INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(19) World Intellectual Property Organization
International Bureau

(43) International Publication Date
26 March 2015 (26.03.2015)

(51) International Patent Classification:
G06Q 10/00 (2012.01)

(21) International Application Number:
PCT/US20 14/056311

(22) International Filing Date:
18 September 2014 (18.09.2014)

(25) Filing Language: English

(26) Publication Language: English

(30) Priority Data:
14/030,887 18 September 2013 (18.09.2013) US

(72) Inventors: D'AMICO, James, W.; 39 Hyacinth Lane, Fairport, NY 14450 (US); BACCARO, Paul, M.; 66 Day-lily Lane, Rochester, NY 14626 (US); SMITH, Matthew; 90 Chardonnay Drive, Fairport, NY 14450 (US).

Published: — with international search report (Art. 21(3))

(54) Title: METHODS FOR generating a WORK-ORDER IN REAL TIME and DEVICES THEREOF

(57) Abstract: A method, non-transitory computer readable medium, and a mobile computing device comprises obtaining one or more databases from one or more sources; identifying one or more items in the obtained one or more databases; determining a fee for the identified one or more items based on one or more fee setting parameters; and generating a work-order in real-time based on the determined fee.

FIG. 1
METHODS FOR GENERATING WORK-ORDER IN REAL TIME AND DEVICES THEREOF

[0001] This application claims the priority benefit of U.S. Patent Application Serial No. 14/030,887, filed September 18, 2013, which is hereby incorporated by reference in its entirety.

FIELD OF THE INVENTION

[0002] The present invention relates to a method and device for generating a work-order in real time, and is generally suitable for any type of service provider who utilizes new equipment or replacement parts in delivering a service to a customer.

BACKGROUND OF THE INVENTION

[0003] Service providers, such as electricians, plumbers, heating/cooling contractors who provide installation and repair services for commercial and/or residential customers, are tasked with diagnosing problems raised by their customers, initiating the repair service, completing the service, and completing the financial transaction associated with the service. One difficulty that these service providers have is the ability to efficiently estimate costs for parts and repair services. The typical way of performing cost estimations is a highly manual endeavor, although certain individual contractors or their employers may have standard repair services with flat rate charges. Estimating the cost of parts, which are subject to price variability levied by the distributors that contractors use, adds further complexity to the process. As a result of existing cost estimation systems being manual, inefficiencies naturally occur, and much time and effort is wasted in generating a work order with repair service and parts fee estimates, and then closing out a transaction with a customer.

[0004] It would be desirable, therefore, to develop a device and method that allows a service provider to efficiently generate a work order in the field, in real time, using routinely updated parts and service fees, present the work order to the customer for immediate approval, initiate and complete the agreed upon service, and optionally complete payment transactions for services rendered. Increased efficiencies on the transactional side of these services will allow for decreased time allocation to the transaction and, therefore, increased profitability. Further, through the use of flat-rate pricing and automated, scaled parts markup during work-order generation, increased profitability can be achieved.
The present invention is directed to overcoming these and other deficiencies in the art.

SUMMARY OF THE INVENTION

A first aspect of the present invention relates to a method for generating a work-order in real time. The method includes the steps of obtaining, by a mobile computing device, one or more databases from one or more sources; identifying, by the mobile computing device, one or more items in the obtained one or more databases; determining, by the mobile computing device, a fee for the identified one or more items based on one or more fee setting parameters; and generating by the mobile computing device a finalized work-order in real-time based on the determined fee.

A second aspect of the invention also relates to a method for generating a work-order in real time. The method includes the steps of identifying, by a mobile computing device, one or more databases from one or more sources; identifying, by the mobile computing device, one or more items in the identified one or more databases; determining, by the mobile computing device, a fee for the identified one or more items based on one or more fee setting parameters; and generating, by the mobile computing device, a finalized work-order in real-time based on the determined fee. The method further includes one or more of the following steps: determining, by the mobile computing device, a fee adjustment for one or more determined fees and applying the determined fee adjustment to one or more determined fees; determining, by the mobile computing device, a discount value for one or more determined fees and applying the determined discount value to the one or more determined fees; applying, by the mobile computing device, a custom label to a user account associated with the mobile computing device, whereby one or more process steps of the method is modified based on the applied custom label, either before or after generating the work-order; or determining, by the mobile computing device, whether the generated work order reduces a user account balance to below a threshold level.

A third aspect of the present invention relates to a non-transitory computer readable medium having stored thereon instructions for generating a work-order in real time, and including machine executable code which when executed by at least one processor, causes the processor to perform steps including: obtaining one or more databases from one or more sources; identifying one or more items in the obtained one or more databases; determining a fee for the identified one or more items based on one or more fee setting parameters; and generating a finalized work-order in real-time based on the determined fee.
A fourth aspect of the present invention relates to a non-transitory computer readable medium having stored thereon instructions for generating a work-order in real time, and including machine executable code which when executed by at least one processor, causes the processor to perform steps including: identifying one or more databases from one or more sources; identifying one or more items in the identified one or more databases; determining a fee for the identified one or more items based on one or more fee setting parameters; and generating a finalized work-order in real-time based on the determined fee. The processor is also caused to perform one or more of the following steps: determining a fee adjustment for one or more determined fees and applying the determined fee adjustment to one or more determined fees; determining a discount value for one or more determined fees and applying the determined discount value to the one or more determined fees; applying a custom label to a user account associated with a mobile computing device, whereby one or more process steps of the method is modified based on the applied custom label, either before or after generating the work-order; or determining, by the mobile computing device, whether the generated work order reduces a user account balance to below a threshold level.

A fifth aspect of the present invention relates to a mobile computing device that includes one or more processors and a memory, wherein the memory is coupled to the one or more processors which are configured to execute programmed instructions stored in the memory including: obtaining one or more databases from one or more sources; identifying one or more items in the obtained one or more databases; determining a fee for the identified one or more items based on one or more fee setting parameters; and generating a finalized work-order in real-time based on the determined fee.

A sixth aspect of the present invention relates to a mobile computing device that includes one or more processors and a memory, wherein the memory is coupled to the one or more processors which are configured to execute programmed instructions stored in the memory including: identifying one or more databases from one or more sources; identifying one or more items in the identified one or more databases; determining a fee for the identified one or more items based on one or more fee setting parameters; and generating a finalized work-order in real-time based on the determined fee. The programmed instructions stored in the memory further include one or more of: determining a fee adjustment for one or more determined fees and applying the determined fee adjustment to one or more determined fees; determining a discount value for one or more determined fees and applying the determined discount value to the one or more determined fees; applying a custom label to a user account associated with a mobile
computing device, whereby one or more process steps of the method is modified based on the applied custom label, either before or after generating the work-order; or determining, by the mobile computing device, whether the generated work order reduces a user account balance to below a threshold level.

BRIEF DESCRIPTION OF THE DRAWINGS

[0012] FIG. 1 is a block diagram of an exemplary mobile computing device for generating work-order in real-time;

[0013] FIGS. 2A-2B are exemplary flowcharts for generating a work-order in real-time;

[0014] FIG. 3 is an exemplary flowchart illustrating the mobile computing device receiving user information;

[0015] FIG. 4 is an exemplary block diagram illustrating the mobile computing device obtaining database from a server;

[0016] FIGS 5A-5D is an exemplary flowchart illustrating the mobile computing device suggesting search items;

[0017] FIG. 6A-C illustrate an exemplary parts reordering system, where FIG. 6A is an exemplary flowchart illustrating a method for parts reordering, FIG. 6B illustrates one embodiment for distributor interface with the mobile computer device for automated parts reordering, and FIG. 6C illustrates the relationship between multiple technicians employed by a single contractor and their ability to access parts from one or more distributors and their outlets;

[0018] FIG. 7 is an exemplary flowchart illustrating a method for determining and applying a fee adjustment (for cost recovery);

[0019] FIGS. 8A-B are exemplary flowcharts illustrating a method for determining a discount value to be applied to a work order as a whole (FIG. 8A) or per selected repair (FIG. 8B);

[0020] FIG. 9 is an exemplary block diagram illustrating the mobile computing device displaying a work-order;

[0021] FIG. 10 is an exemplary flowchart for a method of auto-payment for a user's maintenance of a positive work-order balance;
FIGS. 11A-B are graphs illustrating an exemplary parts mark-up protocol without (FIG. 11A) and with (FIG. 11B) use of an algorithm to smooth transitions between different mark-up categories; and

FIG. 12 is an exemplary flowchart for a method of synchronizing data from the inventive devices to a device operating accounting software such as QuickBooks™.

DETAILED DESCRIPTION OF THE INVENTION

An exemplary environment 10 including a mobile computing device 14 and plurality of servers 16 for generating a work-order in real-time is illustrated in FIG. 1. As used herein, "generating a work-order" is intended to encompass the completion of a finalized work-order that can be presented to a customer for review and then approved by the customer before work is commenced. This is the end result of a process of opening a new work-order, and populating the work-order with one or more service fees and/or parts fees, as appropriate. This process is described in greater detail below.

The exemplary environment 10 includes the mobile computing device 14 and the servers 16, data server 17, Re-order parts electronically (ROPE) database 40 and distributor devices 42, which are coupled together by a communication network 30, although the environment can include other types and numbers of devices, components, elements, and communication networks 30 in other topologies and deployments. While not shown, the exemplary environment 10 may include additional components, such as databases, etc., which are well known to those of ordinary skill in the art and thus will not be described here. This technology provides a number of advantages including providing more effective methods, non-transitory computer readable medium and devices for generating a work-order in real time.

The mobile computing device 14 assists with generating a work-order in real time as illustrated and described with the examples herein, although mobile computing device 14 may perform other types and numbers of functions. The mobile computing device 14 includes at least one CPU/processor 18, memory 20, input device 22A and display device 22B, and communication interface 24, which are all coupled together by bus 26, although mobile computing device 14 may comprise other types and numbers of elements such as an antenna for receiving analog or digital signals in other configurations.

Processor(s) 18 may execute one or more computer-executable instructions stored in the memory 20 for the methods illustrated and described with reference to the examples.
herein, although the processor(s) can execute other types and numbers of instructions and perform other types and numbers of operations. The processor(s) 18 may comprise one or more central processing units ("CPUs") or general purpose processors with one or more processing cores, such as AMD® processor(s), although other types of processor(s) could be used (e.g., Intel®).

Memory 20 may comprise one or more tangible storage media, such as RAM, ROM, flash memory, CD-ROM, floppy disk, hard disk drive(s), solid state memory, DVD, or other memory storage types or devices, including combinations thereof, which are known to those of ordinary skill in the art. Memory 20 may store one or more non-transitory computer-readable instructions of this technology as illustrated and described with reference to the examples herein that may be executed by the one or more processor(s) 18. The flow chart shown in FIGS. 2A-2B is representative of example steps or actions of this technology that may be embodied or expressed as one or more non-transitory computer or machine readable instructions stored in memory 20 that may be executed by the processor(s) 18.

Input device 22A enables a user, such as a contractor, to interact with the mobile computing device 14, such as to input and/or view data and/or to configure, program and/or operate it. By way of example only, input device 22A may include one or more of a touch screen, keyboard and/or a computer mouse.

The display device 22B enables a user, such as an administrator, to interact with the mobile computing device 14, such as to view and/or input information and/or to configure, program and/or operate it by way of example only. By way of example only, the display device 22B may include one or more of a CRT, LED monitor, LCD monitor, or touch screen display technology although other types and numbers of display devices could be used.

The communication interface 24 in the mobile computing device 14 is used to operatively couple and communicate between the mobile computing device 14, the servers 16 data server 17, Re-order parts electronically (ROPE) database 40, distributor devices 42, although other types and numbers of systems, devices, components, elements and/or networks with other types and numbers of connections and configurations can be used. By way of example only, the mobile computing device 14 can interact with other devices via a communication network 30 such as Local Area Network (LAN), analog radio signals, digital radio signals and Wide Area Network (WAN) and can use TCP/IP over Ethernet and industry-standard protocols, including NFS, CIFS, SOAP, XML, LDAP, and SNMP, although other types
and numbers of communication networks, can be used. In this example, the bus 26 is a hyper-
transport bus, although other types of buses and/or other links may be used, such as PCI.

[0032] Each of the servers 16 and the data server 17 includes a central processing unit
(CPU) or processor, a memory, a communication interface, input device and display device,
which are coupled together by a bus or other link, although each could have other types and
numbers of elements and/or other types and numbers of network devices could be used in this
environment. In this example, the servers 16 may run applications which assist the servers 16 to
respond to requests from the mobile computing device 14, although the server may run other
types or amounts of applications. Additionally, in this example, the mobile computing device 14
can use data server 17 to send a notification to replenish parts to the re-order parts electronically
(ROPE) database 40. In another example, the servers 16 can also be configured to include the
contents of the data server 17.

[0033] As illustrated in FIG. 1, environment 10 also includes a ROPE database 40 which
includes information associated with parts required for repairs, although the ROPE database can
include other types or amounts of information. In this example, the data server 17 interacts with
the ROPE database 40 via the communication network 30, although the data server 17 can
interact with the ROPE database 40 via other topologies. Additionally, the distributor devices 42
can upload data associated with the parts to the ROPE database 40 via the communication
network 30, although the distributor and the ROPE database 40 can interact through other
network topologies.

[0034] Each of the distributor devices 42 includes a central processing unit (CPU) or
processor, a memory, a communication interface, input device and display device, which are
coupled together by a bus or other link, although each could have other types and numbers of
elements and/or other types and numbers of network devices could be used in this environment.
In this example, the distributor devices 42 may run applications which with uploading parts data
to the ROPE database 40 to respond to requests from the data server 17 or the mobile computing
device 14, although the server may run other types or amounts of applications.

[0035] It is to be understood that the methods of the examples described herein are for
exemplary purposes, as many variations of the specific hardware and software used to implement
the examples are possible, as will be appreciated by those skilled in the relevant art(s).
Furthermore, each of the methods of the examples may be conveniently implemented using one or more general purpose computer systems, microprocessors, digital signal processors, and micro-controllers, programmed according to the teachings of the examples, as described and illustrated herein, and as will be appreciated by those of ordinary skill in the art.

The examples may also be embodied as the non-transitory computer readable medium having instructions stored thereon for one or more aspects of the technology as described and illustrated by way of the examples herein, which when executed by a processor (or configurable hardware), cause the processor to carry out the steps necessary to implement the methods of the examples, as described and illustrated herein.

Exemplary methods for generating work-order in real-time will now be described below with reference to FIGS. 1-11, which illustrate the generation of finalized a work order for the repair or installation services of a contractor, by way of example only, an electrician, a plumber, or a heating and cooling technician.

Particularly with reference to FIG. 2A, an exemplary process begins at step 205 with a mobile computing device 14 sending out a request to connect to a server 16 including multiple databases via the communication network 30, although the mobile computing device 14 can connect to the server 16 using any other methods or techniques. In this example, the multiple databases within the server 16 include repair options, although the databases can include any other information or items.

In step 210, the mobile computing device 14 once connected to server 16 sends out registration information and profile settings to the server 16. An exemplary process of the mobile computing device 14 receiving registration information from a user of the mobile computing device 14 will now be explained with reference to FIG. 3. In step 305, the user of the mobile computing device 14 signs up for an account and use of an application within the mobile computing device 14 using a web-browser, although the user of the mobile computing device 14 can alternatively sign up directly from the previously downloaded application executing with the mobile computing device 14. By way of example only, the user of the mobile computing device 14 may enter user name and password using the input device 22A as the process of signing up, although the user of the mobile computing device 14 may enter other types or amounts of information such as user location information or other demographic details. In step 310, the mobile computing device 14 receives user information associated with the user of the mobile
computing device 14 such as name, company name, location, although the mobile computing
device 14 can receive other types or amounts of information associated with the user of the
mobile computing device 14. Next, in step 315 after successful registration, the mobile
computing device 14 receives labor rates such as day rates, off-hour rates or other rates from the
user of the mobile computing device 14 via the input device 22A. In step 320, the mobile
computing device 14 receives a parts mark up via the input device 22A. Next in step 325, the
mobile computing device 14 determines if there is a requirement for a service call diagnostic fee
based on information received in step 305 and 310, although the mobile computing device 14 can
determine the requirement for the service call diagnostic fee using other techniques such as by
displaying a message on the display device 22B and receiving a response from the user using the
input device 22A. If the mobile computing device 14 determines that a diagnostic fee is
required, a Yes branch is taken to step 330 where the mobile computing device 14 receives the
service call diagnostic fee from the user of the mobile computing device 14 via the input device
22A. However, if the mobile computing device 14 determines that the diagnostic fee is not
required, a No branch is taken to step 335. In step 335, the mobile computing device 14
determines a requirement of sales tax information based on the geographical location of the user
of the mobile computing device 14, although the mobile computing device 14 can determine the
requirement of sales tax based on other parameters. If the mobile computing device 14
determines that sales tax information is required, a Yes branch is taken to step 340 where the
mobile computing device 14 receives the sales tax information from the user of the mobile
computing device 14 via the input device 22A, although the mobile computing device 14 can
automatically obtain the sales tax information from a database (not shown) without requiring the
user of the mobile computing device 14 to enter the information. However, if the mobile
computing device 14 determines that there is no requirement for sales tax information, a No
branch is taken to step 345. In step 345, the mobile computing device 14 determines if there is a
requirement for maintenance agreement. If the mobile computing device 14 determines that
there is a requirement for maintenance agreement, a Yes branch is taken to step 350 where the
mobile computing device 14 receives the maintenance agreement information from the user of
the mobile computing device 14 via the input device 22A, although the mobile computing device
14 can receive the maintenance agreement information from a database without having the user
of the mobile computing device 14 to enter the information. However, if the mobile computing
device determines that there is no requirement for having a maintenance agreement, a No branch
is taken to step 360. In step 360, the mobile computing device 14 receives credit card
information such as card type, card number, expiry date, full name on the card and the CVV of
the credit card of the user of the mobile computing device 14 via the input device 22A. Next, in step 365, the mobile computing device 14 determines if the received credit card information is valid by matching the received information against the information stored in a credit card database (not shown), although the mobile computing device 14 can determine the validity of the credit card using other techniques. If the mobile computing device 14 determines that the received credit card information is not valid, a No branch is taken back to step 360 where the mobile computing device 14 may request the user to reenter the credit card information until completing a successful validation. However, if the mobile computing device 14 determines that the credit card is valid, a Yes branch is taken to step 370 where the mobile computing device 14 sends the registration information, diagnostic fees, sales tax fees, maintenance agreements, and the credit card information to one of the server 16 confirming successful registration.

[0041] Additionally in this example, the mobile computing device 14 can generate and apply a tag (custom label) to the registration information and the profile settings so that this information can be associated with a particular user of the mobile computing device 14. Tags can be applied to individual users or collectively to large groups of users (i.e., all technicians employed by a particular contractor, or all technicians approved to use a particular parts distributor). An individual user account may have multiple tags associated with his/her mobile computing device 14.

[0042] These tags applied by the mobile computing device 14 can be later used by the mobile computing device 14 for one or more of applying discounts (including manufacturer rebates passed along to customers, discounts applied to certain types of work), displaying or providing notifications to the user of the mobile computing device 14, not requiring the user to enter credit card information for the second time (or at all, if the user is associated with a vendor whose contract does not require it), and associating technicians with preferred parts distributors. The tags can be used for other purposes. Use of these tags by the mobile computing device 14 can assist a user in quickly and effectively generating the finalized work-order in real time.

[0043] As previously illustrated, tagging could be used for the purpose of identification. By way of example only, if the user of the mobile computing device 14 is a first time user, the mobile computing device 14 can apply a first time user tag to obtain a certain number of work-orders without payment (which can be applied to a work-order balance associated with the user's account). In this instance, the first time user tag can optionally be used to exclude the fee adjustment (cost recovery) process, as described hereinafter, for all "free" work-orders credited to the user's account.
In another example, the one or more configurations within the mobile computing device 14 could be automatically reconfigured by the mobile computing device 14 based on the applied tag. For instance, for all technicians associated with a particular contractor, the contractor may have a pre-authorized charge for work-orders on a periodic basis (e.g., daily, weekly, etc.) that allows those technicians to open new work-orders without regard to maintaining a positive work-order balance (discussed in greater detail below). By changing the one or more configurations, this technology provides advantages of the mobile computing device 14 having a customized configuration for a particular user of the mobile computing device 14.

With respect to FIG. 2A, in step 215, as a response to sending the registration information and profile settings, the mobile computing device 14 receives an activation code from the server 16 confirming the registration, although the mobile computing device and the server can confirm the registration using any other methods or techniques.

Next in step 220, the mobile computing device 14 obtains one of the databases including items for repairs from the server 16, although the mobile computing device can download any other database from the server including any amount of information in any format. In this example, the mobile computing device 14 displays a progress indicator on the display device 22B indicating the percentage of progress of obtaining one of the database including items for repairs from the server 16. However, in this example, if the connection between the mobile computing device 14 and the server 16 terminates before downloading all the data, the mobile computing device 14 restarts the process of obtaining the remaining data files and after all the data files have been processed, the mobile computing device 14 saves a success flag (to prevent retries), wherein the mobile computing device 14 automatically updates the database and continues to the next step of the exemplary process.

Additionally in this example, as further illustrated in FIG. 4, in this example, the mobile computing device 14 receives the one of the database from the server 16 with data which is split (the server splits the data), although the mobile computing device 14 can receive the database in any other format. The mobile computing device 14 adds each file to a manifest file along with any supporting metadata. Further in this example, the mobile computing device 14 further encodes the split data files and the manifest file as JSON documents to take advantage of the performance of the native parsing built into a web browser. This method of encoding of the data provides advantages of preventing a web browser from crashing as large files can lead to exhausting the memory thereby leading to failure of the web browser. Additionally, this technique of encoding optimizes the size of the data files to be as large as possible without
overwhelming the capabilities of the weaker mobile computing device 14. Further, the mobile computing device 14 loads and parses the manifest file and the data files to a queue present within the memory 20 of the mobile computing device 14 and any old data on the mobile computing device 14 is deleted, although the mobile computing device 14 can store the old data at any memory location. The mobile computing device 14 persist the data in the queue by wrapping a series of SQL INSERTS in a single transaction.

[0048] It should also be appreciated that database synchronization can be carried out either automatically (e.g., daily at prescribed time), periodically at the discretion of a user (i.e., forced synchronization), or both. Synchronization allows the mobile computing device 14 to utilize the most up-to-date data concerning parts pricing and/or labor times associated with the repairs.

[0049] Having obtained the databases, the mobile computing device 14 can be used to create a new work-order, populate the work-order with fees for service or parts, and generate a finalized work-order as described herein. In one approach, a user may authorize, via the mobile computing device 14, each work-order transaction individually by paying for each work-order as it is opened. Alternatively, a user may establish with his/her account a pre-paid work-order balance that allows automated replenishment of the work-order balance if the balance equals (or falls below) a threshold level set by the user. This will allow the user to avoid having to individually authorize payment each time a work-order is opened.

[0050] An exemplary method will be further explained with reference to FIG. 10. In step 1005, the mobile computing device 14 creates a new work-order and also decrements a work-order balance. Next in step 1010, the mobile computing device 14 determines if the work-order balance is equal to a threshold number. The threshold number can be set arbitrarily as 0, 1, 2, 3, or any other positive integer, as desired by the user. If the mobile computing device 14 determines that the work-order balance is equal to the threshold number, a No branch is taken back to step 1005, where additional work-orders can be opened (and finalized work-orders can be generated, as further illustrated below in step 235 of FIG. 2A). However, if the mobile computing device 14 determines that the work-order balance is equal to the threshold number, then a Yes branch is taken to step 1015. In step 1015, the mobile computing device 14 determines if the current account has been registered to automatically pay for an additional amount of work-orders. If the mobile computing device 14 determines that the current account has been registered to automatically pay, a Yes branch is taken to step 1020 where a pre-defined number of work-orders are purchased and then credited at step 1030 to the work-order balance.
associated with the user's account. However, if the mobile computing device 14 determines that
the current account has not been registered to automatically pay, a No branch is taken to step
1025. In step 1025, the mobile computing device 14 obtains account information, or credit/debit
information from the user which could be used to purchase the work-order. Once the work-
order(s) have been purchased, in step 1030, the mobile computing device 14 credits the work-
order balance associated with the user's account.

[0051] After opening a new work-order, having already obtaining the database from the
server 16, in step 225, the mobile computing device 14 identifies items in the database. In this
example, items relate to possible repair items, including repair services and parts although items
can include any amount of any other information in any format. Additionally, in this example,
the mobile computing device 14 identifies the items in the database by searching in the obtained
database. The mobile computing device 14 searches the database by receiving one or more
search terms via the input device 22A, although the mobile computing device can receive the
search terms using any other methods or techniques.

[0052] Using a list of common phrases the server 16 constructs a weighted suffix trie,
which is later obtained by the mobile computing device 14 to provide suggestions to complete
the search terms. In another example, the methods or functions performed by the server 16
could also be performed by the mobile computing device 14. Alternatively, server 16 can also be
a part of the mobile computing device 14. An exemplary method of the server 16 constructing
the weighted suffix trie will now be described. To add a phrase, the server 16 starts at the root
node of the trie, and checks to see if any of the child nodes match the first letter of the phrase. If
there is a match, the server 16 increases the weight of the path to that child node by one, and that
child node becomes the new current node - and will be searched for the next letter in the
received phrase. If the letter is not found, a new child node is added with a starting weight of
one. This cycle repeats until all the letters in the phrase have been added by the server 16, and
then a final node is added with a stop character ($) to indicate the end of the word (FIG. 5A). In
this example, a weighted suffix trie is an ideal data structure for the index. It reduces storage and
memory requirements because words with common prefixes share nodes. Also the trie structure
is very efficient for quickly exploring alternative words and spellings. By adding weights to the
data, the most likely suffixes for partial search terms can be found.

[0053] An exemplary operation will now be described considering an example as
illustrated in FIGS. 5B-5D. A search for the closest matches for "rerur" will result in the
following:
The search starts at the root node, and creates a path for the child nodes: "r" and "c" (FIG. 5B). The first has a distance of zero, because it is an exact match to the first "r" in "rerur". The "c" has a distance of two because it is not a match. The list of paths (sorted by distance) looks this:

<table>
<thead>
<tr>
<th>Phrase</th>
<th>Distance</th>
</tr>
</thead>
<tbody>
<tr>
<td>R</td>
<td>0</td>
</tr>
<tr>
<td>C</td>
<td>2</td>
</tr>
</tbody>
</table>

Since the "r" path is the closest, the children will be followed. The distance is still zero because the "e" is an exact match.

<table>
<thead>
<tr>
<th>Phrase</th>
<th>Distance</th>
</tr>
</thead>
<tbody>
<tr>
<td>Re</td>
<td>0</td>
</tr>
<tr>
<td>C</td>
<td>2</td>
</tr>
</tbody>
</table>

The closest path "re" is followed, and a path is added for each of its children. In this example, "rev" scores lower than "c" because the distance is the same and "c" has a higher weight in the tree. Also in this example, "ret" got a distance of one. Usually a wrong letter increases the distance by two. However, in this example the algorithm detected that proximity of the "t" and "r" (from "rerur") on the keyboard, and gave it a lower distance penalty.

<table>
<thead>
<tr>
<th>Phrase</th>
<th>Distance</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rer</td>
<td>0</td>
</tr>
<tr>
<td>Ret</td>
<td>1</td>
</tr>
<tr>
<td>C</td>
<td>2</td>
</tr>
<tr>
<td>Rev</td>
<td>2</td>
</tr>
</tbody>
</table>

The "rer" path is followed, and it is still an exact match for the search phrase.
Once again, the top phrase is followed but this time, when expanded to "rerun", it is no longer an exact match and falls to the bottom of the list.

<table>
<thead>
<tr>
<th>Phrase</th>
<th>Distance</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ret</td>
<td>1</td>
</tr>
<tr>
<td>C</td>
<td>2</td>
</tr>
<tr>
<td>Rev</td>
<td>2</td>
</tr>
<tr>
<td>rerun</td>
<td>2</td>
</tr>
</tbody>
</table>

"ret" is followed, which adds two paths to the list "retu" and "reta". The former maintains distance because the "u" is an exact match, but the later moves away by two.

<table>
<thead>
<tr>
<th>Phrase</th>
<th>Distance</th>
</tr>
</thead>
<tbody>
<tr>
<td>Retu</td>
<td>1</td>
</tr>
<tr>
<td>C</td>
<td>2</td>
</tr>
<tr>
<td>Rev</td>
<td>2</td>
</tr>
<tr>
<td>rerun</td>
<td>2</td>
</tr>
<tr>
<td>Reta</td>
<td>3</td>
</tr>
</tbody>
</table>

Following "retu", produces "retur" and "return", again with no change in distance. In the next step the two children are added producing the following list.

<table>
<thead>
<tr>
<th>Phrase</th>
<th>Distance</th>
</tr>
</thead>
<tbody>
<tr>
<td>returns</td>
<td>1</td>
</tr>
<tr>
<td>e</td>
<td>2</td>
</tr>
<tr>
<td>rev</td>
<td>2</td>
</tr>
<tr>
<td>rerun</td>
<td>2</td>
</tr>
<tr>
<td>reta</td>
<td>3</td>
</tr>
</tbody>
</table>

Since "return" has hit a stop character ($), it is removed from the list of active paths and put into the first position of the results list. After the next step the same thing happens with "returns" leaving the following active paths:
<table>
<thead>
<tr>
<th>Phrase</th>
<th>Distance</th>
</tr>
</thead>
<tbody>
<tr>
<td>c</td>
<td>2</td>
</tr>
<tr>
<td>rev</td>
<td>2</td>
</tr>
<tr>
<td>rerun</td>
<td>2</td>
</tr>
<tr>
<td>reta</td>
<td>3</td>
</tr>
</tbody>
</table>

[0062] So, the search hops back over to the "c" path, which changes the phrase to "co" giving it a distance of four.

<table>
<thead>
<tr>
<th>Phrase</th>
<th>Distance</th>
</tr>
</thead>
<tbody>
<tr>
<td>rev</td>
<td>2</td>
</tr>
<tr>
<td>rerun</td>
<td>2</td>
</tr>
<tr>
<td>reta</td>
<td>3</td>
</tr>
<tr>
<td>co</td>
<td>4</td>
</tr>
</tbody>
</table>

[0063] The path for "rev" is followed to produce "reve" with a distance of four.

<table>
<thead>
<tr>
<th>Phrase</th>
<th>Distance</th>
</tr>
</thead>
<tbody>
<tr>
<td>rerun</td>
<td>2</td>
</tr>
<tr>
<td>reta</td>
<td>3</td>
</tr>
<tr>
<td>co</td>
<td>4</td>
</tr>
<tr>
<td>reve</td>
<td>4</td>
</tr>
</tbody>
</table>

[0064] Finally, "rerun" gets another chance and hits the end of word character, so it is put on the end of the results, which are now: return, returns, rerun. The above illustrated techniques will continue until: there are no more paths to search, it has collected the max number of results requested, or the distance of the closest path is outside of a "closeness" threshold. At any of these points, the current results are returned and displayed on the display device 22B by the mobile computing device 14.

[0065] The mobile computing device 14 uses selection of the provided suggestions to search for the items in the database, although the mobile computing device 14 can use any other methods or techniques to search for the items in the database. The techniques illustrated above provides advantages when the mobile computing device 14 receives search terms in a search box, suggestions are shown to: reduce the amount of typing required, show alternative spellings when the user has mistyped, and give feedback about the likelihood of a match while waiting for the full search results to load. This is especially important on the mobile computing device 14.
because the search is slower, and the smaller keyboards make typing more cumbersome and errors more likely.

[0066] Next, based on the identified items, in step 230 the mobile computing device 14 determines a fee based on fee setting parameters. In this example, the mobile computing device 14 determines the fee based on an item markup percentage, sales tax and any of a variety of service rates including day rates, off-hour rates or any other associated rates previously received in step 210, although the mobile computing device 14 can determine the fee based on any other or types or parameters. The mobile computing device 14 can also use a custom setting present within the mobile computing device 14 to determine the fee. When calculating the sale price of parts, the mobile computing device 14 will multiply the cost of the part against a markup multiplier received in step 210 to determine the final sale price. This multiplier is based on the cost of the part, with less expensive parts typically having a higher multiplier. Typically these markups are described as a series of ranges, as illustrated in the table below:

<table>
<thead>
<tr>
<th>Price Range</th>
<th>Below</th>
<th>Markup</th>
</tr>
</thead>
<tbody>
<tr>
<td>Above</td>
<td></td>
<td></td>
</tr>
<tr>
<td>—</td>
<td>$2.00</td>
<td>5</td>
</tr>
<tr>
<td>$2.00</td>
<td>$5.00</td>
<td>5</td>
</tr>
<tr>
<td>$5.00</td>
<td>$10.00</td>
<td>4</td>
</tr>
<tr>
<td>$10.00</td>
<td>$20.00</td>
<td>3.5</td>
</tr>
<tr>
<td>$20.00</td>
<td>$40.00</td>
<td>3</td>
</tr>
<tr>
<td>$40.00</td>
<td>$60.00</td>
<td>2.75</td>
</tr>
<tr>
<td>$60.00</td>
<td>$100.00</td>
<td>2.5</td>
</tr>
<tr>
<td>$100.00</td>
<td>$150.00</td>
<td>2.25</td>
</tr>
<tr>
<td>$150.00</td>
<td>$500.00</td>
<td>2</td>
</tr>
<tr>
<td>$500.00</td>
<td>—</td>
<td>1.3</td>
</tr>
</tbody>
</table>

[0067] By way of example only, an $8 part would fall in the $5-10 range and the multiplier would be four, giving a final sale price of $32 ($8 x 4). This markup creates an unusual circumstance when crossing the boundaries between ranges (as illustrated in FIG. 11A). For example: A $4.50 part has a markup of 5x, resulting in a sale price of $22.50; but a $5.10 part, which has a markup of 4x, would have a sale price of just $20.40, making it less expensive than the $4.50 part.

[0068] Additionally, in this example, the mobile computing device 14 determines the item markup percentage using a markup range and a smoothing function which will now be described using the following equation, although the mobile computing device 14 can calculate the item markup percentage can be using any other methods or techniques:
\[I + (E - I) \times \left(\frac{(C - L)}{(H - L)} \right)^{1/S} \]

wherein I is a markup for inexpensive parts, E is a markup for expensive parts, C is a cost of the part, L is a minimum part cost, H is a maximum part cost, S is a maximum smoothing and V is a curve variation and the value of C should be between L and H, as a precondition for the equation.

However, when C is less than L or greater than H, then the algorithm returns the value of I or E respectively. In this example, the maximum smoothing and curve variation are defined to achieve the desired curve shape in an otherwise step-shaped markup graph shown in FIG. 11A. This allows for a more aggressive decrease in the markup as the part cost increases. However, regardless of the shape of the markup curve, as the multipliers for expensive and inexpensive parts converge, the resulting markups conveniently flatten out, turning into a flat line when the two multipliers are equal. By creating a function that can calculate a continuous markup multiplier for any part price, the choppiness can be removed (compare FIGS. 11A-B) and less costly parts will not get marked up to a higher sales price than more expensive parts.

[0069] Optionally, the fee determined by the mobile computing device 14 can be a customized fee saved in a database. For example, a user may have a discounted service fees for certain customers (i.e., volume-related discounts), and the customized fees can be accessed from the database for those customers.

[0070] Next in step 235, the mobile computing device 14 generates a work-order in real-time based on the determined fee and the selected items, although the mobile computing device can generate the work order using any other parameters. In this example, the work order includes the list of all the selected items (repair items), parts associated with the repair items and diagnostic fees, maintenance fees, , the associated fee of the selected items and the total fee, although the mobile computing device can generate the work-order using any combination of fee parameters as well as other parameters. In this example, prior to finalizing the generated the work order, the mobile computing device 14 performs one or more of determining a cost recovery fee adjustment, applying a discount, or determining for availability of parts required for repairs within the generated work-order, although the mobile computing device 14 may perform other operations prior to finalizing the generated work-order in real time.
An exemplary method for determining availability of parts required for repair within the generated work-order will now be illustrated with reference to FIGS. 6A-6C. In step 605, the mobile computing device 14 obtains all the list and quantity of all the parts required for the repairs present within the generated work-order, although the mobile computing device can obtain other information from the generated work-order. Next in step 610, the mobile computing device 14 determines using a data server 17, if the obtained list of parts is available within the ROPE database 40, although the mobile computing device 14 can determine without using the data server 17. By way of example only, the mobile computing device 14 compares the list and quantity of obtained parts against a table (which includes the list and quantities of all parts present within a parts warehouse) present within the ROPE database 40 to determine the availability, although the mobile computing device 14 can determine the availability using other techniques. In step 615, based on the determination, the mobile computing device 14 using the data server 17 sends out a notification to the ROPE database 40 to replenish the required parts. Alternatively, the user of the mobile computing device 14 can manually choose to submit all parts consumed for replenishment or only a subset of those parts, export a list of the remaining parts, or augment the order with other parts using the mobile computing device 14. In yet another alternative approach, a contractor with multiple technicians may elect to aggregate consumed parts on a regular or as-needed basis, and collectively order parts as frequently as desired.

Regardless of the approach, the ROPE database 40 then forwards this notification to the distributor device to replenish the parts. This interaction is further explained with reference to FIG. 6B. In step 1, the distributor device 42 uploads the parts data to the ROPE database 40, although the distributor device 42 can upload other types or amounts of information. Next, in step 2, the mobile computing device 14 sends the list of parts required for the repair to the data server 17, although the mobile computing device 14 can send other information present in the work-order to the data server 17. In step 3, the data server 14 sends a list of manufacturer part numbers for the list of parts received from the mobile computing device 14 to the ROPE database 40. Next in step 4, the ROPE database 40 performs a search to determine further details associated with the parts back to the data server 17. In step 5, responsive to receiving the further details associated with the parts, the data server 17 sends a notification to replenish the parts to the ROPE database 40. In step 6, the ROPE database 40 forwards the notification to the distributor device 42 to replenish the parts.
Additionally, FIG. 6C illustrates the environment of the mobile computing device 14, data server 17, ROPE database 40 and distributor device 42. In FIG. 6C, A-H are employees associated with a contractor using the mobile computing device 14 and S-Z are location associated with the distributor device 42, although the employees A-H could be associated with multiple contractors and locations S-Z could be associated with multiple distributors. These relations between the employees-contractors and locations-distributors may be established using tags previously illustrated.

As illustrated in FIG. 6C, the ROPE database establishes relationships between the mobile computing device 14 (contractors) and the distributor device 42 such that any mobile computing device 14 can order parts from any distributor device 42 for which a relationship has been established in the system. However, there is no limit to the number of mobile computing device 14 and distributor device 42 relationship and they may be established or dissolved at any time. Additionally, in this example, once a relationship between the mobile computing device 14 and the distributor device 14 has been established, a secondary relationship between the employee using the mobile computing device 14 and the distributor location may be established such that a specific employee may order from a specific distributor location.

An exemplary method for determining a cost recovery will now be illustrated with reference to FIG. 7. Effectively, the method described below allows a user to recoup a cost associated with generating a work-order from the customer receiving services from the user. In step 705, the mobile computing device 14 obtains the fee associated with each repair of the work-order, although the mobile computing device 14 can also obtain the aggregate fee for all repairs in the work order. Next in step 710, the mobile computing device 14 determines a fee adjustment value for the obtained repair fee. By way of example only, the mobile computing device 14 can determine the fee adjustment value based on a pre-defined fee adjustment value (cost recovery value) stored within the database (not shown), although the mobile computing device 14 can determine the fee adjustment value based on other parameters. This fee adjustment value can be applied once per work-order or, in the instance of complicated work-orders containing many repairs, the fee adjustment value can be applied more than once per work-order, if desired. For example, the fee adjustment value can be applied to the first repair and every other repair, or third or fourth repair, thereafter. Alternatively, in another example, the mobile computing device 14 can determine a fee adjustment value for the total sum of all repairs within the generated work-order based on the pre-defined fee adjustment value. Regardless of
the approach used, in step 715 the mobile computing device 14 applies the determined fee adjustment value to the repair fee(s) in the generated work-order.

[0076] An exemplary method for applying discounts will now be illustrated with reference to FIG. 8A. In step 805, the mobile computing device 14 obtains the total fee present within the generated work-order. In step 810, the mobile computing device 14 determines a discount value (which can be a promotional code, or a coupon value) to be applied to the obtained total fee. In this example, the mobile computing device 14 can determine the discount value based on one or more of the tags applied to the user account, a coupon code or a promotional code received from a user via the input device 22A, a pre-defined discount value based on the total fee in the invoice, or a pre-defined discount value based on the total number of repairs within the invoice, although the mobile computing device 14 can determined the discount value based on other parameters (e.g., discount associated with a maintenance agreement or manufacturer rebate passed along to customer). Next, in step 815, the mobile computing device 14 applies the determined discount value to the total fee in the generated work-order.

[0077] In another exemplary method, illustrated in FIG. 8B, the mobile computing device 14 can obtain fees associated with one or more selected repairs within the generated work-order, and apply any discount selectively to the one or more repairs. For example, in step 825, the mobile computing device 14 obtains the fee amount per selected repair in the generated work order. In step 830, the mobile computing device 14 determines a discount value (which can be a promotional code, or a coupon value, as described above) to be applied to the obtained fee, which has been selected by a user. Next, in step 835, the mobile computing device 14 applies the determined discount value to the selected repair fee in the generated work-order, and the total sum of all repair fees can be generated for the whole work-order.

[0078] Now with reference to FIG. 2A, in step 240 the mobile computing device 14 provides the generated work-order to fit within the display device 22B using techniques which will now be illustrated, although the mobile computing device 14 can provide the generated work-order using any other methods or techniques. The mobile computing device 14 divides the display device 22B into two types of pages a navigation page and a content page. When on a navigation page, the mobile computing device 14 displays a list of items. Upon receiving a selection of the listed items, the mobile computing device 14 loads another navigation page or a content page. Additionally, if the display device 22B of the mobile computing device 14 is wide enough, the navigation page will show a summary/placemarker page to the right of the navigation pane as illustrated in FIG. 9.
However, on a content page, the navigation will not be shown - unless the browser is wide enough to accommodate both navigation and content - and a "back" button will be provided by the mobile computing device 14. The back button provided by the mobile computing device 14 would assist with moving back to the previous navigation page. This illustrated technique, provides advantages of changing the user interface on the display device to adjust based on the width of the browser viewport, which is independent of the mobile computing device 14. Additionally, the illustrated technique can adjust the presence of the navigation in response to resizing of the browser window and orientation changes of mobile computing devices. Furthermore, the illustrated technique can be implemented on any device and the technique does not rely on detecting device's make or model.

In step 245, the mobile computing device 14 determines if any changes are necessary to the provided work-order based on inputs received at the input device 22A of the mobile computing device, although the mobile computing device can determine necessary changes using any other methods or techniques. In this example, the mobile computing device 14 can receive any necessary changes or confirmation via the input device 22A to the provided generated work-order. If the mobile computing device 14 determines any changes are needed for the provided work-order, a Yes branch is taken to step 250 to obtain the changes to the work order and then to generate a revised work-order.

However, if the mobile computing device 14 determines that no further changes are required, a No branch is taken to step 255 where the invoice for the work order is generated by the mobile computing device 14 based on the total fee present within the generated work-order. In this example, the mobile computing device 14 can receive a signature on the work-order via the input device 22A confirming the details of the work-order.

In step 260, the mobile computing device 14 determines if a fee set forth in the invoice has been paid. If the mobile computing device 14 determines that the fee in the invoice has been paid, a Yes branch is taken to step 270 to update the generated invoice and the work-order in the database. However, if the mobile computing device 14 determines that the fee set forth in claim invoice has not been paid, a No branch is taken to step 265 where the mobile computing device 14 can either wait until the fee has been paid and then proceed to update the work-order and invoice. Alternatively, the mobile computing device 14 can wait until a certain period of time, by way of example only 30 days, after which the mobile computing device 14 can automatically update the work-order and the invoice to the database and store or archive the work-order and the invoice.
In step 270, while updating the work-order and the invoice to the database in the server, the mobile computing device 14 first checks whether there is a network connection between the mobile computing device 14 and the server 16. If the mobile computing device determines that there is a network connection (online) between the mobile computing device 14 and the server 16, a Yes branch is taken to step 280 where the mobile computing device 14 directly uploads or stores the work-order and the invoice to the databases present in the server 16, although the mobile computing device 14 can save the work-order locally within the memory 20 and then uploaded to database present in the server 16. However, if the mobile computing device 14 determines that there is no connection (offline) between the mobile computing device 14 and the server 16, a No branch is taken to step 275 where the mobile computing device 14 uploads or stores the work-order in the previously obtained database from the server 16 (which is stored within the memory of the mobile computing device), and once the network connection is established between the mobile computing device 14 and the server 16, the mobile computing device 14 proceeds to update the database present in the server 16, with the one present within the memory 20 of the mobile computing device 14. Additionally, the mobile computing device 14 can automatically receives notification from the server 16 where there are any updates determined by the server 16.

In step 285, the mobile computing device 14 closes the work-order and the exemplary process ends.

Additionally, the mobile computing device 14 may provide rewards upon successful completion of work-orders and/or closing of work-orders upon receipt of payment. By way of example only, the mobile computing device 14 can add the amount present in the invoice to the account associated with the user of the mobile computing device 14, and reward the user by notifying the user of the number of completed work-orders over a period of time, the percentage of completed work-orders that are closed with payment of the invoice, the aggregate sum of invoices over a period of time, whether the user is in, e.g., the top 25% percent of technicians employed by a particular contractor, etc. The mobile computing device 14 can provide notification (triggers) via text message, email or on the display device 22B indicating the rewards supplied to the user.

A further aspect of the invention includes the ability to synchronize the completed invoice data or completed but unpaid work-order data or customer data from the inventive device and method to accounting software such as QuickBooks™ and back from the accounting software such as QuickBooks™ to the inventive device. This can be achieved using tagged...
database records, and synchronization of the tagged records. An exemplary method for data synchronizing is illustrated in FIG. 12.

[0087] Having thus described the basic concept of the invention, it will be rather apparent to those skilled in the art that the foregoing detailed disclosure is intended to be presented by way of example only, and is not limiting. Various alterations, improvements, and modifications will occur and are intended to those skilled in the art, though not expressly stated herein. These alterations, improvements, and modifications are intended to be suggested hereby, and are within the spirit and scope of the invention. Additionally, the recited order of processing elements or sequences, or the use of numbers, letters, or other designations therefore, is not intended to limit the claimed processes to any order except as may be specified in the claims. Accordingly, the invention is limited only by the following claims and equivalents thereto.
WHAT IS CLAIMED IS:

1. A method for generating a work-order in real time, the method comprising:
 identifying, by a mobile computing device, one or more databases from one or more sources;
 identifying, by the mobile computing device, one or more items in the identified one or more databases;
 determining, by the mobile computing device, a fee for the identified one or more items based on one or more fee setting parameters; and
 generating, by the mobile computing device, a finalized work-order in real-time based on the determined fee,
 wherein the method further comprises one or more of:
 determining, by the mobile computing device, a discount value for one or more determined fees and applying the determined discount value to the one or more determined fees; or
 applying, by the mobile computing device, a custom label to a user account associated with the mobile computing device, whereby one or more process steps of the method is modified based on the applied custom label, either before or after generating the work-order.

2. The method as set forth in claim 1 wherein the method further comprises one or more of:
 determining, by the mobile computing device, a fee adjustment for one or more determined fees and applying the determined fee adjustment to one or more determined fees; or
 determining, by the mobile computing device, whether the generated work order reduces a user account balance to below a threshold level.

3. The method as set forth in claim 2 further comprising:
 determining, by the mobile computing device, a final invoice amount based on one or more of a determined fees, the determined fee adjustment, or the determined discount value; and
 generating, by the mobile computing device, an invoice associated with the generated work-order based on the determined final invoice amount.

4. The method as set forth in claim 2 wherein, upon a user account balance falling below a threshold level, the method further comprising one or more of:
authorizing, by the mobile computing device, a payment by a user to re-establish a user account balance that exceeds the threshold level; notifying a user, by the mobile computing device, of the user account balance; allowing, by the mobile computing device, to generate one or more work-orders until the user account balance is zero; and disallowing, by the mobile computing device, from generating one or more work-orders until the user account balance is above the threshold level.

5. The method as set forth in claim 1 further comprising:

determining, by the mobile computing device, occurrence of one or more event triggers, upon generating the work-order; and providing, by the mobile computing device, one or more notifications associated with the one or more event triggers, when the one or more event triggers are determined to have occurred.

6. The method as set forth in claim 3 further comprising:

identifying, by the mobile computing device, a reward based on one or more of the generated invoices; and providing, by the mobile computing device, one or more reward notifications indicating the identified reward.

7. The method as set forth in claim 1 wherein the determining the discount value further comprises:

determining, by the mobile computing device, existence of one or more of a discount coupon, for the user or the custom label applied to the user; and applying, by the mobile computing device, the discount value to the one or more determined fees when the one or more discount coupon is determined to be present.

8. The method as set forth in claim 1, wherein the method includes said applying the custom label to a user account associated with the mobile computing device, wherein the custom label is associated with one or more of:

delivering, by the mobile computing device, a message to all users associated with the custom label;
configuring, by the mobile computing device, one or more configurations within the mobile computing device for all users associated with the custom label, wherein the one or more configurations is one or more of a first configuration for one or more employees of a particular contractor, or a second configuration for custom prices;
applying, by the mobile computing device, a discount coupon or a promotional code to all users associated with the custom label; and
bypassing, by the mobile computing device, a user account balance threshold level requirement for all users associated with the custom label.

9. The method as set forth in claim 1 wherein the identifying further comprises:
determining, by the mobile computing device, a requirement of one or more parts for the identified one or more items;
determining, by the mobile computing device via a data server, an availability of the one or more parts in a parts data warehouse when the one or more parts are determined to be required for the identified one or more items;
sending, by the mobile computing device via the data server, a notification to the parts data warehouse to replenish the one or more parts based on the determination.

10. The method as set forth in claim 9 further comprising:
ordering, by the mobile computing device, the one or more parts from a pre-established distributor; and
ordering, by the mobile computing device, the one or more parts from a different distributor for a specific employee.

11. A non-transitory computer readable medium having stored thereon instructions for generating a work-order in real time comprising machine executable code which when executed by at least one processor, causes the processor to perform steps comprising:
identifying one or more databases from one or more sources;
identifying one or more items in the identified one or more databases;
determining a fee for the identified one or more items based on one or more fee setting parameters; and
generating a finalized work-order in real-time based on the determined fee, wherein the method further comprises one or more of:
determining a discount value for one or more determined fees and applying the determined discount value to the one or more determined fees; or
applying a custom label to a user account associated with a mobile computing device, whereby one or more process steps of the method is modified based on the applied custom label, either before or after generating the work-order.
12. The medium as set forth in claim 11 wherein the method further comprises one or more of:

determining a fee adjustment for one or more determined fees and applying the determined fee adjustment to one or more determined fees; or

determining whether the generated work order reduces a user account balance to below a threshold level.

13. The medium as set forth in claim 12 further comprising:

determining a final invoice amount based on one or more of a determined fees, the determined fee adjustment, or the determined discount value; and

generating an invoice associated with the generated work-order based on the determined final invoice amount.

14. The medium as set forth in claim 12 wherein, upon a user account balance falling below a threshold level, the method further comprising one or more of:

authorizing a payment by a user to re-establish a user account balance that exceeds the threshold level;

notifying a user of the user account balance;

allowing to generate one or more work-orders until the user account balance is zero; and

disallowing from generating one or more work-orders until the user account balance is above the threshold level.

15. The medium as set forth in claim 11 further comprising:

determining occurrence of one or more event triggers, upon generating the work-order; and

providing one or more notifications associated with the one or more event triggers, when the one or more event triggers are determined to have occurred.

16. The medium as set forth in claim 13 further comprising:

identifying a reward based on one or more of the generated invoices; and

providing one or more reward notifications indicating the identified reward.

17. The medium as set forth in claim 11 wherein the determining the discount value further comprises:
determining existence of one or more of a discount coupon for the user or the custom label applied to the user; and
applying, by the mobile computing device, the discount value to the one or more determined fees when the one or more of the discount coupon is determined to be present.

18. The medium as set forth in claim 11, wherein the performed steps include said applying the custom label to a user account associated with the mobile computing device, wherein the custom label is associated with one or more of:
delivering a message to all users associated with the custom label;
configuring one or more configurations within the mobile computing device for all users associated with the custom label, wherein the one or more configurations is one or more of:
a first configuration for one or more employees of a particular contractor, or a second configuration for custom prices;
applying a discount coupon or a promotional code to all users associated with the custom label; and
bypassing a user account balance threshold level requirement for all users associated with the custom label.

19. The medium as set forth in claim 11, wherein the identifying further comprises:
determining a requirement of one or more parts for the identified one or more items;
determining, via a data server, an availability of the one or more parts in a parts data warehouse when the one or more parts are determined to be required for the identified one or more items;
sending, via a data server, a notification to the parts data warehouse to replenish the one or more parts based on the determination.

20. The medium as set forth in claim 19 further comprising:
ordering the one or more parts from a pre-established distributor; and
ordering the one or more parts from a different distributor for a specific employee.

21. A mobile computing device comprising:
one or more processors;
a memory, wherein the memory coupled to the one or more processors which are configured to execute programmed instructions stored in the memory comprising:
identifying one or more databases from one or more sources;
identifying one or more items in the identified one or more databases;
determining a fee for the identified one or more items based on one or more fee setting parameters; and
generating a finalized work-order in real-time based on the determined fee,
wherein the method further comprises one or more of:

- determining a discount value for one or more determined fees and applying the determined discount value to the one or more determined fees; or
- applying a custom label to a user account associated with a mobile computing device, whereby one or more process steps of the method is modified based on the applied custom label, either before or after generating the work-order.

22. The device as set forth in claim 21 wherein the method further comprises one or more of:
- determining a fee adjustment for one or more determined fees and applying the determined fee adjustment to one or more determined fees; or
- determining whether the generated work order reduces a user account balance to below a threshold level.

23. The device as set forth in claim 22 wherein the one or more processors is further configured to execute programmed instructions stored in the memory further comprising:
- determining a final invoice amount based on one or more determined fees, the determined fee adjustment, and the determined discount value; and
- generating an invoice associated with the generated work-order based on the determined final invoice amount.

24. The device as set forth in claim 22 wherein, upon a user account balance falling below a threshold level, the one or more processors is further configured to execute programmed instructions stored in the memory further comprising one or more of:
- authorizing a payment by a user to re-establish a user account balance that exceeds the threshold level;
- notifying a user of the user account balance;
- allowing the mobile computing device to generate one or more work-orders until the user account balance is zero; and
- disallowing the mobile computing device from generating one or more work-orders until the user account balance is above the threshold level.
25. The device as set forth in claim 21 wherein the one or more processors is further configured to execute programmed instructions stored in the memory further comprising:

determining occurrence of one or more event triggers, upon generating the work-order; and

providing one or more notifications associated with the one or more event triggers, when the one or more event triggers are determined to have occurred.

26. The device as set forth in claim 23 wherein the one or more processors is further configured to execute programmed instructions stored in the memory further comprising:

identifying a reward based on one or more of the generated invoices; and

providing one or more reward notifications indicating the identified reward.

27. The device as set forth in claim 21 wherein determining the discount value further comprises:

determining existence of one or more of a discount coupon for the user or the custom label applied to the user; and

applying the discount value to the one or more determined fees when the one or more discount coupon is determined to be present.

28. The device as set forth in claim 21 wherein the one or more processors execute the instruction for applying the custom label to a user account associated with the mobile computing device, wherein the custom label is associated with one or more of:

delivering a message to all users associated with the custom label;

configuring one or more configurations within the mobile computing device for all users associated with the custom label, wherein the one or more configurations is one or more of:

a first configuration for one or more employees of a particular contractor, or a second configuration for custom prices;

applying a discount coupon or a promotional code to all users associated with the custom label; and

bypassing a user account balance threshold level requirement for all users associated with the custom label.

29. The device as set forth in claim 21 wherein the identifying further comprises:

determining a requirement of one or more parts for the identified one or more items;
determining, via a data server, an availability of the one or more parts in a parts data
warehouse when the one or more parts are determined to be required for the identified one or
more items; and
sending, via the data server a notification to the parts data warehouse to replenish the one
or more parts based on the determination

30. The device as set forth in claim 29 further comprising:
ordering the one or more parts from a pre-established distributor; and
ordering the one or more parts from a different distributor for a specific employee.
FIG. 1
Request to connect to the server 205

Send out registration details to the server 210

Receive an activation code from the server 215

Obtain database from the server 220

Identify items in the obtained database 225

Determine a repair fee based on fee setting parameters 230

Generate a finalized work-order in real-time 235

Provide the generated work-order 240

Changes to the work-order? 245

YES

Obtain necessary changes 250

NO

Generate an invoice 255

Invoice paid? 260

YES

NO

Wait until invoice is paid 265

FIG. 2A
FIG. 2B

A

Connected to the server? 270

NO

Archive within obtained database 275

YES

Archive the invoice and the work-order 280

Close the work order 285

END 290
Sign up 305

Receive user information 310

Receive labor information 315

Receive parts mark up information 320

Diagnostic/service call fee? 325

Yes

Obtain diagnostic/service call fee 330

No

Sales tax? 335

Yes

Obtain sales tax 340

No

Maintenance agreement? 345

Yes

Obtain maintenance agreement 350

No

Receive credit card information 360

Valid? 365

No

Send the information 370

Yes
FIG. 4
FIG. 6A

Obtain list and quantity of parts in work-order 605

Determine availability of parts 610

Send notification to replenish 615

FIG. 6B

Data Server 17

ROPE database 40

Mobile computing device 14

Distributor device 42
FIG. 7

Obtain the fee amount for repair added to work order 705

Determine a fee adjustment 710

Apply the determined fee adjustment 715

FIG. 8A

Obtain the total fee amount in the generated work order 805

Determine a discount value 810

Apply the determined discount value to the total fee amount 815

FIG. 8B

Obtain the fee amount per selected repair in the generated work order 825

Determine a discount value per selected repair 830

Apply the determined discount value per selected repair 835
FIG. 9
Create a Work-Order 1005

Balance = Threshold? 1010

Obtain Account Information 1025

Auto Pay On? 1015

Purchase Work Order 1020

Restore Balance to Purchase Auto + Threshold 1030

FIG. 10
FIG. 11A

FIG. 11B
FIG. 12
INTERNATIONAL SEARCH REPORT

A. CLASSIFICATION OF SUBJECT MATTER
IPC(8) - G06Q 10/00 (2014.01)
CPC - G06Q 10/08345 (2014.09)

B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols)
IPC(8) - G06Q 100/06; 606Q 10/09; G06Q 50/00 (2014.01)
USPC - 705+: 705/7.13, 7.15, 7.17, 7.18, 7.26.1, 27.1

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched
CPC - G06Q 10/06; G06Q 10/20; G06Q 10/08345; G06Q 50/00 (2014.09) (keyword delimited)

Electronic data base consulted during the international search (name of data base and, where practicable, search terms used)
Orbit, Google Patents, Google Scholar, Google.
Search terms used: work-order, mobile device, real-time, pricing/estimation, services/good

C. DOCUMENTS CONSIDERED TO BE RELEVANT

<table>
<thead>
<tr>
<th>Category</th>
<th>Citation of document, with indication, where appropriate, of the relevant passages</th>
<th>Relevant to claim No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>X</td>
<td>U.S. 201 1/0054978 A1 (MOHL) 03 March 201 1 (03.03.201 1) entire document</td>
<td>1-30</td>
</tr>
</tbody>
</table>

Further documents are listed in the continuation of Box C.

* Special categories of cited documents:
 "A" document defining the general state of the art which is not considered to be of particular relevance
 "E" earlier application or patent but published on or after the international filing date
 "L" document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another citation or other special reason (as specified)
 "O" document referring to an oral disclosure, use, exhibition or other means
 "P" document published prior to the international filing date but later than the priority date claimed
 "T" later document published after the international filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the invention
 "X" document of particular relevance; the claimed invention cannot be considered novel or cannot be considered to involve an inventive step when the document is taken alone
 "Y" document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such documents, such combination being obvious to a person skilled in the art
 "A" document member of the same patent family

Date of the actual completion of the international search: 11 November 2014
Date of mailing of the international search report: 31 DEC 2014

Name and mailing address of the ISA/US
Mail Stop PCT, Attn: ISA/US, Commissioner for Patents
P.O. Box 1450, Alexandria, Virginia 22313-1450
Facsimile No. 571-273-3201

Authorized officer: Blaine R. Copenhaver
PCT Helpdesk: 571-272-4300
PCT OSP: 571-272-7774

Form PCT/ISA/210 (second sheet) (July 2009)