PCT

WORLD INTELLECTUAL PROPERTY ORGANIZATION
International Bureau

INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(51) International Patent Classification 6

HO04L 29/00 A2

(11) International Publication Number:

(43) International Publication Date:

WO 99/09723

25 February 1999 (25.02.99)

(21) International Application Number: PCT/US98/17358

(22) International Filing Date: 21 August 1998 (21.08.98)

(30) Priority Data:

08/918,693 21 August 1997 (21.08.97) us

(71) Applicant: DSC TELECOM L.P. [US/US]; 1000 Coit Road,
Plano, TX 75075 (US).

(72) Inventors: LIN, Ching-Der; 4464 Bailey Court, Plano, TX
75093 (US). WHITED, John, L.; 1104 Sundial Drive,
Richardson, TX 75093 (US). KANNAN, Comandur, S.;
1808 Polstar Drive, Plano, TX 75093 (US).

(74) Agent: FISH, Charles, S.; Baker & Botts, L.L.P., 2001 Ross
Avenue, Dallas, TX 75201-2980 (US).

(81) Designated States: AL, AM, AT, AU, AZ, BA, BB, BG, BR,

BY, CA, CH, CN, CU, CZ, DE, DK, EE, ES, FI, GB, GE,
GH, GM, HR, HU, ID, IL, IS, JP, KE, KG, KP, KR, KZ,
LC, LK, LR, LS, LT, LU, LV, MD, MG, MK, MN, MW,
MX, NO, NZ, PL, PT, RO, RU, SD, SE, SG, S], SK, SL, TJ,
T™, TR, TT, UA, UG, UZ, VN, YU, ZW, ARIPO patent
(GH, GM, KE, LS, MW, SD, SZ, UG, ZW), Eurasian patent
(AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), European patent
(AT, BE, CH, CY, DE, DK, ES, FI, FR, GB, GR, IE, IT,
LU, MC, NL, PT, SE), OAPI patent (BF, BJ, CF, CG, CI,
CM, GA, GN, GW, ML, MR, NE, SN, TD, TG).

Published

Without international search report and to be republished
upon receipt of that report.

(54) Title: SYSTEM AND METHOD FOR IMPLEMENTING PROGRAMMABLE TRANSACTION CAPABILITIES APPLICATION

PART COMMUNICATION PROTOCOL

104
) Z
"
S 224 P 241
> %09 Exscuinmc
TOP ﬁESSAGE 910 ALGORITHMS
5P 902 o |
TCAP MESSAGE 922]
7 1
904
908
™0
FILE 502

(57) Abstract

A method of implementing a transaction capabilities application part application protocol for transaction capabilities application part
communication includes providing a transaction capabilities application part message definition. The method also includes generating a
plurality of service independent building blocks to form a service logic program associated with transaction capabilities application part
communication. At least one of the plurality of service independent building blocks associates a plurality of leaf-node parameters with
respective variables in the at least one service independent building block. The leaf-node parameters are specified by fully qualified names
derived from the transaction capabilities application part message definition. The method also includes creating an executable form of the

service independent building blocks for execution.

AL
AM
AT
AU

BA
BB
BE
BF
BG
BJ
BR
BY
CA
CF
CG
CH
CI
CM
CN
Cu
CzZ
DE
DK
EE

FOR THE PURPOSES OF INFORMATION ONLY

Codes used to identify States party to the PCT on the front pages of pamphlets publishing international applications under the PCT.

Albania
Armenia
Austria
Australia
Azerbaijan
Bosnia and Herzegovina
Barbados
Belgium
Burkina Faso
Bulgaria

Benin

Brazil

Belarus

Canada

Central African Republic
Congo
Switzerland
Cote d’Ivoire
Cameroon
China

Cuba

Czech Republic
Germany
Denmark
Estonia

ES
FI
FR
GA
GB
GE
GH
GN
GR
HU
IE
IL
IS
IT
JP
KE
KG
KP

KR
KZ
LC
LI

LK
LR

Spain

Finland

France

Gabon

United Kingdom
Georgia

Ghana

Guinea

Greece

Hungary

Ireland

Israel

Iceland

Italy

Japan

Kenya
Kyrgyzstan
Democratic People’s
Republic of Korea
Republic of Korea
Kazakstan

Saint Lucia
Liechtenstein

Sri Lanka

Liberia

LS
LT
LU
LV
MC
MD
MG
MK

ML
MN
MR
MW
MX
NE
NL
NO
NZ
PL
PT
RO
RU
SD
SE
SG

Lesotho

Lithuania
Luxembourg

Latvia

Monaco

Republic of Moldova
Madagascar

The former Yugoslav
Republic of Macedonia
Mali

Mongolia

Mauritania

Malawi

Mexico

Niger

Netherlands

Norway

New Zealand

Poland

Portugal

Romania

Russian Federation
Sudan

Sweden

Singapore

SI
SK
SN
Sz
D
TG
TJ
™
TR
TT
UA
uG
us
vz
VN
YU
w

Slovenia

Slovakia

Senegal

Swaziland

Chad

Togo

Tajikistan
Turkmenistan
Turkey

Trinidad and Tobago
Ukraine

Uganda

United States of America
Uzbekistan

Viet Nam
Yugoslavia
Zimbabwe

10

15

20

25

WO 99/09723 PCT/US98/17358

SYSTEM AND METHOD FOR IMPLEMENTING
PROGRAMMABLE TRANSACTION CAPABILITIES
APPLICATION PART COMMUNICATION PROTOCOL

TECHNICAL FIELD OF THE INVENTION

This invention is related in general to the field of
telecommunications systems. More ©particularly, the
invention 1is related to a system and method for
implementing a programmable transaction capabilities

application part application protocol.

BACKGROUND OF THE INVENTION

The public telecommunications network makes extensive
use of signaling system number 7 (SS7) protocol to
communicate among the various network elements. End to end
routing of a signaling system number 7 message often
requires the use of the transaction capabilities
application part (TCAP) portion of the signaling system
number 7 protocol. The transaction capabilities
application part enables the deployment of advanced
intelligent network services by supporting non-circuit
reléted information exchange between signaling points. For
example, a service switching point (SSP) uses the
transaction capabilities application part to dquery a
service control point (SCP) to determine the routing number
associated with a dialed 800, 888, or 900 number. The
service control point uses the transaction capabilities
application part to return back to the service switching

point a response containing the routing number. Calling

10

15

20

25

30

WO 99/09723 PCT/US98/17358

card calls are also validated using transaction
capabilities application part query and response messages.
Furthermore, when a mobile subscriber roams into a new
mobile switching center area, an integrated visitor
location register may request service profile information
from a subscriber's home location register using
information carried within transaction <capabilities
application part messages.

Communication of transaction capabilities application
part messages between two or more nodes in an intelligent
network conventionally takes place using an application
protocol defined by standard committees such as Bellcore or
ETSI. Two such application protocols are INAP, defined by
ETSI and AIN 0.1, defined by Bellcore. Each application
protocol has a message set that defines how information is
communicated between intelligent network nodes. The
message set for an application protocol is specified by a
standards committee in such a way as to give the service
provider some message content flexibility. Therefore, for
some message fields, the service provider may define the
content of the message fields. Because each application
protocol developed for each customer uses some message
information that is customer specific, message information
for an application protocol is typically defined in the
source code of the programs using the application protocol.

Because customer specific message information is
contained in the source code of programs using an
application protocol, it is possible that several versions
of an application protocol used @ for transaction
capabilities application part messages must be maintained.
Creating and maintaining multiple source code versions of
the same application protocol adds complexity and requires
additional development resources. Furthermore,

modifications to any particular customer's application

10

15

20

25

30

WO 99/09723 PCT/US98/17358

protocol are cumbersome because they require changes to the
source code of the programs using the application protocol.
In today's fast-paced telecommunications environment, this
tedious and time-consuming service implementation method is

unacceptable.

SUMMARY OF THE INVENTION

Accordingly, a need has arisen for the implementation
of a transaction capabilities application part protocol in
a quick and easy manner without the delay and effort
associated with traditional software development processes.
Thus the teachings of the present invention provide a
system and method for implementing programmable transaction
capabilities application part communication protocol.

According to one embodiment of the invention, a method

of implementing a transaction capabilities application part

application protocol for transaction capabilities
application part communication includes providing a
transaction capabilities application part message
definition. The method also includes generating a

plurality of service independent building blocks to form a
service logic program associated with transaction
capabilities application part communication. At least one
of the plurality of service independent building blocks
associates a plurality of leaf-node parameters with
respective variables in the service independent building
block. The leaf-node parameters specified by a fully
gualified names are derived from the transaction
capabilities application part message definition. The
method also includes creating an executable form of the
service independent building blocks for execution.
According to another embodiment of the invention, a
system for implementing a transaction capabilities

application part application protocol for transaction

10

15

20

25

30

WO 99/09723 PCT/US98/17358

capabilities application part communication includes a
transaction capabilities application part message set
definition having a plurality of messages and parameters
specifying the transaction capabilities application part
application protocol. The system also includes a plurality
of service independent building blocks having internal
variables. The plurality of service independent blocks
associate the internal variables with fully qualified names
that specify leaf-node parameters that are derived from the
transaction capabilities application part message
definition set. A graphical editor is included that 1is
adapted for facilitating a user to select and link the
plurality of service independent building blocks to form a
logic program associated with a transaction capabilities
application part messages. The system also includes an
object library having a plurality of pre-defined object
classes each corresponding to a service independent
building block. The system also includes a logic
interpreter adapted for receiving the logic program and
creating instances of objects from the pre-defined object
classes in the object library to correspond with the
plurality of service independent building blocks in the
logic program to produce an executable logic program
operable to receive transaction capabilities application
part information identified by fully qualified names
specifying leaf-node parameters and transmit transaction
capabilities application part information associated with
fully qualified names specifying leaf-node parameters.

The invention provides several technical advantages.
For example, an application protocol is provided that does
not require recoding the program that executes tasks
associated with transaction capabilities application part
messages. This reduces complexity and the need for

additional development resources. Furthermore, because the

10

15

20

25

30

WO 99/09723 PCT/US98/17358

definition of an application protocol is not done at
compilation time, users such as a service creation
environment (SCE) or a service control point (SCP) are no
longer required to put protocol specific information in the
source code of programs developed by those users.
Moreover, service independent building blocks no longer
rely on source code specification of parameters. Thus no
service independent building block source code changes are
required to change message parameters or a protocol
definition. In addition, because service independent
building blocks wuse parameter definitions provided
according to teachings of the invention, service designers
have access to all parameters defined for a message in the
application protocol when designing services using a
service creation environment.

Furthermore, according to the invention, access 1is
provided to all of an application protocol's messages
through the use of just four service independent building
blocks. Thus adding messages or parameters to an
application protocol does not require any service creation
environment or service independent building block code

changes.

BRIEF DESCRIPTION OF THE DRAWINGS

For a better understanding of the present invention,
reference may be made to the accompanying drawings, in
which:

FIGURE 1 1is a Dblock diagram of an exemplary
telecommunications network such as an advanced intelligent
network (AIN);

FIGURE 2A is a simplified block diagram illustrating
the use of service independent building blocks (SIBs) ;

FIGURE 2B is a simplified flow chart of an embodiment

of a logic interpretation process;

10

15

20

25

30

WO 99/09723 PCT/US98/17358

FIGURE 3 is a block diagram of a signaling system
number 7 (S87) message structure used in the
telecommunications network illustrated in FIGURE 1;

FIGURE 4 is a simplified block diagram illustrating
one example of a transaction capabilities application parts
message;

FIGURE 5 is a simplified block diagram showing the
creation of services associated with transaction
capabilities application part messages using an application
protocol defined according to the teachings of the
invention;

FIGURE 6 is exemplary details of the transaction
capabilities application part message definition file
illustrated in FIGURE 4;

FIGURE 7 1is exemplary details of the service
independent building block template file illustrated in
FIGURE 4;

FIGURE 8 is exemplary details of a portion of a
service logic program; and

FIGURE 9 is a block diagram illustrating the handling
of a service associated with a transaction capabilities

application part message.

DETAILED DESCRIPTION OF THE TNVENTION

Embodiments of the present invention are illustrated
in FIGURES 1 through 10, like reference numerals being used
to refer to like and corresponding parts of the various
drawings.

FIGURE 1 is a block diagram of a telecommunications
network 100 such as an advanced intelligent network (AIN).
Network 100 includes a service management system 102 that
interfaces with a plurality of service control points (SCP)

104 and a plurality of signal transfer points (STP) 106 via

10

15

20

25

30

WO 99/09723 PCT/US98/17358

an industry standard protocol, such as X.25. Service
management system 102 provides network information,
database management, and administrative support for network
100. Service management system 102 generally interfaces
with service control points 104 for provisioning, database
management, service control point application program
management, and collecting traffic metering and measurement
data. Service control points 104 are also directly linked
to signal transfer points 106 via a signaling system number
7 (8SS7) 1linkset 108. Signal transfer points 106 are
further coupled through signaling system number 7 linkset
108 to one or more service switching points 112 and 114,
which perform switching and call-handling functions in the
network. Service control points 104 are transaction-based
processing systems whose primary responsibility is to
respond to queries from service switching points 112 and
114 for data needed to complete routing a call. Service
switching points 112 and 114 are part of the public
switched telephone network (PSTN) 120 and are coupled to
the telephone service subscribers or customers 122, which
includes wire-based telephones, wireless telephones, and
intelligent peripherals 122.

The creation and delivery of service logic programs
(SLPs) is the function of a service creation environment
(SCE) 126, which is coupled to service management system
102. Service creation environment 126 allows users and
programmers to create service logic programs that define
the desired advance intelligent network service processing.
These programs may then be downloaded to service control
points 104 and signal transfer points 106 through service
management system 102 for execution. Service logic
programs define the triggering events encountered in
service switching points 112 and 114 that require database

access and logic for additional processing of telephone

10

15

20

25

30

WO 99/09723 PCT/US98/17358

calls. Users and programmers of service creation
environment 126 may 1interface with service creation
environment 126 through a computer terminal 130 coupled to
service creation environment 126.

Service independent building Dblocks (SIBg) are
building blocks that have been developed to construct
service logic programs to implement network services. The
service independent building blocks, as defined in the
International Telecommunications Union CCITT ITU-T Q.1213,
are used in the service creation environment to produce
service logic programs that are then downloaded to service
management system 102, service control point 104, and/or
signal transfer points 106, where they are executed.

FIGURE 2A is a simplified block diagram illustrating
the use of service independent building blocks (SIBs).
Several different classes or types of service independent
building blocks 200 are illustrated in FIGURE 2, including
Entry 202, Action 204, Decision 206, System 208, and Input
210. Three types of action service independent building
blocks 204 are Set 211, Get 213, and SendReceive 215.
These different classes of service independent building
blocks, which are collectively illustrated through icons
203, can be linked to form a service logic program 220. In
a preferred embodiment, a graphical editor may be used to
facilitate the creation of service logic programs 220. An
example graphical editor 505 is illustrated in FIGURE 5.
Icons 203 of service independent building block classes may
then be picked up and dropped into a workplace and are
linked together to form a service logic program such as
service logic program 220. An ASCII text file is then
created from the linked service independent building block,
which is converted to an executable algorithm 241 by a
logic interpreter 224. As discussed in greater detail

below, an object library 240 may be used to facilitate

10

15

20

25

30

WO 99/09723 PCT/US98/17358

generation of executable algorithms 241. When executable
algorithm 241 is executed, instances of each class of
service independent building blocks are created, which have
the same behaviors and functionality defined by the class.
In this manner, the same code for the same service
independent building blocks may be reused in many logic
programs without duplicating the effort to recode the
logic.

FIGURE 2B is a simplified flowchart of an embodiment
of the logic interpretation process 230. Logic interpreter
224 or process 230 therefore may include two components: a
parser 232 and an execution function 234. Parser 232
first reads service logic program 220 and validates, as
shown in step 236. Thereafter, parser 232 creates an
instance of a C++ object for each service independent
building block by accessing previously generated C++ object
classes for templates stored in a C++ object library 240,
as shown in step 238. These instances are linked to form
an executable algorithm 241.

During run time, execution function 234 receives
queries or requests, and selects the appropriate C++ logic
program to perform the necessary functions requested. The
selected logic programs in C++ are then executed to handle
transaction capabilities application part services. The
process flow terminates in step 248. In this manner, the
same C++ code for the same service independent building
block may be reused in many transaction capabilities
application part logic programs without duplicating the
effort to recode the logic.

FIGURE 3 is a block diagram of a signaling system
number 7 (S87) message structure 300. As illustrated,
signaling system number 7 message structure 300 has a
message transfer part (MTP) 302, user parts 304, a

signaling connection control part (SCCP) 306, and a

10

15

20

25

30

WO 99/09723 PCT/US98/17358

10

transaction capabilities application part (TCAP) 308. The
message transfer part 302 contains necessary mechanisms to
insure reliable transmission of functional signaling
messages. The signaling connection control part 306
provides the means to control logical signaling connections
in the network and transfer signaling data units across a
network. Signaling connection control part 306 also
provides a routing and translation function that allows
signaling messages to be routed to a signaling point.
Transaction capabilities application part 308 provides the
means to exchange operations and replies via a dialogue.
Transaction capabilities application part 308 provides the
means to establish non-circuit related communication
between two nodes in the signaling network.

As illustrated, transaction capabilities application
part 308 contains a component portion 310 and a transaction
portion 312. Transaction portion 312 contains a package
type identifier. Package types include: wunidirectional
query with permission, query without permission, response,
conversation with permission, conversation without
permission, and abort.

A unidirectional package type transfers components in
one direction only. A query without permission package
type initiates a transaction capabilities application part
308 transaction, such as a 1-800 query. In a query with
permission package type, the destination node may end the
transaction. A query without permission package type
initiates transaction capabilities application part 308
transaction in which a destination node may not end the
transaction. A response package type ends transaction
capability application part 308 transaction. For example,
a response to a 1-800 query with permission may contain the
routing number associated with the 800 number. A

conversation with permission package type continues a

10

15

20

25

30

WO 99/09723 PCT/US98/17358

11

transaction capabilities application part transaction. In
a conversation without permission package type, the
destination node may end the transaction. A conversation
without permission package type continues a transaction
capabilities application part transaction. In such a case,
the destination node may not end the transaction. An abort
package type terminates a transaction due to an abnormal
situation. In addition to «containing package type
identifiers, transaction portion 312 also contains an
originating transaction identification and a responding
transaction identification field, which associate the
transaction capabilities application part 308 transaction
with a specific application at the originating and
destination signaling points respectively.

Component portion 310 of transaction capabilities
application part 308 contains components. Types of
components include invoke (last), invoke (not last), return
result (last), return result (not last), return error, and
reject. Components include numbers representing parameters
associated with a transaction capabilities application part
message. Because such parameters may be customer-specific,
conventionally, each time a customer would request
additional capabilities, the protocol for receiving
transaction capabilities application part messages had to
be modified each time a service was added. The present
invention addresses this disadvantage by providing a system
and method for adding or modifying the services available
to a customer without modifying the application protocol
associated with these services.

The invoke (last) component invokes an operation. For
example, a query with permission transaction may include an
invoke (last) component to request a service control point
translation of a dialed number. The invoke (not last)

component is similar to the invoke (last) component except

10

15

20

25

30

WO 99/09723 PCT/US98/17358

12

that it is followed by one or more components. The return
result (last) returns the results of an invoked operation,
and the return result (not last) returns the results of an
invoked operation but followed by one or more components.
The return error component reports an unsuccessful
completion of an invoked operation, and the reject
component 1indicates that an incorrect package type or
component was received.

FIGURE 4 is a simplified block diagram illustrating an
example of a transaction capabilities application parts
message transmitted between service switching point 112 and
service control point 104. As described above, transaction
capabilities application part 308 enables the deployment of
advanced intelligent network services by supporting non-
circuit related information exchange between signaling
points. In the example illustrated in FIGURE 4, a
telephone call is placed using telephone 122 to a 1-800
number 402. In response to receiving dialed 1-800 number
402, service switching point 112 transmits a transaction
capabilities application part query message 404 to query
service control point 104 to determine the rbuting number
associated with dialed 1-800 number 402. Service control
point 104 returns back to service switching point 112 a
transaction capabilities application part, response message
406, 408 containing the routing number. Query message 404
and response message 406, 408 are examples of transaction
capabilities application part 308 messages. As
illustrated, the routing number returned may vary depending
upon the time of day or the location from which the dialed
1-800 number 402 was received. Once the service switching
point receives response 406, 408 containing a routing
number, service switching point 112 may route dialed 1-800
number 402 to the correct location based on response 406,

408. Thus, transaction capabilities application part 308

10

15

20

25

30

WO 99/09723 PCT/US98/17358

13

messages enable the deployment of advanced intelligent
network services by supporting non-circuit related
information exchange.

Another example of an advanced intelligent network
service provided through a transaction capabilities
application part 308 message 1is roaming. As a mobile
telephone moves between new roaming areas, a local visitor
location register requests service profile information from
the mobile telephone user's home location register. This
request 1is performed using information carried within a
transaction capabilities application part 308 message.

The transaction capabilities application part 308
messages associated with services such as 1-800 routing and
roaming are transmitted between service switching point 112
and service control point 104 according to an application
protocol defined for a given customer. Conventionally,
such an application protocol specifies the format for
transmitting and receiving a transaction capabilities
application part 308 message, such as query message 404 or
response message 406, 408. This specification is
conventionally performed by a trigger integer, which
specifies a type of message, and a series of integers
following the trigger integer in a particular order that
corresponds to various parameters associated with the
message. If additional services are desired by a given
customer, however, difficulties arise. For example, the
application protocol for a given customer must be modified
to include a protocol for the new service. In addition,
the application programs executing the given service must
be modified to correspond to that new protocol. If a
service is modified to include, for example additional
parameters associated with an existing service, both the
application protocol and the associated service logic

programs have to be modified to reflect changes in the

WO 99/09723 PCT/US98/17358

14

application protocol resulting from changes in the service.
Conventionally, such modifications require computer code
changes that are time consuming. In addition,
conventionally service logic interpreter 224 must be
modified to be able to parse and execute the modified
service logic programs 220. According to the invention,
services using transaction capabilities application part
308 messages may be easily added or modified for a given
customer without the need for modifying the code associated
with the service and without modifying service logic
interpreter 224.

FIGURE 5 illustrates a simplified Dblock diagram
showing the creation of executable algorithms associated
with transaction capabilities application part 308 messages
according to the teachings of the invention. FIGURES 6
through 8 illustrate exemplary details of various
components of the block diagram illustrated in FIGURE 5.
The illustrated steps may be performed within service
creation environment 126 to create service independent
building blocks, such as service independent building
blocks 203, that may be linked together to form a service
logic program, such as service logic program 220. Service
logic program 220 may then be used by a service logic
interpreter, such as service logic interpreter 224, to
generate executable algorithms, such as executable
algorithms 241, which are used by service control points
104 and/or service switching points 112 to communicate
transaction capabilities application part messages.

As illustrated in FIGURE 5, service creation
environment 126 includes a transaction capabilities
application part message definition file (TMD File) 502.
As described in greater detail Dbelow, transaction
capabilities application part message definition file 502

contains all transaction capabilities application part

10

15

20

25

30

WO 99/09723 PCT/US98/17358

15

messages available to a given customer. Transaction
capabilities application part message definition file 502
also defines the parameters associated with each message.
In addition, transaction capabilities application part
message definition file 502 also associates a tag integer
with a respective message. A tag integer associated with
a given transaction capabilities application part message
definition file 502 may be received by service control
point 104 rather than the actual name of the desired
message.

Service creation environment 126 also may include a
utility 508 that creates, based on transaction capabilities
application part message definition file 502, a service
independent building block template file 504. As described
in greater detail below, service independent building block
template file 504 associates particular parameters defined
in transaction capabilities application part message
definition file 502 with variable names that are used by a
designer in constructing a service logic program, such as
service logic program 220.

Service creation environment 126 also may include a
service logic program graphical editor 505 for facilitating
generation of a service logic program 506. By utilizing
service 1logic program graphical editor 505, a service
designer may link together a plurality of service
independent building blocks that incorporate the contents
of service independent building block template file 504 to
form service logic program 506. As described above,
service independent building block template file 504
associates particular parameters associated with the
messages contained in transaction capabilities application
part message definition file 502 with service logic program

variables names used during the creation of service logic

10

15

20

25

30

WO 99/09723 PCT/US98/17358

16

program 506 and during execution of service logic program
506.

Prior to the teachings of the present invention, a
service designer utilizing a service creation environment
for service creation used dedicated service independent
building blocks, one for each message type, that had
parameter information imbedded in the source code of the
dedicated service independent building blocks. Adding
messages to accommodate new services or additional
parameters to existing messages required changing the
source code of the service independent building blocks.
The source code of the service independent building block
conventionally included information specifying the
parameters that were associated with particular messages
and the structure of the associated parameters. Therefore,
adding or modifying services, which conventionally resulted
in a modification of the application protocol associated
with transaction capabilities application part 308
messages, conventionally required rewriting the source code
of the service independent building blocks to reflect the
change in protocol. In addition, each time a new service
independent building block was added, service logic
interpreter 224 required modification to be able to execute
the newly-added or newly-modified service independent
building block.

By contrast, according to an embodiment of the
invention and as described in greater detail below, service
creation environment 126 provides access to all of an
application protocol's messages and parameters through the
use of four service independent building blocks, including
access to subsequently-developed messages and parameters.
These sgervice independent building blocks are Entry 202,
Set 211, Get 213, and SendReceive 215, illustrated in

FIGURE 2A. Adding messages or parameters to an application

10

15

20

25

30

WO 99/09723 PCT/US98/17358

17

protocol does not require any service creation environment
or service independent building block code changes.

An embodiment of the invention provides an application
protocol that uses a fully qualified name and a parameter
structure to specify a parameter. According to one
embodiment of the present invention, a fully qualified name
is an ASCII text string of period-delimited parameter names
that specifies a parameter that cannot be further
subdivided to other parameters. Such a parameter is
referred to as a leaf-node parameter. For example, as
illustrated in the 1last 1line of FIGURE 7, the term
"calledPartyID.digits" is a parameter that specifies the
digits associated with the phone number of a calling party.
Other leaf-node parameters or fully qualified names

illustrated in FIGURE 7 include "calledPartyID.odd_even",

"calledPartyID.nat_of num", "calledPartyID.spare",
"calledPartyID.num _plan", "calledPartyID.pri", and
"CalledPartyID.si." By contrast, conventionally, a

parameter such as "callingPartyID" would be specified by an
integer string with specified portions of the string
corresponding to each of the above-listed parameters.
FIGURE 6 illustrates exemplary details of a portion of
transaction capabilities application part message
definition file 502. A more complete listing of an example
transaction capabilities application part message
definition file 502 is provided in Table 1. Transaction
capabilities application part message definition file 502
ig an ASCII file that is used to specify a transaction
capabilities application part application protocol, which
may be written, for example, in Tcl syntax. Tcl is a high-
level scripting language known in the industry. Each
transaction capabilities application part message
definition file 502 contains the definition of a single

transaction capabilities application part application

10

15

20

25

30

WO 99/09723 PCT/US98/17358

18

protocol. Examples of Tcl commands related to the present
invention that are used to describe an application protocol
are: PROTOCOL, OCTSTR, and SEQUENCE. PROTOCOL defines
messages supported by the protocol; OCTSTR defines ASN.1
octet-string-type parameters; and SEQUENCE defines ASN.1
sequence-type parameters. The parameter reference
structure defined in transaction capabilities application
part message definition file 502 contains information
relating to a message and its specified parameters. Based
on the parameter reference structure contained in
transaction capabilities application message definition
file 502, upon execution of an executable algorithm such as
executable algorithms 241, a service logic interpreter can
access parameter values for use in processing transaction
capabilities application part 308 messages.

As illustrated in FIGURE 6, the term "SEQUENCE"
specifies a data type for a transaction capabilities
application part 308 message "InfoAnalyzed." The term
"calledPartyID" is a parameter and the phrase
"CalledPartyID OPT" specifies an optional data type for
calledPartyID. The integer "15" is a tag associated with
the parameter calledPartyID. A transaction capabilities
application part message received at, for example, service
control point 104, may include such a tag rather than the
name of the desired message. Upon reception of a
transaction capabilities application part message 508,
service control ©point 104, transaction <capabilities
application part message definition file 502 is accessed to
associate the received tag with its associated message and
parameters specified in transaction capabilities
application part message definition file 502. The phrase
"USER_DEFINE CalledPartyID AINDigits™" initiates
definition of the user-defined data type "CalledPartyID."

10

15

20

25

30

WO 99/09723 PCT/US98/17358

19

The phrase "BITFIELD AINDigits defines seven leaf-node
parameters associated with parameter called the party ID.

To change parameters for a given service or to add
additional messages, transaction capabilities application
part message definition (TMD) file 502 is modified. A
starting point for creating transaction capabilities
application part message definition file 502 may be a
document that defines a standard application protocol using
ASN.1 grammar. An example of such a document is a standard
specified by Bellcore. A customer may then supply a
customer-specific definition of parameters that may be used
to supplement the standard committee document to create the
T™MD file.

As illustrated in FIGURE 5, a service independent
building block template file 504 may be derived from
transaction capabilities application part message
definition file 502. One way of generating a service
independent building block template file 504 is through the
use of a utility 508, which generates service independent
building block template file 504 from transaction
capabilities application part message definition file 502.
As described above, service independent building block
template file 504 associates the fully qualified names of
"leaf-node" parameters of the application protocol
specified within the transaction capabilities application
part message definition file 502 with corresponding service
logic program variable names that may be used by a service
designer in service creation environment 126 to create a

service logic program such as service logic program 220.

FIGURE 7 illustrates example portions of service
independent building block template file 504, which shows
examples of fully qualified names identifying leaf-node

parameters and their corresponding service independent

10

15

20

25

30

WO 99/09723 PCT/US98/17358

20
building block variable. For example, the last line of
information in FIGURE 7 reads "EXTDEF_PARAM:Var:

phone nr type_id calledPartyID.digits CalledPID digits
alloc_call Edt:001." This command associates the fully
qualified name "CalledPartyID.digits" with the variable
name "CalledPIP digits" that may be used by a service
designer in creating service logic program 506.
Associating a fully qualified name of a leaf-node parameter
with a variable name that may be used by service designer
in creating a service logic program, such as service logic
program 506, enables a service designer to utilize variable
names with which he is familiar and also allows the use of
short, easy-to-remember variable names. As an intermediate
step in generating service independent building block
template 504, a “dot” file listing all fully qualified names
that may be generated from transaction capabilities message
definition file 502 may be generated. An example of such
a file is provided in Table 2.

Service independent building block template file 504
may be used by service logic program graphical editor 505
for creating service logic programs, such as service logic
program 506, which is analogous to service logic program
220. Service logic program 506 incorporates the
application protocol defined in the transaction
capabilities application part message definition file 502
by associating the leaf-node parameters obtained from
transaction capabilities application part message
definition file 502 with service logic program variable
names.

To generate service logic program 506, a service
designer may link multiple service independent building
blocks, such as service independent building blocks 203, to
form service logic program 506. As described above, four

service independent building blocks are particularly

10

15

20

25

30

WO 99/09723 PCT/US98/17358

21

important to generating service logic programs used for
transaction capabilities application part messages. These
four service independent building blocks are Entry 202, Set
211, Get 213 and SendReceive 215. Service independent
building block Get 213 retrieves the value of each
parameter associated with a received message. Service
independent building block Set 211 assigns values to
parameters associated with a chosen message. Service
independent building block Entry 202 is the entry point to
a service independent building block upon receipt of a
transaction capabilities application part message. Service
independent building block SendReceive 215 is used to send
and receive TCAP messages.

As an example, a service designer may use the service
independent building block Get 213 to retrieve a value
associated with a parameter associated with an InfoAnalyzed
message. To do so, during creation of a service logic
program for use with an InfoAnalyzed message, the service
logic designer may select the message InfoAnalyzed from a
menu provided by service independent building block Get 213
that lists all possible messages available with a given
transaction capabilities part protocol specified by
transaction capability application part message definition
file 502. Selecting a message incorporates the parameters
associated with that message into the service independent
building block Get 213 for use in a resulting service logic
program. In such a manner, service logic programs may be
easily created to include new messages contained within
transaction capabilities application part message
definition file 502 or new parameters associated with
messages contained in transaction capabilities application
part message definition file 502.

Once creation of service logic program 506 is

completed, it <can be executed by a service logic

10

15

20

25

30

WO 99/09723 PCT/US98/17358

22

interpreter 224 within, for example, service control point
104 (FIGURE 9) to process transaction capabilities
application part 308 messages received from or sent to, for
example, service switching points 112 and 114. Upon
execution of service 1logic program 506, service logic
interpreter 224 creates service independent building block
objects based on the content of the service logic program
506 being processed. Each service independent building
block object, when constructed, incorporates the
application protocol specified by transaction capabilities
application part message definition file 502.

FIGURE 8 illustrates and details of a portion of
service logic program 506. FIGURE 8 shows commands
associated with one service independent building block that
is included in a portion of service logic program 506.
Service logic program 506 may include a plurality of
service independent building blocks that may be linked
together using service logic program graphical editor 505.
A portion of service logic program illustrated in FIGURE 8
associates a fully qualified name for a leaf-node parameter
based on service independent building block template file
504. The purpose of service logic program 506 is to define
the parameters that may be associated with a given message,
such as, for example, InfoAnalyzed, to define the types of
variables associates with the parametérs, and to define the
type of action associated with the specified message. For
example, the first line of service logic program 506, which
reads "SIB Code: ACTION 4", specifies that the class of the
service independent building block is "action" and also
specifies the service independent building block
identification number associated with the service
independent building block. In this case, the service
independent identification number is 4, which corresponds

to this particular service independent building block being

10

15

20

25

30

WO 99/09723 PCT/US98/17358

23

the fourth service independent building block generated in
the current service logic program. The second line of
service logic program, which reads "SIB_ Type:
SIB __ action get action get", specifies that the particular
type of action for this service independent building block
is a get action. Except for the last line of information,
the additional lines of information are associated with the
leaf-node parameters associated with the message
InfoAnalyzed. These lines of information specify the
variable type associated with a leaf-node parameter and
also associate a leaf-node parameter with a variable name
that may be used by a service designer in service creation
environment 126 based upon the service independent building
block template file 504. For example, the third line in
FIGURE 8 specifies that the leaf-node parameter, having a
fully qualified name of "CalledPartyID.nat_of num", has an
integer type in that it is associated with the variable
name "CalledPID nat_of num" that may be used by a service
designer and service creation environment 126. The last
line of the service independent building block illustrated
in FIGURE 8 specifies the message associated with the
service independent building block. As illustrated in
FIGURE 8, the service independent building block is
associated with an InfoAnalyzed message.

Thus, according to one embodiment of the invention,
service logic programs such as service logic program 506
may be created ©based on transaction capabilities
application part message definition file 502 that
incorporate the parameter reference structure specified by
transaction capabilities application part message
definition file 502 and that associate a fully-qualified
name for a leaf-node parameter with a service logic program
variable. As described in greater detail Dbelow, this

allows execution of executable algorithms 241 without

10

15

20

25

30

WO 99/09723 PCT/US98/17358

24

rewriting the code for service logic interpreter 224 each
time an additional message or a modified message 1is
desired.

FIGURE 9 illustrates the execution of executable
algorithms 241 by service logic interpreter 224 according
to the teachings of the present invention. Executable
algorithms 241 are the executable form of service logic
program 506. Upon receiving a transaction capabilities
application part message 902, service logic interpreter
located in, for example, service control point 104 performs
several functions. These functions include decoding, or
translation, of transaction capabilities application part
message 902, service selection, and service execution.

According to industry standards, transaction
capabilities application part message 902 consists of an
encoded bitstream specifying a message and its associated
parameters. According to one embodiment of the invention,
service logic interpreter 224 accesses transaction
capabilities application part message definition file 502
to decode transaction capabilities application part message
902. Decoding allows service logic interpreter 224 to know
what message was sent, and therefore, what parameters
associated with the message to expect. Thus service logic
interpreter 224 translates an encoded bitstream specifying
a particular message and its associated parameters into a
set of fully-qualified names that are understandable by
service logic programs 506 and executable algorithms 241.
This translation process is illustrated by reference
numeral 908.

Once transaction capabilities application part message
902 is translated, service logic interpreter 224 selects an
executable algorithm 241 and executes the service
independent building blocks associated with the selected

executable algorithm. In doing so, service 1logic

10

15

20

25

30

WO 99/09723 PCT/US98/17358

25

interpreter 224 provides the value of a leaf-node parameter
to executable algorithm 241 in response to a request by
executable algorithm 241 specifying a fully-qualified name
for a desired leaf-node parameter. The request
incorporating the fully-qualified name is illustrated by
reference numeral 909. The provision of a value
corresponding to the request 909 is illustrated by
reference numeral 910. Because service logic programs 506
were created according to the procedure described with
reference to FIGURES 5 through 8, executable algorithm 241
can receive and understand values of parameters specified
by a fully qualified name. For example, execution of
service independent building block Get 213 gets the value
corresponding to a parameter identified by a fully
qualified name. Once the value of a parameter is obtained,
internal variable names are used within executable
algorithm 241. Thus, the fully-qualified name for a
parameter allows communication of parameter values between
service logic interpreter 224 and executable algorithm 241.
Once an executable algorithm 241 has completed its assigned
task, a value may be assigned to another parameter
associated with transaction capabilities application part
message 902 through the service independent block Set 211.
This is accomplished by transmitting a fully-qualified name
for the parameter and a value to be assigned to that
parameter from the executable algorithm 241 to service
logic interpreter 224. This transmission of a fully-
qualified name and an associated value is illustrated by
reference numeral 912. 1In addition, a response message may
be sgent utilizing service independent block SendReceive
215.

Once service logic interpreter 224 receives a response
from executable algorithm 241, it may translate the message

into a Dbitstream of encoded data for transmission to

10

15

20

25

30

35

40

45

50

WO 99/09723 PCT/US98/17358

26

service switching point 112. This translation is performed
in a manner analogous to the translation described above
and 1is represented by reference numeral 908. Once
translated, a transaction capabilities application part
message response 904 may be transmitted to service
switching point 112.

The below Table 1 illustrates one example of a
transaction capabilities application part message
definition file 502.

TABLE 1

HHHHER S R
Section 1. Protocol
HHHE S
PROTOCOL CUSTOMERNAME 1.0 PRIVATE {
25857 AnalyzeRoute {} { ApplicationError } }
28161 Close }
25869 Continue {} { ApplicationError }
25859 Disconnect {} { ApplicationError } }
25603 InfoAnalyzed {} { ApplicationError FailureReport }
{ AnalyzeRoute Continue SendToResource Disconnect
28417 ReportError }
26113 SendToResource {} { ApplicationError } }

HFHEH S S
Section 2. Messages

S
SEQUENCE AnalyzeRoute {

chargeNumber 19 ChargeNumber OPT }
callingPartyID 18 CallingPartyID OPT }
calledPartyID 15 CalledPartyID OPT }
outpulseNumber 37 OutpulseNumber OPT }
primaryTrunkGroup 42 PrimaryTrunkGroup OPT }
alternateTrunkGroup 5 AlternateTrunkGroup OPT }
secondAlternateTrunkGroup 48 SecondAlternateTrunkGroup OPT }
extensionParameter 84 ExtensionParameter OPT }
genericAddressList 107 GenericAddressList OPT }

}

SEQUENCE Close {
userID 53 UserID OPT }
bearerCapability 13 BearerCapability OPT }
closeCause 72 CloseCause OPT }

{ extensionParameter 84 ExtensionParameter OPT } deleted

from Close msg

SEQUENCE Continue {
{ extensionParameter 84 ExtensionParameter OPT }

SEQUENCE Disconnect {

WO 99/09723 PCT/US98/17358

27
{ extensionParameter 84 ExtensionParameter OPT }
SEQUENCE InfoAnalyzed {
userID 53 UserID }
bearerCapability 13 BearerCapability }
calledPartyID 15 CalledPartyID OPT }
triggerCriteriaType 52 TriggerCriteriaType }
chargeNumber 19 ChargeNumber OPT }
callingPartyID 18 CallingPartyID OPT }
carrier 41 Carrier OPT }
accessCode 1 AccessCode OPT }
collectedAddressInfo 22 CollectedAddressInfo OPT }

collectedDigits 23 CollectedDigits OPT }
extensionParameter 84 ExtensionParameter OPT }

}

SEQUENCE ReportError {
{ applicationErrorString 55 ApplicationErrorString }

{ extensionParameter 84 ExtensionParameter OPT } deleted
from ReportError

SEQUENCE SendToResource {

resourceType 45 ResourceType }
strParameterBlock 50 StrParameterBlock }
disconnectFlag 25 NULL OPT
answerIndicator 12 NULL OPT
} .
{ extensionParameter 84 ExtensionParameter OPT } deleted

from SendToResource

RE AinO2RE {
1 ApplicationError }
2 FailureReport

HH#HHEHH R R
Section 3. Parameters

S

3.1 Primitive Parameters

3.1.1 INTEGER

INTEGER ClassOfSvc 0 1023
INTEGER ResourceType 0 255
INTEGER ServTranslationScheme 1 999

3.1.2 BCDOCTSTRING

numbers are no of digits
BCDOCTSTR Dn 10 10
BCDOCTSTR UniversalAccess 10 10

3.1.3 OBJECTID

The given value is incorrect in the document;

The correct value should be "1.2.840.113533.8.65.16".
OBJECTID AssignmentAuthority "1.2.836.97021.8.65.16"

10

15

20

25

30

35

40

45

50

55

60

WO 99/09723

3.

1.4 OCTSTRING

numbers are no of bytes
OCTSTR BillSequenceNumber
BITFIELD

OCTSTR ‘CallBranding

3.

ENUM

ENUM

ENUM

ENUM

ENUM

i

1

1.5 ENUMERATED
BearerCapability {
speech 0 }
f31kHzaudio
f7kHzaudio
b56kbps
b64kbps
multiRate

b W

CallType {
onnet O
offnet 1

CloseCause {
callTerminated 0
eDPsCompleted 1
unexpectedCommunication 2
calledPartyAnswered

ErrorCause {
erroneousDataValue
missingConditionalParameter
responseMessageTimerExpired
unexpectedCommunication
unexpectedMessage
unexpectedMessageSequence
unexpectedParameterSequence

FailureCause {

rateTooHigh
unavailableResources
apTimeout

apbusy

channelsBusy

abort 14
resourceLimitation
applicationError
securityError
protocolError
timerExpired
temporaryFailure
mwiUnderSmdiControl
segmentationError
ncasDisallowed
controlEncountered
improperCoding
inappropriateCondition
inappropriateUserInterface

inappropriateLegManipulation

28

[=)

oW

13

15
16

19

21
22
23
24
25

4 4 # This has been moved to

}

|

17
18

26
27
28

PCT/US98/17358

10

15

20

25

30

35

40

45

50

55

60

WO 99/09723 PCT/US98/17358

29

ENUM TriggerCriteriaType {
featureActivator 0
verticalServiceCode
customizedAccess
customizedIntercom

o W
[R e i o

npa

npaNXX 5}

nxx 6
nxxXXXX 7
npaNXXXXXX 8 }
countryCodeNPANXXXXXX 9
carrierAccess 10 }
prefixes 11
nll 12
aFR 13
sharedIOTrunk 14
terminationAttempt 15
offHookImmediate 16
offHookDelay 17
channelSetupPRI 18
npaN 19 1
npaNX 20
npaNXXX 21
npaNXXXX 22
npaNXXXXX 23
networkBusy 24 }
sds_info 100
sds_ani 101
sds_n00 102

3.2 Constructed Parameters
3.2.1 CHOICE
CHOICE StrParameterBlock {
{ announcementBlock 0 AnnouncementBlock }

CHOICE UserID {
{ an 1 Dn }

3.2.2 SEQUENCE
SEQUENCE AnnouncementBlock {
{ uninterAnnounceBlock 1 UninterAnnounceBlock OPT }

SEQUENCE ApplicationError {
{ applicationErrorString 55 ApplicationErrorString }

#4 { extensionParameter 84 ExtensionParameter OPT } deleted
from ApplicationError

SEQUENCE ExtensionParameter {
assignmentAuthority 6 UNIVERSAL } AssignmentAuthority }
epParameters 17 UNIVERSAL EpParameters }

SEQUENCE FailureReport {
{ failureCause 32 FailureCause }

10

15

20

25

30

35

40

45

50

55

60

WO 99/09723

30

}

{ extensionParameter 84 ExtensionParameter OPT } deleted from

FailureReport

SEQUENCE ApplicationErrorString {
{ errorCause 56 ErrorCause }

3.2.3 SEQUENCEOF
SEQUENCEOF GenericAddressList 10 GenericAddress 80

PCT/US98/17358

SEQUENCEOF UninterAnnounceBlock 10 AnnounceElement { 4 UNIVERSAL }

3.2.4 SET
SET EpParameters ({

servTranslationScheme 1 ServTranslationScheme OPT }

callType 2 CallType OPT }

satRestriction 3 NULL OPT }

classOfSve 4 ClassOfSve OPT }
billSequenceNumber 9 BillSequenceNumber OPT }
callBranding 5 CallBranding OPT }

universalAccess 10 UniversalAccess OPT }

3.3 User Defined Parameters

USER_DEFINE AccessCode AINDigits
USER_DEFINE CalledPartyID AINDigits
USER_DEFINE CallingPartyID AINDigits
USER_DEFINE ChargeNumber AINDigits
USER_DEFINE CollectedAddressInfo AINDigits
USER_DEFINE CollectedDigits AINDigits
USER_DEFINE OutpulseNumber AINDigits
USER_DEFINE AlternateTrunkGroup TrunkGroupType
USER_DEFINE PrimaryTrunkGroup TrunkGroupType
USER_DEFINE SecondAlternateTrunkGroup TrunkGroupType
USER_DEFINE Carrier CarrierFormat

##

3.4 Bitfield Parameters

##

BITFIELD AINDigits {
odd_even BIT DGT_ODDEVEN
nat of num BIT_ENUM

N H
et

spare BIT NULL 1 }
num_plan BIT_ENUM 3

pri BIT ENUM 2

si BIT ENUM 2

digits BIT DGT 0 24 odd_even

}

AINDigits FIELD DEFINITION START ----

BIT ENUM AINDigits nat_of_num {
not_applicable 0 }
subscriber_ number 1
reserved for national_use 2}

n

10

15

20

25

30

35

40

45

50

55

60

WO 99/09723

national number 3}
international number 4}
partitioned_number 96 }
acct_number 97
ani_number 98
i2ani_number 99
authcode number 100

hotline number 101
mccs_number 102 }

pin_number 103
vpn_number 104
n00_number 105

}

BIT ENUM AINDigits num plan {
i unknown_or not_ applicable

= o
B

isdn_numbering plan
private numbering plan 5 }

}

BIT ENUM AINDigits pri {
presentation_allowed
presentation_restricted
number_unavaliable

N O
A A

BIT ENUM AINDigits si {
reserved_for user_ provided 0 I
user provided_passed network screening 1
reserved for_user privated failed network_screening 2}

---- AINDigits FIELD DEFINITION END

number of digits is determined by filed num_of_digits
BITFIELD AnnounceElement {

system announcement_id BIT_INT 16 }
number of_ digits BIT DGT_NUMDIGITS 8 }
digits BIT DGT }

}

BIT_INT AnnounceElement system announcement id 0 65535 100

BITFIELD BillSequenceNumber {

scp_num BIT_INT 2}
instance num BIT INT 6 }
serial num BIT INT 24 }

BITFIELD CarrierFormat ({
carrier selection BIT_ENUM 8 }
number of digits BIT_DGT NUMDIGITS 8

BIT ENUM CarrierFormat carrier_selection {
no_indication 0}
presubscribed_and no_input 1}
presubscribed_and_input 2}

PCT/US98/17358

digits BIT DGT 4 4 number of digits }

10

15

20

25

30

35

40

45

50

55

60

WO 99/09723 PCT/US98/17358

32

presubscribed_and no_indication ofinput 3
not_presubscribed and_ input 4

BITFIELD GenericAddress {

type_of_addr BIT_ ENUM 8 }
odd_ even BIT DGT_| ODDEVEN 1

nat_of addr ind BIT_ "~ ENUM 7

spare "BIT NULL 1 }

num_plan BIT ENUM 3

pres BIT ENUM 2

resv BIT NULL 2

addr_signal BIT DGT 1 16 odd_even }

}

GenericAddress FIELD DEFINITION START ----
#BIT ENUM GenericAddress type_of_addr {

dialed num 0

destination_num 1

suppl user prov_calling_addr_failed_scr 2}

suppl user_ prov_calling_. addr _not_scr 3}

completion num 4

alternate outpulse num 100 }

second_alternate_outpulse_num 101 }

overflow routing num 102 }

#}

BIT ENUM GenericAddress type_of_addr {
alternate_outpulse_num 96
second_alternate_outpulse_num 97
overflow routing num 98

changed unique international num from 5 to 4

added vpn 104

BIT ENUM GenericAddress nat_of_addr_ ind {
unique_subscriber num 1}
unlque “national num 3
unique international num 4 {
abbreviated num 6
vpn 104 }
non_unique_subscriber num 113 }
non_unique national_num 115 }
non unique international num 116
test line test_code 119

}

BIT ENUM GenericAddress num_plan {
isdn_num_plan 1
private 5

}

BIT ENUM GenericAddress pres {

presentation_allowed 0
presentation restricted 1
}
---- GenericAddress FIELD DEFINITION END

TrunkGroupType call treat ind is chosen as BIT_NULL because it
is for future use.

10

15

20

25

30

35

WO 99/09723

33
BITFIELD TrunkGroupType {
no_to_ outpulse BIT ENUM 1
sfg_ind BIT ENUM 1
call_treat_ind BIT_NULL 6
digits BIT_DGT 8 8}

}

TrunkGroupType FIELD DEFINITION START ----
BIT ENUM TrunkGroupType no_to_outpulse {
{ outpulse_no 0 k
normal_routing no 1

BIT ENUM TrunkGroupType sfg_ind {

not_sfg 0
{ sfg 1
---- TrunkGroupType FIELD DEFINITION END
3.4 BIT MAP
BCD_MAP {

0 0

1 1

} 2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

13 *

14 #

15 S

PCT/US98/17358

10

15

20

25

30

35

40

45

50

55

WO 99/09723

34

PCT/US98/17358

The below Table 2 illustrates one example of a "dot"

file listing fully-qualified names of leaf-node parameters

contained in the transaction capabilities application part

message definition file of Table 1.
TABLE 2

HHH#H #H##
HHH#H#
HH##

Operation Name: AnalyzeRoute

~-> TMD for CUSTOMERNAME 1.0 <-
: : INVOKE

chargeNumber.
chargeNumber.
chargeNumber.
chargeNumber.
chargeNumber.
chargeNumber.
chargeNumber.

odd_even
nat_of_num
spare
num_plan
pri

si

digits

callingPartyID.
callingPartyID.
callingPartyID.

callingPartyID
callingPartyID

calledPartyID.
calledPartyID.
calledPartyID.
calledPartyID.
calledPartyID.
calledPartyiD.
calledPartyID.

outpulseNumber.
.nat_of num
outpulseNumber.

outpulseNumber

outpulseNumber
outpul seNumber

odd_even
nat_of num
spare

.num_plan
.pri

callingPartyID.
callingPartyID.

si
digits

odd_even
nat_of_num
spare
num_plan
pri

si

digits

odd_even

spare

.num_plan
.pri

outpulseNumber.si

outpulseNumber.digits
primaryTrunkGroup.no_ to_outpulse
primaryTrunkGroup.sfg_ind
primaryTrunkGroup.call treat_ind
primaryTrunkGroup.digits
alternateTrunkGroup.no_to_outpulse
alternateTrunkGroup.sfg_ind
alternateTrunkGroup.call treat_ ind
alternateTrunkGroup.digits
secondAlternateTrunkGroup.no_to_outpulse
secondAlternateTrunkGroup.sfg ind
secondAlternateTrunkGroup.call treat_ind
secondAlternateTrunkGroup.digits

extensionParameter.
extensionParameter.
extensionParameter.
extensionParameter.
extensionParameter.
extensionParameter.

assignmentAuthority

epParameters.
epParameters.
epParameters.

epParameters
epParameters

servTranslationScheme
callType
satRestriction

.classOfsve
.billsequenceNumber.scp num

10

15

20

25

30

35

40

45

50

55

60

WO 99/09723

extensionParameter.epParameters
extensionParameter.epParameters
extensionParameter.epParameters
extensionParameter.epParameters

genericAddressList (0)
genericAddressList (0)
genericAddressList (0)
genericAddressList (0)
genericAddressList (0)
genericAddressList (0)
genericAddressList (0)
genericAddressList (0)
genericAddressList (1)
genericAddressList (1)
genericAddressList (1)
genericAddressList (1)
genericAddressList (1)
genericAddressList (1)
genericAddressList (1)
genericAddressList (1)
genericAddressList (2)
genericAddressList (2)
genericAddressList (2)
genericAddressList (2)
genericAddressList (2)
genericAddressList (2)
genericAddressList (2)
genericAddressList (2)
genericAddressList (3)
genericAddressList (3)
genericAddressList (3)
genericAddressList (3)
genericAddressList (3)
genericAddressList (3)
genericAddressList (3)
genericAddressList (3)
genericAddressList (4)
genericAddressList (4)
genericAddresslList (4)
genericAddressList (4)
genericAddressList (4)
genericAddressList (4)
genericAddressList (4)
genericAddressList (4)
genericAddressList (5)
genericAddressList (5)
genericAddressList (5)
genericAddressList (5)
genericAddressList (5)
genericAddressList (5)
genericAddressList (5)
genericAddressList (5)
genericAddressList (6)
genericAddressList (6)
genericAddressList (6)
genericAddressList (6)
genericAddressList (6)
genericAddressList (6)
genericAddressList (6)
genericAddressList (6)
genericAddressList (7)

35

type_of_ addr
odd_even

nat of addr_ind
spare

num_plan

pres

resv

addr signal
type of addr
odd_even
nat_of_addr ind
spare

num_plan

pres

resv
addr_signal

.type_of addr

odd even

.nat_of addr_ind

spare

.num_plan
.pres

resv
addr_signal
type_of_ addr
odd_even

.nat_of addr_ ind
.spare

num_plan

.pres

resv

.addr_signal
.type_of_ addr

odd_even

nat_of addr ind
spare

num_plan

.pres

resv

.addr_signal

type of addr
odd_even
nat_of_addr ind

.spare
.num_plan
.pres

resv
addr_signal
type_of_addr
odd_even

.nat_of addr_ ind
.spare

.num_plan

.pres

resv
addr_signal
type_of_ addr

PCT/US98/17358

.billSequenceNumber.instance_num
.billSequenceNumber.serial num

.callBranding -
.universallAccess
.GenericAddress.
.GenericAddress.
.GenericAddress.
.GenericAddress.
.GenericAddress.
.GenericAddress.
.GenericAddress.
.GenericAddress.
.GenericAddress.
.GenericAddress.
.GenericAddress.
.GenericAddress.
.GenerichAddress.
.GenericAddress.
.GenericAddress.
.GenericAddress.
.GenericAddress
.GenericAddress.
.GenericAddress
.GenericAddress.
.GenericAddress
.GenericAddress
.GenericAddress.
.GenericAddress.
.GenericAddress.
.GenericAddress.
.GenericAddress
.GenericAddress
.GenericAddress.
.GenericAddress
.GenericAddress.
.GenericAddress
.GenericAddress
.GenericAddress.
.GenericAddress.
.GenericAddress.
.GenericAddress.
.GenericAddress
.GenericAddress.
.GenericAddress
.GenericAddress.
.GenericAddress.
.GenericAddress.
.GenericAddress
.GenericAddress
.GenericAddress
.GenericAddress.
.GenericAddress.
.GenericAddress.
.GenericAddress.
.GenericAddress
.GenericAddress
.GenericAddress
.GenericAddress
.GenericAddress.
.GenericAddress.
.GenericAddress.

10

15

20

25

30

35

40

45

50

55

60

WO 99/09723

genericAddressList (7)
genericAddressList (7)
genericAddressList (7)
genericAddressList (7)
genericAddressList (7)
genericAddressList (7)
genericAddressList (7)
genericAddressList (8)
genericAddressList (8)
genericAddressList (8)
genericAddressList (8)
genericAddressList (8)
genericAddressList (8)
genericAddressList (8)
genericAddressList (8)
genericAddressList (9)
genericAddressList (9)
genericAddressList (9)
genericAddressList (9)
genericAddresslList (9)
genericAddressList (9)
genericAddressList (9)
genericAddressList (9)

36

.GenericAddress.
.GenericAddress
.GenericAddress
.GenericAddress
.GenericAddress
.GenericAddress.
.GenericAddress.
.GenericAddress.
.GenericAddress.
.GenericAddress
.GenericAddress.
.GenericAddress.
.GenericAddress
.GenericAddress
.GenericAddress.
.GenericAddress.
.GenericAddress.
.GenericAddress
.GenericAddress.
.GenericAddress
.GenericAddress
.GenericAddress.
.GenericAddress.

Operation Name: Close

userID.dn
bearerCapability
closeCause

Operation Name:
extensionParameter.
extensionParameter.
extensionParameter
extensionParameter.
extensionParameter.
extensionParameter.
extensionParameter.
extensionParameter
extensionParameter

Continue
assignmentAuthority
epParameters.
.epParameters.
epParameters.
epParameters.
epParameters.
epParameters.
.epParameters
.epParameters.

PCT/US98/17358

odd_even

.nat_of_addr_ind
.spare

.num_plan

.pres

resv
addr_signal
type of addr
odd_even

.nat:of_addr_ind

spare
num_plan

.pres
.resv

addr_signal
type of addr
odd_even

.nat_of addr_ind

spare

.num_plan
.pres

resv
addr_signal

servTranslationScheme

callType

satRestriction

classOfSve
billSequenceNumber.scp_num
billSequenceNumber.instance_num
.billSequenceNumber.serial num
callBranding

extensionParameter.

Operation Name:
extensionParameter
extensionParameter
extensionParameter.
extensionParameter.
extensionParameter.
extensionParameter.
extensionParameter.
extensionParameter.
extensionParameter.
extensionParameter

Operation Name:
userID.dn
bearerCapability

epParameters.

Disconnect

epParameters.
epParameters.
epParameters.
epParameters.
epParameters.
epParameters.
epParameters.

.epParameters.

universalAccess

.assignmentAuthority
.epParameters.

servTranslationScheme

callType

satRestriction

classOfSve
billSequenceNumber.scp_num
billSequenceNumber.instance_num
billSequenceNumber.serial num
callBranding

universalAccess

InfoAnalyzed

calledPartyID.odd_even

10

15

20

25

30

35

40

45

50

55

60

WO 99/09723

calledPartyID.
calledPartylID.
calledPartyID.

calledPartyID

nat_of num
spare
num_plan

.pri
calledPartyID.
calledPartylID.

si
digits

triggerCriteriaType

chargeNumber.
.nat_of num
chargeNumber.

chargeNumber

chargeNumber
chargeNumber

odd_even

spare

.num_plan
.pri

chargeNumbexr.
chargeNumber.

si
digits

37

PCT/US98/17358

callingPartyID.odd_even
callingPartyID.nat_of num
callingPartyID.spare
callingPartyID.num_plan

callingPartyID.pri
callingPartyID.si

callingPartyID.digits
carrier.carrier selection
carrier.number of digits

carrier.digits

accessCode.odd_even

accessCode.nat_of num

accessCode.spare

accessCode.num_plan

accessCode.pri
accessCode.si
accessCode.digits

collectedAddressInfo.odd even

collectedAddressInfo.

collectedAddressInfo.spare
collectedAddressInfo.num plan
collectedaddressInfo.pri
collectedAddressInfo.si
collectedAddressInfo.digits
collectedDigits.odd even
collectedDigits.nat_of num
collectedDigits.spare
collectedDigits.num plan

collectedDigits.pri

collectedDigits.si

collectedDigits.digits
assignmentAuthority

extensionParameter.
extensionParameter.
extensionParameter.
extensionParameter.
extensionParameter.
extensionParameter.
extensionParameter.
extensionParameter.
extensionParameter.
extensionParameter.

Operation Name: ReportError

epParameters

epParameters
epParameters
epParameters
epParameters
epParameters

nat_of_num

.servTranslationScheme
epParameters.
epParameters.
epParameters.
.billSequenceNumber.scp_num
.billSequenceNumber. instance num
.billSequenceNumber.serial num
.callBranding

.universalAccess

callType
satRestriction
classOfSve

applicationErrorString.errorCause

10

15

20

25

30

35

40

45

50

55

60

WO 99/09723

38

Operation Name: SendToResource
resourceType
strParameterBlock.announcementBlock
ment . system announcement_id
strParameterBlock.announcementBlock
ment .number of_ digits
strParameterBlock.announcementBlock.
ment.digits
strParameterBlock.announcementBlock
ment . system announcement_id
strParameterBlock.announcementBlock
ment .number of_digits
strParameterBlock.announcementBlock
ment .digits
strParameterBlock.announcementBlock
ment . system announcement_id
strParameterBlock.announcementBlock
ment .number_of_digits
strParameterBlock.announcementBlock
ment.digits
strParameterBlock.announcementBlock.
ment.system announcement_id
strParameterBlock.announcementBlock.
ment .number_of_ digits
strParameterBlock.announcementBlock.
ment.digits
strParameterBlock.announcementBlock
ment . system_announcement_id
strParameterBlock.announcementBlock
ment.number_of_digits
strParameterBlock.announcementBlock.
ment .digits
strParameterBlock.announcementBlock
ment .system_announcement_id
strParameterBlock.announcementBlock.
ment .number of_ digits
strParameterBlock.announcementBlock.
ment .digits
strParameterBlock.announcementBlock.
ment.system announcement_id
strParameterBlock.announcementBlock.
ment .number of_digits
strParameterBlock.announcementBlock.
ment.digits
strParameterBlock.announcementBlock.
ment.system announcement_id
strParameterBlock.announcementBlock.
ment . number_of_digits
strParameterBlock.announcementBlock.
ment .digits
strParameterBlock.announcementBlock.
ment.system_announcement_id
strParameterBlock.announcementBlock.
ment.number_ of_digits
strParameterBlock.announcementBlock.
ment .digits
strParameterBlock.announcementBlock.
ment . system_announcement_id
strParameterBlock.announcementBlock.
ment .number of_digits

PCT/US98/17358

.uninterAnnounceBlock (0)

.uninterAnnounceBlock (0)

uninterAnnounceBlock (0)

.uninterAnnounceBlock (1)
.uninterAnnounceBlock (1)
.uninterAnnounceBlock (1)
.uninterAnnounceBlock (2)
.uninterAnnounceBlock (2)

.uninterAnnounceBlock (2)

uninterAnnounceBlock (3)
uninterAnnounceBlock (3)

uninterAnnounceBlock (3)

.uninterAnnounceBlock (4)

.uninterAnnounceBlock (4)

uninterAnnounceBlock (4)

.uninterAnnounceBlock (5)

uninterAnnounceBlock (5)
uninterAnnounceBlock (5)
uninterAnnounceBlock (6)
uninterAnnounceBlock (6)
uninterAnnounceBlock (6)
uninterAnnounceBlock (7)
uninterAnnounceBlock(7)
uninterAnnounceBlock (7)
uninterAnnounceBlock (8)
uninterAnnounceBlock (8)
uninterAnnounceBlock (8)
uninterAnnounceBlock (9)

uninterAnnounceBlock (9)

.AnnounceEle
.AnnounceEle
.AnnounceEle
.AnnounceEle
.AnnounceEle
.AnnounceEle
.Announcekle
.AnnounceEle
.AnnounceEle
.AnnounceEle
.Announcekle
.AnnounceEle
.AnnounceEle
.AnnounceEle
.AnnounceEle
.AnnounceEle
.AnnounceEle
.AnnounceEle
.AnnounceEle
.AnnounceEle
.AnnounceEle
.AnnounceEle
.Announcekle
.AnnounceEle
.AnnounceEle
.AnnounceEle
.AnnounceEle
.AnnounceEle

.AnnounceEle

10

15

20

WO 99/09723 PCT/US98/17358

39

strParameterBlock.announcementBlock.uninterAnnounceBlock (9) . AnnounceEle
ment.digits

disconnectFlag
answerIndicator
::RR

HEH#

::RE

H#4##

Operation Name: ApplicationError
applicationErrorString.errorCause

Operation Name: FailureReport
failureCause

Although the present invention and its advantages have
been described in detail, it should be understood that
various changes, substitutions, and alterations may be made
therein without departing from the spirit and scope of the

invention as defined by the appended claims.

10

15

20

25

30

WO 99/09723

PCT/US98/17358
40
WHAT IS CLAIMED TIS:
1. A method of implementing a transaction

capabilities application part application protocol for
transaction capabilities application part communication,
the method comprising the steps of:

providing a transaction capabilities application part
message definition;

generating a plurality of service independent building
blocks to form a service logic program associated with
transaction capabilities application part communication, at
least one of the plurality of service independent building
blocks associating a plurality of leaf-node parameters with
respective variables in the at least one service
independent building block, the leaf-node parameters
specified by fully qualified names derived £from the
transaction capabilities application part message
definition; and

creating an executable form of the service independent

building blocks for execution.

2. The method of Claim 1 wherein the at least one
service independent building block comprises a service
independent building block operable to get a value of a
leaf-node parameter associated with the transaction

capabilities application part message definition.

3. The method of Claim 1 wherein the at least one
service independent building block comprises a service
independent building block operable to set a value of a
leaf-node parameter associated with the transaction

capabilities application part message definition.

10

15

20

25

WO 99/09723 PCT/US98/17358

41

4. The method of Claim 1 wherein the at least one
service independent building block comprises a service
independent building block operable to send and receive

transaction capabilities application part messages.

5. The method of Claim 1 wherein the step of
creating an executable form of the service independent
building blocks for execution comprises the steps of:

selecting from an object library object classes
corresponding to the plurality of service independent
building blocks in the service logic program;

initiating objects of the select object classes; and

creating an executable logic program having instances

of the object classes.

6. The method of Claim 1 wherein the step of
defining a transaction capabilities application part
application protocol comprises forming a transaction

capabilities application part message definition file.

7. The method of Claim 1 wherein the step of
defining a plurality of service independent building blocks
to form a logic program comprises creating by a utility at
least one service independent building block template file
for facilitating definition of the plurality of service

independent building blocks.

10

15

20

25

30

WO 99/09723 PCT/US98/17358

42

8. A method for coding transaction capabilities
application part services according to a transaction
capabilities application part application protocol, the
method comprising the steps of:

defining a transaction capabilities application part
application protocol having at least one user-defined
message and user-defined parameter;

generating a set of fully-qualified names specifying
leaf-node parameters associated with the at least one user-
defined message;

defining a plurality of service independent building
blocks to form a logic program for communicating
transaction capabilities application part messages, the at
least one service independent building block associating
the leaf-node parameters with variables internal to the at
least one service independent building block;

selecting from an object library object classes
corresponding to the service independent building blocks in
the logic program;

initiating objects of the select object classes; and

creating an executable logic program having instances

of the object classes.

9. The method of Claim 8 wherein the step of
defining a transaction capabilities application part
application protocol comprises forming a transaction

capabilities application part message definition file.

10. The method of Claim 9 wherein the transaction
capabilities application part message definition file is

formed using Tcl scripting language.

10

15

20

25

WO 99/09723 PCT/US98/17358

43

11. The method of Claim 8 wherein the step of
defining a plurality of service independent building blocks
comprises defining a service independent building block
adapted to assign values to parameters specified by a fully
qualified name.

12. The method of Claim 8 wherein the step of
defining a plurality of service independent building blocks
comprises defining a service independent building block
adapted to retrieve values of parameters specified by a

fully qualified name.

13. The method of Claim 8 wherein the step of
defining a plurality of service independent building blocks
comprises defining a service independent building block
adapted to set values of parameters specified by a fully

qualified name.

14. The method of Claim 8 wherein the step of
defining a plurality of service independent building blocks
to form a logic program performing a transaction
capabilities application part service associated with the
user defined parameters comprises creating by a utility a
plurality of service independent building block template
files for facilitating definition of the plurality of

service independent building blocks.

10

15

20

25

30

WO 99/09723 PCT/US98/17358

44

15. A system for implementing a transaction
capabilities application part application protocol for
transaction capabilities application part communication,
the system comprising:

a transaction capabilities application part message
set definition having a plurality of messages and
parameters specifying the transaction capabilities
application part application protocol; ‘

a plurality of service independent building blocks
having internal variables, the plurality of service
independent blocks associating the internal variables with
fully qualified names specifying leaf-node parameters
derived from the transaction capabilities application part
message definition set;

a graphical editor adapted for facilitating a user to
select and 1link the plurality of service independent
building blocks to form a logic program associated with a
transaction capabilities application part messages;

an object library having a plurality of pre-defined
object classes each corresponding to a service independent
building block; and

a logic interpreter adapted for receiving the logic
program and creating instances of objects from the pre-
defined object classes in the object library to correspond
with the plurality of service independent building blocks
in the logic program to produce an executable logic program
operable to receive transaction capabilities application
part information identified by fully qualified names
specifying leaf-node parameters and transmit transaction
capabilities application part information associated with

fully qualified names specifying leaf-node parameters.

10

15

20

25

30

WO 99/09723 PCT/US98/17358

45

16. The system of Claim 15 wherein the logic
interpreter comprises a parser for parsing the logic

program.

17. The system of Claim 15 wherein the logic
interpreter comprises an execution function adapted for
receiving a transactions capabilities application part
message and selecting an appropriate executable logic

program for executing the request.

18. The system of Claim 15 wherein the graphical
editor comprises user-manipulatable icon representations of

the service independent building blocks.

19. The system of Claim 15 wherein the service
independent building block comprises a service independent
building block for assigning values to parameters

represented by a fully qualified name.

20. The system of Claim 15 wherein the service
independent building block comprises a service independent
building block for retrieving values of a parameter

specified by a fully qualified name.

21. The system of Claim 15 and further comprising a
utility for receiving the transaction capabilities
application part message set definition and creating a
service independent building block template file
associating a plurality of fully qualified names specifying
leaf-node parameters with internal variables of the service
independent building blocks for facilitating generation of
the plurality of service independent building blocks.

WO 99/09723 PCT/US98/17358

46

22. The system of Claim 15 wherein the plurality of
pre-defined service independent building blocks comprises
a Get block, a Set block, an Entry block, and a SendReceive
block.

WO 99/09723 PCT/US98/17358

1/6
126~ st 130
100\ oo
102~ sps
1
< SU) ~230

A A " PARSER
| READ SLP, VALIDATE |~ 236 |

| |

| ! 232

| CREATE C++ |

| OBJECT INSTANCES |~ 238

| FOR EACH SIB |

FIG. 2B p=======ZZZFZZ=22222223 EXECUTIVE FUNCTION

: RECEVE REQUESTS K. 49 E

|

| * |

|

! SELECT SLP ~ 944 E\ 234
|

|) |

| EXECUTE SIB C++ CODE K. ¢ !

WO 99/09723

2/6
FIG. 24
204 SIBs
\
ZOZ\W ACTION
206
208 210
200~ N /
SYSTEM INPUT <
N\ e/
|
SET GET SEND RECEIVE
/ / N
211 213 215
SERVICE
LOGIC
220} prOGRAM
SCE 126
SCP 104 OR STP 106 #
LOGIC OBJECT
2241 INTERPRETER [LIBRARY [™-240
EXECUTABLE H
ALGORITHMS . 241
112 404
1-800~123-4567
' 5 scp) 104
214-555-5555
402 < 406
972-555-1234
1-800-123-4567 < T
408

FIG. 4

PCT/US98/17358

203

PCT/US98/17358

WO 99/09723

3/6

A%
\

| jusuodwo) Z uauodwo) u jusuodwo)

. UOIJOg UOI}IDSUDI
wom\v d . uoIod jusuodwo)
L / — |
(Alup 0D *) +S9duBJ3jaY [DI0T Puy SISSAIPPY Ole
Aiog buyiod puy payio) sapnjoul
|
_
d
a Japoay
90 Vs 19907 adA] obossap 360SSON 995 D)o /abossapy Jasn w
m%o. adA] abossap sjuswia|3 uorjouroju] abossapy dns|
vom\v g dk| ab dk| ab
15Q07] 3dAl w_._ommoz _ 90l w_._ommmz sjuawsa|3] uoljpwJoju] 3bossap dny
_ ———
. A
& OId oo¢ - -
Vaa 4 INSE|T|NSI| 1| I OIS { 4IS [X0 | 4
¢0¢ 8 E|

dvil

dddS

dnsi

dnit

diN

WO 99/09723 PCT/US98/17358

TMD FILE SCE
202 126

TCAP-RELATED

|

|

|

|

|

|

|

|

SIB TEMPLATE |
FILE SLP _EDITOR SLP :
|

|

|

|

|

|

|

|

|

TCAP SIB

e e

[~ ——————————————————
|
|
|

TEMPLATE | — |=— = 52} — =
UTILITY — = —
: S :
508 504 | 505 | 506
SEE FIG. 6 SEE FIG. 7 SEE FIG. 8

FIG. 5

SEQUENCE InfoAnalyzed §

§ calledPartylD 15 CalledPartylD OPT }

=

USER_DEFINE CalledPartylD AINDigits
BITFIELD AINDigits § FIG. 6
§ odd_even BIT_DGT_ODDEVEN 1 }
§ nat_of_num BIT_ENUM 7 }
§ spare BIT_NULL 1 }
§ num_plan BIT_ENUM 3 }
{ pri BIT_ENUM 2 }
{ si BIT_ENUM 2 }
§ digits BIT_DGT 1 64 odd_even {

~ Y

PCT/US98/17358

WO 99/09723

5/6

-_— e

pazAjpuyoju] :2dx37g[S

QIALYYDAITIVO 9530 0 :IPA £1 IPF s e lI0270]ID,,
.SHbip~qaldpaliod,, ..SHbipqiAuogpaj 09, ,,,, P1~adA}TiuTsuoyd oA dx3TEIS

QIALYVAQITIVO 9880 0 :IPA L1 T i s
$~QIdPalIDY.. ..Is"Q1AMDdPalI0,, ,,,, PIadA}T1abajur oA :adx37G|S

QIALYVAAITIVO 988Q 0 “BA L1 IPT s e
L109720j0,, , ud—Q[dP3yI0),, . 4d"Q[ADgPa|IDY,, .., PITadAysabajur oA udx3TQIS

QIALYVAQITIVO 9530 0 “IPA £} PI wuwe weee lI0I 70D,
.u0jd"wnu=Qgpajio),, . .uojd “wnu'qiAgpa|I0,, .., PIT8dkyIabajul A dx3TEIS

.wnu~jo7jou"q[A}ogpaj|od p1—adA}"sabayur top :dx3TgIS

«lI03720D,, !

196~uoioo jeb~uoioo g :2dA1 TgIS
¥ NOILOV ‘@poJ 8IS

E\J
100:P3 (102 720)p SYBIP(Q|dPalIDY) Ssubip"qlAiogpaliod pi—adA}TiuTauoyd DA TWVHYdT4301X3
1003 [ID2720]10 1S™(Q[dP3II0D 1s°Q1ADgPalioD prradA}sabajur DA WYMYdT43A1X3
100 :IP3 (102 720)0 ud—Q[gpale) ud-qlA1ogpajiod pi~adhyTiabajur oA VYD T4301X3
100 1P (109 720j0 uojd TwinuTQ|dpajie) uojdwnu-q[ALDgPa|0d pi~adA}Tiabajul DA WYYV T4301X3
100 P73 1102720|j0 210ds~(|dpaji) as0ds ([Aogpaliod pi~adkyTiabajul oA WYYV T43ALX3
100 :1P3 (109720jI0 WNUTJ0OTIoUTQ[dPA(ID) WinuTjoTjou"q[A1ogpa)I0d piadhyTiebajur DA VYYD T4301X3

100 :1P3 [109720||0 UAA3~PPOT(|dPaIDY UaA3TPPO-QjA1IDgpPajod pr—adA)Tuabajur DA WVHVd T 4301X3

& I1d

& 014

WO 99/09723

6/6

PCT/US98/17358

104
/
112 P
< 224 AP 241
\ 9/09 d
’ EXECUTABLE
TCAP &ESSAGE . - 910 ALGORITHMS
csp 902 o any |
o2 | 1]
~ TCAP MESSAGE /|
u AR —
904 I
™~ 908
T™MD N
FILE 502
FIG. 9

	Abstract
	Bibliographic
	Description
	Claims
	Drawings

