发明名称

柯里拉京在制备抗肿瘤药物中的应用

摘要

柯里拉京在制备抗肿瘤药物中的应用，涉及一种化合物柯里拉京。所述柯里拉京的化学名为 1-O-没食子酰-3,6-O-六羟基联苯二甲酸-β-D-葡萄糖，其分子式为 C_{21}H_{24}O_{14}。所述抗肿瘤药物包括抗肿瘤生长药物或抗肿瘤侵袭转移方面的药物等。所述抗肿瘤药物可为口服药剂成注射药剂等。所述注射可为静脉注射、肌肉注射、腹腔注射或皮下注射等。实验表明，柯里拉京具有很好的抗肿瘤效果，不管是在体外肿瘤细胞实验，还是对体内肿瘤动物模型都有很好的疗效。所述柯里拉京是一种具有抗肿瘤药效的新化合物，可用于制备抗肿瘤药物。
1. 柯里拉京在制备抗肿瘤药物中的应用，所述柯里拉京的化学名为 1-0- 没食子酰 -3, 6-0- 六羟基联苯二甲酰 -β-D- 葡萄糖，其分子式为 C_{29}H_{40}O_{13}，其结构式如下：

![柯里拉京的化学结构图]

2. 如权利要求 1 所述的柯里拉京在制备抗肿瘤药物中的应用，其特征在于所述抗肿瘤药物包括抗肿瘤生长药物或抗肿瘤侵袭转移方面的药物。

3. 如权利要求 1 所述的柯里拉京在制备抗肿瘤药物中的应用，其特征在于所述抗肿瘤药物为口服药物或注射药剂。

4. 如权利要求 3 所述的柯里拉京在制备抗肿瘤药物中的应用，其特征在于所述注射为静脉注射、肌肉注射、腹腔注射或皮下注射。
柯里拉京在制备抗肿瘤药物中的应用

技术领域

[0001] 本发明涉及一种化合物柯里拉京 (Corilagin)，尤其是涉及一种柯里拉京在制备抗肿瘤药物中的应用。

背景技术

[0002] 肿瘤 (tumor) 是一种常见病、多发病，其中恶性肿瘤 (Malignant Tumor, cancer) 是目前危害人类健康最严重的一类疾病。根据我国卫生部发布的资料，2006 年我国恶性肿瘤在农村和城市人口中死亡率均居第一位。并且恶性肿瘤的危害性还在日益增加。目前，我国常见的 10 大恶性肿瘤为肺癌、胃癌、食管癌、肠癌、肝癌、胰腺癌、乳腺癌、白血病、恶性淋巴瘤和鼻咽癌。在诸多恶性肿瘤中，肝癌、卵巢癌是最难治疗的一类，患者的死亡率常年居高不下，5 年存活率很低，因此它们都成为了抗肿瘤药物研发的重点。

[0003] 肝癌 (hepatocellular carcinoma, HCC) 和卵巢癌 (Ovarian cancer) 均是临床上治疗难度大的恶性肿瘤，迄今仍缺乏理想的治疗药物。其早期一般无临床症状，很难发现，而一旦出现典型的临床表现，通常已经处于中晚期，发生了侵袭转移，患者死亡率非常高。其中，肝癌，俗称“癌中之王”，属于中医肝积、肝气、肝癌、肝癌等范畴，恶性程度高，发展迅速，自然生存期短，5 年生存率仅为 14%~30%。全世界每年新发现的恶性肿瘤病人 42.5%发生在中国，且年龄多为 40~50 岁。而卵巢癌是女性生殖器官常见的肿瘤之一，发病率仅次于子宫颈癌和乳腺癌而列居第三位。因卵巢癌患者，常因早期症状不明显、治疗不及时而死亡。对妇女生命造成严重威胁。到目前为止，国内外临床资料统计，5 年生存率仅为 25%~30%。

[0004] 柯里拉京又称河子次鞣素、鞣料云实素等，化学名为 1-O- 没食子酰 -3,6-O- 六羟基联苯二甲酰 -β-D- 葡萄糖，是从大戟科叶下株属植物中分离出的一种鞣质，由于鞣质在某些年代常被看作是植物中的无效成份，因而在天然药物研发过程中，由于鞣质捣得越彻底越好，导致至今国内外对柯里拉京的而研究较少，其主要集中在抗病毒、抗肿瘤、抗胃炎、抗血栓、抗凝血等方面。目前，国内仅有的 7 个公开专利 (CN101461816A、CN109901A、CN1695647A、CN1695627A、CN1697641A、CN101461831A、CN101613382A) 涉及到柯里拉京的制备、抗乙型肝炎、抗胃炎、抗胃酸过多等方面的研究；且在抗肿瘤药物的研究方面，未见于药理学和分子机制的国内专利。

发明内容

[0005] 本发明的目的在于提供柯里拉京在制备抗肿瘤药物中的应用。

[0006] 所述柯里拉京又称河子次鞣素、鞣料云实素等，是从大戟科叶下株属植物中分离出的一种鞣质，所述柯里拉京 (Corilagin) 的化学名为 1-O- 没食子酰 -3,6-O- 六羟基联苯二甲酰 -β-D- 葡萄糖，其分子式为 C_{27}H_{32}O_{18}，结构式如下：

[0007]
所述抗肿瘤药物包括抗肿瘤生长药物或抗肿瘤侵袭转移方面的药物等。
所述抗肿瘤药物可为口服药剂或注射药剂等。
所述注射可为静脉注射、肌肉注射、腹腔注射或皮下注射等。
本发明所述柯里拉京可以采用中国专利CN1197641A或CN1709901A中公开的方法制备。
实验表明，柯里拉京具有很好的抗肿瘤效果，不管是在体外肿瘤细胞实验，还是对体内肿瘤动物模型都有很好的疗效。所述柯里拉京是一种具有抗肿瘤药效的新化合物，可用于制备抗肿瘤药物。
本发明以肝癌和卵巢癌为模型，研究柯里拉京在体外的细胞水平，分子水平上对肝癌细胞Bel7402、SMMC7721及卵巢癌细胞HeY、SKOV3ip的增殖，凋亡，细胞周期阻滞和相关信号传导通路中蛋白的分泌情况等作用效果，以及在裸鼠体内对高转移肝癌细胞MHCC97-H的生长、转移的作用效果，揭示柯里拉京干预肿瘤侵袭转移和血管生成的信号传导机制，确定抗肿瘤的作用靶点，建立柯里拉京作为药物治疗恶性肿瘤生长和侵袭转移的有效策略。
本发明所涉及的抗肿瘤药物，可以是柯里拉京按照常规的药物制剂工艺，制备成一种适合临床上使用的药物剂型，并具备良好的抗肿瘤生长和侵袭转移疗效。

附图说明

图1为本发明MTT测定72h柯里拉京Chang-liver、Bel7402、SMMC7721、HeY细胞增殖的抑制效果。在图1中，横坐标为柯里拉京浓度（μg/mL），纵坐标为细胞抑制率（%）；A：柯里拉京对Chang-liver、Bel7402、SMMC772172h的细胞增殖的抑制效果；B：Bel7402；B：SMMC7721；C：柯里拉京72h对NOE001细胞增殖的抑制效果；C：柯里拉京72h对HeY细胞增殖的抑制效果。

图2为本发明所述柯里拉京对卵巢癌细胞HeY的细胞周期阻滞作用。在图2中纵坐标Number为检测器所检测到的细胞数，横坐标Channel（FL2-A）为检测器中细胞DNA含量；图（a）、（b）、（c）分别为对照组中24h、48h、72h流式结果；图（A）、（B）、（C）分别为柯里拉京处理细胞24h、48h、72h后的流式结果。

图3为本发明所述柯里拉京对SKOV3ip细胞中TGF-β/P13K/Akt/Snail信号通路的影响。在图3中，A：柯里拉京对SKOV3ip细胞内AKT和pAKT的作用；No treat：没有药物处理；A-treated：短叶苏木酚酸乙酯处理；C-treated：柯里拉京处理；B：柯里拉京对
SKOV3ip 细胞内 TGF-β 的作用；C: 柯里拉京对 SKOV3ip 细胞内 Snail 的作用。

具体实施方式

以下实施例通过柯里拉京在体内对肝癌和卵巢癌的抑制效果，以及在分子水平上阐述的抗肿瘤机理来说明本发明，但并不表示本发明只限于该实施例。

对福建闽南地区的民间偏方和中医药方中涉及的 45 科 114 种南药，通过活性跟踪进行大规模的筛选，最终筛选出 8 科 12 种具有明显抗癌效果的中草药，通过综合评价发现叶下珠（Phyllanthus urinaria L.）和珠子草（Phyllanthus niruri L.）两种大戟科植物最具潜力。继续对该两种植物中抗癌活性成分进一步研究发现，其中主要的抗肿瘤活性成分为单一化合物，呈白色针晶状粉末，从质谱和元素分析推出该化合物为柯里拉京（Corilagin，分子式为 C_{17}H_{20}O_{9}）。

实施例 1: 柯里拉京在体外对肝癌细胞和卵巢癌细胞以及正常细胞的抑制效果

实验材料：细胞株、培养液、药品：人肝癌细胞 Bel7402、SMMC7721、人卵巢癌细胞 Hey、人正常肝细胞 Chang-liver 以及人正常摊细胞 NOEO01 购自中国科学院上海细胞生物学研究所；培养基 RPMI 1640 购自 Gibco 公司，胎牛血清购自 Hyclone 公司，青霉素、链霉素购自上海生物工程公司；3-(4,5-二甲基噻唑-2)-2,5-二苯基四氮唑盐（简称 MTT）、二甲基亚砜（简称 DMSO）等购自 Sigma 公司或国内其他公司。

实施方法：将一组浓度为 0.6、2.5、12.5、25、50、100、200 μg/mL 的柯里拉京分别作用细胞 Bel7402、SMMC7721、Hey、Chang-liver 和 NOEO01, 再用 MTT 法测定。具体方法如下：(1) 取对数生长期细胞，0.25% 脱脂消化，用细胞培养液制成 5×10^{6} 个/mL 单细胞悬浮液接种于 96 孔板，每孔 100 μL；(2) 培养 24h 后，吸去细胞培养液，分别加入 100 μL 对照组培养液及含柯里拉京的实验组培养液，每组 4 个重复孔；(3) 继续培养 72h 后，吸去培养液，每孔加入 200 μL MTT（0.5mg/ml），再继续培养 4h；(4) 吸去上清，加 200 μL DMSO，振荡 10min，使结晶充分溶解，在酶标仪上读取 490nm 处吸光度（OD）值，根据光吸收值计算人参皂苷 tH901 处理后的细胞相对存活率。

结果表明，柯里拉京对肿瘤细胞 Bel-7402、SMMC7721 和 Hey 的抑制作用均非常显著（图 1）。其 72h 的 IC_{50} 分别达到 19.67 μg/mL、17.0 μg/mL 和 13.56 μg/mL，且呈现浓度-效应依赖关系。而对正常细胞 Chang-liver、NOEO01 的副作用很低，IC_{50} 达到 100.4 μg/mL，92.22 μg/mL。

实施例 2: 柯里拉京对卵巢癌细胞 Hey 的细胞周期的阻滞作用

将 Hey 细胞接种于 60mm 培养皿中，加入 17 μg/mL 柯里拉京共同培养 24h、48h、72h（方法同实施例 1），并做好对照。经过含 0.1% RNaseA 的 5mg/ml PI 避光处理 10min 后，用流式细胞仪检测。

结果表明，在 24h 至 72h，对照组的 G0/G1 期从 48.88% 下降到 39.29%，而柯里拉京组从 54.85% 上升至 71.75%（图 2）。由此可见，柯里拉京能够使得卵巢癌细胞 Hey 的细胞周期阻滞在 G0/G1 期，且呈时间-效应依赖性。柯里拉京对卵巢癌细胞 Hey 的细胞周
期阻滞作用参见表 1。

[0028] 表 1

<table>
<thead>
<tr>
<th>时间 (h)</th>
<th>柯里拉京与对照</th>
<th>周期 (%)</th>
<th>G0/G1 期</th>
<th>S 期</th>
<th>G2/M 期</th>
</tr>
</thead>
<tbody>
<tr>
<td>24</td>
<td>对照</td>
<td>48.88</td>
<td>31.33</td>
<td>19.78</td>
<td></td>
</tr>
<tr>
<td></td>
<td>柯里拉京</td>
<td>54.85</td>
<td>27.17</td>
<td>17.98</td>
<td></td>
</tr>
<tr>
<td>48</td>
<td>对照</td>
<td>44.36</td>
<td>37.65</td>
<td>17.99</td>
<td></td>
</tr>
<tr>
<td></td>
<td>柯里拉京</td>
<td>59.93</td>
<td>30.27</td>
<td>9.80</td>
<td></td>
</tr>
<tr>
<td>72</td>
<td>对照</td>
<td>39.29</td>
<td>51.83</td>
<td>8.88</td>
<td></td>
</tr>
<tr>
<td></td>
<td>柯里拉京</td>
<td>71.75</td>
<td>14.65</td>
<td>13.60</td>
<td></td>
</tr>
</tbody>
</table>

[0030] 实施例 3 柯里拉京对 SKOV3ip 细胞中 TGF-β/PI3K/Akt/Snail 信号通路的影响

[0031] 细胞接种：将人卵巢癌细胞 SKOV3ip 混匀于 10% FBS RPMI 1640 接种于 60mm 培养皿中，每个皿的细胞数为 3.5×10⁵ 个。加药：将细胞依次加入 32μg/ml A 药，17μg/ml B 药。

[0032] 12h 后；饥饿；将培养液换成 RPMI 1640 无 FBS，药浓度同前。

[0033] 36h 后；将每组的两皿细胞中的一皿分别加入表皮生长因子 EGF（浓度为 20μg/ml），作用 10min 后提蛋白。

[0034] Western blot 检测 pAkt 及 Akt；用 Bradford 法蛋白定量法使每孔蛋白总量为 20μg，分别用 pAkt(p473) 和 Akt 抗体检测（CST 公司，免抗，抗体浓度 1：1000）。

[0035] 结果表明，柯里拉京能够通过对 TGF-β/PI3K/Akt/Snail 这一个与肿瘤生长和侵袭转移密切相关的信号通路的研究发现，柯里拉京能够明显抑制 SKOV3ip 细胞内 TGF-β/PI3K/Akt/Snail 信号通路，其主要是抑制 TGF-β1 的分泌，并呈剂量效应（图 3A），还能明显降低 Akt 的磷酸化（图 3B），进而降低卵巢癌细胞中 Snail 的表达（图 3C），这样就能够通过 TGF-β/PI3K/Akt/Snail 的信号通路，下调 E 钙粘蛋白（E-cadherin）的分泌。而 E-cadherin 能够加快上皮细胞间充质转化（epithelial-mesenchymal transition, EMT）的过程，使得细胞失去细胞极性和细胞间连接，细胞外基质成分发生降解，细胞变得具有迁移性，能够从上皮游离下来并迁移到不同的部位，最终促进肿瘤侵袭转移。因此降低 TGF-β/PI3K/Akt/Snail 表达的蛋白，就能够抑制肿瘤的侵袭转移。

[0036] 实施例 4 柯里拉京对 BALB/c 裸鼠体内成瘤实验的抑制效果

[0037] BALB/c 裸鼠 25 只，4 ～ 6 周，体重 20 ～ 25g，雌雄各一半，分为 5 组，每组 5 只。每只裸鼠右侧背部皮下注射 0.2mL 的 1×10⁷ 个/ml MHCC97-H 单细胞悬液。腹腔注射给药，0.2mL/次，隔天注射一次，共计 12 次。

[0038] 以生理盐水为阴性对照，环磷酸胺 CTX 为阳性对照，肝癌 MHCC97-H 裸鼠模型结果显示，在抑制肿瘤生长方面，柯里拉京与阳性对照的 CTX 的效果相当，30mg/kg 柯里拉京抑制效果为 35.19%，而 25mg/kg CTX 的抑制效果为 32.01%（图 4）；而在抑制肿瘤侵袭转移方面，柯里拉京用药组中，只有 20mg/kg 柯里拉京用药组中有 2 只裸鼠发生轻微转移，其他 13 只没有发现肝转移，侵袭转移的抑制效果高达 86.7%，相对于阳性对照组和阳性对照组
都100%发生肝转移。柯里拉京对裸鼠体内肿瘤生长和侵袭转移的抑制作用参见表2。

表2

<table>
<thead>
<tr>
<th>瘤重(g)</th>
<th>肺转移</th>
<th>阴性对照组</th>
<th>阳性对照组</th>
<th>10 mg/kg</th>
<th>20 mg/kg</th>
<th>30 mg/kg</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
</tr>
<tr>
<td>平均</td>
<td>0.756</td>
<td>0.514</td>
<td>0.786</td>
<td>0.644</td>
<td>0.49</td>
<td></td>
</tr>
<tr>
<td>标准差</td>
<td>0.204279</td>
<td>0.161338</td>
<td>0.264632</td>
<td>0.285009</td>
<td>0.205913</td>
<td></td>
</tr>
<tr>
<td>抑瘤率</td>
<td>0</td>
<td>32.01%</td>
<td>-3.97%</td>
<td>14.81%</td>
<td>35.19%</td>
<td></td>
</tr>
</tbody>
</table>

与阴性对照组比较，*P < 0.05，**P < 0.01；+ 表示有肝转移现象发生，/ 表示无肝转移现象发生。