005] 剂量调拨套管上的螺旋状凹槽和驱动套管中的螺旋状凹槽具有相同的引线。这使得剂量调拨套管可以由壳体和驱动套管延伸从而以相同速率旋活塞杆。在行程极限，剂量调拨套管上的径向止动件与设置在壳体上的止动件啮合以便进一步阻止移动。由于在活塞杆上的松动和从动螺纹的相反方向，活塞杆的旋转受到阻止。

[0006] 如果使用者无意调拨了超出期望的剂量，笔型注射器允许剂量可以被向下调拨，而不分配药筒中的药物产品。剂量调拨手柄反向旋转。这使得系统反向运转。通过离合器装置传送的转矩使锯齿彼此搭接从而根据所调拨的剂量减少量发出咔哒声。优选地，锯齿这样布置以使每个锯齿的圆周范围对应于单位剂量。

[0007] 当已调拨期望剂量时，使用者接着可通过按下按钮来分配该剂量。这使离合器装置关于剂量调拨套管轴向移动从而促使离合器装置的尖齿 (dog teeth) 脱开。但是离合器
装置关于驱动套管保持旋转键合。剂量调拨套筒和相关联的剂量调拨手柄此时可自由旋转，轴向移动使棘爪的弹性部分变形以保证锯齿在分配期间不能被松开。这样防止了驱动套管关于壳体旋转，虽然它关于壳体仍然可以轴向自由移动。这种变形随后被用于在压力从按钮移除时促使棘爪和离合器沿驱动套管恢复离合器和剂量调拨套管之间的连接。驱动套管的纵向轴向运动使螺纹活塞杆旋转通过壳体插件中的螺纹开口，从而使活塞在药筒中前进。

[0008] 换言之，在注射期间，驱动套管纵向地移动，即仅在轴向方向上。由于驱动套管和活塞杆经由活塞杆外表面上的和驱动套管内表面上的相配的螺纹啮合，驱动套管的纵向移动使得活塞杆旋转。具有螺纹开口的壳体插件被固定在壳体中，即被阻止旋转，所述螺纹开口经由相应的螺纹与活塞杆啮合。因此，旋转的活塞杆被旋拧通过所述壳体插件的螺纹开口，也就是所述活塞杆沿着由所述螺纹开口和所述活塞杆的相配螺纹所限定的螺旋路径执行组合的旋转和纵向运动。

[0009] 一旦已经分配了所调拨的剂量，通过从剂量拨手柄延伸的多个部件与形成在壳体中的相应的多个止动件的接触，阻止剂量调拨套管进一步旋转，进而确定零剂量位置。

[0010] 这样的笔型药物输送设备已经设计和发展为能够由人实施常规注射而无需正式的医学训练。这对具有糖尿病的患者中日益常见，自我治疗使得这样的患者能够对他们的疾病进行有效的管理。因为患者、而不是医疗工作者可能使用这种药物输送设备，因此其中一个重要要求是所述设备在结构上应该是坚固的。在药物输送设备的操作和理解设备的运转的两方面，药物输送设备也必须易于使用。对于需要使用胰岛素溶液自我注射并且每个患者之间甚至每次注射之间的注射的胰岛素的量都不同的糖尿病患者来说这尤其正确。至少为了这个原因，某些糖尿病患者可能需要能够容纳患者精确地并且以最小的灵活性挑战地注射连续测定的相同剂量或者可能不同的预设量的胰岛素溶液的药物输送设备。这提出了更大的设计挑战，因为在某些糖尿病的情况下，使用者可能具有受限的视觉和/或可能是身体衰弱而具有有限的灵活性。

[0011] 除了胰岛素，其它药剂在它们有疗效之前需要输送最小的剂量。容许患者输送有效的小剂量以下的剂量的可变剂量设备，有这种可能性；使用者可能由于剂量计算错误或者误选了错误剂量而输送无效的剂量。同样地，一些药剂要求不能超过最大剂量。这可能是为了安全起见，例如副作用增加的风险或严重性，或是药剂的过度的或者不需要的作用。目前的可变药剂输送设备典型的是具有由输送机构可提供的最大剂量所限制的最大剂量，但是，这未必与药剂的建议或处方最大剂量相关。

[0012] 本发明至少具有两个应用。首先是在限定剂量窗口内必须是可变剂量的单一活性药剂的输送，即所述剂量必须多于某一最小剂量而且必须不超过某一最大剂量。第二个应用涉及组合配方活性药剂的输送中至少一种药剂优选地作为可变剂量输送并且至少另外一种药剂优选地作为固定剂量输送，而且安全地允许该固定剂量在限定剂量窗口内可变，例如标称固定剂量的±10%。

[0013] 根据本发明的最小和/或最大剂量限制输送设备可用于在药剂变得有疗效之前需要输送最小剂量的药剂，但是可能需要一定程度地剂量调节。需要剂量调节的原因有很多，包括按照患者的体重或他们的身体状况定制剂量。为减少患者所造成的剂量误差可能性，最小和最大剂量限制设备（最小/最大设备）也可代替完全可变（即，0至最大剂量）
设备使用。使用最小/最大设备而不是可变剂量的笔减少了患者意外地输送超出限定剂量窗口（即，或者太高或者太低）的风险。

[0014] 所述最小/最大设备的效用的一个例子在于，父母可以给孩子最小/最大设备让孩子自行给药而且父母能知道最小/最大设备的最小和最大水平,所述最小/最大设备限制任何剂量过大或剂量不足的可能的严重性。另一个例子在于，这样的设备可适用于使用长效胰岛素的患者。典型地，当患者“滴定”剂量以达到他们的目标血糖水平时需要可变剂量笔。但是,一旦已经实现了目标血糖水平,长效胰岛素的剂量情况下在相对长的时期大约保持不变。在此期间，其中他们的胰岛素剂量或者不变或者每天仅改变少许单位,通过最小和最大剂量限制剂量输送设备，患者的长效胰岛素需求可得到有效满足。

[0015] 表 1（参见下方）表示输送设备的实例组,可用在单次 1 至 80 单元可变剂量设备的“笔 1”到“笔 4”。笔 1 至 4 的每一个是根据相同的基本机构设计和制造的,但每个笔包括用于设定不同的最小和最大剂量的另外的或者可替代的部件。根据患者的稳定的长度胰岛素剂量可开给他们特定的笔。例如, 根据表 1, 可开给处方为每天 10 单位长效胰岛素的患者笔 2, 所述笔 2 分别具有 18 单位的最小剂量和 32 单位的最大剂量。机械部件的任何数量可用在这种笔的设计中, 用来保证这些预定的最小/最大剂量,所述机械部件包括轴向和/或旋转止动件、制动装置、离合器、可压缩拨抓或类似部件。

[0016] 糖尿病患者的胰岛素剂量可能会随着时间逐渐改变。因此在笔与笔之间有少量的剂量范围重叠，以便随着剂量增加容许笔与笔之间平稳过渡。例如, 根据表 1, 处方为每天 40 单位长效胰岛素的患者,如果希望他们的剂量随时间减少,那么可给予笔 2; 如果希望他们的剂量随时间增加,那么可给予笔 3。表 1 中所的“族”中的笔的数目和选择的剂量范围仅仅是说明性的。通过使用本发明的最小/最大设备,选择剂量时的误差被限制在笔的操作窗口内。调拨高于笔的剂量范围的剂量或者输送低于笔的剂量范围的剂量是不可能的,而且这会警告患者他们的失误。

[0017] 所述最小/最大设备也可适用于其它药的输送,特别是在有混淆相似设备的风险的情况下,这可能会导致剂量错误或者药物/设备混乱。一个这样的例子是短效胰岛素和长效胰岛素。这些胰岛素均以“单位”度量,但是每种胰岛素类型的相同数目单位会具有不同的效果,并且患者会被开给在一天中的不同时段使用的不同剂量的每种药物。长效胰岛素和短效胰岛素的混淆会导致低血糖症并且有可能是致命的。两种类型的胰岛素均可通过注射笔设备输送。患者如此定期例行实施他们的注射,从而使得患者在已经知道混淆了他们的胰岛素笔的情况下能够发生“自动引导”效应, 即使笔具有不同的设计、颜色、形状以及带有不同的标签。

[0018] 目前提出的最小/最大设备可有助于防止这种混淆发生。例如, 假设短效胰岛素和长效胰岛素每种均设置有根据表 1 的一组最小/最大设备。一患者的处方为每天随餐使用的 15 单位短效胰岛素（需要笔 1）和 50 单位长效胰岛素（需要长效笔 3）。如果患者错误地输送了 50 单位短效胰岛素而不是长效胰岛素的话, 最危险的混淆就会发生。如果患者尝试用最小/最大设备这样做, 那么患者会拿起短效胰岛素设备（笔 1）并且发现他们无法调拨超过 22 单位。这会警告他们这不是正确的胰岛素笔, 因此是不正确的胰岛素类型, 这防止了输送不正确的胰岛素。

[0019] 所述最小/最大概念可同样应用于一次性设备和可重复使用的设备。
[0020] 某些药物还需要使用者实施“启动”剂量以便确认输送设备和针的正确操作。这通常通过输送 2 单位的“空气注射 (air-shot)”然后检查能否看到药物从针里出来。表 1 中所示的最小/最大概念不能容许这一点。如果需要启动功能，那么第二可允许的“剂量窗口”，例如范围从 1 到 2 单位，也可以在每种笔机构中实现。如何实现的例子如表 2 中所示。虽然表 1 和表 2 都只表示了偶数和单位，但这仅是为清楚起见，而且上述设备可配置用于输送奇数和单位或潜在的 1/2 单位。

[0021] 如前所述，目前公开的设备也可用在需要组合配方活性药物的输送的治疗中，其中至少一种药物可以作为可变剂量输送并且至少另外一种药剂优选地作为固定剂量输送。如果患者需要组合药物，那么如果那些药物能够作为单一配方 (即两种药物以预定比例混合在一起并且以一个主要包装供应) 通过单个针以一次注射通过单个输送设备输送的话，那么这就具有优势。但是，如果其中一种药物需要输送使用者可选择的可变剂量并且第二种药物需要的剂量是超出起效的最小剂量又必须超过给定的最大剂量的话，那么对于药物输送装置有益的是配置该装置从而防止输送该范围之外的剂量。

[0022] 例如，给患者开的处方为长效胰岛素 (典型地，以可变剂量设备输送) 和 GLP-1 (典型地，作为固定剂量输送) 的组合治疗。GLP-1 是从胰高血糖素原的转录产物衍生的类胰高血糖素肽-1 (GLP-1)。GLP-1 发现于人体中并作为肠激酶由肠内的 L 细胞 (Lce11) 分泌。作为糖尿病的潜在疗法，GLP-1 拥有使得它 (和它的类似物) 成为深入研究的主题的一些生理学特性。为了避免患者不得不实施两次注射，两种药物预先混合成单一配方。由于两种药物以固定比例混合，因此不可能在不改变 GLP-1 剂量的情况下改变长效胰岛素剂量。但是，可接受的是，GLP-1 剂量在给定容差内改变，例如在固定标称剂量附近 ±10%。因此可能的是使用一组最小 / 最大限制设备以提供一组预混合的设备，在它们之间会容许 GLP-1 剂量和可变长效胰岛素剂量的输送，所述 GLP-1 剂量总是落在给定 “固定” 剂量的 ±10% 范围内。

[0023] 例如，表 3 表示一组 6 个最小 / 最大笔型注射设备，它们容许伴随着剂量固定为 20mg±10% 的 GLP-1 从 22 至 76 单位的任何长效胰岛素剂量的输送。组内的每种笔可具有不同的最小和最大剂量阈值并且可设置有充满合适的混合比例的两种药物的药剂的主要包装或药筒。该组笔设备可作为预装满合适的混合比例的药剂筒的一次性机械设备提供。可替代的是，该组设备可作为可重复使用的机械设备提供。在后者的情况下，所述设备优选地专门用于特定混合比例的药筒，即仅仅正确的混合比例的药筒可以被装载到每一笔组成员。

[0024] 第三种可替代的是经由能编制有最小和最大剂量功能的单一电子设备提供笔设备“组”。优选地，所述最小 / 最大电子设备可装载有编码药筒，所述编码药筒在装载到设备中时能自动连接于设备，其中所需最小和最大阈值应当用于特定药筒和混合比例。

[0025] 达到可变剂量上的最小可设定剂量的一种特定装置是，例如笔型设备的药物输送设备包括一机构，该机构阻止设备给药直到实现了预先规定的最小剂量。最大剂量机构也可与最小剂量机构一起使用。

[0026] 本发明的目的是提供一种设备，该设备减少或消除注射设备使用者会设定和施用低于特定药剂的预选最小有效剂量的风险。

[0027] 使用如权利要求 1 中定义的剂量设定机构以及权利要求 11 和 12 中定义的方法，
该目标将得到解决。

[0028] 根据本发明的一种可能的示例性实施方式，提供了一种用于药物输送设备的剂量设定结构，所述剂量设定机构包括药物输送设备壳体，至少部分地设置在壳体（17）中并且在剂量设定和剂量输送时可旋转的剂量调节装置。在设定剂量时可旋转并且在输送剂量时不可旋转的离合器，以及具有近端和远端的离合器螺母，其中近端与离合器螺纹啮合并且远端与壳体用花键配合以防止离合器螺母旋转。优选地，所述离合器螺母可释放地联接于剂量调节装置从而防止离合器螺母和剂量调节装置之间在至少一个旋转方向上的相对旋转。更确切地，从剂量零至预定最小剂量和 / 或从预定最大剂量之上的剂量通过互相作用的花键或通过单向联接或棘轮所述离合器螺母固定于剂量调节装置。对于类似于在 WO2004/078239A1 所公开的药物输送装置来说，所述离合器螺母可以与剂量调节装置离合啮合，从而允许剂量调节装置仅在单一向旋转并且防止了在相反方向上的旋转。

[0029] 如果离合器螺母通过扰性联接或与离合器进行螺纹啮合，离合器螺母可相对于离合器移动从而容许各自的螺纹彼此咬住或搭接。

[0030] 当使用者设定从零到预定最小剂量的剂量时，所述离合器螺母优选地与剂量调节套管用花键配合。当至少设定了预定剂量时，随后按压注射设备上的剂量按钮使离合器螺母与剂量调节套管完全分开。但是，如果使用者设定的剂量小于预定最小值，那么剂量调节套管保持与离合器螺母啮合并且不可旋转，而且在远端方向上的移动被锁定，这是因为剂量调节套管与壳体螺纹啮合并且因此仅可以通过螺纹在轴向上移动，所述螺纹由各自的螺纹限定。

[0031] 作为替代或者除了防止使用者输送太小剂量的药剂之外，可提供最大剂量机构从而防止使用者输送超过预定最大剂量的剂量。根据本发明，这可以通过使用设置在剂量调节套管和离合器之间的离合器螺母用上述相同的方式来实现。

[0032] 此外，本发明也涉及一种或多种防止使用者输送太小剂量药剂的方法。一种这样的方法涉及输送至少预定最小剂量的药剂，包括在设定剂量时相对于设备壳体在第一方向上旋转剂量调节套管，其中剂量调节套管与离合器螺母以棘轮接触，当设定了从 0 至小于预定最小剂量的剂量和 / 或超出预定最大剂量的剂量时，防止剂量调节套管通过离合器螺母在与第一方向相反的第二方向上的旋转，以及防止离合器螺母相对于壳体的旋转。

[0033] 另一种输送至少预定最小剂量的药剂的可能的方法包括相对于设备壳体在第一方向上旋转剂量调节套管，其中剂量调节套管与离合器螺母以棘轮接触，在设定剂量时，相对于剂量调节套管在轴向远端方向上移动离合器螺母，当剂量超出已设定的预定最小剂量时，使离合器螺母与剂量调节套管分开，以及按压剂量按钮以输送剂量。为防止设定高于预定最大剂量的剂量，所述方法涉及在设定剂量时如果已设定低于预定最大剂量的剂量，相对于剂量调节套管在轴向近端方向上移动与剂量调节套管分开的离合器螺母，以及预定剂量一旦被设定就将离合器螺母与剂量调节套管啮合。

[0034] 通过适当参考附图阅读以下详细描述，本领域的普通技术人员将显而易见我们提出的药物输送设备的各方面的这些以及其它优点。

附图说明

[0035] 参考附图，示例性的实施方式在此描述如下，其中：
具体实施方式

[0040] 参考图1，图中所示为根据示例性的笔型设计布置的药物输送设备1。所述药物输送设备1包括具有主体17的壳体，第一药筒保持部分2和剂量设定机构4。药物输送设备可以是可重置的药物输送设备（即，可重复使用的设备）或者是可替代的不可重置的药物输送设备（即，不可重复使用的设备）。所述药筒保持部分2的第一端部和剂量设定机构4的第二端部通过连接特征紧固在一起。对于不可重置设备，这些连接特征可能是永久的并且不可逆的。对于可重置设备，这些连接特征可能是可释放的。

[0041] 在图示布置中，药筒保持部分2紧固在剂量设定机构4的第二端部中。可移除的盖子（未示出）可释放地保持在药筒保持部分或药筒壳体的第二端部或远端上。剂量设定机构4包括剂量调拨手柄12和窗口或者透镜14。设在剂量调拨装置9上的剂量刻度装置3透过窗口或透镜14可见。为设定容纳在药物输送设备1中的药剂的剂量，使用者旋转剂量调拨手柄12从而使调拨的剂量通过剂量刻度装置从窗口或者透镜14中变得可见。

[0042] 图1所示药物输送设备1，其封盖从药物输送设备1的远端18移除。这使得药筒保持部分2的药筒壳体6显露出来。优选地，药筒（未示出）设置在药筒壳体6中，可从药筒分配许多剂量的药物产品。优选地，药筒容纳能相对频繁给药的类型的药剂，比如每天一次或更多次给药。这样一种药剂或是长效胰岛素或是短效胰岛素或是胰岛素类似物。所述药筒包括保持在药筒的近端或者第二端部附近的塞子或者止动件。药物输送设备也包括与芯轴（在图1中未示出，但在图2中作为项目5示出）啮合的驱动器7。所述驱动器7优选地与芯轴或活塞杆5螺纹啮合。另外，大致上包括剂量调拨套管9、驱动器7、活塞杆5的驱动机构的一部分是离合器13或是直接或间接地可释放地将剂量调拨套管9联接于驱动器7的其它释放机构（未示出）。优选地，在设定剂量时驱动器联接于剂量调拨套管，而在输送剂量时与剂量调拨套管分离。如上所述，在设备启动之前，在芯轴端部和药筒塞子之间可能有或可能没有间隙。

[0043] 药筒壳体6具有远端18和近端。优选地，药筒壳体6的远端包括用于附连可移除的针组件的毂8。但是，也可使用其它的针组件联接机构。如果药物输送设备1包括可重置设备，那么药筒近端可移除地连接于剂量设定机构4。在一个优选实施方式中，药筒壳体近端经由卡口连接可移除地连接于剂量设定机构。但是，本领域普通技术人员会认识到，也可以使用其它类型的可移除连接方法，例如螺纹、局部螺纹、斜面和制动装置、扣锁、扣合连接以及鲁尔接。
6 的连接，所述药筒可被移除而不破坏设备 1。

[0045] 在使用中，一旦盖子被移除，使用者能将合适的针组件附连于设在药筒壳体 6 远端的螺 8。这种针组件，举例来说，可以旋拧到壳体 6 的远端 18 上或可替代地可以卡扣到这个远端上。使用后，可以使用可替换的盖子重新盖住药筒壳体 6。优选地，可替换盖子的外部尺寸与剂量设定机构 4 的外部尺寸相似或相同，这样当没有使用设备、可替换盖子处于盖住药筒壳体 6 的位置时提供一种整一整体的效果。

[0046] 图 2 表示本发明的剂量设定机构的一种可能的实施方式，它可以并入图 1 中所示的笔型注射设备。所述剂量设定机构包括离合器螺母 15，该离合器螺母在其近端与离合器 13 的远端螺纹啮合。离合器螺母 15 也通过位于剂量调拨套管 9 内的内部棘齿 11 与剂量调拨套管 9 啮合。图中还示出了棘爪弹簧 10、驱动器部件 7 和芯轴或导螺杆 5。离合器螺母 15 具有键锁特征 16 和永久磁铁 17。该键锁特征在设备（未示出）的主体 17 的轴向花键槽中运行并且在设定剂量和输送剂量时防止螺母旋转移动。离合器螺母 15 具有键锁功能 16 和永久磁铁 17。离合器螺母 15 具有与离合器 13 上的螺纹 20 槽合的螺纹拨爪 19。棘爪弹簧 10 也具有键锁特征 21，如同离合器螺母上的键锁特征 16，该键锁特征在设备主体的轴向花键槽中运行。

[0047] 在包括本发明设备的剂量设定机构的示例性的笔型注射设备运转期间，离合器螺母 15 沿离合器 13 上的螺纹 20 前进。螺纹界面的设计使得在设定剂量时随着剂量调拨套管 9 旋转的离合器 13 的轴向螺纹 (CW) 旋转促使离合器螺母从剂量调拨套管 9 轴向地远离 (即在远端方向上)。在离合器螺母上的螺纹拨爪 19 是弹性的，从而使得在剂量输送时它们能够迅速回到离合器 13 上的螺纹 20 上。从而为下一次的剂量设定 / 剂量输送程序重置设置。

[0048] 如上所述，离合器螺母 15 具有与位于调拨套管 9 的圆周上的棘齿 11 啮合的花键。花键 17 与棘齿 11 的组合可以允许剂量调拨套管 9、驱动器 7 和离合器 13 在设定剂量时关于离合器螺母 15 旋转，但不容许调拨套管 9 关于离合器螺母 15 逆时针 (CCW) 旋转 (即，在装配时)，除非它们彼此轴向分开。当然，本发明也适用于反方向运转的注射设备设计，即通过在逆时针方向上旋转剂量调拨套管设定剂量的注射设备。离合器螺母 15 和剂量调拨套管 9 的轴向分开使剂量设定机构可以实现最小剂量功能。

[0049] 在剂量设定为预定的最小剂量阈值过程中，当剂量调拨套管 9 和离合器 13 已经缠绕出来，离合器螺母 15 将会是已经沿着离合器 13 在远端方向上充分地轴向前进，以允许离合器螺母花键 17' 与剂量调拨套管 9 内的棘齿 11 轴向分离。当按压剂量按钮 30，在输送剂量期间这种轴向分离使剂量调拨套管逆时针旋转后退到设备主体中。剂量输送也促使驱动器 7 的轴向前进，这允许螺杆 5 被松开并且药物化合物被分配。

[0050] 在剂量设定程序原始，离合器螺母 15 与离合器 13 以螺纹接合。当向上调拨 (即设定剂量) 时，离合器 13 的旋转驱使离合器螺母从剂量调拨套管 9 移开 (轴向地，即远侧面)，从而减少离合器螺母 15 和剂量调拨套管 9 之间的轴向接合的数量。轴向接合的数量与剂量调拨套管 9 和离合器 13 的旋转数以及离合器 13 和离合器螺母 15 之间的接合螺纹 20 的螺距成比例。一旦足够的轴向接合发生在预定最小剂量设定时，那么在分配期间剂量调拨套管的旋转后退到设备主体中将不再被锁定。在最小剂量阈值以下，花键 17' 与在剂量调拨套管 9 中的棘齿特征 11 保持啮合。如图 3 中所示。因为键锁特征 16 防止离合器螺
母 15 关于主体 17 旋转，这也防止了剂量调拨套管 9 旋转，从而锁定设备的剂量输送。

【0051】当使用者按压剂量按钮 30 时，这在远侧方向上轴向地驱使离合器 13 和离合器螺母 15。如果设备已经超过预定最小剂量极限，那么离合器螺母将会是已经沿着离合器足够地向前推进，从而使得，在剂量按钮的动作下离合器的组合向下行进使离合器螺母上的花键特征 17’与剂量调拨套管 9 上的棘齿特征 11 分离（如果这还没有因为设定更高的剂量而发生的话）。如图 4 中所示，一旦分开，那么剂量调拨套管能够自由旋转回到设备主体中从而容许剂量分配。如果设备还没有达到预定最小剂量阈值，那么离合器螺母没有沿离合器向前推进足够远以容许花键特征与棘齿特征分开。这意味着剂量调拨套管不能旋转回到设备主体 17 中，因此设备被锁上而且不允许使用者分配剂量。

【0052】当剂量输送结束、离合器螺母上的键锁特征 16 达到主体花键的端部时，设备重置到它的“锁定”状态或者剂量设定程序的初始。当键锁特征 16 达到主体花键的底部时，它们关于主体 17 的进一步行进被阻止，因此离合器螺母关于离合器 13 在轴向近端方向上被推动并且挠性拨爪 19 迅速回到离合器 13 上的螺纹 20 上，由此重置设备。

【0053】剂量设定机构额外的益处在于，通过改变螺纹 20 的螺距和/或离合器 13 和离合器螺母 15 之间的螺纹界面的长度，可以改变预定最小剂量阈值。这种设计特征，结合最大剂量限制，意味着可以建立疗效上有效的剂量窗口的范围，从而定制剂量方案以满足特定的治疗需求。

【0054】作为图 2 至 4 中所示的设备的可替代方案，可通过改变螺纹引导线提供最大剂量限制，从而使得离合器螺母 15 在剂量设定初始时与剂量调拨套管脱离接合并且在设定剂量时接近剂量调拨套管。一旦达到预定最大剂量，离合器螺母和剂量调拨套管的相互作用阻止进一步的剂量设定和/或阻止超出预定最大剂量的剂量分配。

【0055】在优选的实施方式中，包含在多剂量、使用者可选择设备中的主药物化合物（例如胰岛素）可以与单次使用、使用者可替换的模块一起使用，所述模块包含副药剂的单剂量和单分配接口。当连接到主设备时，副化合物在主化合物分配时被激活/输送。尽管本申请明确提到了胰岛素、胰岛素类似物或胰岛素衍生物以及 GLP-1 或 GLP-1 类似物作为两种可能的药物组合，但是其它药物或药物组合也可以用于本发明，例如止痛剂、激素、β 拮抗剂或皮质类固醇或任何上述药物的组合。

【0056】为本发明之目的，术语“胰岛素”应当表示胰岛素、胰岛素类似物、胰岛素衍生物或它们的混合物，包括人胰岛素或人胰岛素类似物或衍生物。胰岛素类似物的例子是、但不限于，Gly(A21)、Arg(B31)、Arg(B32) 人胰岛素; Lys(B3)、Glu(B29) 人胰岛素; Lys(B28)、Pro(B29) 人胰岛素; Asp(B28) 人胰岛素; 其中在位置 B28 的脯氨酸由 Asp、Lys、Leu、Val 或 Ala 替代，而其中在位置 B29，Lys 可由 Pro 替代; Ala(B26) 人胰岛素; Des(B28-B30) 人胰岛素; Des(B27) 人胰岛素和 Des(B30) 人胰岛素。胰岛素衍生物的例子是，但不限于：B29-N–肉豆蔻酰–des(B30) 人胰岛素; B29-N–棕榈酰–des(B30) 人胰岛素; B29–N–肉豆蔻酰–人胰岛素; B29–N–棕榈酰人胰岛素; B28–N–肉豆蔻酰 LysB28ProB29 人胰岛素; B28–N–棕榈酰–LysB28ProB29 人胰岛素; B30–N–肉豆蔻酰–ThrB29LysB30 人胰岛素; B30–N–棕榈酰–ThrB29LysB30 人胰岛素; B29–N–(N–棕榈酰 –T– 谷氨酰)–des(B30) 人胰岛素; B29–N–(N–棕榈酰 –T– 谷氨酰)–des(B30) 人胰岛素; B29–N–(ω–羧基十七酰)–des(B30) 人胰岛素和 B29–N–(ω–羧基十七酰)–人胰岛素。
在此使用的术语“GLP-1”应指GLP-1、GLP-1类似物或者它们的混合物，包括但不限于enatide(Exendin-4(1-39)),一种具有如下序列的肽：

H-His-Gly-Glu-Gly-Thr-Phe-Thr-Ser-Asp-Leu-Ser-Lys-Gln-Met-Glu-Glu-Glu-Ala-Val-A rg-Leu-Phe-Ile-Glu-Trp-Leu-Lys-Asn-Gly-Gly-Pro-Ser-Ser-Gly-Ala-Pro-Pro-Pro-Ser-NH2; Exendin-3; Liraglutide; 或者 AVE0010

β 拟抗剂的例子可以是但不限于: 丁胺醇 (salbutamol)、左沙丁胺醇 (levosalbutamol)、叔丁喘宁 (terbutaline)、吡布特罗 (pirbuterol)、异丙喘喘宁 (procaterol)、间羟异丙肾上腺素 (metaproterenol)、非诺特罗 (fenoterol)、双甲苯喘定甲磺酸盐 (bitolterol mesylate)、沙美特罗 (salmeterol)、福莫特罗 (formoterol)、间羟舒喘灵酯 (bambuterol)、克仑特罗 (clenbuterol)、茚达特罗 (indacaterol)。

激素例如是垂体激素或下丘脑激素或调节性肽和它们的拮抗剂，比如促性腺激素 (Gonadotropine)，促滤泡素 (Pollitropin)、促黄体素 (Lutropin)、绒毛膜促性腺激素 (Choriongonadotropin)、促卵子成熟激素 (Menotropin)、生长激素 (Somatropine)、促生长素 (Somatropin)、去氨加压素 (Desmopressin)、特利加压素 (Terlipressin)、戈那瑞林 (Gonadorelin)、曲普瑞林 (Triptorelin)、亮丙瑞林 (Leuprolelin)、布舍瑞林 (Buserelin)、那法瑞林 (Nafarelin)、戈舍瑞林 (Goserelin)。

已经描述了本发明药物输送设备的示例性实施方式。但是，本领域技术人员将理解，可以对这些实施方式进行改变和修改而不脱离由权利要求限定的本发明所提出的药物输送设备的实际范围和实质。
<table>
<thead>
<tr>
<th>笔号</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>12</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>14</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>16</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>18</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>20</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>22</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>24</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>26</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>28</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>30</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>32</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>34</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>36</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>38</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>40</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>42</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>44</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>46</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>48</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>50</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>52</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>54</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>56</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>58</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>60</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>62</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>64</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>66</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>68</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>70</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>72</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>74</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>76</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>78</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>80</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

[0063] 表 1

剂量可以被调整和输送
低剂量 - 不能被分配
高剂量 - 不能被调整
<table>
<thead>
<tr>
<th>被调节的胰岛素剂量</th>
<th>笔号</th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>12</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>14</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>16</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>18</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>20</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>22</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>24</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>26</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>28</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>30</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>32</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>34</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>36</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>38</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>40</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>42</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>44</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>46</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>48</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>50</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>52</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>54</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>56</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>58</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>60</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>62</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>64</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>66</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>68</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>70</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>72</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>74</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>76</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>78</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>80</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

表 2

<p>| | | | | |
| | | | | |
|---|---|---|---|
| 高剂量-不能被调拨 | | | |
| 低剂量-不能被分配 | | | |
| 剂量可以被调拨和输入 | | | |</p>
<table>
<thead>
<tr>
<th>调拔的长效胰岛素剂 量</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
</tr>
</thead>
<tbody>
<tr>
<td>混合比（胰岛素：GLP-1）</td>
<td>0.83</td>
<td>0.665</td>
<td>0.53</td>
<td>0.43</td>
<td>0.35</td>
<td>0.285</td>
</tr>
<tr>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>12</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>14</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>16</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>18</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>20</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>22</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>18.3</td>
</tr>
<tr>
<td>24</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>19.9</td>
</tr>
<tr>
<td>26</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>21.6</td>
</tr>
<tr>
<td>28</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>18.6</td>
<td></td>
</tr>
<tr>
<td>30</td>
<td></td>
<td></td>
<td></td>
<td>20.0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>32</td>
<td></td>
<td></td>
<td>21.3</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>34</td>
<td></td>
<td>18.0</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>36</td>
<td></td>
<td>19.1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>38</td>
<td></td>
<td>20.1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>40</td>
<td></td>
<td>21.2</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>42</td>
<td></td>
<td></td>
<td>18.1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>44</td>
<td></td>
<td></td>
<td>18.9</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>46</td>
<td></td>
<td></td>
<td>19.8</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>48</td>
<td></td>
<td></td>
<td>20.6</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>50</td>
<td></td>
<td></td>
<td>21.5</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>52</td>
<td></td>
<td></td>
<td></td>
<td>18.2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>54</td>
<td></td>
<td></td>
<td></td>
<td>18.9</td>
<td></td>
<td></td>
</tr>
<tr>
<td>56</td>
<td></td>
<td></td>
<td></td>
<td>19.6</td>
<td></td>
<td></td>
</tr>
<tr>
<td>58</td>
<td></td>
<td></td>
<td></td>
<td>20.3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>60</td>
<td></td>
<td></td>
<td></td>
<td>21.0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>62</td>
<td></td>
<td></td>
<td></td>
<td>21.7</td>
<td></td>
<td></td>
</tr>
<tr>
<td>64</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>18.2</td>
<td></td>
</tr>
<tr>
<td>66</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>18.8</td>
<td></td>
</tr>
<tr>
<td>68</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>19.4</td>
<td></td>
</tr>
<tr>
<td>70</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>20.0</td>
<td></td>
</tr>
<tr>
<td>72</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>20.5</td>
<td></td>
</tr>
<tr>
<td>74</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>21.1</td>
<td></td>
</tr>
<tr>
<td>76</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>21.7</td>
<td></td>
</tr>
<tr>
<td>78</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>80</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

GLP-1剂量-可以被调拔和输送
低剂量-不能被分配
高剂量-不能被调拔
图 1