特許協力条約に基づいて公開された国際出願

(19) 世界知的所有権機関
国際事務局
(43) 国際公開日
2014年3月6日 (06.03.2014)

(51) 国際特許分類:
A61B 6/03 (2006.01)

(21) 国際出願番号:
PCT/JP2013/027271

(22) 国際出願日:
2013年8月26日 (26.08.2013)

(25) 国際出願の言語:
日本語

(26) 国際公開の言語:
日本語

(57) 要約:
[続葉有]

(74) 代理人: 酒井 宏明 (AKAI, Hiroaki); 〒1000020 東京都千代田区霞が関三丁目2番5号 霞が関ビルディング 酒井国際特許事務所 Tokyo (JP).

(84) 指定国(表示のない限り、全ての種類の広域保護が可能):

(54) Title: MEDICAL IMAGE-PROCESSING APPARATUS AND X-RAY COMPUTED TOMOGRAPHY APPARATUS

(54) 発明の名称: 医用画像処理装置及びX線コンピュータ断層撮影装置

[図]

(57) Abstract: The medical image-processing device according to an embodiment is provided with a separating section (34b), a reconstructing section (36a), and an extracting section (36b). The separating section (34b) separates the projection data into the respective line integral data of at least two or more previously set multiple reference materials. The reconstructing unit (36a) reconstructs reference material image data in which the pixel value of each pixel represents the abundance ratio of the reference material present in said pixel, from the respective line integral data of the multiple reference materials. The extracting section (36b) extracts artifact regions on the basis of the attenuation coefficients of each pixel calculated from the respective reference material image data of the multiple reference materials.

(57) 要約:

[続葉有]
実施形態の医用画像処理装置は、分離部（3４ｂ）と、再構成部（3６ａ）と、抽出部（3６ｂ）とを備える。分離部（3４ｂ）は、投影データを、予め設定された少なくとも２つ以上の複数の基準物質それぞれの線積分データに分離する。再構成部（3６ａ）は、各画素の画素値が当該画素に存在する基準物質の存在率を示す基準物質画像データを、前記複数の基準物質それぞれの線積分データから再構成する。抽出部（3６ｂ）は、前記複数の基準物質それぞれの基準物質画像データから算出される各画素の減弱係数に基づいて、アーチファクト領域を抽出する。
明細書

発明の名称:
医用画像処理装置及びX線コンピュータ断層撮影装置

技術分野

【0001】本発明の実施形式は、医用画像処理装置及びX線コンピュータ断層撮影装置に関する。

背景技術

【0002】従来、X線コンピュータ断層撮影（CT:Computed Tomography）装置により、異なる複数種類の管電圧で撮影を行なって画像を取得する手法がある。2種類の異なる管電圧を用いる場合、かかる手法は、「Dua L Energy CT」と呼ばれる。また、「Dua L Energy CT」では、2種類の異なる管電圧から得られた2つの投影データを、予め設定した2つの基準物質それぞれの投影データ（線積分データ）に分離し、分離した2つのデータそれぞれから、基準物質の存在率に基づく画像（基準物質画像）を再構成する応用技術が知られている。かかる応用技術では、2つの基準物質画像を用いて重み付け計算処理を行うことにより、単色X線画像や密度画像、実効原子番号画像等、様々な画像を取得することができる。

【0003】上記の応用技術は、ビームハードニングを要因とするアーチファクトの補正に有効である。しかし、アーチファクトとしては、ビームハードニング以外に、高吸収体による投影データの精度悪化を要因とするアーチファクトや、散乱線を要因とするアーチファクト等、様々なアーチファクトがある。

【0004】特に、アーチファクトは、高吸収体による投影データの精度悪化により生じることが多い。これは、メタル等のように線吸収係数が大きい物質が撮影対象に存在すると、低管電圧の撮影時において、検出器のカウントが微小となり、正しい投影データが得られないためである。かかる場合、基準物質の投影データが正しく求めらず、その結果、得られる単色X線画像には、例えば、高吸収体周辺の情報が欠落するアーチファクト等が生じる。上記の応用
技術では、ビームハードニング以外のアーチファクトの影響を除去した単色X線画像を生成することができなかった。

先行技術文献

特許文献

[0005] 特許文献1：特開2009-261942号公報

発明の概要

発明が解決しようとする課題

[0006] 本発明が解決しようとする課題は、単色X線画像に発生したアーチファクトを抽出することができる医用画像処理装置及びX線CT装置を提供することである。

課題を解決するための手段

[0007] 実施形態の医用画像処理装置は、分離部と、再構成部と、抽出部とを備える。分離部は、投影データを、予め設定された少なくとも2つ以上の数の基準物質それぞれの線積分データに分離する。再構成部は、各画素の画素値が当該画素に存在する基準物質の存在率を示す基準物質画像データを、前記複数の基準物質それぞれの線積分データから再構成する。抽出部は、前記複数の基準物質それぞれの基準物質画像データから算出される各画素の減弱係数に基づいて、アーチファクト領域を抽出する。

図面の簡単な説明

[0008] [図1]図1は、第1の実施形態のX線CT装置の全体構成例を示す図である。
[図2]図2は、第1の実施形態に係る前処理部及び画像生成部の構成例を示す図である。
[図3]図3は、第1の実施形態に係る抽出部を説明するための図である。
[図4]図4は、第1の実施形態に係る補正部の処理結果の一例を示す図である。
[図5]図5は、第1の実施形態の処理の概要を示す図である。
[図6]図6は、第1の実施形態に係るX線CT装置の処理例を示すフローチャ
発明を実施するための形態

発明を実施するための形態

以下、添付図面を参照して、医用画像処理装置の実施形態を詳細に説明する。なお、以下では、医用画像処理装置として機能するX線コンピュータ断層撮影（CT：Computed Tomography）装置を、実施形態として説明する。

（第1の実施形態）
まず、第1の実施形態に係るX線CT装置の全体構成の一例について、図1を用いて説明する。図1は、第1の実施形態のX線CT装置の全体構成例を示す図である。図1に示すように、第1の実施形態に係るX線CT装置は、架台装置10と、台装置20と、コントロール装置30を有する。

高圧発生部11は、高圧を発生し、発生した高圧をX線管12に供給する装置である。X線管12は、高圧発生部11から供給された高圧によりX線を発生する真空管であり、X線管12が発生したX線は、被検体Pに対して照射される。

X線検出器13は、X線管12から照射されて被検体Pを透過したX線の強度分布を示すX線検出データを検出する検出器である。すなわち、X線検出器13は、被検体Pの体内で生じるX線吸収の度合を示すX線検出データを検出する。例えば、X線検出器13は、チャンネル方向（図1に示すY軸方向）に沿って複数のX線検出素子が配置された検出素子列が、被検体Pの体軸方向（図1に示すZ軸方向）に沿って複数列配置された2次元アレイ型検出器である。

回転フレーム15は、X線管12とX線検出器13とを被検体Pを挟んで対向するように支持する。架台駆動部16は、回転フレーム15を回転駆動
させることで、被検体 P を中心とした円軌道上で X 線管 1 2 および X 線検出器 1 3 を旋回させる駆動装置である。

[001 5] データ収集部 1 4 は、D A S (Data Acquisition System) であり、X 線検出器 1 3 により検出された X 線検出データを収集する。具体的には、データ収集部 1 4 は、X 線管 1 2 からの X 線照射方向それぞれに対応する X 線検出データを収集する。X 線照射方向は、ビュー (view) とも呼ばれる。そして、データ収集部 1 4 は、収集したビューごとの X 線検出データに対して、増幅処理や A / D 変換処理等を行なって、コンソール装置 3 0 の前処理部 3 4 (後述) に出力する。例えば、データ収集部 1 4 は、X 線検出素子ごとのX線検出量を示すX線検出データをX線照射方向ごとに時系列化したデータ (サイノグラムデータ) を出力する。

[001 6] 寝台装置 2 0 は、被検体 P を載せる装置であり、図 1 に示すように、天板 2 2 と、寝台駆動装置 2 1 とを有する。天板 2 2 は、被検体 P が載置されるベッドであり、寝台駆動装置 2 1 は、天板 2 2 を被検体 P の体軸方向 (Z 軸方向) へ移動させることで、被検体 P を回転フレーム 1 5 内に移動させる。

[001 7] コンソール装置 3 0 は、操作者による X 線 C T 装置の操作を受け付けるとともに、アリ装置 1 0 によって収集されたデータ群から断層画像を再構成する装置であり、図 1 に示すように、入力装置 3 1 と、表示装置 3 2 と、スキャシリーズ制御部 3 3 と、前処理部 3 4 と、投影データ記憶部 3 5 と、画像生成部 3 6 と、画像記憶部 3 7 と、システム制御部 3 8 とを有する。

[001 8] 入力装置 3 1 は、X 線 C T 装置を操作する医師や技師などの操作者が各種指示を入力するためのマウス、キーボード、ボタン、トラックボール、ジョイスティックなどを有し、操作者から受け付けた各種コマンドを、後述するシステム制御部 3 8 に転送する。

[001 9] 表示装置 3 2 は、入力装置 3 1 を介して操作者から指示を受け付けるための G U I (Graphical User Interface) を表示したり、後述する画像記憶部 3 7 が記憶する画像を表示したりするためのモニタを有する。
スキャン制御部 33 は、高電圧発生部 11、架台駆動部 16、データ収集部 14 及び寝台駆動装置 21 の動作を制御する。これにより、スキャン制御部 33 は、架台装置 10 で行なわれる被検体 P の X 線スキャン処理、X 線検出データ群の収集処理及び X 線検出データ群に対するデータ処理を制御する。

具体的には、スキャン制御部 33 は、回転フレーム 15 を回転させながら、X 線管 12 から X 線を連続的、又は、間欠的に照射させることで、X 線スキャンを実行させる。例えば、スキャン制御部 33 は、天板 22 を移動させながら回転フレーム 15 を連続回転させて撮影を行うヘリカルスキャンや、被検体 P の位置を固定したままで回転フレーム 15 を 1 回転または連続回転させて撮影を行なうコンベンショナルスキャンを実行させる。

前処理部 34 は、データ収集部 14 から送信された X 線検出データに対して、対数変換処理や、オフセット補正、感度補正等の補正処理を行なうことによって、投影データを生成する。なお、第 1 の実施形態に係る前処理部 34 が行なう処理については、後に詳述する。

投影データ記憶部 35 は、前処理部 34 により生成された投影データを記憶する。

画像生成部 36 は、投影データ記憶部 35 が記憶する投影データから各種画像を生成し、生成した画像を画像記憶部 37 に格納する。例えば、画像生成部 36 は、投影データを逆投影処理 （例えば、F B P（F iltered B ac k P roje ct ion）法による逆投影処理） することで X 線 C T 画像を再構成し、再構成した X 線 C T 画像を画像記憶部 37 に格納する。なお、第 1 の実施形態に係る画像生成部 36 が行なう処理については、後に詳述する。

システム制御部 38 は、架台装置 10、寝台装置 20 およびコソール装置 30 の動作を制御することによって、X 線 C T 装置の全体制御を行う。具体的には、システム制御部 38 は、スキャン制御部 33 を制御することで、架台装置 10 及び寝台装置 20 による X 線検出データ群の収集処理を制御する。また、システム制御部 38 は、前処理部 34 や、画像生成部 36 を制御する。
することで、コンソール装置 30 における画像処理を制御する。また、システム制御部 38 は、画像記憶部 37 が記憶する各種画像を、表示装置 32 に表示するように制御する。

以上、第 1 の実施形態に係る X 線 C T 装置の全体構成について説明した。かかる構成のもと、第 1 の実施形態に係る X 線 C T 装置は、管電圧を 1 種類に固定した撮影を行なって投影データを収集する他に、異なる複数種類の管電圧での「Multi-Energy による撮影」を行なって投影データを収集する。例えば、第 1 の実施形態に係る X 線 C T 装置は、2 種類の異なる管電圧での「Dual Energy による撮影」を行なって投影データを収集する。

Dual Energy による撮影」は、例えば、以下の 3 つの撮影方法で行なわれている。第 1 の撮影方法は、最初に第 1 の管電圧で撮影し、次に第 2 の管電圧で撮影する「Low-kV switching方式（2 回転方式）」である。第 2 の撮影方法は、図 1 に示すような 1 管球の X 線 C T 装置ではなく、2 管球の X 線 C T 装置を用いて、異なる管電圧で撮影を行なう「Source 方式（2 管球方式）」である。第 3 の撮影方法は、回転フレーム 15 を回転させながら、ビューごとに高速で管電圧切り替えで撮影する「Fast-kV switching方式（高速スイッチング方式）」である。これにより、エネルギーの異なる 2 種類の生データ（投影データ）を取得することができる。

以下では、「Dual Energy による撮影」が高速スイッチング方式により行なわれる場合について説明する。なお、本実施形態では、「Dual Energy による撮影」が 2 回転方式や 2 管球方式で行なわれる場合であっても適用可能である。

近年、2 種類の異なる管電圧から得られた 2 つの投影データを、予め設定した 2 つの基準物質それぞれの投影データ（線積分データ）に分離することで、基準物質の存在率に基づく画像（基準物質画像）を再構成する応用技術が開発されている。かかる応用技術では、2 つの基準物質画像を用いて重み付け計算処理を行うことにより、単色 X 線画像や密度画像、実効原子番号像等、様々な画像を取得することができる。
上記の応用技術は、ビームハードニングを要因とするアーチファクトの補正に有効であり、例えば、従来の連続X線からなるX線CT画像よりもビームハードニングの影響を低減した単色X線からなるX線CT画像（単色X線画像、又は、単色X線CT画像）を生成することができる。しかし、アーチファクトとしては、ビームハードニング以外に、高吸収体による投影データの精度悪化を要因とするアーチファクトや、散乱線を要因とするアーチファクト等、様々なアーチファクトがある。

上記の応用技術では、ビームハードニング以外のアーチファクトの影響を除去した単色X線画像を生成することができなかった。そこで、第1の実施形態では、単色X線画像に発生したアーチファクトを抽出するために、以下に説明する前処理部34及び画像生成部36の処理が行なわれる。

図2は、第1の実施形態に係る前処理部及び画像生成部の構成例を示す図である。図2に例示するように、第1の実施形態に係る前処理部34は、投影データ生成部34aと、分離部34bとを有する。また、図2に例示するように、第1の実施形態に係る画像生成部36は、再構成部36aと、抽出部36bと、補正部36cとを有する。

投影データ生成部34aは、データ収集部14から送信されたX線検出データに対して対数変換処理等を行なって、投影データを生成する。第1の実施形態では、投影データ生成部34aは、第1の管電圧（例えば、130kV）のX線検出データから投影データ（以下、高エネルギー投影データと記載する）を生成する。また、第1の実施形態では、投影データ生成部34aは、第2の管電圧（例えば、80kV）のX線検出データから投影データ（以下、低エネルギー投影データと記載する）を生成する。

分離部34bは、投影データを、予め設定された少なくとも2つ以上の数の基準物質それぞれの線積分データに分離する。第1の実施形態では、上記の投影データは、異なる2種類の管電圧それぞれ収集された2つの投影データ（高エネルギー投影データ及び低エネルギー投影データ）である。また、第1の実施形態では、上記の複数の基準物質は、2つの基準物質であり、
例えば、骨及び水である。以下では、2つの基準物質の一方を第1基準物質と記載し、他方を第2基準物質と記載する。

すなわち、分離部34bは、高エネルギー投影データ及び低エネルギー投影データを、第1基準物質の線積分データ（第1線積分データ）と、第2基準物質の線積分データ（第2線積分データ）とに分離する。なお、基準物質は、様々なエネルギーにおける質量減弱係数が既知である物質から設定される。

分離部34bにより分離された第1線積分データ及び第2線積分データは、投影データ記憶部35に格納される。

そして、再構成部36aは、各画素（ピクセル又はポクセル）の画素値が当該画素に存在する基準物質の存在率を示す基準物質画像データを、数の基準物質それぞれの線積分データから再構成する。具体的には、再構成部36aは、第1線積分データを逆投影処理することで、第1基準物質の基準物質画像データ（以下、第1基準物質画像データ）を再構成する。また、再構成部36aは、第2線積分データを逆投影処理することで、第2基準物質の基準物質画像データ（以下、第2基準物質画像データ）を再構成する。ここでは、第1基準物質画像データの画素「」の画素値は、画素「」における第1基準物質の存在率「c1」となる。また、第2基準物質画像データの画素「」の画素値は、画素「」における第2基準物質の存在率「c2」となる。

ここで、任意のエネルギー「E」における画素「i」に対応する投影部位の減弱係数「μ_i(E)」は、以下の式（1）により求めることができる。なお、以下の式（1）において、「μ_1(E)」は、第1基準物質の「E」における減弱係数であり、「μ_2(E)」は、第2基準物質の「E」における減弱係数である。

[数式1]

$$
\mu(E) = c_1 \mu_1(E) + c_2 \mu_2(E)
$$ (1)

なお、「E」における画素「i」に対応する投影部位のCT値「CT#(E)」は、式（1）により求められる「μ_i(E)」と、水の「E」における減弱係数「μ_o(E)」を以下の式（2）に代入することで求まる。
[0041] [数2]

\[
CT\#(E) = 1000 \times \frac{\mu(E) - \mu_{w}(E)}{\mu_{w}(E)} \quad \cdots (2)
\]

[0042] 再構成部36aは、基準物質画像データと、式(1)及び式(2)とを用いて、任意のエネルギーEにおける単色X線画像を生成することができる。式(1)で求められる減弱係数は、ビームハーデニングによる誤差は低減されている。しかし、式(1)で求められる減弱係数には、例えば、メタルアーチファクト、骨や造影剤を要因とするアーチファクト、コーネームアーチファクトの影響が残存している。

[0043] そこで、図2に示す抽出部36bは、複数の基準物質それぞれの基準物質画像データから算出される各画素の減弱係数に基づいて、アーチファクト領域を抽出する。第1の実施形態に係る抽出部36bは、吸収端エネルギーを含まないエネルギー範囲で、2つの異なるエネルギーにおける減弱係数を比較することで、アーチファクト領域を抽出する。図3は、第1の実施形態に係る抽出部を説明するための図である。

[0044] 第1の実施形態に係る抽出部36bは、式(1)を用いて、2つのエネルギーE及びE2それぞれの減弱係数を画素ごとに算出する。2つのエネルギーよの大小関係は、E < E2とされる。ここで、物質の質量減弱係数(線減弱係数/密度)は、光子エネルギーに対して、図3に示す形状となる。図3では、水の質量減弱係数を実線で示し、骨(皮質骨)の質量減弱係数を点線で示し、ヨウ素の質量減弱係数を一点鎖線で示している。

[0045] 図3に示すように、光電効果又はコンプトン散乱が支配的なエネルギー領域では、減弱係数が不連続となる吸収端エネルギー付近を除いて、如何なる物質でも、「\(\mu(E)\)」が成立することを利用し、抽出部36bは、「\(\mu(E)\)」が成立しない画素においては、正しい\(E\)及び\(E_2\)が得られていないと判定し、当該画素をアーチファクト領域として抽出する。換言すると、抽出部36bは、ある画素の\(E\)及び\(E_2\)から算出される2つのエネルギーそれぞれの減弱係数の大小関係が、物理的に矛盾する大小
関係となる場合、当該画素をアーチファクト領域であると判定する。

2つのエネルギーは、設定した2つの基準物質の吸収端エネルギーを除く範囲で、操作者により設定される。或いは、2つのエネルギーは、基準物質のペアに応じて、予め装置に初期設定されている場合でも良い。或いは、2つのエネルギーは、基準物質のペアに応じて、抽出部36bが設定する場合でも良い。

そして、図2に示す補正部36cは、アーチファクト領域の減弱係数を補正する。補正部36cは、例えば、以下に説明する点を利用して、アーチファクト領域の減弱係数を補正する。すなわち、アーチファクト領域の「も」及び「も」は正しくないが、正しくない「も」及び「も」から算出される様々なエネルギーでの減弱係数の中で、あるエネルギーE_{cor}で得られる減弱係数は妥当な値である、という点である。

吸収端エネルギーを除く範囲では、正しい減弱係数の値は、エネルギーが大きくなるにつれて、小さくなる。すなわち、正しい減弱係数のグラフは、右下がりの形状となる。一方、第1の実施形態により抽出されたアーチファクト領域の減弱係数は、吸収端エネルギーを除く範囲であっても、エネルギーが大きくなるにつれて、大きくなる。すなわち、アーチファクト領域の減弱係数のグラフは、右上がりの形状となる。右上がりの形状となる正しい減弱係数のグラフと、右上がりの形状となるアーチファクト領域の減弱係数のグラフは、ある点では交差する。かかる交差点でのエネルギーが上記のE_{cor}ととなる。

そこで、補正部36cは、複数の基準物質それぞれの基準物質画像データの画素値から算出されるアーチファクト領域の減弱係数がある正しい減弱係数となるエネルギーE_{cor}を取得する。本実施形態では、補正部36cは、第1基準物質画像データ及び第2基準物質画像データの画素値から算出されるアーチファクト領域の減弱係数がある正しい減弱係数となるエネルギーE_{cor}を取得する。そして、補正部36cは、E_{cor}でのアーチファクト領域の減弱係数と、E_{cor}での所定の物質の減弱係数とを用い
て、補正処理を行なう。

例えば、補正部3 6 c は、E cor として、経験的に、或いは、実験的に予め求められたエネルギー値を取得する。かかる場合、E cor の値は、例えば、システム制御部3 8 からE cor を取得する。或いは、E cor の値は、補正部3 6 c の処理が行なわれる際に、操作者により入力装置3 1 を介して設定されても良い。かかる場合、補正部3 6 c は、入力装置3 1 を用いて設定されたE cor を、システム制御部3 8 を介して取得する。

ただし、妥当な減衰係数が得られるエネルギーE cor は、同じ値であるとは限らない。このため、実施状態では、あるエネルギーλ の減衰係数λ cor (A) とE cor の関係を、予め求めておく。なお、λ は、吸収端エネルギーを除く範囲において、基準物質のペアに応じて、予め設定されるエネルギーである。また、μ (A) は、c1 及びc2 と、λ における第1 基準物質の減衰係数と、λ における第2 基準物質の減衰係数とを式 (1) に代入することにより求められる値である。

—例として、第1 の実施状態では、傾きλ 及びυ 切片 及びE cor とμ (A) とが、以下の式 (3) のような1 次関数で表せる関係式が成立することを利用する。

[数3]

\[E_{\text{cor}} = a \times \mu (A) + b \quad \cdots (3) \]

なお、λ 、μ 及びυ は、実験的に求められる値である。また、実施状態では、E cor とμ (A) との関係式が、1 次関数で表される場合について説明したが、E cor とμ (A) との関係式が、多項関数や指数関数、対数関数等の様々な関数により表される場合であっても良い。なお、上述したように、E cor の値が一定値に設定されて補正処理が行なわれる場合、式 (3) は、「a = 0 、b = E_{\text{cor}}」に設定されることになる。

補正部3 6 c は、アーチファクト領域として抽出された画素のc1 及びc2 から算出したμ (A) を式 (3) に代入して、E cor を算出する。
そして、補正部3 6 c は、「E cor」における第1基準物質の減弱係数及び
第2基準物質の減弱係数と、「c I」及び「c 2」とを式 (1) に代入して、「E
cor」の減弱係数「バ(E cor)」を算出する。減弱係数「バ(E cor)」は、
「E cor」でのアーチファクト領域の減弱係数であり、「E cor」でのアーチファクト領域の真の減弱係数に近い値として用いることができる。

[0056] そして、補正部3 6 c は、減弱係数「μ(E cor)」と、「E cor」での所
定の物質の減弱係数とを用いて、補正処理を行う。例えば、所定の物質は、
水に設定される。かかる場合、補正部3 6 c は、単色X線画像に対応する
エネルギー「E」における水の減弱係数「μₜ(E)」と、「E cor」における水
の減弱係数「μₜ(E cor)」と、「μₜ(E cor)」を、以下に示す式 (4) に
代入。これにより、補正部3 6 c は、アーチファクト領域として抽出さ
れた画素の補正後の減弱係数「μ(E)」を求める。

[0057] [数4]

\[
μ'(E) = μ(E cor) \times \frac{μₜ(E cor)}{μₜ(E cor)} \quad \cdots (4)
\]

[0058] なお、上記の式 (4) では、水の減弱係数を用いているが、本実施形態は
、その他適切な物質の減弱係数を用いて補正後の減弱係数を算出しても良い
。ここで、「E cor」を一定値にして補正処理を行う場合には、上記の式 (4)
を用いて、アーチファクト領域の補正後の減弱係数が求められる。

[0059] 図4 は、第1の実施形態に係る補正部の処理結果の一例を示す図である。
図4 では、アーチファクト領域の補正前の減弱係数（線減弱係数）のグラフ
を実線で示し、アーチファクト領域の補正後の減弱係数（線減弱係数）のグ
ラフを点線で示している。補正部3 6 c の補正処理が行なわれることにより
、左上がりであった補正前の減弱係数のグラフの形状は、図4 に例示するよ
うに、物理的に矛盾しない右下がりの形状となる。

[0060] 図2 に示す再構成部3 6 a は、補正後の減弱係数を用いて単色X線画像を
生成する。具体的には、再構成部3 6 a は、アーチファクト領域においては
、補正後の減弱係数を式 (2) に代入することでC T値を算出する。また、
再構成部 3 6 a は、アーチファクト領域以外の領域においては、第 1 基準物質画像データ及び第 2 基準物質画像データそれぞれの画素値から式 (1) を用いて減弱係数を算出し、算出した減弱係数を式 (2) に代入することで、CT 値を算出する。これにより、再構成部 3 6 a は、エネルギー E の単色 X 線画像を生成する。

[0061] そして、システム制御部 3 8 の制御により、表示装置 3 2 は、エネルギー E の単色 X 線画像を表示する。

[0062] 図 5 は、第 1 の実施形態の処理の概要を示す図である。図 5 の上段図に示すように、補正部 3 6 c の補正処理が行なわれない場合、単色 X 線画像には、高吸収体による投影データの精度悪化により、白くなるアーチファクトが黒くなるアーチファクトが発生する。

[0063] かかる領域は、図 5 の中段図に示すように、抽出部 3 6 b の抽出処理により、全て、アーチファクト領域として抽出される。そして、補正部 3 6 c の補正処理が行なわれることで、図 5 の下段図に示すように、高吸収体によるアーチファクト領域が補正された単色 X 線画像が生成される。

[0064] なお、E.cor での一定値にして補正処理を行う場合、操作者は、E.cor の値を変更しても良く、例えば、操作者は、アーチファクト領域のエネルギー E での補正後の減弱係数を用いて生成された単色 X 線画像を参照する。そして、操作者は、当該単色 X 線画像の補正が適切でないと判断した場合、E.cor の値を変更する。かかる場合、補正部 3 6 c は、変更後の E.cor を用いて減弱係数の補正処理を再度行ない、再構成部 3 6 a は、再補正後の減弱係数を用いて単色 X 線画像を生成する。また、E.cor を一定値として補正処理を行う場合、複数の値が E.cor として設定され、これらの値それぞれで、補正処理が行なわれて、複数の単色 X 線画像が生成されても良い。かかる場合、操作者は、例えば、複数の単色 X 線画像から、アーチファクトが適切に低減された単色 X 線画像を選択することができる。また、E.cor を式 (3) を用いて取得し、式 (3) を用いて取得した E.corj と式 (4) とを用いてアーチファクト領域の減弱係数を補正する場合で
も、操作者は、E_{cor} の値を変更する処理を行なっても良い。

[0065] また、本実施形態では、式 (3) 及び式 (4) を用いない以下の処理によ
り補正処理が行なわれる場合であっても良い。例えば、補正部 3 6 c は、ア
ーチファクト領域の減弱係数を所定の物質の減弱係数に置き換える補正処理
を行なっても良い。かかる場合、補正部 3 6 c は、アーチファクト領域の減弱
係数を、任意の物質の減弱係数で置き換えることで、補正処理を行なう。
任意の物質としては、例えば、軟組織が挙げられる。

[0066] 或いは、補正部 3 6 c は、アーチファクト領域を通過する投影データや線
積分データに補正を行なうことで、アーチファクト領域の減弱係数を補正す
る。例えば、補正部 3 6 c は、アーチファクト領域を通過する高エネルギー
投影データ及び低エネルギー投影データを補正し、再度、分離部 3 4 b に補
正後の投影データを第 1 線積分データ及び第 2 線積分データに分離させる。
または、例えば、補正部 3 6 c は、アーチファクト領域を通過する第 1 線積
分データ及び第 2 線積分データを補正する。そして、補正部 3 6 c は、再度
、再構成部 3 6 a に第 1 線積分データ及び第 2 線積分データから基準物質画
像データを再構成させる。これにより、補正部 3 6 c は、補正後の減弱係数
を求めることができる。

[0067] 次に、図 6 を用いて、第 1 の実施形態に係る X 線 C T 装置の処理の一例に
ついて説明する。図 6 は、第 1 の実施形態に係る X 線 C T 装置の処理例を示
すフローチャートである。

[0068] 図 6 に例示するように、第 1 の実施形態に係る X 線 C T 装置の分離部 3 4
b は、収集した高エネルギー投影データ及び低エネルギー投影データを、第
1 線積分データ及び第 2 線積分データに分離する（ステップ S 1 0 1）。そ
して、再構成部 3 6 a は、第 1 線積分データ及び第 2 線積分データそれぞれ
から、第 1 基準物質画像データ及び第 2 基準物質画像データを再構成する（
ステップ S 1 0 2）。

[0069] そして、抽出部 3 6 b は、第 1 基準物質画像データ及び第 2 基準物質画像
データから算出される各画素の減弱係数から、アーチファクト領域を抽出し
（ステップ S103）、補正部 36c は、アーチファクト領域の減弱係数を補正する（ステップ S104）。

そして、再構成部 36a は、補正後の減弱係数を用いて、単色 X 線画像を生成する（ステップ S105）。そして、表示装置 32 は、単色 X 線画像を表示し（ステップ S106）、処理を終了する。

以上第 1 の実施形態では、基準物質画像データから算出される減弱係数の値が、物理的に矛盾する値となる画像を、アーチファクト領域として抽出する。これにより、第 1 の実施形態では、単色 X 線画像に発生したアーチファクトを抽出することができる。また、第 1 の実施形態では、アーチファクト領域の減弱係数を補正し、補正後の減弱係数を用いて、単色 X 線画像を生成する。すなわち、第 1 の実施形態では、単色 X 線画像を生成する際の重み付け係数の補正を行なうことができる。これにより、第 1 の実施形態では、単色 X 線画像におけるアーチファクトを低減することができる。

（第 2 の実施形態）

第 2 の実施形態では、抽出部 36b により行なわれるアーチファクト領域抽出方法の別の実施形態について説明する。なお、第 1 の実施形態で説明したアーチファクト領域抽出方法を第 1 抽出方法とし、第 2 の実施形態は、抽出部 36b が行なうアーチファクト領域抽出方法を、第 2 抽出方法→第 6 抽出方法に大別して説明する。

第 2 抽出方法は、減弱係数が 0 以下となることが、物理的にあり得ないことを利用する方法である。第 2 抽出方法では、抽出部 36b は、減弱係数が 0 以下となり得る画像を、アーチファクト領域として抽出する。抽出に用いるエネルギー範囲は、設定されている基準物質及び第 2 基準物質や、X 線 CT 装置が照射可能な管電圧の範囲から設定される。以下では、エネルギー範囲が $E_a - E_b$ であるとして説明する。

例えば、抽出部 36b は、各画像の E_1 及び E_2 と式（1）とから、「$E_a - E_b$」の範囲で、減弱係数を順次算出する。そして、抽出部 36b は、E_a
〜E_b」の範囲で、0以下の減弱係数が算出される「c_1」と「c_2」の組み合わせを有する画素をアーチファクト領域として抽出する。ただし、上記の方法では、「E_a~E_b」の範囲で負荷係数を全て算出する必要がある。そこで、第2抽出方法では、抽出処理の負荷を低減させるために、ある画素の「E_a」及び「E_a~E_b」の組み合わせが以下の3つとなる場合に、当該画素をアーチファクト領域として抽出する。まず、第1の場合は、「E_a」及び「c_2」とならば、0以下の値となる場合である。

第3抽出方法では、人体内部に存在し得るX線吸収が最大となる物質（最大

【0075】また、第2の場合は、「c_1」が負の値であり、且つ、「E_a~E_b」の範囲での
「μ_2(E)/μ_1(E)」の最大値を「R」すると、「E_a」及び「E_a~E_b」の組み合わせが以下の3つとなる場合に、当該画素をアーチファクト領域として抽出する。まず、第1の場合は、「E_a~E_b」及び「c_2」どちらもが0以下の値となる場合である。

【0076】[数5]

|c_1| ≥ R x |c_2| . . . (5)

【0077】また、第3の場合は、「c_2」が負の値であり、且つ、「E_a~E_b」の範囲での
「μ_1(E)/μ_2(E)」の最大値を「R」すると、以下の式（6）が成立する場合である。

【0078】[数6]

|c_2| ≥ R' x |c_1| . . . (6)

【0079】「c_1」及び「c_2」の値は、全画素で既知であり、また、「R」及び「R」も
既知であることから、第1の場合〜第3の場合を用いた判定を行なうことで
第2抽出方法では、抽出処理の負荷を低減させることができる。

【0080】次に、第3抽出方法及び第4抽出方法について説明する。第3抽出方法及び
第4抽出方法では、抽出部36bは、所定のエネルギーにおける減弱係数
と、予め設定した物質の当該エネルギーにおける減弱係数とを比較すること
で、アーチファクト領域を抽出する。ここでは、所定のエネルギーを「E」
とする。 「E」は、操作者により設定される値、又は、初期設定されている値
である。

【0081】第3抽出方法では、人体内部に存在し得るX線吸収が最大となる物質（最大
大吸収物質）が、上記の予め設定した物質とされる。第3抽出方法では、抽出部
3 6 b は、式 (1) により算出される E' における減弱係数 C1 と
の組み合わせを有する画素を、アーチファクト領域として抽出する。

第4抽出方法では、人体内部に存在し得るX線吸収が最小となる物質（最
小吸収物質）が、上記の予め設定した物質とされる。第4抽出方法では、抽出
部3 6 b は、式 (1) により算出される E' における減弱係数 C1 と
の組み合わせを有する画素を、アーチファクト領域として抽出する。

次に、第5抽出方法及び第6抽出方法について説明する。第5抽出方法及
び第6抽出方法では、抽出部3 6 b は、2つの異なるエネルギーそれぞれにお
ける減弱係数の比と、予め設定した物質の当該2つの異なるエネルギーそ
れぞれにおける減弱係数の比を比較することで、アーチファクト領域を抽
出する。ここでは、2つの異なるエネルギーを ε3及びE4、ただしごか、E3ε4」とす
る。 ε3及びE4は、操作者により設定される値、又は、初期設定されている
値である。

第5抽出方法では、最大吸収物質が、上記の予め設定した物質とされる。
第5抽出方法では、抽出部3 6 b は、式 (1) により算出される ε3' におけ
る減弱係数 C1 (E3) と ε4' における減弱係数 C1 (E4) との比 C1 (E3)/ C1 (E4)
を算出する。また、抽出部3 6 b は、最大吸収物質の ε3' における減
弱係数 C1 (E3) と ε4' における減弱係数 C1 (E4) との比 C1 (E3)/ C1 (E4)
を取得する。そして、抽出部3 6 b は、 C1 (E3)/ C1 (E4) が C1 (E3)/ C1 (E4)
より大きくなる C1 と ε2' の組み合わせを有する画素を、アーチ
ファクト領域として抽出する。

第6抽出方法では、最小吸収物質が、上記の予め設定した物質とされる。
第6抽出方法では、抽出部3 6 b は、式 (1) により算出される ε3' におけ
る減弱係数 C1 (E3) と ε4' における減弱係数 C1 (E4) との比 C1 (E3)/ C1 (E4)
を算出する。また、抽出部3 6 b は、最小吸収物質の ε3' における減
弱係数 $\mu_b(E_3)$ と E_4 における減弱係数 $\mu_b(E_4)$ との比 $\mu_b(E_3)/\mu_b(E_4)$ を取得する。そして、抽出部3 6 は、「$\mu(E_3)/\mu(E_4)$」が「$\mu_b(E_3)/\mu_b(E_4)$」より小さくなる「c_1」及び「c_2」の組み合わせを有する画素を、アーチファクト領域として抽出する。

第1抽出方法－第6抽出方法は、単独で行なわれる場合であっても、2つ以上の組み合わせにより行なわれる場合であっても良い。第1抽出方法－第6抽出方法を組み合わせて行うことで、アーチファクト領域の抽出精度を向上させることができる。なお、第2の実施形態で説明した方法でアーチファクト領域が抽出された後も、第1の実施形態で説明した補正処理及び単色X線画像の生成処理が行なわれる。

（第3の実施形態）
第3の実施形態では、抽出部3 6 により行なわれるアーチファクト領域の抽出精度を更に向上させる方法について説明する。

第7抽出方法は、第1抽出方法－第6抽出方法を行なう際、第7抽出方法として、基準の基準物質それぞれの基準物質画像データにおいて、同一位置の画素の画素値が所定の範囲となる画素を、アーチファクト領域の抽出対象から除き、例えば、抽出部3 6 は、「c_1」及び「c_2」が共に「$b \pm \alpha$」範囲にある画素を、抽出の対象外とする。なお、「$b \pm \alpha$」は、操作者により設定される値、又は、初期設定されている値である。

第7抽出方法が行なわれることで、第3の実施形態では、空気の領域がノイズとして抽出されることを回避することができる。

更に、第3の実施形態に係る抽出部3 6 は、第1抽出方法－第6抽出方法を行なう際に、上記の第7抽出方法とともに、或いは、第7抽出方法を実行せずに、以下の第8抽出方法を行なっても良い。

第3の実施形態に係る抽出部3 6 は、第8抽出方法において、複数の基準物質それぞれの基準物質画像データに対してフィルタ処理が行なわれた後のデータから、アーチファクト領域を抽出する。例えば、抽出部3 6 は、基準物質画像データに、メディアンフィルタ等のフィルタ処理を行なった後
に、アーチファクト領域の抽出を行う。なお、フィルタ処理は、抽出部以外の処理部により実行される場合であっても良い。

第8抽出方法が行なわれることで、第3の実施形態では、基準物質画像データのノイズによる孤立点を排除することができる。

第4の実施形態

第4の実施形態では、抽出部bにより抽出されたアーチファクト領域を、観察者に対して示す場合について、図7A及び図7Bを用いて説明する。図7A及び図7Bは、第4の実施形態を説明するための図である。

第4の実施形態において、システム制御部は、補正後の減弱係数を用いた単色X線画像において、アーチファクト領域が強調表示されるように制御する。例えば、システム制御部3Bの制御により、再構成部36aは、図7Aに示すように、補正後の減弱係数を用いた単色X線画像におけるアーチファクト領域の輪郭を点線により描画する。そして、表示装置32は、システム制御部3Bの制御により、図7Aに示す画像を表示する。

或いは、第4の実施形態において、システム制御部3Bは、補正前の減弱係数を用いた単色X線画像において、アーチファクト領域が強調表示されるように制御する。例えば、システム制御部3Bの制御により、再構成部36aは、図7Bに示すように、補正前の減弱係数を用いた単色X線画像におけるアーチファクト領域の輪郭を点線により描画する。そして、表示装置32は、システム制御部3Bの制御により、図7Bに示す画像を表示する。

なお、システム制御部3Bは、抽出されたアーチファクト領域が色づけされた単色X線画像を表示するように制御しても良い。

また、第4の実施形態では、補正前の減弱係数を用いた単色X線画像にてアーチファクト領域を強調表示する場合、補正部36cによる減弱係数の補正処理が行なわれない場合であっても良い。

第4の実施形態では、単色X線画像におけるアーチファクト領域を視覚化するので、単色X線画像を読影する読影医に対して、例えば、高吸収体により情報が欠落している可能性のある領域を提示することが可能となる。
なお、上記の第1〜第4の実施形態で説明した医用画像処理方法は、異なる3種類以上の管電圧での「MultiEnergyによる撮影」を行なう場合であっても適用可能である。また、上記の第1〜第4の実施形態で説明した医用画像処理方法は、基準物質が3つ以上設定される場合であっても適用可能である。

また、上記の第1〜第4の実施形態では、X線検出器13が積分型の検出器である場合について説明した。しかし、上記の第1〜第4の実施形態で説明した医用画像処理方法は、X線検出器1が、被検体Pを透過したX線に由来する光を個々に計数するフォトンカウンティング方式の検出器である場合であっても適用可能である。X線検出器13がフォトンカウンティング方式の検出器である場合、分離部34bは、管電圧を1種類に固定した撮影を行なって収集された投影データから、線減弱係数を求めることができる。

また、図示した各装置の各構成要素は機能概念的なものであり、必ずしも物理的に図示の如く構成されていることを要しない。すなわち、各装置の分散・統合の具体的形態は図示のものに限られず、その全部または一部を、各種の負荷や使用状況などに応じて、任意の単位で機能的または物理的に分散・統合して構成することができる。更に、各装置にて行なわれる各処理機能は、その全部または任意の一部が、CPU及び当該CPUにて解析実行されるプログラムにて実現され、或は、ワイヤードロジックによるハードウェアとして実現される得る。

以上、説明したとおり、第1〜第4の実施形態によれば、単色X線画像に発生したアーチファクトを抽出することができる。

本発明のいくつかの実施形態を説明したが、これらの実施形態は、例として提示したものであり、発明の範囲を限定することは意図していない。これ
実施形態は、その他の様々な形態で実施されることが可能であり、発明の要旨を逸脱しない範囲で、種々の省略、置き換え、変更を行うことができる。これら実施形態やその変形は、発明の範囲や要旨に含まれると同様に、請求の範囲に記載された発明とその均等の範囲に含まれるものである。
請求の範囲

[請求項1] 投影データを、予め設定された少なくとも2つ以上の複数の基準物質それぞれの線積分データに分離する分離部と、
各画素の画素値が当該画素に存在する基準物質の存在率を示す基準物質画像データを、前記複数の基準物質それぞれの線積分データから再構成する再構成部と、
前記複数の基準物質それぞれの基準物質画像データから算出される各画素の減弱係数に基づいて、アーチファクト領域を抽出する抽出部と、
を備える、医用画像処理装置。

[請求項2] 前記アーチファクト領域の減弱係数を補正する補正部、
を更に備え、
前記再構成部は、補正後の減弱係数を用いて単色×線画像を生成する、請求項1に記載の医用画像処理装置。

[請求項3] 前記補正部は、前記複数の基準物質それぞれの基準物質画像データの画素値から算出される前記アーチファクト領域の減弱係数が、略正しい減弱係数となるエネルギーを取得し、当該エネルギーでのアーチファクト領域の減弱係数と、当該エネルギーでの所定の物質の減弱係数とを用いて、補正処理を行う。請求項2に記載の医用画像処理装置。

[請求項4] 前記補正部は、前記複数の基準物質それぞれの基準物質画像データの画素値から算出される前記アーチファクト領域の減弱係数が、略正しい減弱係数となるエネルギーとして予め求められた値を取得する、請求項3に記載の医用画像処理装置。

[請求項5] 前記補正部は、前記アーチファクト領域の減弱係数を所定の物質の減弱係数に置き換える補正処理を行う。請求項2に記載の医用画像処理装置。

[請求項6] 前記抽出部は、前記複数の基準物質それぞれの基準物質画像データ
対してフィルタ処理が行なわれた後のデータから、前記アーチファクト領域を抽出する、請求項1に記載の医用画像処理装置。

[請求項7] 前記抽出部は、吸収端エネルギーを含まないエネルギー範囲で、2つの異なるエネルギーにおける減弱係数を比較することで、前記アーチファクト領域を抽出する、請求項1に記載の医用画像処理装置。

[請求項8] 前記抽出部は、減弱係数が0以下となり得る画素を、前記アーチファクト領域として抽出する、請求項1に記載の医用画像処理装置。

[請求項9] 前記抽出部は、所定のエネルギーにおける減弱係数と、予め設定した物質の当該エネルギーにおける減弱係数とを比較することで、前記アーチファクト領域を抽出する、請求項1に記載の医用画像処理装置。

[請求項10] 前記抽出部は、2つの異なるエネルギーそれぞれにおける減弱係数の比と、予め設定した物質の当該2つの異なるエネルギーそれぞれにおける減弱係数の比を比較することで、前記アーチファクト領域を抽出する、請求項1に記載の医用画像処理装置。

[請求項11] 前記抽出部は、前記複数の基準物質それぞれの基準物質画像データにおいて、同一位置の画素の画素値が所定の範囲となる画素を、前記アーチファクト領域の抽出対象から除外する、請求項1に記載の医用画像処理装置。

[請求項12] 前記投影データは、異なる2種類の管電圧それぞれ収集された2つの投影データである、請求項1に記載の医用画像処理装置。

[請求項13] 前記補正後の減弱係数を用いた単色X線画像、又は、補正前の減弱係数を用いた単色X線画像において、前記アーチファクト領域が強調表示されるように制御する制御部、

を更に備える、請求項2に記載の医用画像処理装置。

[請求項14] 投影データを、予め設定された少なくとも2つ以上の複数の基準物質それぞれの線積分データに分離する分離部と、

各画素の画素値が当該画素に存在する基準物質の存在率を示す基準
物質画像データを、前記複数の基準物質それぞれの線積分データから再構成する再構成部と、
前記複数の基準物質それぞれの基準物質画像データから算出される各画素の減弱係数に基づいて、アーチファクト領域を抽出する抽出部と、
を備える、X線コンピュータ断層撮影装置。
[図5]

アーチファクト

高吸収体

アーチファクト領域の抽出

抽出

アーチファクト領域の補正
[図6]

スタート

第1線積分データ及び第2線積分データに分離 ~ S101

第1基準物質画像データ及び第2基準物質画像データを再構成 ~ S102

アーチファクト領域を抽出 ~ S103

アーチファクト領域の減弱係数を補正 ~ S104

単色X線画像を生成 ~ S105

単色X線画像を表示 ~ S106

エンド
INTERNATIONAL SEARCH REPORT

A. CLASSIFICATION OF SUBJECT MATTER

According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols)

A 61 B 6/ 00- 6/ 14

C. DOCUMENTS CONSIDERED TO BE RELEVANT

<table>
<thead>
<tr>
<th>Category</th>
<th>Citation of document, with indication, where appropriate, of the relevant passages</th>
<th>Relevant to claim No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Y</td>
<td>JP 2009- 261942 A (Toshiba Corp .), 12 November 2009 (12.11.2009), ent ire text ; fig . 1 t o 9</td>
<td>1,6,8,9.11, 12,14</td>
</tr>
<tr>
<td>A</td>
<td>ent ire text ; fig . 1 t o 9 & US 2009/0262997 Al & EP 2133840 A2</td>
<td>2-5,7,10.13</td>
</tr>
<tr>
<td>Y</td>
<td>JP 2009- 47602 A (Toshiba Corp .), 05 March 2009 (05.03.2009), paragraphs [0008], [0035] t o [0039] ; fig . 5 (Family : none)</td>
<td>1,6,8,9.11, 12,14</td>
</tr>
</tbody>
</table>

Further documents are listed in the continuation of Box C.

See patent family annex.

* Special categories of cited documents:

A document defining the general state of the art which is not considered to be of particular relevance

E earlier application or patent but published on or after the international filing date

L document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another citation or other special reason (as specified)

O document referring to an oral disclosure, use, exhibition or other means

P document published prior to the international filing date but later than the priority date claimed

Later document published after the international filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the invention

Document of particular relevance; the claimed invention cannot be considered novel or cannot be considered to involve an inventive step when the document is taken alone

Document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such documents, such combination being obvious to a person skilled in the art

Document member of the same patent family

Date of the actual completion of the international search

15 November , 2013 (15.11.13)

Date of mailing of the international search report

26 November , 2013 (26.11.13)

Name and mailing address of the ISA/ Japane se Patent Offi ce

Authorized officer

Facsimile No.

Telephone No.

Form PCT/ISA/210 (second sheet) (July 2009)
<table>
<thead>
<tr>
<th>Category</th>
<th>Citation of document, with indication, where appropriate, of the relevant passages</th>
<th>Relevant to claim No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>JP 2006-43431 A (Toshiba Corp.), 16 February 2006 (16.02.2006), entire text; fig. 1 to 7 & US 2006/0029285 A1</td>
<td>1-14</td>
</tr>
</tbody>
</table>
国際出願番号 PCT／JP2013/072771

A．発明の属する分野の分類（国際特許分類（I P C ））
Int.Cl. A61B6/03 (2006.01)

B．調査を行った分野
調査を行った最小限資料（国際特許分類（I P C ））
Int.Cl. A61B6/00-6/14

最小限資料以外の資料で調査を行った分野に含まれるもの

日本国出願新案公報 1922
日本国公閉案用新案公報 1971-2
日本国出願新案登録公報 1996-1
日本国登録案用新案公報 1994-2

国際調査で使用した電子データベース（データベースの名称、調査に使用した用語）

C．関連すると認められる文献

<table>
<thead>
<tr>
<th>引用文献のカテゴリー</th>
<th>引用文献名</th>
<th>及び一部の箇所が関連するときは、その関連する箇所の表示</th>
<th>関連する請求項の番号</th>
</tr>
</thead>
<tbody>
<tr>
<td>Y</td>
<td>JP 2009-261942 A (株式会社東芝) 2009.11.12，</td>
<td>全文，第1-9図</td>
<td>1,6,8,9,11,12,14</td>
</tr>
<tr>
<td>Y</td>
<td>JP 2009-47602 A (株式会社東芝) 2009.03.05，</td>
<td>段落【0081】，【0035】～【0039】，第5図</td>
<td>1,6,8,9,11,12,14</td>
</tr>
</tbody>
</table>

☑ C欄の続きにも文献が挙げられている。

引文文献のカテゴリー
A 特に関連のある文献ではなく、一般的の技術水準を示すもの
E 国際出願 日前の出願または特許であるが、国際出願日以前に公表されたもの
L 優先権主張に疑義を提起する文献又は他の文献の発行日若しくは他の特別な理由を理由付す
O 口頭による開示、使用、展示等に著者する文献
P 国際出願 日前で、かつ優先権の主張の基礎となる出願

国際調査を完了した日 15.11.2013
国際調査報告書の発送日 26.11.2013

国際調査機関の名称及びあて先
日本国特許庁（ISA／JP）
郵便番号100－8915
東京都千代田区霞が関三丁目4番3号

特許庁審査官（権限のある職員）
安 田 明 央
電話番号 03-3581-1101 内線 3292

様式 PCT／ISA／210（第2ページ）（2009年7月）
<table>
<thead>
<tr>
<th>引用文献のカテゴリ</th>
<th>引用文献名及一部の箇所が関連するときは、その関連する箇所の表示</th>
<th>請求項の番号</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>JP 2006-43431 (株式会社東芝) 2006.02.16,全文,第1-7図 & US 2006/0029285 Al</td>
<td>1-14</td>
</tr>
</tbody>
</table>

様式 PCT/ISA/210 (第2ページの続き) (2009年7月)