【发明名称】
一种具有增效作用的杀菌剂组合物

【摘要】
本发明涉及一种具有协同增效作用的杀菌剂组合物，该组合物是由两种活性组分以及农业上可接受的农药助剂组成的混配制剂，其中，组分a为戊唑醇，组分b为咪鲜胺(或其在农业上可接受的金属盐类化合物)为有效成分组成的新型杀菌剂组合物，在活性组分中，戊唑醇和咪鲜胺的重量比为0.05～60，优选为0.08～50。该杀菌剂组合物广泛用于谷类、水果、蔬菜、经济作物等作物的病菌危害。本组合物对于提高防治效果和延缓靶菌抗性以及扩大杀菌谱等方面具有积极效果，对作物具有保护和治疗作用。该组合物有别于现有的其他农药杀菌剂。
1、一种具有协同增效作用的杀菌剂组合物，其特征在于所述的组合物由两种活性组分以及农业上可接受的农药助剂组成，其中活性组分 a 为戊唑醇，活性组分 b 为咪鲜胺（或其在农业上可接受的金属盐类化合物），戊唑醇与咪鲜胺重量比为 0.05～60，优选为 0.08～50。

2、根据权利要求 1 所述的组合物，其特征在于所述的组合物是由 5～86%重量份的活性组分与 95～14%重量份的在农业上可接受的助剂组成。

3、根据权利要求 1 所述的组合物，其特征在于所述的咪鲜胺金属盐类化合物为选自咪鲜胺锰、咪鲜胺锌锰、咪鲜胺铜盐等其中的一种化合物。

4、根据权利要求 1 的组合物，其特征在于所述的组合物有效成分施用量为 65-600 克/公顷，优选 75-550 克/公顷。

5、根据权利要求 1-4 的组合物，其特征在于具有增效作用的组合物应用于谷类、水果、蔬菜、经济作物等作物的病菌危害。

6、根据权利要求 5 的组合物，其特征在于用于有效防治小麦赤霉病病菌。
一种具有增效作用的杀菌剂组合物

技术领域

本发明涉及一种具有协同增效作用的杀菌剂组合物，该杀菌组合物广泛应用于农业植物化学保护领域，该组合物对于某些危害植物生长的真菌表现出极强的抗菌和杀菌活性。本杀菌剂组合物有别于现有的其它杀菌剂。

技术背景

施用化学药剂是防治植物危害真菌中最为有效的手段。但长期连续高剂量地使用品种或作用方式单一的化学杀菌剂，容易影响药剂的残留、环境污染以及抗抗菌素真菌发展等问题。合理的化学杀菌剂复配或混配具有扩大杀菌谱，提高防治效果、延长施药有效期、减少用药量、降低药害、减少残留、延缓真菌耐药性和抗药性发生与发展等积极作用，杀菌剂复配或混配是解决上述问题的最为有效的方法之一。开发新产品杀菌剂价格不断攀升，而相比之下，开发与研究高效、低毒、低残留的复配与混配具有发展少、研制周期短而收到国内外重视，纷纷加大开发研制力度。

戊唑醇是重要经济作物的种子处理或叶面喷洒的高效杀菌剂，用于禾谷类作物，可有效地防治多种锈病、白粉病、网斑病、根腐病、麦类赤霉病以及花生褐斑病和轮斑病也可有效防治葡萄灰霉病、白粉病以及叶班病和茶树茶饼病。种子处理，可彻底防治大麦条黑穗病、燕麦条黑穗病、小麦网腥黑穗病、光腥黑穗病；咪鲜胺为广谱性杀菌剂，是氨基甲酰咪唑类中活性最强的品种，具有良好的传导性能，对子囊菌纲、担子菌纲、半知菌纲等引起的多种病害具有良好的效果，也可用于水果采收后防腐保鲜。咪鲜胺对大田作物、水果、蔬菜、草皮及观赏植物上的多种病害具有治疗、预防和铲除作用。咪鲜胺的使用始于 70 年代，随着近年来咪鲜胺在杀菌剂领域的发展和推广，抗性问题变得越发明显，防治植物病害时有效成分施用量呈逐年增高趋势，这就给作物以及土壤残留带来严峻的考验，但在植物杀菌领域，咪鲜胺仍具有不可替代的地位。

发明内容

本发明的目的：针对上述两种药剂单独施用的不足之处，提供一种具有协同增效作用的杀菌剂组合物。现已发现，戊唑醇与咪鲜胺共同施用时具有明显的增效作用，同时扩大了杀菌谱，减少了施药次数，而且戊唑醇与咪鲜胺之间无交互抗性。

咪鲜胺（英文通用名称 Prochloraz），化学名称（式 I）：N-丙基-N-[2-(2,4,6-三氯苯氧基)乙基]-咪唑-1-甲酰胺

\[\text{Cl} - \text{Cl} - \text{OCH}_2\text{CH}_2\text{N} = \text{O} \quad \text{Cl} \quad \text{C}_3\text{H}_7 \]

（I）
适合于本发明的咪鲜胺金属盐类化合物的金属离子可以选择元素周期表中第一至第二过度族元素，尤其是锰、铁、锌、铜；还有第二主族元素，尤其是钙和镁的离子；以及第三和第四主族元素，尤其是铝和锡的离子。若合适的话，金属离子可以以它们可能呈现的各种化合价存在。例如，选择金属离子锰的盐类化合物（如式II），即N-丙基-N-[2-(2,4,6-三氯苯氧基)乙基]-1-H-咪唑-1-甲酰胺-氯化锰。

\[
\begin{array}{c}
\text{Cl}_2\text{C}_2\text{OCH}_3\text{N}^+\text{Cl}^- \quad \text{O} \quad \text{C}_2\text{H}_2\text{N}^+ \quad \text{MnCl}_4^-
\end{array}
\] (II)

本发明的杀菌剂组合物是通过以下方案来实施的：即由两种具有增效作用的活性组分戊唑醇、咪鲜胺（或其在农业上可接受的金属盐类化合物）以及在农业上可接受的农药助剂组成。

所述的咪鲜胺金属盐类化合物优选咪鲜胺锰盐、咪鲜胺锌盐、咪鲜胺铜盐等其中的一种化合物。

现已发现，本发明提出的含有戊唑醇、咪鲜胺或其在农业上可接受的金属盐类化合物为活性成分组成的杀菌剂组合物，可应用于谷类、水果、蔬菜、经济作物等作物的病菌危害，如，小麦赤霉病菌、香蕉叶斑病、油菜菌核病、黄瓜灰霉病等。

本发明的组合物中，戊唑醇与咪鲜胺重量比为0.05～60，优选为0.08～50。

本发明的杀菌组合物包含5～86重量份的活性组分与95～14重量份的在农业领域中可接受的助剂组成。

本发明的混合物以组合物的形式使用，使用时通常与其他载体、表面活性剂等常用助剂一起施用。

合适的添加剂和载体可以是固体或液体，它们通常是剂型加工过程中常用的物质，例如天然的或再生的矿物质，溶剂、分散剂、润湿剂、胶粘剂、增稠剂、粘合剂或肥料。

本发明的组合物能以不变的形式使用，或者优选地与配置工艺中通常使用的添加剂一起使用，因此这些化合物能以已知的方式进行配置，例如制成乳油、水乳剂、可湿性粉剂或水分散剂。根据这些组合物所具有的性质，可以根据所要达到的目的和环境情况选择如喷雾、弥雾、喷粉、撒播、泼浇或浸种等之类的施用方法。使用频率和施用量取决于病原体的生物学和气候生存条件。

作为固体形式组合物，可提及的有下列几种：水分散剂（其活性成分的含量一般较高，通常在50%-90%重量比之间），通常是通过可湿性粉末型组合物在合适的颗粒体系中的附聚作用加以制备，制得该剂型。

可湿性粉剂一般用这样的方法制备，即以使其含有20-85%重量比的活性成分为准，除固体载体外，它们一般含有0-7%重量比的湿润剂，3-10%重
量比的分散剂，必要时，再含有0-10%重量比的一种或多种其它的添加剂。如染料、着色剂、渗透剂、粘合剂或抗结块剂等。

水乳剂可以以这样的方法制备，即以5-80%重量比的活性成分为准，辅以4-20%重量比乳化剂、5-35%重量比溶剂，其余助剂可以为防冻剂（0.1-4%）重量比、稳定剂（0.3-5%）重量比，其余可以用水来补充。

乳油一般是由8-50%重量比的活性成分，6-90%重量比的溶剂，3-25%重量比的乳化剂组成。

本发明的组合物有效成分施用量通常是65-600克/公顷，优选75-550克/公顷。

可用已知的方法制备各种剂型：例如将有效成分与填充剂，如溶剂、固体载体，需要时可以与表面活性剂一起均匀混合、研磨。

适合于本发明的溶剂可供选择的有：芳香烃，优选含8-12个碳原子，如二甲苯混合物或取代的苯，酰胺酯类，如酰胺二丁酯或酰胺二辛酸，脂肪烃类，如环己烷或石蜡，醇和乙二醇和它们的醚和酯，如乙醇，乙二醇，乙二醇单甲基；酮类，如环己酮，强极性的溶剂，如N-甲基-2-吡咯烷酮，二甲基亚砜或二甲基甲酰胺，和植物油或植物油，如大豆油。

适合于本发明的固体载体，如用于粉剂和可分散剂的通常是天然矿物填料，例如滑石、高岭土，蒙脱石或活性白土。为了管理物理性能也可以加入高分散性硅酸或高分散性吸附聚合物。合适的粒状吸附载体是多孔型的，如浮石、皂土或膨润土；合适的非吸附载体是例如方解石或砂。另外，可以使用大量的无机性质或有机性质的预制成粒状的材料，特别是白云石。

根据本发明两活性组分的化学性质，合适的表面活性剂为木质素磺酸、苯磺酸、苯酚磺酸、二丁基苯磺酸的碱金属盐、碱土金属盐和胺盐，烷基芳基磺酸盐，烷基硫酸盐，烷基磷酸盐，烷基磷酸盐，脂肪醇硫酸盐，脂肪酸和硫酸化脂肪醇乙二醇醚，还有磺化萘和萘衍生物与甲酸的缩合物，萘或萘磺酸与苯酚和醛的缩合物，聚氧乙烯辛基苯基醚，乙氧基化辛基苯基醚，辛基酚，壬基酚，烷基芳基聚乙二醇醚，三丁基苯聚乙二醇醚，三硬脂基苯基聚乙二醇醚，烷基芳基聚醚醇，乙氧基化聚醚油，聚氧乙烯烷基醚，氧化乙烯缩合物、乙氧基化聚氧丙烯，月桂酸聚乙二醇醚缩醛，山梨醇酯，木质素亚硫酸盐废液和甲基纤维素。

可施用本发明的组合物中，当共同施用两组分时，出现叠加（等于增效）的效果。此组合物的活性比使用单个化合物的活性预期总和，以及单个化合物的单独活性更为显著。增效效果允许表现为施用量减少、更宽的杀菌控制谱、作用效果见效快、更持久的防治效果、通过仅仅一次或少数几次施用能更好的控制植物有害真菌、以及加宽了可能的施用间隔时间。这些特性是植物真菌控制实践中特别需要的。

本发明的杀菌组合物的表现出的其它特点主要表现为：1、本发明的组合物应用广泛，对作物安全、防效好。经试验证明，本发明杀菌剂组合物化学性质稳定，增效显著，对防治对象表现出明显的增效以及互补作用；2、
对咪鲜胺产生抗性的菌株（如小油菜菌核病菌），通过施用本发明的组合物，仍然表现出极高的防治活性。3、药剂配方科学，药剂附着力、内吸性强，有效成分利用率高。4、使用成本降低，目前戊唑醇成本较高，单独使用咪鲜胺在实际应用也有一定的局限性，通过组合物的形式使用不仅提高了防效，而且降低了施用成本，提高了有效成分利用率。

下面实施例并非限制本发明，而只是用来说明本发明在实际应用中是如何来实现的。

施 例

一、剂型制备实施例

1、水分散粒剂

<table>
<thead>
<tr>
<th>成分</th>
<th>重量份</th>
</tr>
</thead>
<tbody>
<tr>
<td>咪鲜胺锰盐</td>
<td>31.0</td>
</tr>
<tr>
<td>戊唑醇</td>
<td>44.0</td>
</tr>
<tr>
<td>聚乙烯醇</td>
<td>3</td>
</tr>
<tr>
<td>月桂硫酸钠</td>
<td>4</td>
</tr>
<tr>
<td>木质磺酸钙</td>
<td>3</td>
</tr>
<tr>
<td>高岭土</td>
<td>6</td>
</tr>
<tr>
<td>水</td>
<td>9</td>
</tr>
</tbody>
</table>

将上述原料在水中研磨制得所需的粒径，调整其浓度和黏度，得到喷雾用浆料，然后将浆料定量送进干燥塔内进行喷雾干燥，得到该产品。

用水稀释此浓缩物可以得到植物保护中使用的任何浓度的稀释乳化液体。

2、水乳剂

<table>
<thead>
<tr>
<th>成分</th>
<th>重量份</th>
</tr>
</thead>
<tbody>
<tr>
<td>咪鲜胺</td>
<td>18.0</td>
</tr>
<tr>
<td>戊唑醇</td>
<td>12.0</td>
</tr>
<tr>
<td>聚氧乙烯醇 (75%皂化率)</td>
<td>3.0</td>
</tr>
<tr>
<td>有机硅酮</td>
<td>0.5</td>
</tr>
<tr>
<td>木质素磺酸盐</td>
<td>12.0</td>
</tr>
<tr>
<td>丙二醇</td>
<td>8.0</td>
</tr>
<tr>
<td>水</td>
<td>46.5</td>
</tr>
</tbody>
</table>

3、可湿性粉剂

<table>
<thead>
<tr>
<th>成分</th>
<th>重量份</th>
</tr>
</thead>
<tbody>
<tr>
<td>咪鲜胺钢盐</td>
<td>31</td>
</tr>
<tr>
<td>戊唑醇</td>
<td>24</td>
</tr>
<tr>
<td>烷基聚氧乙基醚磺酸盐</td>
<td>5</td>
</tr>
<tr>
<td>木质素磺酸钠</td>
<td>4</td>
</tr>
<tr>
<td>聚氧乙烯辛基苯基醚 (8-9 摩尔环氧乙烷)</td>
<td>3</td>
</tr>
<tr>
<td>高岭土</td>
<td>23</td>
</tr>
</tbody>
</table>

有效成分与助剂彻底混合，并将其在合适的磨中彻底研磨、混合，得到的可湿性粉剂可用水稀释成需要浓度的悬浮液。

4、乳油
二、应用实施例

6、室内生物活性测定本发明对小麦赤霉病的共毒系数

通过在田间采集保存的小麦赤霉病菌菌株 F-12 用作试验菌株，此菌株对戊唑醇、咪鲜胺敏感。F-12 菌株在 PSA（马铃薯蔗糖琼脂培养基）上活化后，于 25℃暗光下培养 72h 后，在菌落边缘制成 5mm 直径的菌片作为接种体。采用含药平皿法测定药剂对小麦赤霉病菌菌丝线性生长的抑制活性。在预培养的小麦赤霉病菌菌落边缘制成的 5mm 菌片反向贴接到含药平皿的中央，于 25℃光照培养箱中黑暗培养 72h 后，按对角十字测量菌落直径（mm）。利用以上实施例的药剂进行处理，并与对照处理相比较，分别计算各药剂浓度对小麦赤霉病菌线性生长的抑制效果 (%)。用机率值法计算供试药剂的毒力回归式和 EC50 值。上述所有计算均采用 DPS 数据处理系统进行。用各药剂的 EC50 值按孙云沛法计算共毒系数。结果表明两混剂共毒系数明显大于 100，表示该混剂有增效作用。试验结果见表 1

<table>
<thead>
<tr>
<th>药 种</th>
<th>毒力回归式</th>
<th>EC50 (ug/ml)</th>
<th>共毒系数</th>
</tr>
</thead>
<tbody>
<tr>
<td>咪鲜胺原药</td>
<td>Y=2.36541+1.35452X</td>
<td>2.983992</td>
<td></td>
</tr>
<tr>
<td>戊唑醇原药</td>
<td>Y=1.52142+0.30214X</td>
<td>1.257527</td>
<td></td>
</tr>
<tr>
<td>实施例 1（75%水分散剂）</td>
<td>Y=0.76593+1.57592X</td>
<td>0.463243</td>
<td>174.8214</td>
</tr>
</tbody>
</table>

从以上表中可以看出，利用实施例 1 的制得的制剂对小麦赤霉病测定的共毒系数均大于 100，说明利用上述实施例制得的制剂对小麦赤霉病防治效果具有明显的增效作用。

7、利用实施例 3（55%可湿性粉剂）防治油菜菌核病药效试验

试验在辉丰农业公司稻茬移栽田中进行，油菜品种为汇油-50。每小区面积为 67m²，随机排列，油菜，重复三次（该田块连续 3 年使用 25%咪鲜胺乳油防治油菜菌核病，防效分别为 85%、84%、84%）。在油菜开花盛期施药。40 天后开始调查防效，分级计算病株率、相对防效。试验结果见表 4。

<table>
<thead>
<tr>
<th>处理</th>
<th>处理剂量</th>
<th>发病率 (%)</th>
<th></th>
<th>防效 (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>重 复</td>
<td>平均</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>i</td>
<td>ii</td>
<td>iii</td>
</tr>
<tr>
<td>实施例 3（55%可湿性粉剂）</td>
<td>1400 倍</td>
<td>3.0</td>
<td>2.4</td>
<td>2.6</td>
</tr>
<tr>
<td>实施例 3（55%可湿性粉剂）</td>
<td>1500 倍</td>
<td>4.3</td>
<td>2.9</td>
<td>3.8</td>
</tr>
<tr>
<td>25%咪鲜胺乳油</td>
<td>1400 倍</td>
<td>10.0</td>
<td>9.5</td>
<td>8.6</td>
</tr>
<tr>
<td>250g/1 戊唑醇乳油</td>
<td>1400 倍</td>
<td>5.2</td>
<td>4.9</td>
<td>5.4</td>
</tr>
<tr>
<td>对照（CK）</td>
<td></td>
<td>54.1</td>
<td>45.8</td>
<td>50.5</td>
</tr>
</tbody>
</table>
8、温室盆栽试验

试验作物在温室内培养至2-3叶期幼苗，按设计浓度对幼苗叶片进行喷雾处理，药剂处理后24小时后接种测试病原菌。然后将幼苗在2±1℃下进行保湿培养，在不施药的空白对照充分发病后进行结果调查。病害分级、防治效果计算方法均按中华人民共和国国家标准“农药田间药效试验准则”进行。试验结果表明：施用本发明的组合物，其防治效果相对于两组分单独施用具有明显的增效效果。试验结果见表3、表4

表3. 30%水乳剂防治黄瓜灰霉病试验结果

<table>
<thead>
<tr>
<th>供试药剂</th>
<th>试验浓度 (μg·ml⁻¹)</th>
<th>50</th>
<th>25</th>
<th>12.5</th>
<th>6.25</th>
</tr>
</thead>
<tbody>
<tr>
<td>25%咪鲜胺乳油</td>
<td></td>
<td>96.4</td>
<td>91.0</td>
<td>85.2</td>
<td>73.4</td>
</tr>
<tr>
<td>250g/1戊唑醇乳油</td>
<td></td>
<td>99.1</td>
<td>90.1</td>
<td>83.1</td>
<td>76.3</td>
</tr>
<tr>
<td>实施2 (30%水乳剂)</td>
<td></td>
<td>100</td>
<td>94.1</td>
<td>88.4</td>
<td>82.7</td>
</tr>
</tbody>
</table>

表4. 28%乳油防治番茄灰霉病试验结果

<table>
<thead>
<tr>
<th>供试药剂</th>
<th>试验浓度 (μg·ml⁻¹)</th>
<th>50</th>
<th>25</th>
<th>12.5</th>
<th>6.25</th>
</tr>
</thead>
<tbody>
<tr>
<td>25%咪鲜胺乳油</td>
<td></td>
<td>98.6</td>
<td>90.8</td>
<td>84.7</td>
<td>75.6</td>
</tr>
<tr>
<td>250g/1戊唑醇乳油</td>
<td></td>
<td>100</td>
<td>92.5</td>
<td>87.4</td>
<td>78.4</td>
</tr>
<tr>
<td>实施4 (28%乳油)</td>
<td></td>
<td>100</td>
<td>95.5</td>
<td>89.6</td>
<td>85.6</td>
</tr>
</tbody>
</table>

9、利用实施例4防治香蕉叶斑病试验结果（试验地点：福建省仙游县）

施药方法：采取定叶（尚未出现病斑的新叶）标记后全株喷药处理，每片叶片均匀喷施。喷药量以叶面滴水为止，尽量喷及叶背。试验调查时，进行全株调查，最顶端未展开的心叶及基部三部老叶除外。根据病斑面积占整个面积比例划分病级，以处理区和对照区比较计算防效。

表5. 28%乳油防治香蕉叶斑病药效试验

<table>
<thead>
<tr>
<th>供试药剂</th>
<th>使用浓度</th>
<th>平均病指</th>
<th>防治效果 (%)</th>
<th>平均防效 (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>实施4 (28%乳油)</td>
<td>800倍</td>
<td>8.79</td>
<td>100.0</td>
<td>99.3</td>
</tr>
<tr>
<td>实施4 (28%乳油)</td>
<td>900倍</td>
<td>10.16</td>
<td>98.8</td>
<td>99.0</td>
</tr>
<tr>
<td>实施4 (28%乳油)</td>
<td>1000倍</td>
<td>12.48</td>
<td>93.5</td>
<td>92.6</td>
</tr>
<tr>
<td>25%咪鲜胺乳油</td>
<td>800倍</td>
<td>15.23</td>
<td>87.3</td>
<td>85.8</td>
</tr>
<tr>
<td>250g/1戊唑醇乳油</td>
<td>800倍</td>
<td>12.62</td>
<td>91.6</td>
<td>93.2</td>
</tr>
<tr>
<td>对照（清水）</td>
<td>—</td>
<td>37.58</td>
<td>—</td>
<td>—</td>
</tr>
</tbody>
</table>