wo 2014/134389 A1 [N NPF OO 0O OO0 O

(43) International Publication Date
4 September 2014 (04.09.2014)

(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(19) World Intellectual Property Ny
Organization é
International Bureau -,

=

\

WIPOIPCT

(10) International Publication Number

WO 2014/134389 A1l

(51

eay)

(22)

(25)
(26)
(30)

1

(72)
1

74

International Patent Classification:
GO6F 21/50 (2013.01) GO6F 9/06 (2006.01)

International Application Number:
PCT/US2014/019238

International Filing Date:
28 February 2014 (28.02.2014)

Filing Language: English
Publication Language: English
Priority Data:

13/782,512 1 March 2013 (01.03.2013) US

Applicant (for all designated States except US): INTEL
CORPORATION [US/US]; 2200 Mission College
Boulevard, Santa Clara, California 95054 (US).

Inventors; and

Applicants (for US only): ADAMS, Nicholas J. [US/US];
19998 SW Berkeley Lane, Beaverton, Oregon 97007 (US).
WISEMAN, Willard M. [US/US]; 14199 SW 120th
Place, Tigard, Oregon 97224 (US).

Agent: PFLEGER, Edmund P.; Grossman, Tucker, Perr-
cault & Pfleger, PLLC, c¢/o CPA GLOBAL, P.O. Box
52050, Minneapolis, Minnesota 55402 (US).

(8D

(84)

Designated States (uniess otherwise indicated, for every
kind of national protection available). AE, AG, AL, AM,
AO, AT, AU, AZ, BA, BB, BG, BH, BN, BR, BW, BY,
BZ, CA, CH, CL, CN, CO, CR, CU, CZ, DE, DK, DM,
DO, DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, GT,
HN, HR, HU, ID, IL, IN, IR, IS, JP, KE, KG, KN, KP, KR,
KZ, LA, LC, LK, LR, LS, LT, LU, LY, MA, MD, ME,
MG, MK, MN, MW, MX, MY, MZ, NA, NG, NI, NO, NZ,
OM, PA, PE, PG, PH, PL, PT, QA, RO, RS, RU, RW, SA,
SC, SD, SE, SG, SK, SL, SM, ST, SV, SY, TH, TJ, T™M,
TN, TR, TT, TZ, UA, UG, US, UZ, VC, VN, ZA, ZM,
ZW.

Designated States (uniess otherwise indicated, for every
kind of regional protection available): ARIPO (BW, GH,
GM, KE, LR, LS, MW, MZ, NA, RW, SD, SL, SZ, TZ,
UG, ZM, ZW), Eurasian (AM, AZ, BY, KG, KZ, RU, TJ,
TM), European (AL, AT, BE, BG, CH, CY, CZ, DE, DK,
EE, ES, FL, FR, GB, GR, HR, HU, IE, IS, IT, LT, LU, LV,
MC, MK, MT, NL, NO, PL, PT, RO, RS, SE, SI, SK, SM,
TR), OAPI (BF, BJ, CF, CG, CIL, CM, GA, GN, GQ, GW,
KM, ML, MR, NE, SN, TD, TG).

Published:

with international search report (Art. 21(3))

(54) Title: CONTINUATION OF TRUST FOR PLATFORM BOOT FIRMWARE

110

Files
M2

Firmwara Program

FiG. 1
Device 100
Platform Boot Firmware (PBF) 102
Pre-Verifier
104
Yerify Sigratu
106
Hash Table
108
Hashing

(57) Abstract: This disclosure is directed to continuation of trust for platform boot firmware. A device may comprise a processing
module and a memory module including read-only memory (ROM) on which is stored platform boot firmware. On activation, the
processing module may load the platform boot firmware. The platform boot firmware may cause the processing module to first load
a trusted pre-verifier file to load and verify the signature of a hash table loaded from the platform boot firmware. The processing
module may then load firmware program files from the platform boot firmware, calculate a hash for each file, and verify whether
each program hash is in the hash table. Firmware program files with hashes in the hash table may be allowed to execute. If any firm-
ware program file hash is not in the hash table, the processing module may perform platform specific security actions to prevent the
device from being compromised.

10

i5

2
Ut

30

WO 2014/134389 PCT/US2014/019238

CONTINUATION OF TRUSTFOR PLATFORM BOOT FIRMWARE

FECHNICAL FIELD

The present disclosure relates to device activation activities, and more particularty, to a

system for expediting device activation while providing security against viruses and/or malwares.

BACKUROUND

Security continues to be a concern as people are increasingly conducting personal and/or
confidential fransactions electronically, In addition, hackers and/or othors with malicious intent
are becoming increasingly more creative in circumventing cxisting security measures in devices.
To corubal new and pervasive incursions by malware and/or viruses, equipment and/or software
manufacturers are continuing 10 make protection measures more intrinsic to the hardware of new
devices. For example, large companies including Apple Inc., Microsoft, Inc,, etc. are beginning
to require that equipment executing their software provide a hardware root of trust, A hardware
root of trust may comprise, for example, known valid {¢.g., inherently trusted) program files that
are used for validating subsequently loaded program files. A hardware root of trust may be, for
cxample, established at device activation based on at least one program file loaded from a read-
only memory (ROM) on which platform boot firmware may reside in the device. Any malware,
viruses, etc. loaded subsequent to the hardware root of trust may be identified by the hardware
root of trust, disabled and/or otherwise prevented from compromising a device.

Existing strategies for establishing a hardware root of frust include loading and executing
at least one program file from the ROM in which the platform boot firmware is stored to verify a
signature of a subsequently loaded program file. o verifying the file’s signature, the previously
executed file may authenticate that the subsequently loaded file has been provided from a trusted
source based on, for exaraple, a keying algorithm such as RSA, ete, Fach program file loaded,
verified and executed from the platform boot firmware ROM may then verify the signature of the
subsequently loaded program file, and so on untif all program {iles are loaded from the platform
boot firmware. While implementing this signing-based chain methodology may ensure that all
of the files loaded during device activation are signed, and thus valid, there are some drawbacks.
Stgning increases file size, and likewise, the amount of memory resources used when each fils is
foaded. Signature verification requires a substantial amount of time for cach file that 1s verified.
Both of these requirements increase substantially when signing is conducted serially for all files
to be loaded from the platform boot firmmware. These memory and time requirements can delay

device startup, negatively impact user experience, add 1o the cost of the device, ste.

10

i5

2
Ut

30

WO 2014/134389 PCT/US2014/019238

BRIEF DESCRIPTION OF THE DRAWINGS

Features and advaniages of varioas embodiments of the claimed subject matter will
become apparent as the following Detailed Description proceeds, and upon reference to the
Drawings, wherein like numerals designate like parts, and in which:

FIG. 1 illustrates an example device configured for continuation of trust for platform boot
firmware 1 gccordance with at least one ermbodiment of the present disclosure;

FECG. 2 illustrates an example configuration for a device usable in accordance with at least
one embodiment of the present disclosure;

FIG. 3 Hlustrates example program structures in accordance with at least one ewbodiment
of the present disclosure; and

F1G. 4 iflustrates example operations for continuation of trust for platform boot firmware
in accordance with at least one embodiment of the present disclosure,

Although the following Detatled Description will proceed with reference being made to
illustrative erabodivaents, many alternatives, modifications and variations thereof will be

apparent to those skilled in the art.

DETAILED DESCRIPTION

This disclosure s directed to continuation of trust for platforma boot fivmware, In general,
a device may comprise a processing module and & memory module mcluding, for example, read-
only memory (ROM) on which is stored platform boot firmware, When the device is activated,
the processing module may load the platform boot firmyware. The platform boot firmware may,
for cxample, cause the processing module to first load a trusted program file {¢.g., a pre-verifier)
that may be configured to load and verify the signature of a hash table loaded from the platform
boot firrmware. The processing module may then proceed to load other files from the platform
boot firmware, to calculate a hash for each file, and to verify whether the hash corresponding to
each program file is in the hash table. Program files with hashes in the hash table may be
allowed to execute, 1 any hash corresponding to a loaded program {ile 15 not 1n the hash table,
the processing module may perform platform specific security actions to prevent the device from
being comprormsed.

in one embodiment, a device may comprise a memory module and a processing modale.
The memory module may include at least platform boot firmware. The processing module may
be to toad the platform boot firmware when the device is activated. The piatform boot firmware
may then cause the processing module to, for example, load a hash table, to calculate hashes for
platform boot firmware files loaded subsequent to the hash table and to determine whether the

calculated platform booth firmware file hashes are in the hash table.

[

10

i5

2
Ut

30

WO 2014/134389 PCT/US2014/019238

The memory module in the device may include read-only memory o store the platform
hoot firmware. The read-only memory may store platform boot firmware based on, for example,
a Basic Input/Cutput System (BIOS), a Unified Extensible Finmware Interface (UEFI), a
corchoot {e.g., Linux-based) systern, otc. In at least one example implementation, loading of the
platform boot firmware may further comprise causing the processing module to load a pre-
verifier file, The pre-vertfier file may then verify a signature of the hash table prior to
determining whether the calculated platform boot firmware file hashes are in the hash table. In
one embodiment, the pre-verifior may be only to verify the signature of the hash table and not to
verify the signature of any of the platform boot firmware files.

In the same or a different embodiment, loading of the platform boot firmware files may
further comprise causing the processing module to execute platform boot firmware files that are
determined to have hashes in the hash table. A determination that any platform boot firmware
files have hashes that are not in the hash table may cause the processing module o perform a
security action {e.g., to protect the integrity of the device). An example method consistent with
at least one embodiment of the prosent disclosure may inchude loading a hash tablo and platform
boot firroware files afler a device 1s activated, calculating hashes for each of the platform boot
firmware files, and determining whether each of the calculated platform boot firmware files
hashes are in the hash able.

FIG. 1 illustrates example device 100 confipured for continuation of trust for platform boot
firmware in accordance with at least one embodiment of the present disclosure. Examples of
device 100 may include, but are not limited to, mobile communication devices such as cellular
handsets or smartphones based on the Android® operating system {OS), iOS®, Windows® OS,
Blackberry® OS, Palm® 08, Sywbian® O, cte., mobile computing devices such as tablet
computers like an iPad®, Galaxy Tab®, Surface®, Kindle Fire®, ote., Ultrabooks® including &
fow-power chipset manufaciured by Intel Corporation, netbooks, notebooks, laptops, palmitops,
etc., and typically stationary computing devices such as a deskiops, servers, set-top boxes, etc.

In one embodiment, device 100 may comprise platform bool firmware (PBF) 102, PRF
102 may include, for example, pre-verifier 104, hash table 108 and firmware program files 112
{e.g., platform boot program files). In one example of operation, the above program files 104,
108 and 112 within PBF 102 may be loaded into device 100 during device activation (e.g., as
part of device boot operations). In one embodiment, at least some of fivmware program files
112 may act as a hardware root of trust in device 100 in that they way operaie to authenticate
other program: files loaded during the normal operation of device 160,

The authentication services provided by the hardware root of frust woay help o ensure that

fater loaded program files are not, or do not include, malicious and/or malevolent software (e.g.,

10

i5

2
Ut

30

WO 2014/134389 PCT/US2014/019238

malware) such as adware, spyware, worms, Trojan horses, backdoors and/or other program code
that may be capable of overniding security measures in device 100, taking condrol of device 100,
stealing information from device 100, deleting information from device 100, etc. However, one
manner in which such safeguards may be circumvented by attacking the hardware root of trust.
For exaniple, if one or more of the files operating {a the hardware root of trust is compromised,
then all file verification and/or authentication performed by the hardware root of trust may also
be compromised, making it possible for malware to infiltrate and/or corrupt device 180,

In view of this potential security issue, some device manufacturers are now requiring that
the hardware root of trust be anthenticated during the boot process of device 100, An example of
fulfilling this requirement would be to launch a first known good file (e.g., pre-verifier 104) that
may verily signatures associated with the next loaded files {e.g., one of firmware program files
112}, Signature verification, as referenced herein, may include authenticating the origin and/or
version of the file based on a signature associated with the file ysing an encryption scheme (e.g.,
RSA public-key encryption), The newly verified firmware program file 112 may then verify the
signature of the next loaded firmware program file 112, and so on 1n a chain until all of the
firmware program files have been loaded. While this solution may be effective from a security
standpoint, it is also inefficient from a time and resource standpoint. Initially, the time for device
100 to serially vertfy cach firmware program file 112 constitules a long enough duration that the
overall performance of device 100 durning boot may be negatively impacted. Meorsover, the
additional data needed (o support signing may substantially increase the size of firmware
program files 112, which may consume precious space in what may be a limited-sized read-only
memory (ROM) in device 180

In embodiments consistent with the present disclosure, ensuring the security of firmware
program files 112 loaded from PBF 102 by serially verifying each file signature is replaced by a
hash-based verification system. A hash, a referred to herein, may be a eryptographic string value
determined based on the contents of a program file. An important characteristic of hashes is that
there 18 a very high probability that the value of 8 eryptographic hash determined for a particular
file will change based on any changes to the content ot the file. As a result, hashes determined
based on known good versious of firmware program files 112 may be relied upon as strong
indicators as to whether the content of a firmware program file 112 is identical to the known
goad version. Morcover, hashes are relatively fast to determine, at least when compared to the
verification of file signatures, and hash determination does not require any specific security-
related data (e.g., origin data, version data, securily keys, otc.) since it 18 based simply on the
content of the file. In view of the above, hashes may be a valuable tool for use 1o identifyg

firmware program files 112 that have been tampered with or replaced.

10

i5

2
Ut

30

WO 2014/134389 PCT/US2014/019238

In the example implementation illustrated in FIG. |, known good pre-verifier 104 may be
foaded first, and may then verify the signature of hash table 108 as shown at 106 in accordance
with known methods for authenticating file origin (c.g., RSA encryption). Hash table 168 may,
for example, include hash values for known good versions of fitrnware program files 112,
Hasbies may be determained for each firoyware program file 112 loaded by device 160, and the
hashes may thon be compared to hashes stored in hash table 108 as shown at 110, Ifa hash
corresponding to a particular firmware program file 112 1s determined {o be in hash table 108,
then the firmware program file 112 may be considered good and is allowed to execute. Ifany
hash corresponding to a firmware program file 112 is not located in hash table 108, then a
problem may exist requiring security action to be taken. The security action may be platform-
specific, and may, for exaraple, halt execution of the firmware program {le 112 corresponding to
the hash that was not located in hash table 108, may halt activation of device 100 and/or may
iesue a notification that a security problem may exist in device 100, In this manner, the varicus
embodiments consistent with the present disclosure may substantially reduce the amount of time
and memory resources required for activating device 100 while still ensuring that the integrity of
the hardware root of trust is maintamed in device 100,

FIG. 2 iltustrates an example configuration for device 100 usable in accordance with at
feast one embodiment of the present disclosure. Device 1007 is an example of equipment usable
to perform operations such as shown in FIG. 1. While embodiments consistent with the present
disclosure may employ device 1007, these embodiments are not limited only to devices with the
disclosed configuration. Fxample device 108’ may comprise systern module 200 configured to
rmanage device operations. System module 200 may include, for example, processing module
202, memory module 204 (e.g., including PBF 1027}, power module 208, user interface module
208 and communications interface module 210 for interacting with comrmurication module 212
While communication module 212 has been iHustrated as separate from systems module 200, this
focation is merely for the sake of explanation herein. Some or all of the functionality associated
with communication module 212 may also be meorporated within sysiem module 240,

In device 1007, processing module 202 may comprise one or more processors situated in
separate components, or alteratively, may comprise one or more processing cores embodied in a
single component {e.g., in a System-on-a-Chip {(5OC) configuration} and any processor-related
support circuliry {o.g., bridging inter{aces, etc.). Example processors may include various x86-
based microprocessors available from the Intel Corporation including those in the Pentium,
Xeon, tantum, Celeron, Atom, Core i-series product families, Advanced RISC {e.g., Reduced
Instruction Set Computing} Machine or “ARM” processors, ete. Examples of support circutry

rnay include chipsets {e.g., Northbridge, Southbridge, etc. available from the Intel Corporation)

10

i5

2
Ut

30

WO 2014/134389 PCT/US2014/019238

configured to provide an interface through which processing module 262 may interact with other
systermn componenis that may be operating at differcot speeds, on different buses, ete. in device
100°. Some or all of the functionality commonly associated with the support circuitry may also
be included in the same physical package as the processor (e.g., an SOC package like the Sandy
Bridge integrated circuit available from the Iutel Corporation).

Processing module 202 may be configured to oxocute various instructions in device 1007,
Instructions may include program code configured to causs processing moduile 202 to perform
activities related to reading data, writing data, processing data, formulating data, converting data,
teansforming data, cte. Information {e.g.. instructions, data, ¢ic.) may be stored in mewory
maodule 204, Memory moedule 206 may comprise random access memory (RAM) or read-only
mernory (ROM} in a {ixed or removable formuat. RAM may fnclude memory configured to hold
information during the operation of device 1087 such as, for example, static RAM (SRAM) or
Dynamic RAM (DRAM). ROM may include memories configured as BIOS, UEFL, ete. for
providing startup instructions when device 1690” activates, programmable memories such as
electronic programmable ROMs (EPROMS), Flash, ete. Other fixed and/or romovable memory
may meclude magnetic memorntes such as, for example, floppy disks, hard drives, etc., electronic
memories such as solid state flash memory {e.g., embedded multimedia card (MM}, etec.),
removable memory cards or sticks {e.g.. micro storage device {(uSD), USE, ete.), optical
memories such as compact disc-based ROM (CI-ROM), etc. Power module 206 may inchude
internal power sources {2.g., a battery) and/or external power sources (e.g., clectromechanical or
solar generator, power grid, fuel cells, eic.), and related circuitry configured to supply device
100” with the power needed to operate.

Liser interface module 208 may comprise componentry configured to allow users o
interact with device 1007 such as, for example, various input mechanisms {o.g., microphones,
switches, buttons, knobs, keyvboards, speakers, touch-sensitive surfaces, one or more sensors
configured to capture images and/or sense proximity, distance, motion, gestures, etc.} and
various output mechanisras {o.g., speakers, displays, hghted/Hashing indicators,
glectromechanical components for vibration, motion, etc.). Communication interface module
210 may include comnranication processor |14, and may be configured to handle packet routing
and other control functions for communication module 214, which may include resources
configured to support wired and/or wireless communications. Wired communications may
include serial and parallel wired mediams such as, {or example, Bthernet, Universal Serial Bus
{USB), Firewire, Digital Visual Interface (DVI), High-Definition Multimmedia Interface (HIDMI),
ete. Wireless communications may include, for exarple, close-proximily wireless medivims

{e.g., radic frequency (RF) such as based on the Near Field Communications (NFC) standard,

o

10

i5

2
Ut

30

WO 2014/134389 PCT/US2014/019238

infrared (IR}, optical character recognition (QCR), magnetic character sensing, etc.), short-range
wireless mediums {e.g., Bluetooth, WLAN, Wi-Fi, etc.) and long range wireless mediums {¢.g.,
cellular, sateilite, ete.). In one embodiment, communication interface module 212 may be
configured to prevent wireless communications that are active in communication module 214
from interfering with each other. In performing this function, communication interface module
212 may schedule activities for communication module 214 based on, for oxample, the relative
priority of messages awailing transnission.

In an example of operation, upon activation of device 104’ processing module 202 may
access memory raodule 204 to load PBF 102 (¢.g., fromm a ROM formatted using BIOS, UEF],
coreboot, oic.}. PBF 102° may cause processing module 202 to load pre-verifier 104 folowed by
hash table 108, Pre-verifier 104 may fist verify the signature of hash table 10R to establish the
authenticity of hash table 108, PBF 162" may then instruet processing module 102 10 load
firmware program files 112, to determine a hash for each loaded firmmware program file 112, and
to deterniine whether the bashes for each of the loaded firmware program files 112 is stored in
hash table 108, Fach program files whose hash 1s located in hash table 108 may then be allowed
io execuie {e.g., may then be executed by processing module 202). [any of the hashes
corresponding to firmware program files 112 is determined not to be in the hash table, then
processing module 202 may perform a securily action to prevent device 1087 frow being
compronused {e.g., due to malware). Example security actions may include halting the
execution of a particular firmware program file 112, halting boot of device 102 and/or
presenting a notitication in regarding to a security problem with PBF 102°.

FIG. 3 illustrates example program structures in accordance with at least one embodiment
of the present disclosure. Inttially, the manner in which files are loaded from PBF 102 in device
108 may bo dictated by the conliguration of device 100 (e.g.. memory type, boot systern format,
operating system, etc.}. For example, in an instance where UEF] is being emploved, {iles may be
retrieved from PBF 102 in accordance with UEF] Platforn Intialization Specification Revision
1.2.1, Volurue 3. In an example of operation, firmware volume (FV) header 300, herealter “file
300,” may be loaded first followed by loading firmware file #1 302, hercafter “file 3627, Inan
example of an actual use case based on UEFY, files 300 and 301 may be part of a Pre-Extensible
Firmware Interface (PED) stage of platiorm initialization. Files 300 and 302 may be employed
in, for example, determining whether to launch files in & Driver Execution Environment (DXE)
based oun verifying that the files to be loaded into the DXE {e.g., firmware program fileg 112)
have hashes corresponding to known good versions. In one embodiment, the signature of file
302 may be verified by pre-verifier 104 (o.g., using RSA encryption) io check ils authenticity

prior to checking the hashes of subsequently loaded files. The public key used to verify the

10

i5

2
Ut

30

WO 2014/134389 PCT/US2014/019238

signature of file 302 may, for example, reside in the PEY for safekeeping. However, a public key
from a boot manifest in device 100 may also be used in signing file 302 as it may be considered
equivalent to the PEI public key from a security perspective while conserving memory space in
the boot memory {e.g., ROM},

Consistent with various emabodiments of the present disclosure, file 300 may include an
extended header type EF1 FV EXT TYPE GUIDE TYPE (0X0002) identtfying the file {e.g.,
and its various contents). File 300 may also comprise information including, for example, a
header EFI FV EXT TYPE OEM TYPE identifying the file in PBD 102, an example format
type of EF1I FIRMWARE CONTENTS _SIGNED GUIDE ideuntifying the format of file 300,
example data comprising WIN_CERTIFICATE UEFT GUIDE and an example certificate type
of EF1 CERT TYPE RSA2048 SHAZ56 GUIDE for use iu authenticating file 300, File 302
may comprise, for example, information including a header Type EFI FV FILETYPE RAW
identifving the content of the file as FV Hash table 108°. FV hash table 108’ may comprise, for
example, a standardized structure for storing hash values corresponding to known good versions
firmware program files 112 (e.g., along with any information that may be needed to identify and
interpret its contenis). For example, FV hash table 1987 may include a global unique identifier
{GUID), version mformation for the hash table siructure, an indication of the number of hashes
stored m the lable, ele. Moreover, cach hash stored in the table may clude corresponding
information such as the fivmware data type (c.g., identification of the known good code that was
the source of the hash including firmware volume, firmware {ile, firmware {ile section, etc.), the
hash type such as secure hash algorithm 256 (8HA-256), SHA-1, etc., along with the hash value.

FIG. 4 illustrates example operations for continuation of trust for platform boot firmware
in accordance with at least one embodiment of the present disclosure. In operation 400, pre-
verifier execution may be completed in a device during, for example, the activation of the device
{e.g., device boot). In operation 402 a hash table and firmware program files may also be loaded
into the device. A determination may then be made in operation 404 as to whether the signature
of the hash table can be verified (e.g., 1f the hash table can be authenticated). 11t is determined
in operation 404 that the hash table cannot be verified, then in operation 406 a platform specific
security action may be performed. For exarnpie, the device may cease the boot process and/or
generate a notification indicating that a possible security issue may exist in the device (e.g. by
cmitting & tone from a speaker in the device, by displaying a message on a device display, etc.).

I in operation 404 it is determived that the hash table is signed, then in operation 408 the
next frmware program file may be hashed (e.g., a hash may be generated based on the contents
of a program firmware file whose integrity has vot vet been verified). A determination may then

be made in operation 410 as to whether a corresponding hash can be located in the hash table. If

10

i5

2
Ut

30

WO 2014/134389 PCT/US2014/019238

it is determined in operation 410 that no corresponding hash can be found in the hash table, then
in operation 406 a platform specific security action may be performed. Further to the example
actions described above, the device could also skip execution of the firmware program file if it is
determined that skipping execution would not disrupt device activation. I in operation 410 it is
determined that there is a corresponding hash in the hash table {e.g., that the firmyware program
file is a known good version), then in operation 412 the file corrosponding to the hash may be
executed. In operation 414, a further determination may be made as to whether all firmware
program files have been hashed. A determination that not all firmaware program files have been
hashed in operation 414 may be followed by a return o operation 408 o hash the next firmware
program file. Otherwise, if it is determined in operation 414 that all files have been hashed, then
in operation 416 the device may continue with bool. Optionally, operation 416 may be followed
by a return to operation 400 to, for example, prepare for the next timie the device is activated.

While FIG. 4 illustrates various operations according to an embediment, it is to be
undersiood that not all of the operations depicted tn FIG. 4 ave necessary for other embodiments.
Indeed, it 1s fully contemplated herein that in other embodiments of the present disclosure, the
operations depicted wn FIG. 4, and/or other operations described herein, may be combined ina
manner not specifically shown in any of the drawings, but still fully consistent with the present
disclosare. Thus, claims directed to features and/or oporations that are not exactly shown in one
drawing are deemed within the scope and content of the present disclosure.

As used n any embodiment herein, the term “module” may refer to software, firroware
and/or circuitry configured to perform any of the aforementioned operations. Software may be
embodied as a software package, code, mstructions, instruction sets and/or data recorded on non-
transitory computer readable storage mediums, Firmware may be embodied as code, instructions
or instruction sets and/or data that are hard-coded (o.g., nonvolatile) in memory devices.
“Circuitry”, as used in any embodiment herein, may comprise, for example, singly or in any
combination, hardwired circuitry, programmable circuitry such as computer processors
compusing ous or more mdividual mstraction processing cores, siate machine circuitey, and/or
firnvware that stores instructions executed by programmable circuitry, The modules may,
colectively or individually, be embodied as civeuitry that forms part of a larger systom, {or
example, an integrated circuit (IC), system on-chip (8SoC), desktop computers, laptop computers,
tablet comyraters, servers, smart phones, ote.

Any of the operations described herein may be implemented in a system that includes one
or more storage mediums having stored theroon, individually or in combnation, instructions that
when executed by one or more processors perform the methods, Hoere, the processor may

include, for example, a server CPU, a mobile device CPU, and/or other programmable circuitry.

10

i5

2
Ut

30

WO 2014/134389 PCT/US2014/019238

Alse, it is intended that operations described hercin may be distributed across a plurality of
physical devices, such as processing structures at more than one different physical location. The
storage medium may include any type of tangible medium, for cxample, any type of disk
including hard disks, floppy disks, optical disks, compact disk read-only memories (CD-ROMg;},
compact disk rewritables (CD-RWe}, and magueto-optical digks, semiconductor devices such as
read-only aemories (ROMs), random accoss memories (RAMSs) such as dynamic and static

R AMs, erasable programmable read-only memories (EPROMs}, electrically erasable
programmabie read-only memories (EEPFROMa), flash memories, Sclid State Disks (88Ds),
embedded multimedia cards (eMMCs), secure digital input/output (SDIO) cards, magnetic or
optical cards, or any type of media suitable for storing electronic instructions, Other
embodiments may be implemenied as software modules executed by a programmable control
device.

Thus, this disciosure is directed to continuation of trust for piatform boot firmware. A
device may comprise a processing module and a memory module including read-only memory
{ROM)} on which is stored platform boot {firmware. On activation, the processing module may
ioad the platform boot fumware. The platform boot firmware may cause the processing module
to first lead a trusted pre-verifier file to load and verify the signature of a hash table loaded from
the platform boot fitmware, The processing module may then load firmware program files from
the platform boot firmware, calculate a hash for cach file, and verify whether each program hash
is in1 the hash table. Firmware prograw files with hashes in the hash table may be allowed to
execute. If any firmware program file hash is not in the hash table, the processing module may
perform platform specific security actions to prevent the device from being compromised.

The following examples pertain to further embodiments, In one example there i3 provided
a device. The device may imclude a memory module mcluding at least platform boot firmware,
and a processing module to load the platform boot firmware when the device is activated, the
platform boot firmware causing the processing moduie to load a hash table, to calculate hashes
for platform boot firmware files loaded subsequent 1o the hash table and to determine whether
the calculated platform boot firmware file hashes are in the hash table,

The above example device may be further configured, wherein the rnemory module
inchides read-only memory to siore the platform boot firmware. In this configuration the
example device may be further configured, wherein the read-only memory stores platform boot
firoyware based on a Basic Input/Cutput System (BIOS}, a Unified Extensible Firmware
Interface (UEFT) or a corcboot system,

The above oxample device may be further configured, alone or tn combiunation with the

above further configurations, wherein the {cading of the platform boot firmware further

10

10

i5

2
Ut

30

WO 2014/134389 PCT/US2014/019238

comprises causing the processing module to load a pre-verifier file to verify a signature of the
hash table prior to determining whether the calculated platform boot firmware file hashes are in
the hash table. In this configuration the cxample device may be further configured, wherein the
pre-verifier file is not to verify signatures for any of the platform boot firmware files.

The above example device may be further configured, alone or in conybination with the
above further configurations, wherein the loading of the platform boot firmware further
comprises causing the processing module to execute platform boot firmware files that are
determined to have hashes in the hash table.

The above example device may be further configured, alone or in combination with the
above further configurations, wherein the boot process further comprises causing the processing
module to perform a security action if any of the platform boot firmware {ile hashes are
determined not to be in the hash table,

In another example there is provided a method. The method may include loading a hash
table and platform boot firnyware files when a device is activated, calculating hashes for each of
the platform boot firmware files, and determining whether each of the calculated platform boot
firmware file hashes are in the hash table.

The above example method may be further configured, wherein the hash table and
platform boot firmware files are loaded from a muemory module in the device, the memory
module mcluding read-only memory. In this configuration the cxample method may be further
configured, wherein the read-only roomory stores platform boot firmware based on a Basic
Input/Ontput System (BIOS), a Unified Extensible Furmware {nterface (UEFT) or a coreboot
systemnt,

The above example method may further comprise, alone or in combination with the above
further configurations, loading a pro-venfier file, and verifying a signature of the hash table with
the pre-verifier file prior to determining whether the calculated platform boot firmware file
hashes are in the hash table. In this configuration the example method may be further
configured, wherein signatures are not verifisd {or the platform boot firmware files with the pre-
verifier file,

The above cxample method may further coruprise, alone or i combination with the above
further configurations, executing platform boot firmware files that are determined to have hashes
in the hash table,

The above example method may further comprise, alone or in combination with the above
further configurations, performing a security action if any of the platform boot firraware file
hashes are determined not to be o the hash table,

In another example there is provided a system comprising at least device, the systen being

8

10

i5

2
Ut

30

WO 2014/134389 PCT/US2014/019238

arranged to perform any of the above example methods.

in another exarple there is provided a chipset arranged (o perform any of the above
cxample methods,

In another example there is provided at least one machine readable medium comprising a
phurality of instructions that, in response to be being executed ou a computing device, cause the
computing dovice to carry out any of the above oxample mothods,

in another exaraple there is provided a device configured with continuation of frust for
platform boot firmware arranged to perform any of the above example methods.

o another example there 15 provided a device having means to perform any of the above
example methods.

In avother exarple there is provided a device. The device may include a memeory module
including at least platform boot firmware, and a processing module to Joad the platform boot
firmware when the device is activated, the platform boot firmware causing the processing
module to load a hash table, to calculate bashes for platform boot finmware files loaded
subsequent to the hash table and to determine whether the calculated platform boot firmware file
hashes are i the hash iable.

The above example device may be further configured, wherein the memory module
mclades read-only memory to store the platform boot firmware. In this configuration the
exampic device may be further configured, wherein the read-only memory stores platform boot
firmware based on a Basic Input/Output System (BIOS), a Unified Extensible Firmware
Interface (UEFT) or a corehoot systen.

The above example device may be further configured, alone or in combination with the
above further configurations, wherein the loading of the platform boot firmware further
comprises causing the processing module to load a pre-vertfier file to verify a signature of the
hash table prior to determining whether the calculated platform boot firmware file hashes are in
the hash table.

The above example device may be further configured, alone or in combination with the
above further configurations, wherein the loading of the platform boot firmware further
comprises causing the processing module to execute platform boot firmware files that are
determined to have hashes in the hash table.

The above example device may be further configured, alone or in combination with the
above further configurations, wherein the boot process farther comprises cauging the processing
module to perform a security action if any of the platform boot firmaware file hashes are
deteronined not to be in the hash table.

In another example there is provided a method. The method may inciude loading a hash

10

i5

2
Ut

30

WO 2014/134389 PCT/US2014/019238

table and platform boot firmware files when a device is activated, calculating hashes for cach of
the platform boot Grmware files, and determining whether each of the calculated platform boot
firmware file hashes are in the hash table.

The above example method may be further configured, wherein the hash table and
platform boot firmware files are loaded from a memeory module in the device, the memory
module including read-only memory. In this configuration the cxample method may be further
configured, wherein the read-only memory stores platform boot firmware based on a Basic
Input/Output System (BIOS), a Unified Extensible Firmware [nterface (UEFT) or a coreboot
systom.

The above cxample method ray further coruprise, alone or i combination with the above
further configurations, loading a pre-verifier file, and verifying a signature of the hash table with
the pre-verifier file prior to determining whether the caleulated platform boot lirmware file
hashes are in the hash table.

The above example method may further comprise, alone or in combination with the above
further configurations, executing platform boot firmware files that are determined to have hashes
in the hash table.

The above example method may further comprise, alone or in combination with the above
further configurations, performing a security action if any of the platform boot firmware file
hashes are determined not to be in the hash table,

In another example there 18 provided a system comprising at least device, the system being
arranged to perform any of the above example methods.

In another example there is provided a chipset arranged to perforny any of the above
example methods.

in asother exampie there is provided at least oue machine readable mediom comprising a
plurality of instructions that, in response to be being executed on a computing device, cause the
computing device to carry out any of the above example methods.

In another example there is provided a device. The device may include a memory module
including at least platform boot firmware, and a processing module to load the platform boot
firmware when the device is activated, the platform boot firmware causing the processing
module to load a hash tabie, to calculate hashes for platform boot Grmware files loaded
subsequent 1o the hash table and to determine whether the calenlated platform boot firmware file
hashes are in the hash table.

The above example device may be further configured, wherein the ruomory module

includes read-only memory to store the platform boot firmware. In this configuration the

10

i5

2
Ut

30

WO 2014/134389 PCT/US2014/019238

example device may be further configured, wherein the read-only memory stores platform boot
firmware based on a Basic Inpwt/Cutput System (BIOS), a Unified Extensible Firmware
Interface (UEF) or a corchoot systen.

The above example device may be further contigured, alone or in combination with the
above further configurations, wherein the loading of the platform boot firmyware further
comprises causing the processing module to load a pro-verifier file to verify a signature of the
hash table prior to determining whether the calculated platform boot firmware file hashes are in
the hash table. in this configuration the example device may be further configured, wherein the
pre-verifier file is not to verify signatures for any of the platform boot firmware files,

The above example device may be further configured, alone or in combination with the
above further configurations, wherein the loading of the platform boot frmware further
comprises causing the processing module to execute platform boot firmware files that are
determined to have hashes in the hash table.

The above example device may be further configured, alone or in combination with the
above further configurations, wherein the boot process further cornprises causing the processing
maodule to perform a security action if any of the platform boot firmware {ile hashes are
determined not 1o be in the hash table,

In another example there 15 provided a method, The method may include loading a hash
table and platform boot firmware files when a device s activated, calculating hashes for each of
the platform boot frmware files, and determining whether each of the calculated platform boot
firmware file hashes are in the hash table.

The above example method may be further configured, wherein the hash table and
platform boot firmware files are loaded from a memory module in the device, the memory
module tncluding read-only memory. In this configuration the example method may be further
configured, wherein the read-only memory stores platform boot firmware based on a Basic
Input/Output System (BIOK), a Unified Extensible Firmware {nterface (UEFT) or a coreboot
system.

The above cxample method may further comprise, alone or in combination with the above
further configurations, loading a pre-verifier file, and verifving a signature of the hash table with
the pre-verifier file prior to determining whether the calculated platform boot firmware file
hashes are in the hash table. In this configyration the example method may be further
configured, wherein signatures are not verified for the platform boot firmware {iles with the pre-
verifier file,

The above oxample method may further coruprise, alone or i combination with the above

further configurations, executing platform boot firmware files that are determined to have hashes

14

10

i5

2
Ut

30

WO 2014/134389 PCT/US2014/019238

in the hash table.

The above example method may further comprise, alone or in combination with the above
further configurations, performing a sccurity action if any of the platform boot firmware file
hashes are determined not t© be in the hash table.

o another embodiment there is provided a systern. The system may inctude means for
loading a hash table and platform boot fimmware files when a device is activated, means for
calculating hashes for each of the platform boot firmrware files, and means for determiming
whether each of the calculated platform boot firnvware file hashes are in the hash table,

The above example system may be further configured, wherein the hash iable and platform
boot firmware files are loaded from a memory module in the device, the memory module
including read-only memory. o this configuration the example systen: may be further
configured, wherein the read-only memory stores platform boot firmware based on a Basic
Input/Output System (BIOS), & Unified Extensible Firmware Interface (UEFI) or a coreboot
gystem,

The above example system may further comprise, alone or in combination with the above
further configurations, means for loading a pre-verifier file, and means for verifying a signature
of the hash table with the pre-verifier file prior to determining whether the calculated platform
boot firmware file hashes are m the hash table. In this configuration the example system may be
further configured, wherein signatures are not verified for the platform boot firmyware files with
the pre-verifier file.

The above example system may further comprise, alone or in combination with the above
further configurations, means for executing platform boot firmware files that are determined to
have hashes in the hash table.

The above example svsterm may further comprise, alone or in combination with the above
further configurations, means for performing a security action if any of the platfonm boot
firmware file hashes are determined not to be in the hash table.

The terms and expressions which have been employed herein are used as terms of
description and not of limitation, and there is no intention, in the use of such terms and
expressions, of excluding any equivalents of the features shown and described (or portions
thereot), and it is recognized that various modifications are possible within the scope of the

claims. Accordingly, the claims are intended to cover all such equivalents,

10

i5

2
Ut

Ely

(2%}
g

WO 2014/134389 PCT/US2014/019238

L3

[,]

6.

~

[o”s]

CLAIMED:

A device, comprising:

a memory module including at least platform boot firmware; and

a processing wodule to load the platform boot firmware when the devics is activated,
the platform beot firmware causing the processing module to load a hash table, to caleulate
hiashes for platform boot firmware files loaded subsequent to the hash table and to determine

whether the calculated platform boot firmware file hashes are in the hash table.

The device of claim 1, wherein the memory module includes read-only memory to store the

platform boot firmware.

The device of claim 2, wherein the read-only memory stores platform boot firmware based
ot a Basic Inpot/Cutput System (BIOS), a Unified Exteusible Firmware Interface (UEFE or

a coreboot system,

The device of claim 1, wherein the loading of the platform bost firmware further comprises
causing the processing module 1o load a pre-venifier file lo verify a signature of the hash
table prior to determining whether the calculated platform boot firmware file hashes are in

the hash table,

The device of claim 4, wherein the pre-verifier file is not to verify the signature of any of the

platform boot firmware files,

The device of claim 1, wherein the loading of the platform boot firmware further comprises
causing the processing module to execute platform boot firmware files that are determined to

have hashes 1o the hash table,

The device of claim 1, wherein the boot process further comprises causing the processing
module to perform a security action if any of the platform boot firmware file hashes are

determined not to be in the hash table,
A method, comprising:

ivading a hash table and platform boot firmware files when a device 18 activated;

calculating hashes for each of the platform boot firmware files; and

16

10

i5

Ely

(2%}
g

WO 2014/134389 PCT/US2014/019238

9.

11

14,

15.

1o,

17.

13

determining whether cach of the calculated platform boot firmware file hashes are in

the hash table.

The method of claim 8, wherein the hash table and platform beot firmware files are loaded

from a memory module in the device, the memory module including read-only memory.

. 'The method of claim 9, wherein the read-only memory stores platform boot firmware based

on a Basic Input/Cutput System (BIOS), a Unified Extensible Firmware Interface (UEFT) or

a corehoot system,

The method of claim 8, further comprising:
ioading a pre~verifier file; and
verifying a signature of the hash table with the pre-verifier file prior to determining

whether the calculated platform beot firmware file hashes are in the hash table.

. The method of claim 11, wherein signatures are not verified for the platform boot firmware

files with the pre-veritier file,

. The method of claim 8, further comprising executing platform boot firmware files that are

determined to have hashes in the hash table.

The method of claim 8, further comprising performing a security action if any of the platform

boot firmware file hashes are determined not to be in the hash table.

A system comprising at least device, the system being arranged to perform the method of any

of the claims § 1o 14,

A chipset arranged to portform the method of any of the claims 8 to 14,

At least one machine readable medium comprising a phurality of instructions that, in response

to be being executed on a computing device, cause the computing device to carry out the

method according to any one of claims § (6 14,

. & device configared with continuation of trust for platform boot firmware arranged {o

erform the method of any one of the claims K to 14.

17

WO 2014/134389 PCT/US2014/019238

19. A device having means to perform the method of any one of the claims R to 14.

18

PCT/US2014/019238

WO 2014/134389

10f4

L "OHd

i
59|14
weboid slemu

Bunsen

a0
9|48 UskH

aurgeubis AusA

i
JBIaA-8id

701 (48d) slemiui 1008 WiopRld

0T aoinaq]

PCT/US2014/019238

WO 2014/134389

20f4

< "9ld

<01
44d
Zi74 74
anpop Asotapy BINPO JoM0d
— |
9NPON
| Bussasoid I
¥4 80¢
BINPOY slELBIY SNPON
SUCREJUNILION aoBpIaI| B8N
00¢
ajnpopy washs
f4%4
BINPO
UORROUNLILO?)

PCT/US2014/019238

WO 2014/134389

3of4

€ "Otid

07
Ajqe] ysey Ad
8180

MYY 3EALT IS AL 1T AL
1BpBSH 914 dIemuli4

.0 @il asemily

208
#
31 BIRMULL

30IN9D 95CYHS 8Y0ZVSY JdAL 1H30 143
A8
FAIND 1430 FLVILILME0 NIM
goiizly
FAIND "GINDIS SINILNOD FUYMINYIL 143
radA [1eaNog
3dAL W30 3dAL X3 AL 143
DPEsH

{Z000X0) JdAL IAIND IdAL IXT A4 143
B4 10 Jopes pepusi
T0% 15pRoH SWN{OA SIBMmuLl4

00¢
I8pesH
BWNIOA
QUBMULLY

PCT/US2014/019238

WO 2014/134389

4 of 4

Y "Old

0%
calqe] yseH
Ul ysen

807
aji4 wesboig
BIBMULE IXEN YSEH

454
814 BIEMULLY
polseH apnoaxy

vy
(PaLseH Sall
I

>

G
uolioy Ajnoeg
Dijiosdg uLoKEld

nnnnnnnnnn

70
sayt wesbold
QiemiLLS pUR
8lge] ysel peo

1008 @0Aa(
Ui BOUUOD

e

00¥
fioog Buung “68)
UORNOBXT JElIIeA
-8id jaydon

INTERNATIONAL SEARCH REPORT

International application No.

PCT/US2014/019238

A. CLASSIFICATION OF SUBJECT MATTER
GOGF 21/50(2013.01)i, GOGF 9/06(2006.01)i

According to International Patent Classification (IPC) or to both national classification and [PC

B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols)
GOG6F 21/50; HO4K 1/00; GOGF 9/24; HO4L 29/14, GO6F 15/177, GOGF 21/00; GO6F 21/22; GO6F 9/06

Korean utility models and applications for utility models
Japanese utility models and applications for utility models

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

Electronic data base consulted during the international search (name of data base and, where practicable, search terms used)
cKOMPASS(KIPO internal) & Keywords: boot, firm ware, files, hash table, calculate

C. DOCUMENTS CONSIDERED TO BE RELEVANT

Category* Citation of document, with indication, where appropriate, of the relevant passages Relevant to claim No.

X Freescale Semiconductor, Inc., ‘Secure Boot on i.MX50, i.MX53, and i.MX 6 S 1-19
eries using HABv4' |, 2012.10.25 (http://cache.freescale.com/files/32bit/doc/
app_note/AN4581.pdf)
See sections 2, 3, and figure 1.

A US 2012-0272296 Al (EDIN HODZIC et al.) 25 October 2012 1-19
See paragraphs [0034]-[0035]; claim 1; and figure 5.

A US 8365297 B1 (YURY G. PARSHIN et al.) 29 January 2013 1-19
See column 12, line 45 - column 13, line 4; and figure 7.

A US 2011-0138166 Al (JACEK PESZEK et al.) 9 June 2011 1-19
See paragraphs [0047]-[0048]; claim 1; and figure 8.

A US 2009-0327741 A1 (VINCENT J. ZIMMER et al.) 31 December 2009 1-19
See paragraphs [0053]-[0056]; claim 13; and figure 8.

|:| Further documents are listed in the continuation of Box C.

See patent family annex.

* Special categories of cited documents:

"A" document defining the general state of the art which is not considered
to be of particular relevance

carlier application or patent but published on or after the international
filing date

document which may throw doubts on priority claim(s) or which is
cited to establish the publication date of another citation or other
special reason (as specified)

document referring to an oral disclosure, use, exhibition or other
means

document published prior to the international filing date but later
than the priority date claimed

g

o

o

"pr

"T" later document published after the international filing date or priority
date and not in conflict with the application but cited to understand
the principle or theory underlying the invention

document of particular relevance; the claimed invention cannot be
considered novel or cannot be considered to involve an inventive
step when the document is taken alone

document of particular relevance; the claimed invention cannot be
considered to involve an inventive step when the document is
combined with one or more other such documents,such combination
being obvious to a person skilled in the art

document member of the same patent family

'

myn

ng"

Date of the actual completion of the international search

20 May 2014 (20.05.2014)

Date of mailing of the international search report

20 May 2014 (20.05.2014)

Name and mailing address of the [ISA/KR
International Application Division
¢ Korean Intellectual Property Office
189 Cheongsa-to, Seo-gu, Dagjeon Metropolitan City, 302-701,
Republic of Korea

Facsimile No. +82-42-472-7140

Authorized officer

AHN, Jeong Hwan

Telephone No. +82-42-481-8440

Form PCT/ISA/210 (second sheet) (July 2009

INTERNATIONAL SEARCH REPORT

International application No.

Information on patent family members PCT/US2014/019238
Patent document Publication Patent family Publication
cited in search report date member(s) date
US 2012-0272296 Al 25/10/2012 US 8239686 Bl 07/08/2012
US 8677142 B2 18/03/2014
US 8365297 Bl 29/01/2013 CN 103065094 A 24/04/2013
EP 2610774 Al 03/07/2013
RU 2472215 C1 10/01/2013
US 2011-0138166 Al 09/06/2011 US 2009-0319806 Al 24/12/2009
US 8201239 B2 12/06/2012
US 2009-0327741 Al 31/12/2009 CN 101630353 A 20/01/2010
EP 2141625 A2 06/01/2010
EP 2141625 A3 03/11/2010
JP 2010-073193 A 02/04/2010

Form PCT/ISA/210 (patent family annex) (July 2009)

	Page 1 - front-page
	Page 2 - description
	Page 3 - description
	Page 4 - description
	Page 5 - description
	Page 6 - description
	Page 7 - description
	Page 8 - description
	Page 9 - description
	Page 10 - description
	Page 11 - description
	Page 12 - description
	Page 13 - description
	Page 14 - description
	Page 15 - description
	Page 16 - description
	Page 17 - claims
	Page 18 - claims
	Page 19 - claims
	Page 20 - drawings
	Page 21 - drawings
	Page 22 - drawings
	Page 23 - drawings
	Page 24 - wo-search-report
	Page 25 - wo-search-report

