Title: SCRATCH RESISTANT POLYOLEFINs

Abstract: Polyelefin substrates, for example polypropylene, polyethylene or thermoplastic olefin molded parts, are made scratch resistant and heat and light stable by the incorporation therein of an additive combination of b) a carboxylic acid reagent functionalized olefin polymer or copolymer, c) a primary or secondary fatty acid amide and d) a combination of a low molecular weight and a high molecular weight hindered amine light stabilizer. The present polyolefins exhibit good weatherability, scratch resistance, good processability, good mechanical strength, good gloss retention and are non-sticky. The carboxylic acid reagent functionalized olefin polymer is for example maleic anhydride grafted polypropylene or polyethylene, or is a reaction product of maleic anhydride and an alpha-olefin, or is a tallow alcohol ester of said maleic anhydride products. The fatty acid amide is for example oleyl palmitamide or stearyl erucamide.
Scratch resistant polyolefins

The present invention is aimed at scratch resistant and light stable polyolefin compositions. The invention is also aimed at a method of imparting scratch resistance and light stability to polyolefin compositions by incorporating therein certain anti-scratch additives and certain hindered amine light stabilizers. The polyolefin compositions are for example thermoplastic olefin (TPO) molded parts. The molded parts are useful for example in automotive applications.

Long chain alcohol functionalized maleic anhydride grafted polypropylene is disclosed in Polyolefins 2003, The International Conference of Polyolefins, Feb. 24-Feb. 26, Houston, Texas, as a processing aid for polyolefins.

U.S. 6,048,942 discloses thermoplastic olefin compositions comprising mar resistance additives selected from polysiloxanes, metal stearates, saturated fatty acid amides and unsaturated fatty acid amides.

JP-A-2002338778 teaches a graft copolymer compositions comprising fatty acid amides.

U.S. 5,731,376 discloses polypropylene block copolymer with improved scratch resistance by inclusion of a polyorganosiloxane. The compositions may further include a fatty acid amide.

U.S. 5,585,420 teaches scratch resistant polyolefin compositions comprising a plate like inorganic filler. The compositions may further comprise high rubber ethylene-propylene copolymers, fatty acid amides, polyorganosiloxanes or epoxy resins.

JP-A-62072739 is aimed at molded articles for automobile parts made by compounding a specific polyolefin with a rubbery substance and a specific amount of mica of a specific particle size. The polyolefin consists of a certain polypropylene and a polyolefin modified with an unsaturated carboxylic acid (anhydride), for example maleic anhydride.
JP-A-63017947 is aimed at scratch resistant propylene polymer compositions.

JP-A-2001261902 is aimed at polypropylene resin compositions useful as molding material for preparation of interior trims.

Polyanhydride resins are described in a CPChem Specialty Chemicals data sheet of 2004.

These known methods do not satisfy the customer-requested quality of polyolefins in respect to scratch resistance and light stability.

The present invention therefore provides a polyolefin composition comprising

a) a polyolefin substrate and

an amount effective to improve the scratch resistance and light stability of said polyolefin substrate of an additive combination of

b) a carboxylic acid reagent functionalized olefin polymer or copolymer,

c) a primary or secondary fatty acid amide and

d) a combination of

i) a low molecular weight sterically hindered amine light stabilizer and

ii) a high molecular weight sterically hindered amine light stabilizer.

The present invention further provides a method for providing scratch resistance and light stability to a polyolefin substrate, which method comprises incorporating into said polyolefin an effective amount of an additive combination of

b) a carboxylic acid reagent functionalized olefin polymer or copolymer,

c) a primary or secondary fatty acid amide and

d) a combination of
i) a low molecular weight sterically hindered amine light stabilizer and
ii) a high molecular weight sterically hindered amine light stabilizer.

A preferred embodiment of the present invention is also the use of an additive combination of

b) a carboxylic acid reagent functionalized olefin polymer or copolymer,
c) a primary or secondary fatty acid amide and
d) a combination of
 i) a low molecular weight sterically hindered amine light stabilizer and
 ii) a high molecular weight sterically hindered amine light stabilizer,

for improving the scratch resistance and light stability of a polyolefin substrate.

Examples for polyolefins are:

1. Polymers of monoolefins and diolefins, for example polypropylene, polyisobutylene, polybut-1-ene, poly-4-methylpent-1-ene, polyisoprene or polybutadiene, as well as polymers of cycloolefins, for instance of cyclopentene or norbornene, polyethylene (which optionally can be crosslinked), for example high density polyethylene (HDPE), high density and high molecular weight polyethylene (HDPE-HMW), high density and ultrahigh molecular weight polyethylene (HDPE-UHMW), medium density polyethylene (MDPE), low density polyethylene (LDPE), linear low density polyethylene (LLDPE), (VLDPE) and (ULDPE).

Polyolefins, i.e. the polymers of monoolefins exemplified in the preceding paragraph, for example polyethylene and polypropylene, can be prepared by different, and especially by the following, methods:

i) radical polymerization (normally under high pressure and at elevated temperature).

ii) catalytic polymerization using a catalyst that normally contains one or more than one metal of groups IVb, Vb, VIb or VIII of the Periodic Table. These metals usually have one or more than one ligand, typically oxides, halides, alcoholates, esters, ethers, amines, alkyls, alkenyls and/or aryls that may be either p- or s-coordinated. These metal complexes may be in the free form or fixed on substrates, typically on
activated magnesium chloride, titanium(III) chloride, alumina or silicon oxide. These catalysts may be soluble or insoluble in the polymerization medium. The catalysts can be used by themselves in the polymerization or further activators may be used, typically metal alkyls, metal hydrides, metal alkyl halides, metal alkyl oxides or metal alkyl oxanes, said metals being elements of groups Ia, Ila and/or IIIa of the Periodic Table. The activators may be modified conveniently with further ester, ether, amine or silyl ether groups. These catalyst systems are usually termed Phillips, Standard Oil Indiana, Ziegler (-Natta), TNZ (DuPont), metallocene or single site catalysts (SSC).

2. Mixtures of the polymers mentioned under 1.), for example mixtures of polypropylene with polyisobutylene, polypropylene with polyethylene (for example PP/HDPE, PP/LDPE) and mixtures of different types of polyethylene (for example LDPE/HDPE).

3. Copolymers of monoolefins and diolefins with each other or with vinyl monomers, for example ethylene/propylene copolymers, linear low density polyethylene (LLDPE) and mixtures thereof with low density polyethylene (LDPE), propylene/but-1-ene copolymers, propylene/isobutylene copolymers, ethylene/but-1-ene copolymers, ethylene/hexene copolymers, ethylene/methylpentene copolymers, ethylene/heptene copolymers, ethylene/octene copolymers, propylene/butadiene copolymers, isobutylene/isoprene copolymers, ethylene/alkyl acrylate copolymers, ethylene/alkyl methacrylate copolymers, ethylene/vinyl acetate copolymers and their copolymers with carbon monoxide or ethylene/acrylic acid copolymers and their salts (ionomers) as well as terpolymers of ethylene with propylene and a diene such as hexadiene, dicyclopentadiene or ethylidene-norbornene; and mixtures of such copolymers with one another and with polymers mentioned in 1) above, for example polypropylene/ethylene-propylene copolymers, LDPE/ethylene-vinyl acetate copolymers (EVA), LDPE/ethylene-acrylic acid copolymers (EAA), LLDPE/EVA, LLDPE/EAA and alternating or random polyalkylene/carbon monoxide copolymers and mixtures thereof with other polymers, for example polyamides.

4. Blends of polymers mentioned under 1.) with impact modifiers such as ethylene-propylene-diene monomer copolymers (EPDM), copolymers of ethylene with higher alpha-olefins (such as ethylene-octene copolymers), polybutadiene, polyisoprene, styrene-butadiene copolymers, hydrogenated styrene-butadiene copolymers, styrene-isoprene copolymers,
hydrogenated styrene-isoprene copolymers. These blends are commonly referred to in the industry as TPO’s (thermoplastic polyolefins).

Preferably, component (a) is polypropylene, polyethylene or a thermoplastic olefin.

Polyolefins of the present invention are for example polypropylene homo- and copolymers and polyethylene homo- and copolymers. For instance, polypropylene, high density polyethylene (HDPE), linear low density polyethylene (LLDPE) and polypropylene random and impact (heterophasic) copolymers. Preferred polyolefins of the present invention include polypropylene homopolymers, polypropylene impact (heterophasic) copolymers, blends thereof, and TPO’s such as blends of polypropylene homopolymers and impact copolymers with EPDM or ethylene-alpha-olefin copolymers.

The polyolefins of this invention are in particular TPO’s. TPO is for example about 10 to about 90 parts propylene homopolymer, copolymer or terpolymer, and about 90 to about 10 parts (parts by weight) of an elastomeric copolymer of ethylene and a C₃-C₈ alpha-olefin. TPO is disclosed for example in U.S. 6,048,942.

The term “polyolefins” broadly refers to olefin polymers or copolymers described above.

The olefin polymers or copolymers of the functionalized olefin polymers or copolymers of component b) are for example those of present component a) above.

Preferably, component (b) is an olefin polymer or copolymer grafted with an alpha, beta-unsaturated carboxylic acid reagent.

The functionalized olefin polymers or copolymers are for example the reaction product of at least one polyolefin and at least one alpha, beta-unsaturated carboxylic acid reagent, such as an acid, ester or anhydride.
In one embodiment, the number average molecular weight of the polyolefins utilized in this component may range from about 2,000 to about 10,000. These polymers typically have a melt flow from about 8 to about 40, or from about 10 to about 35, or from about 15 to about 30 g/10 min. The amount of carboxylic acid reagent reacted with the polyolefin may range from about 0.5% to about 30% or from about 1% to about 20%, or from about 2% to about 15%, or from about 4% to about 10% by weight.

The alpha, beta unsaturated carboxylic reagent may be mono- or dicarboxylic acid reagent. The carboxylic reagents include carboxylic acids, esters and salts. The monobasic alpha, beta-unsaturated carboxylic acid reagents include acrylic, methacrylic, annamic, crotonic acids and esters, such as esters having from 1 to about 12 carbon atoms, and salts such as sodium, calcium or magnesium salts. Examples of dicarboxylic reagents include maleic acid, maleic anhydride, fumaric acid, mesaconic acid, himic anhydride, itaconic acid, citraconic acid, itaconic anhydride, citraconic anhydride, monomethyl maleate, monosodium maleate, etc. Particularly preferred alpha, beta-unsaturated carboxylic reagents are acrylic acid, methacrylic acid, acrylic esters, methacrylic esters and maleic anhydride.

Of interest is a composition wherein component (b) is an olefin polymer or copolymer grafted with an alpha, beta-unsaturated carboxylic acid reagent selected from the group consisting of acrylic acid, methacrylic acid, methyl acrylate, methyl methacrylate, 2-hydroxypropyl methacrylate, butyl acrylate and maleic anhydride.

The reaction between the carboxylic acid reagent and the olefin polymer or copolymer can be effected by means known to those skilled in the art. For example, the reaction can be conducted in solutions by a melt process in the presence of a free radical initiator. The free radical initiators usually are either peroxides or various organic azo compounds. The amount of initiator utilized generally from about 0.01% to about 5% by weight based on the combined weight of the polyolefin and the carboxylic reagent.

The reaction between the carboxylic acid reagent and the olefin polymer or copolymer is referred to as “grafting”. For example, the present functionalized olefin polymers or copolymers are olefin polymers or copolymers grafted with acrylic acid, methacrylic acid, methyl acrylate, methyl methacrylate, 2-hydroxypropyl methacrylate, butyl acrylate or maleic anhydride. In the case of for example grafting with maleic anhydride, this is termed "maleated".
Also of interest is a composition wherein component (b) is an olefin polymer or copolymer grafted with maleic anhydride.

Of special interest is a composition wherein component (b) is polypropylene or polyethylene grafted with maleic anhydride.

Examples of acrylated polyolefins are the POLYBOND polymers available from Uniroyal Chemical Company. A particularly useful polymer is POLYBOND 1002, which has a melt flow of 15-25 g/10 min and an acrylic acid content 5.5% to 7.0% by weight. An example of a commercially available maleic acid grafted polypropylene is Epolene E-43 wax from Eastman Chemical Products, Inc. Epolene E-43 has an acid number of 47 and an approximate number average molecular weight of 4500. Epolene C-16 and C-18 waxes are maleic acid grafted polyethylenes with approximate molecular weights of 8000 and 4000, respectively. Maleated ethylene-propylene elastomers also are useful, and such elastomers are available from Exxon Chemical Company under identification numbers 99-10, 99-14 and 99-26. These copolymers contain 77%, 64% and 43% of ethylene, respectively, and the maleated products contain 0.76%, 0.56% and 0.35% of maleic acid or anhydride, respectively.

Other examples of commercially available maleic acid anhydride grafted polyolefins include Kraton FG1901X from Shell which is often referred to as a maleated selectively hydrogenated SEBS copolymer; terpolymers available from CdF Chimie under designations such as Lotader 3200 (prepared from a mixture of 88% by weight ethylene, 9% by weight butyl acrylate and 3% maleic anhydride), Lotader 6600 (70% ethylene, 27% acrylic ester and 3% maleic anhydride) etc.; ethylene vinyl acetate copolymers grafted with maleic anhydride (EVA-MAH) are available from Quantum Chemical Corp.

Alternatively, the functionalized olefin polymers or copolymers of component b) are the reaction products of an alpha-olefin with an alpha, beta-unsaturated carboxylic acid reagent as described above. The reaction is effected by means known in the art. For example, the reaction can be conducted by a melt process in the presence of a free radical initiator. The radical initiators are for example peroxides or organic azo compounds. Again, the
unsaturated carboxylic reagents are for example acrylic acid, methacrylic acid, acrylic esters methacrylic esters or maleic anhydride.

Preferably, component (b) is the reaction product of an alpha-olefin with an alpha, beta-unsaturated carboxylic acid reagent selected from the group consisting of acrylic acid, methacrylic acid, methyl acrylate, methyl methacrylate, 2-hydroxypropyl methacrylate, butyl acrylate and maleic anhydride.

For instance, the alpha-olefin is from C₃ up to about C₃₃, for example the alpha-olefin is a C₁₈-C₂₆ alpha-olefin, for example a C₂₂-₄₆ or a C₁₈ alpha-olefin.

Of interest is a composition wherein component (b) is the reaction product of a C₁₈-C₂₆ alpha olefin and maleic anhydride.

For instance, the functionalized olefin is a maleated alpha-olefin, that is, the reaction product of an alpha-olefin and maleic anhydride. For example the maleated alpha-olefin is of the formula

\[
\begin{array}{c}
\text{R} \\
\text{O} \\n\text{O} \\
\text{O}
\end{array}
\]

where

R is C₁₆ to C₂₄ alkyl, and

n is an integer such that the average molecular weight is between 20,000 and 50,000.

The present functionalized olefin polymers or copolymers may be further reacted with a long chain alcohol or long chain amine.
That is, the functionalized olefin polymers or copolymers may be reacted with a long chain alcohol or long chain amine to form the ester or amide or imide products.

These additives are termed long chain esters, amides or imides of the functionalized olefin polymers or copolymers. The long chain esters, amides or imides likewise fall under the present definition of carboxylic acid reagent functionalized olefin polymers or copolymers.

The carbon chain of the long chain alcohol or long chain amine is straight or branched and may be saturated or unsaturated. The amine is primary or secondary.

For example, the present functionalized olefin polymers or copolymers may be further reacted to form an ester, partial ester, or half ester product resulting from reaction with a long chain alcohol, or to form an amide, partial amide or imide product resulting from reaction with a long chain primary or secondary amine. Imides may be prepared by heating a half amide. The present functionalized olefin polymers or copolymers may be further reacted to form mixtures of esters and amides.

Half ester or partial ester derivatives may be formed by dropwise addition of alcohol to a stirred, acid catalyzed solution of the functionalized olefin polymer or copolymer in an appropriate solvent under conditions such that water is not removed from the reaction mixture. Appropriate solvent is for example methyl isobutyl ketone. Suitable acid catalysts include sulfuric acid, methanesulfonic acid, and p-toluenesulfonic acid. Diesters are prepared using excess alcohol and removing the water to drive the reaction towards full esterification.

For instance, the present long chain esters are esters or half esters of maleated alpha-olefin of the formula
where
R is C_{16} to C_{24} alkyl,
R_1 and R_2 are independently hydrogen, C_{1}-C_{22} alkyl or C_{2}-C_{22} alkenyl, where at least one of R_1 and R_2 are C_{12}-C_{22} alkyl or alkenyl, and
n is an integer such that the average molecular weight is between 20,000 and 50,000.

For instance, the present long chain amides are amides of maleated alpha-olefin of the formula

where
R is C_{16} to C_{24} alkyl,
R_1, R_2, R_3 and R_4 are independently hydrogen, C_{1}-C_{22} alkyl or C_{2}-C_{22} alkenyl, where at least one of R_1, R_2, R_3 or R_4 are C_{12}-C_{22} alkyl or alkenyl, and
n is an integer such that the average molecular weight is between 20,000 and 50,000.

For instance, the present long chain imides are imides of maleated alpha-olefins of the formula
where

R is C_{16} to C_{24} alkyl,

R_1 is $C_{12}-C_{22}$ alkyl or alkenyl, and

n is an integer such that the average molecular weight is between 20,000 and 50,000.

For example R is C_{16} alkyl or $C_{20}-C_{24}$ alkyl.

For instance, the present long chain esters of the functionalized olefin polymer or copolymer are half esters or esters with tallow fatty alcohol, ricinoleyl alcohol [CAS# 540-11-4] or oleyl alcohol.

For example, the present long chain esters of the functionalized polyolefins are the half ester or ester reaction products of maleated olefin polymers or copolymers with the long chain alcohols.

For instance, the present long chain esters are the half ester or ester reaction products of maleated alpha-olefins with the long chain alcohols.

For instance, the present long chain amides are amide reaction products of maleated olefin polymers or copolymers or of maleated alpha-olefins with oleamide, erucamide, stearamide, behenamide, oleyl palmitamide, stearyl erucamide, ethylene-bis-stearamide or ethylene-bis-o leamide, or are the corresponding imides with oleamide, erucamide, stearamide or behenamide. That is, the amide or imide reaction products of maleated olefin polymers or copolymers or of maleated alpha-olefins with long chain amines.
For example, the present functionalized olefin polymer or copolymer is a long chain ester, long chain half ester, long chain amide, long chain partial amide or a long chain imide, which ester, half ester, amide, partial amide or imide is formed by the reaction of a long chain alcohol or long chain primary or secondary amine of the formulae

$$R_1OH \text{ or } R_1R_2NH$$

where

- R_1 is C₁₂-C₂₂ alkyl or C₁₂-C₂₂ alkenyl, and
- R_2 is hydrogen, C₁-C₂₂ alkyl or C₂-C₂₂ alkenyl,

with an olefin polymer or copolymer grafted with an alpha, beta-unsaturated carboxylic acid reagent or with a reaction product of an alpha-olefin with an alpha, beta-unsaturated carboxylic acid reagent.

Of interest is a composition wherein component (b) is the half ester or ester of maleated polypropylene, maleated polyethylene or maleated C₁₈-C₂₆ alpha-olefin with tallow fatty alcohol, ricinoleyl alcohol or oleyl alcohol.

The primary or secondary fatty acid amides are for example where the fatty group of the fatty acids are C₁₁ to C₂₁ alkyl or alkenyl.

The primary or secondary fatty acid amide is for example at least one compound selected from the group consisting of oleamide, erucamide, stearamide, behenamide, oleyl palmitamide, stearyl erucamide, ethylene-bis-stearamide and ethylene-bis-oleamide.

In particular, the present fatty acid amides are secondary fatty acid amides, for example stearyl erucamide or oleyl palmitamide.

Suitable fatty acid amides are for example disclosed in U.S. 6,228,915.

Alkyl is straight or branched chain and is for example methyl, ethyl, propyl, isopropyl, n-butyl, sec-butyl, isobutyl, tert-butyl, 2-ethylbutyl, n-pentyl, isopentyl, 1-methylpentyl, 1,3-
dimethylbutyl, n-hexyl, 1-methylhexyl, n-heptyl, isoheptyl, 1,1,3,3-tetramethylbutyl, 1-methylheptyl, 3-methylheptyl, n-octyl, 2-ethylhexyl, 1,1,3-trimethylhexyl, 1,1,3,3-tetramethylpentyl, nonyl, decyl, undecyl, 1-methylundecyl, dodecyl, 1,1,3,3,5,5-hexamethylhexyl, tridecyl, tetradecyl, pentadecyl, hexadecyl, heptadecyl, octadecyl, icosyl or docosyl.

Alkenyl is ethylenically unsaturated alkyl, for example allyl.

The weight:weight ratio of component (b) to component (c) is for example between 20:1 and 1:20, between 10:1 and 1:10, between 1:1 and 20:1, for example between about 1:1 and 15:1, between 1:1 and 10:1, between 1:1 and 7:1, or between 1:1 and 5:1. For instance, the weight:weight ratio of the functionalized maleated alpha-olefin to the primary or secondary fatty acid amide is 1.5:1, 2:1, 3:1 or 4:1.

The total amount of components (b) and (c) to be incorporated into the polyolefin substrate is for example between 1% and 15% by weight, based on the weight of component (a). For example, the total amount of components (b) and (c) is from 1% to 10%, from 3% to 7%, or from 3% to 5% by weight, based on the weight of component (a). Preferably, the total amount of components (b) and (c) is from 1% to 3%, from 1% to 5%, or from 1% to 7% by weight, based on the weight of component (a).

The present low molecular weight and high molecular weight hindered amine stabilizers (HALS) of component d) are defined similarly; that is they have the same structural definitions but are distinguished by their molecular weight. The low molecular weight stabilizers have a molecular weight of from 200 to 1000 g/mol. The high molecular weight stabilizers have a molecular weight of from 1200 to 10,000 g/mol.

The low molecular weight hindered amines are generally discrete monomeric compounds, or mixtures of such compounds. The high molecular weight hindered amines are generally oligomeric or polymeric compounds.

The present sterically hindered amine stabilizers contain at least one moiety of formula
where G_1, G_2, G_3, G_4 and G_5 are independently alkyl of 1 to 8 carbon atoms or G_1 and G_2 or G_3 and G_4 together are pentamethylene.

The hindered amines are disclosed for example in U.S. Pat. Nos. 5,004,770; 5,204,473; 5,096,950; 5,300,544; 5,112,890; 5,124,378; 5,145,893; 5,216,156; 5,844,026; 5,980,783; 6,046,304; 6,117,995; 6,271,377; 6,297,299; 6,392,041; 6,376,584 and 6,472,456.

U.S. Pat. Nos. 6,271,377; 6,392,041 and 6,376,584, cited above disclose hindered hydroxy-alkoxyamine stabilizers.

Suitable low molecular weight hindered amines include for example:

1) 1-cyclohexyloxy-2,2,6,6-tetramethyl-4-octadecylaminopiperidine,
2) bis(2,2,6,6-tetramethylpiperidin-4-yl) sebacate,
3) bis(1-acetoxy-2,2,6,6-tetramethylpiperidin-4-yl) sebacate,
4) bis(1,2,2,6,6-pentamethyl-4-yl) sebacate,
5) bis(1-cyclohexyloxy-2,2,6,6-tetramethylpiperidin-4-yl) sebacate,
6) bis(1-octyloxy-2,2,6,6-tetramethylpiperidin-4-yl) sebacate;
7) bis(1-acyl-2,2,6,6-tetramethylpiperidin-4-yl) sebacate,
8) bis(1,2,2,6,6-pentamethyl-4-piperidyl) n-butyl-3,5-di-tert-butyl-4-hydroxybenzylmalonate
9) 2,4-bis[(1-cyclohexyloxy-2,2,6,6-tetramethylpiperidin-4-yl)butylamino]-6-(2-hydroxyethylamino-s-triazine,
10) bis(1-cyclohexyloxy-2,2,6,6-tetramethylpiperidin-4-yl) adipate,
11) 2,4-bis[(1-cyclohexyloxy-2,2,6-piperidin-4-yl)butylamino]-6-chloro-s-triazine,
12) 1-(2-hydroxy-2-methylpropoxy)-4-hydroxy-2,2,6,6-tetramethylpiperidine,
13) 1-(2-hydroxy-2-methylpropoxy)-4-oxo-2,2,6,6-tetramethylpiperidine,
14) 1-(2-hydroxy-2-methylpropoxy)-4-octadecanoyloxy-2,2,6,6-tetramethylpiperidine,
15) bis(1-(2-hydroxy-2-methylpropoxy)-2,2,6,6-tetramethylpiperidin-4-yl) sebacate,
16) bis(1-(2-hydroxy-2-methylpropoxy)-2,2,6,6-tetramethylpiperidin-4-yl) adipate,
17) 2,4-bis[N-[1-(2-hydroxy-2-methylpropoxy)-2,2,6,6-tetramethylpiperidin-4-yl]-N-
 butylamino]-6-(2-hydroxyethylamino)-s-triazine,
18) 4-benzoyl-2,2,6,6-tetramethylpiperidine,
19) di-(1,2,2,6,6-pentamethylpiperidin-4-yl) p-methoxybenzylidenemalonate,
20) 4-stearloxy-2,2,6,6-tetramethylpiperidine,
21) bis(1-octloxy-2,2,6,6-tetramethylpiperidyl) succinate,
22) 1,2,2,6,6-pentamethyl-4-aminopiperidine,
23) 2-undecyl-7,7,9,9-tetramethyl-1-oxa-3,8-diaza-4-oxo-spiro[4,5]decane,
24) tris(2,2,6,6-tetramethyl-4-piperidyl) nitrilotriacetate,
25) tris(2-hydroxy-3-(amino-(2,2,6,6-tetramethylpiperidin-4-yl)propyl) nitrilotriacetate,
26) tetraakis(2,2,6,6-tetramethyl-4-piperidyl)-1,2,3,4-butane-tetracarboxylate,
27) tetraakis(1,2,2,6,6-pentamethyl-4-piperidyl)-1,2,3,4-butane-tetracarboxylate,
28) 1,1'-(1,2-ethanediyl)-bis(3,3,5,5-tetramethylpiperazinone),
29) 3-n-octyl-7,7,9,9-tetramethyl-1,3,8-triazaspiro[4.5]decan-2,4-dione,
30) 8-acetyl-3-dodecyl-7,7,9,9-tetramethyl-1,3,8-triazaspiro[4.5]decan-2,4-dione,
31) 3-dodecyl-1-(2,2,6,6-tetramethyl-4-piperidyl)pyrrolidin-2,5-dione,
32) 3-dodecyl-1-(1,2,2,6,6-pentamethyl-4-piperidyl)pyrrolidine-2,5-dione and
33) N,N'-bis-formyl-N,N'-bis(2,2,6,6-tetramethyl-4-piperidyl)hexamethylenediamine

and the high molecular weight hindered amines are selected from the group consisting of

34) the reaction product of 2,4-bis[(1-cyclohexyloxy-2,2,6,6-piperidin-4-
yl)butylamino]-6-chloro-s-triazine with N,N'-bis(3-aminopropyl)ethylenediamine,
35) the condensate of 1-(2-hydroxyethyl)-2,2,6,6-tetramethyl-4-hydroxytysideridine
 and succinic acid,
36) linear or cyclic condensates of N,N'-bis(2,2,6,6-tetramethyl-4-piperidyl)-hexa-
 methylenediamine and 4-tert-octylamino-2,6-dichloro-1,3,5-triazine,
37) linear or cyclic condensates of N,N'-bis(2,2,6,6-tetramethyl-4-piperidyl)-hexa-
 methylenediamine and 4-cyclohexylamino-2,6-dichloro-1,3,5-triazine,
38) linear or cyclic condensates of N,N'-bis-(2,2,6,6-tetramethyl-4-piperidyl)-hexa-
 methylenediamine and 4-morpholino-2,6-dichloro-1,3,5-triazine,
39) linear or cyclic condensates of N,N'-bis-(1,2,2,6,6-pentamethyl-4-piperidyl)-hexamethylenediamine and 4-morpholino-2,6-dichloro-1,3,5-triazine,
40) the condensate of 2-chloro-4,6-bis(4-n-butylamino-2,2,6,6-tetramethylpiperidyl)-1,3,5-triazine and 1,2-bis(3-aminopropylamino)ethane,
41) the condensate of 2-chloro-4,6-di-(4-n-butylamino-1,2,2,6,6-pentamethylpiperidyl)-1,3,5-triazine and 1,2-bis(3-aminopropylamino)ethane,
42) a reaction product of 7,7,9,9-tetramethyl-2-cycloundecyl-1-oxa-3,8-diaza-4-oxospiro [4,5]decane and epichlorohydrin,
43) poly[methyl,(3-oxy-(2,2,6,6-tetramethylpiperidin-4-yl)propyl)] siloxane, CAS#182635-99-0,
44) reaction product of maleic acid anhydride-C_{18}-C_{22}-\alpha-olefin-copolymer with 2,2,6,6-tetramethyl-4-aminopiperidine,
45) the oligomeric compound which is the condensation product of 4,4'-hexamethylene-bis(amino-2,2,6,6-tetramethylpiperidine) and 2,4-dichloro-6-{[2,2,6,6-tetramethylpiperidin-4-yl]butylamino}s-triazine end-capped with 2-chloro-4,6-bis(dibutylamino)-s-triazine,
46) the oligomeric compound which is the condensation product of 4,4'-hexamethylene-bis(amino-1,2,2,6,6-pentamethylpiperidine) and 2,4-dichloro-6-{[1,2,2,6,6-pentamethylpiperidin-4-yl]butylamino}s-triazine end-capped with 2-chloro-4,6-bis(dibutylamino)-s-triazine,
47) the oligomeric compound which is the condensation product of 4,4'-hexamethylene-bis(amino-1-propoxy-2,2,6,6-tetramethylpiperidine) and 2,4-dichloro-6-{[1-propoxy-2,2,6,6-tetramethylpiperidin-4-yl]butylamino}s-triazine end-capped with 2-chloro-4,6-bis(dibutylamino)-s-triazine,
48) the oligomeric compound which is the condensation product of 4,4'-hexamethylene-bis(amino-1-acyloxy-2,2,6,6-tetramethylpiperidine) and 2,4-dichloro-6-{[1-acyloxy-2,2,6,6-tetramethylpiperidin-4-yl]butylamino}s-triazine end-capped with 2-chloro-4,6-bis(dibutylamino)-s-triazine and
49) product obtained by reacting a product, obtained by reacting 1,2-bis(3-aminopropylamino)ethane with cyanuric chloride, with (2,2,6,6-tetramethylpiperidin-4-yl)butylamine.

Also included are the sterically hindered N-H, N-methyl, N-methoxy, N-propoxy, N-octyloxy, N-cyclohexyloxy, N-acyloxy and N-(2-hydroxy-2-methylpropoxy) analogues of any of the
above mentioned compounds. For example, replacing an N-H hindered amine with an N-methyl hindered amine would be employing the N-methyl analogue in place of the N-H.

For illustrative purposes, some of the structures for the above-named compounds are shown below:
26) \[
\text{R} = \left(\text{CH}_3\right)_{\text{R}} \left(\text{CH}_3\right)_{\text{R}}
\]

28)

29)

31)

33)
In the high molecular weight hindered amine compounds, n is an integer such that the molecular weight is greater than about 1200.
Of interest are compositions wherein the low molecular weight hindered amines are selected from the group consisting of

2) bis(2,2,6,6-tetramethylpiperidin-4-yl) sebacate,
6) bis(1-octyloxy-2,2,6,6-tetramethylpiperidyl) sebacate,
14) 1-(2-hydroxy-2-methylpropoxy)-4-octadecanoyloxy-2,2,6,6-tetramethylpiperidine, and
15) bis(1-(2-hydroxy-2-methylpropoxy)-2,2,6,6-tetramethylpiperidin-4-yl) sebacate,

and the high molecular weight hindered amines are selected from the group consisting of

34) the reaction product of 2,4-bis[(1-cyclohexyloxy-2,2,6,6-piperidin-4-yl)butylamino]-6-chloro-s-triazine with N,N'-bis(3-aminopropyl)ethylenediamine,
35) the condensate of 1-(2-hydroxyethyl)-2,2,6,6-tetramethyl-4-hydroxypiperidine and succinic acid,
36) linear or cyclic condensates of N,N'-bis(2,2,6,6-tetramethyl-4-piperidyl)-hexamethylenediamine and 4-tert-octylamino-2,6-dichloro-1,3,5-triazine,
38) linear or cyclic condensates of N,N'-bis-(2,2,6,6-tetramethyl-4-piperidyl)-hexamethylenediamine and 4-morpholino-2,6-dichloro-1,3,5-triazine,
39) linear or cyclic condensates of N,N'-bis-(1,2,2,6,6-pentamethyl-4-piperidyl)-hexamethylenediamine and 4-morpholino-2,6-dichloro-1,3,5-triazine,
40) the condensate of 2-chloro-4,6-bis(4-n-butyramino-2,2,6,6-tetramethylpiperidyl)-1,3,5-triazine and 1,2-bis(3-aminopropylamino)ethane, and
45) the oligomeric compound which is the condensation product of 4,4'-hexamethylene-bis(amo-2,2,6,6-tetramethylpiperidine) and 2,4-dichloro-6-[(2,2,6,6-tetramethylpiperidin-4-yl)butylamino]-s-triazine end-capped with 2-chloro-4,6-bis(di-butyramino)-s-triazine.

The hindered amine compounds of component (d), in total, are advantageously contained in the composition of the invention in an amount of from 0.05 to 20% by weight based on the weight of component (a); for example from 0.1 to 10% by weight; for example from 0.2 to 8% by weight; for instance from 0.5 to 3% by weight based on the weight of component (a).
The low molecular weight hindered amines/high molecular weight hindered amines are employed in a weight/weight ratio of from 1:100 to 100:1, for example from 1:20 to 20:1, for instance from 1:10 to 10:1, or from 1:5 to 5:1, or from 4:1 to 1:4, or from 3:1 to 1:3, or from 2:1 to 1:2.

The additives of the invention may be added to the polyolefin substrate individually or mixed with one another. If desired, the individual components can be mixed with one another before incorporation into the polyolefin for example by dry blending, compaction or in the melt.

The incorporation of the additives of the invention is carried out by known methods such as dry blending in the form of a powder, or wet mixing in the form of solutions, dispersions or suspensions for example in an inert solvent, water or oil. The additives of the invention may be incorporated, for example, before or after molding or also by applying the dissolved or dispersed additive or additive mixture to the polyolefin material, with or without subsequent evaporation of the solvent or the suspension/dispersion agent. They may be added directly into the processing apparatus (e.g. extruders, internal mixers, etc), e.g. as a dry mixture or powder or as solution or dispersion or suspension or melt.

The incorporation can be carried out in any heatable container equipped with a stirrer, e.g. in a closed apparatus such as a kneader, mixer or stirred vessel. The incorporation is preferably carried out in an extruder or in a kneader. It is immaterial whether processing takes place in an inert atmosphere or in the presence of oxygen.

The addition of the additives to the polyolefin substrate can be carried out in all customary mixing machines in which the polyolefin is melted and mixed with the additives. Suitable machines are known to those skilled in the art. They are predominantly mixers, kneaders and extruders.

Processing includes extrusion, co-kneading, pultrusion, compression molding, sheet extrusion, thermoforming, injection molding, reactive injection molding or rotational molding. The process is preferably carried out in an extruder by introducing the additives during processing.
Particularly preferred processing machines are single-screw extruders, contrarotating and corotating twin-screw extruders, rotomolding devices, planetary-gear extruders, ring extruders or colkneaders. It is also possible to use processing machines provided with at least one gas removal compartment to which a vacuum can be applied.

For example, the screw length is 1-60 screw diameters, preferably 35-48 screw diameters. The rotational speed of the screw is preferably 10-600 rotations per minute (rpm), very particularly preferably 25-300 rpm.

The maximum throughput is dependent on the screw diameter, the rotational speed and the driving force. The process of the present invention can also be carried out at a level lower than maximum throughput by varying the parameters mentioned or employing weighing machines delivering dosage amounts.

If a plurality of components are added, these can be premixed or added individually.

The additives of the invention can also be sprayed onto the polyolefin material. They are able to dilute other additives (for example optional conventional additives) or their melts so that they can be sprayed also together with these additives onto the material. Addition by spraying during the deactivation of the polymerization catalysts is particularly advantageous; in this case, the steam evolved may be used for deactivation of the catalyst. In the case of spherically polymerized polyolefins it may, for example, be advantageous to apply the additives of the invention, optionally together with other additives, by spraying.

The additives of the invention and optional further additives can also be added to the polyolefin in the form of a masterbatch ("concentrate") which contains the components in a concentration of, for example, about 1% to about 40% and preferably about 2% to about 20% by weight incorporated in a polymer. The polymer must not necessarily be identical to the polyolefin where the additives are added finally. In such operations, the polymer can be used in the form of powder, granules, solutions, suspensions or in the form of latices.
Incorporation can take place prior to or during the shaping operation, or by applying the dissolved or dispersed compound to the polyolefin, with or without subsequent evaporation of the solvent. A further possibility for incorporating the additives of the invention into polyolefins is to add them before, during or directly after the polymerization of the corresponding monomers or prior to crosslinking. In this context the additives of the invention can be added as it is or else in encapsulated form (for example in waxes, oils or polymers).

The polyolefins containing the additives of the invention described herein can be used for the production of moldings, rotomolded articles, injection molded articles, blow molded articles, profiles, and the like.

The polyolefins of the present invention may optionally also contain from about 0.01 to 5%, preferably from 0.025 to 2%, and especially from 0.1 to 1% by weight of various conventional additives, such as the materials listed below, or mixtures thereof.

1. **Antioxidants**

1.1. **Alkylated monophenols**, for example 2,6-di-tert-butyl-4-methylphenol, 2-tert-butyl-4,6-dimethylphenol, 2,6-di-tert-butyl-4-ethylphenol, 2,6-di-tert-butyl-4-n-butylphenol, 2,6-di-tert-butyl-4-isobutylphenol, 2,6-dicyclopentyl-4-methylphenol, 2-(α-methylcyclohexyl)-4,6-dimethylphenol, 2,6-dioctadecyl-4-methylphenol, 2,4,6-tricyclohexylphenol, 2,6-di-tert-butyl-4-methoxyethylphenol, nonylphenols which are linear or branched in the side chains, for example, 2,6-di-nonyl-4-methylphenol, 2,4-dimethyl-6-(1-methylundec-1-yl)phenol, 2,4-dimethyl-6-(1-methylheptadec-1-yl)phenol, 2,4-dimethyl-6-(1-methyltridec-1-yl)phenol and mixtures thereof.

1.2. **Alkylthiomethylphenols**, for example 2,4-dioctylthiomethyl-6-tert-butylphenol, 2,4-dioctylthiomethyl-6-methylphenol, 2,4-dioctylthiomethyl-6-ethylphenol, 2,6-didodecylthiomethyl-4-nonylphenol.

1.3. **Hydroquinones and alkylated hydroquinones**, for example 2,6-di-tert-butyl-4-methoxyphenol, 2,5-di-tert-butylhydroquinone, 2,5-di-tert-amyhydroquinone, 2,6-diphenyl-4-octade-cyloxyphenol, 2,6-di-tert-butylhydroquinone, 2,5-di-tert-butyl-4-hydroxyanisole, 3,5-di-tert-
butyl-4-hydroxyanisole, 3,5-di-tert-butyl-4-hydroxyphenyl stearate, bis-(3,5-di-tert-butyl-4-hydroxyphenyl) adipate.

1.4. **Tocopherols**, for example α-tocopherol, β-tocopherol, γ-tocopherol, δ-tocopherol and mixtures thereof (Vitamin E).

1.5. **Hydroxylated thiodiphenyl ethers**, for example 2,2'-thiobis(6-tert-butyl-4-methylphenol), 2,2'-thiobis(4-octylphenol), 4,4'-thiobis(6-tert-butyl-3-methylphenol), 4,4'-thiobis(6-tert-butyl-2-methylphenol), 4,4'-thiobis(3,6-di-sec-amylphenol), 4,4'-bis(2,6-dimethyl-4-hydroxyphenyl)disulfide.

1.6. **Alkyldienebisphenols**, for example 2,2'-methylenebis(6-tert-butyl-4-methylphenol), 2,2'-methylenebis(6-tert-butyl-4-ethylphenol), 2,2'-methylenebis[4-methyl-6-(α-methylcyclohexyl)phenol], 2,2'-methylenebis(4-methyl-6-cyclohexylphenol), 2,2'-methylenebis(6-nonyl-4-methylphenol), 2,2'-methylenebis(4,6-di-tert-butylphenol), 2,2'-ethyldienebis(4,6-di-tert-butylphenol), 2,2'-ethyldienebis(6-tert-butyl-4-isobutylphenol), 2,2'-methylenebis[6-(α-methylbenzyl)-4-nonylphenol], 2,2'-methylenebis[6-(α,α-dimethylbenzyl)-4-nonylphenol], 4,4'-methylenebis(2,6-di-tert-butylphenol), 4,4'-methylenebis(6-tert-butyl-2-methylphenol), 1,1-bis(5-tert-butyl-4-hydroxy-2-methylphenyl)butane, 2,6-bis(3-tert-butyl-5-methyl-2-hydroxybenzyl)-4-methylphenol, 1,1,3-tris(5-tert-butyl-4-hydroxy-2-methylphenyl)butane, 1,1-bis(5-tert-butyl-4-hydroxy-2-methyl-phenyl)-3-n-dodecylmercaptobutane, ethylene glycol bis[3,3-bis(3-tert-butyl-4-hydroxyphenyl)butyrate], bis(3-tert-butyl-4-hydroxy-5-methyl-phenyl)dicyclopentadiene, bis[2-(3'-tert-butyl-2-hydroxy-5-methylbenzyl)-6-tert-butyl-4-methylphenyl]terephthalate, 1,1-bis(3,5-dimethyl-2-hydroxyphenyl)butane, 2,2-bis(3,5-di-tert-butyl-4-hydroxyphenyl)propane, 2,2-bis(5-tert-butyl-4-hydroxy2-methylphenyl)-4-n-dodecylmercaptobutane, 1,1,5,5-tetra-(5-tert-butyl-4-hydroxy-2-methylphenyl)pentane.

1.7. **Benzyl compounds**, for example 3,5,3',5'-tetra-tert-butyl-4,4'-dihydroxydibenzyl ether, octadecyl-4-hydroxy-3,5-dimethylbenzylmercaptoacetate, tridecyl-4-hydroxy-3,5-di-tert-butylbenzylmercaptoacetate, tris(3,5-di-tert-butyl-4-hydroxybenzyl)amine, 1,3,5-tri-(3,5-di-tert-butyl-4-hydroxybenzyl)-2,4,6-trimethylbenzene, di-(3,5-di-tert-butyl-4-hydroxybenzyl) sulfide, 3,5-di-tert-butyl-4-hydroxybenzyl-mercapto-acetic acid isoctyl ester, bis-(4-tert-butyl-3-hydroxy-2,6-dimethylbenzyl)dithiol terephthalate, 1,3,5-tris-(3,5-di-tert-butyl-4-hydroxybenzyl)
isocyanurate, 1,3,5-tris-(4-tert-butyl-3-hydroxy-2,6-dimethylbenzyl) isocyanurate, 3,5-di-tert-butyl-4-hydroxybenzyl-phosphoric acid dioctadecyl ester and 3,5-di-tert-butyl-4-hydroxybenzyl-phosphoric acid monoethyl ester, calcium-salt.

1.8. **Hydroxybenzylated malonates**, for example dioctadecyl-2,2-bis-(3,5-di-tert-butyl-2-hydroxybenzyl)-malonate, di-octadecyl-2-(3-tert-butyl-4-hydroxy-5-methylbenzyl)-malonate, di-dodecylmercaptopoethyl-2,2-bis-(3,5-di-tert-butyl-4-hydroxybenzyl)malonate, bis[4-(1,1,3,3-tetramethylbutyl)phenyl]-2,2-bis(3,5-di-tert-butyl-4-hydroxybenzyl)malonate.

1.9. **Aromatic hydroxybenzyl compounds**, for example 1,3,5-tris-(3,5-di-tert-butyl-4-hydroxybenzyl)-2,4,6-trimethylbenzene, 1,4-bis(3,5-di-tert-butyl-4-hydroxybenzyl)-2,3,5,6-tetramethylbenzene, 2,4,6-tris(3,5-di-tert-butyl-4-hydroxybenzyl)phenol.

1.10. **Triazine compounds**, for example 2,4-bis(octylmercapto)-6-(3,5-di-tert-butyl-4-hydroxyanilino)-1,3,5-triazine, 2-octylmercapto-4,6-bis(3,5-di-tert-butyl-4-hydroxyanilino)-1,3,5-triazine, 2-octylmercapto-4,6-bis(3,5-di-tert-butyl-4-hydroxyphenoxy)-1,3,5-triazine, 2,4,6-tris(3,5-di-tert-butyl-4-hydroxyphenoxy)-1,2,3-triazine, 1,3,5-tris-(3,5-di-tert-butyl-4-hydroxybenzyl)isocyanurate, 1,3,5-tris(4-tert-butyl-3-hydroxy-2,6-dimethylbenzyl)isocyanurate, 2,4,6-tris(3,5-di-tert-butyl-4-hydroxyphenylethyl)-1,3,5-triazine, 1,3,5-tris(3,5-di-tert-butyl-4-hydroxyphenylpropionyl)-hexahydro-1,3,5-triazine, 1,3,5-tris(3,5-dicyclohexyl-4-hydroxybenzyl)isocyanurate.

1.11. **Benzyolphosphonates**, for example dimethyl-2,5-di-tert-butyl-4-hydroxybenzylphosphonate, diethyl-3,5-di-tert-butyl-4-hydroxybenzylphosphonate, dioctadecyl-3,5-di-tert-butyl-4-hydroxybenzylphosphonate, dioctadecyl-5-tert-butyl-4-hydroxy-3-methylbenzylphosphonate, the calcium salt of the monoethyl ester of 3,5-di-tert-butyl-4-hydroxybenzylphosphonic acid.

1.12. **Acylaminophenols**, for example 4-hydroxy-lauric acid anilide, 4-hydroxy-stearic acid anilide, 2,4-bis-octylmercapto-6-(3,5-tert-butyl-4-hydroxyanilino)-s-triazine and octyl-N-(3,5-di-tert-butyl-4-hydroxyphenyl)-carbamate.

1.13. **Esters of β-(3,5-di-tert-butyl-4-hydroxyphenyl)propionic acid** with mono- or polyhydro alcohols, e.g. with methanol, ethanol, n-octanol, i-octanol, octadecanol, 1,6-hexanediol, 1,9-nonanediol, ethylene glycol, 1,2-propanediol, neopentyl glycol, thiodiethylene glycol, diethy-
lene glycol, triethylene glycol, pentaerythritol, tris(hydroxyethyl) isocyanurate, N,N'-bis(hydroxyethyl)oxamide, 3-thiaundecanol, 3-thiapentadecanol, trimethylhexanediol, trimethylolpropane, 4-hydroxymethyl-1-phospha-2,6,7-trioxabicyclo[2.2.2]octane.

1.14. **Esters of β-(5-tert-butyl-4-hydroxy-3-methylphenyl)propionic acid** with mono- or polyhydric alcohols, e.g. with methanol, ethanol, n-octanol, i-octanol, octadecanol, 1,6-hexanediol, 1,9-nonanediol, ethylene glycol, 1,2-propanediol, neopentyl glycol, thiodiethylene glycol, diethylene glycol, triethylene glycol, pentaerythritol, tris(hydroxyethyl) isocyanurate, N,N'-bis(hydroxyethyl)oxamide, 3-thiaundecanol, 3-thiapentadecanol, trimethylhexanediol, trimethylolpropane, 4-hydroxymethyl-1-phospha-2,6,7-trioxabicyclo[2.2.2]octane.

1.15. **Esters of β-(3,5-dicyclohexyl-4-hydroxyphenyl)propionic acid** with mono- or polyhydric alcohols, e.g. with methanol, ethanol, octanol, octadecanol, 1,6-hexanediol, 1,9-nonanediol, ethylene glycol, 1,2-propanediol, neopentyl glycol, thiodiethylene glycol, diethylene glycol, triethylene glycol, pentaerythritol, tris(hydroxyethyl)isocyanurate, N,N'-bis(hydroxyethyl)oxamide, 3-thiaundecanol, 3-thiapentadecanol, trimethylhexanediol, trimethylolpropane, 4-hydroxymethyl-1-phospha-2,6,7-trioxabicyclo[2.2.2]octane.

1.16. **Esters of 3,5-di-tert-butyl-4-hydroxyphenyl acetic acid** with mono- or polyhydric alcohols, e.g. with methanol, ethanol, octanol, octadecanol, 1,6-hexanediol, 1,9-nonanediol, ethylene glycol, 1,2-propanediol, neopentyl glycol, thiodiethylene glycol, diethylene glycol, triethylene glycol, pentaerythritol, tris(hydroxyethyl)isocyanurate, N,N'-bis(hydroxyethyl)oxamide, 3-thiaundecanol, 3-thiapentadecanol, trimethylhexanediol, trimethylolpropane, 4-hydroxymethyl-1-phospha-2,6,7-trioxabicyclo[2.2.2]octane.

1.17. **Amides of β-(3,5-di-tert-butyl-4-hydroxyphenyl)propionic acid** e.g. N,N'-bis(3,5-di-tert-butyl-4-hydroxyphenyl)(propionyl)hexamethylenediamide, N,N'-bis(3,5-di-tert-butyl-4-hydroxyphenyl)(propionyl)trimethylenediamide, N,N'-bis(3,5-di-tert-butyl-4-hydroxyphenyl)(propionyl)hydrazide, N,N'-bis[2-(3,5-di-tert-butyl-4-hydroxyphenyl)(propionyloxy)ethyl]oxamide (Naugard®XL-1 supplied by Uniroyal).

1.18. **Ascorbic acid** (vitamin C)
1.19. Aminic antioxidants, for example N,N'-di-isopropyl-p-phenylenediamine, N,N'-di-sec-butyl-p-phenylenediamine, N,N'-bis(1,4-dimethylpentyl)-p-phenylenediamine, N,N'-bis(1-ethyl-3-methylpentyl)-p-phenylenediamine, N,N'-bis(1-methylheptyl)-p-phenylenediamine, N,N'-dicyclohexyl-p-phenylenediamine, N,N'-diphenyl-p-phenylenediamine, N,N'-bis(2-naphthyl)-p-phenylenediamine, N-isopropyl-N'-phenyl-p-phenylenediamine, N-(1,3-dimethylbutyl)-N'-phenyl-p-phenylenediamine, N-(1-methylheptyl)-N'-phenyl-p-phenylenediamine, N-cyclohexyl-N'-phenyl-p-phenylenediamine, 4-(p-toluenesulfonyl)diphenylamine, N,N'-dimethyl-N,N'-di-sec-butyl-p-phenylenediamine, diphenylamine, N-allyldiphenylamine, 4-isopropoxydiphenylamine, N-phenyl-1-naphthylamine, N-(4-tert-octylphenyl)-1-naphthylamine, N-phenyl-2-naphthylamine, octylated diphenylamine, for example p,p'-di-tert-octyldiphenylamine, 4-n-butylaminophenol, 4-butylaminophenol, 4-nonyloxyaminophenol, 4-dodecanoylamino phenol, 4-octadecanoylamino phenol, bis(4-methoxyphenyl)amine, 2,6-di-tert-butyl-4-dimethylaminomethylphenol, 2,4'-diaminodiphenylmethane, 4,4'-diaminodiphenylmethane, N,N,N',N'-tetramethyl-4,4'-diaminodiphenylmethane, 1,2-bis[(2-methylphenyl)amino]ethane, 1,2-bis(phenylamino)propane, (o-tolyl)biguanide, bis[4-(1',3'-dimethylbutyl)phenyl]amine, tert-octylated N-phenyl-1-naphthylamine, a mixture of mono- and dialkylated tert-butyl/tert-octyldiphenylamines, a mixture of mono- and dialkyalted nonyldiphenylamines, a mixture of mono- and dialkyalted dodecyldiphenylamines, a mixture of mono- and dialkylated isopropyl/isohexyldiphenylamines, a mixture of mono- and dialkyalted tert-butylidiphenylamines, 2,3-dihydro-3,3-dimethyl-4H-1,4-benzothiazine, phenothiazine, a mixture of mono- and dialkyalted tert-butyl/tert-octyldiphenothiazines, a mixture of mono- and dialkyalted tert-octyl-phenothiazines, N-allylphenothiazin, N,N,N',N'-tetraphenyl-1,4-diaminobut-2-ene, N,N-bis(2,2,6,6-tetramethyl-piperid-4-y1-hexamethylenediamine, bis(2,2,6,6-tetramethylpiperid-4-yl)sebacate, 2,2,6,6-tetramethylpiperidin-4-one, 2,2,6,6-tetramethylpiperidin-4-ol.

2. UV absorbers and light stabilizers

2.1. 2-(2-Hydroxyphenyl)-2H-benzotriazoles, for example known commercial hydroxyphenyl-2H-benzotriazoles and benzotriazoles as disclosed in, United States Patent Nos. 3,004,896; 3,055,896; 3,072,585; 3,074,910; 3,189,615; 3,218,332; 3,230,194; 4,127,586; 4,226,763; 4,275,004; 4,278,589; 4,315,848; 4,347,180; 4,383,863; 4,675,352; 4,681,905, 4,853,471; 5,268,450; 5,278,314; 5,280,124; 5,319,091; 5,410,071; 5,436,349; 5,516,914; 5,554,760; 5,563,242; 5,574,166; 5,607,987, 5,977,219 and

2.2. 2-Hydroxybenzophenones, for example the 4-hydroxy, 4-methoxy, 4-octyloxy, 4-decyl-oxy, 4-dodecyl-oxy, 4-benzyloxy, 4,2',4'-trihydroxy and 2'-hydroxy-4,4'-dimethoxy derivatives.
2.3. **Esters of substituted and unsubstituted benzoic acids**, as for example 4-tert-butylphenyl salicylate, phenyl salicylate, octylphenyl salicylate, dibenzoyl resorcinol, bis(4-tert-butylbenzoyl) resorcinol, benzoyl resorcinol, 2,4-di-tert-butylphenyl 3,5-di-tert-butyl-4-hydroxybenzoate, hexadecyl 3,5-di-tert-butyl-4-hydroxybenzoate, octadecyl 3,5-di-tert-butyl-4-hydroxybenzoate, 2-methyl-4,6-di-tert-butylphenyl 3,5-di-tert-butyl-4-hydroxybenzoate.

2.4. **Acrylates and malonates**, for example, α-cyano-β,β-diphenylacrylic acid ethyl ester or isooctyl ester, α-carboxethoxy-cinnamic acid methyl ester, α-cyano-β-methyl-p-methoxy-cinnamic acid methyl ester or butyl ester, α-carboxethoxy-p-methoxy-cinnamic acid methyl ester, N-(β-carboxethoxy-β-cyanovinyl)-2-methyl-indoline, Sanduvor® PR25, dimethyl p-methoxybenzylidenemalonate (CAS# 7443-25-6), and Sanduvor® PR31, di-(1,2,2,6,6-penta-methylpiperidin-4-yl) p-methoxybenzylidenemalonate (CAS #147783-69-5).

2.5. **Nickel compounds**, for example nickel complexes of 2,2'-thio-bis-[4-(1,1,3,3-tetramethylbutyl)phenol], such as the 1:1 or 1:2 complex, with or without additional ligands such as n-butylamine, triethanolamine or N-cyclohexyl/diethanolamine, nickel dibutylthiocarbamate, nickel salts of the monoalkyl esters, e.g. the methyl or ethyl ester, of 4-hydroxy-3,5-di-tert-butylbenzylphosphonic acid, nickel complexes of ketoximes, e.g. of 2-hydroxy-4-methylphenyl undecylketoxime, nickel complexes of 1-phenyl-4-lauroyl-5-hydroxyazepanone, with or without additional ligands.

2.6. **Oxamides**, for example 4,4'-dioctyloxyoxanilide, 2,2'-diethoxyoxanilide, 2,2'-dioctyloxy-5,5'-di-tert-butoxanilide, 2,2'-didodecyloxy-5,5'-di-tert-butoxanilide, 2-ethoxy-2'-ethyloxanilide, N,N'-bis(3-dimethylaminopropyl)oxamide, 2-ethoxy-5-tert-butyl-2'-ethoxanilide and its mixture with 2-ethoxy-2'-ethyl-5,4'-di-tert-butoxanilide, mixtures of o- and p-methoxy-disubstituted oxanilides and mixtures of o- and p-ethoxy-disubstituted oxanilides.

2.7. **Tris-aryl-o-hydroxyphenyl-s-triazines**, for example known commercial tris-aryl-o-hydroxyphenyl-s-triazines and triazines as disclosed in, United States Patent Nos. 3,843,371; 4,619,956; 4,740,542; 5,096,489; 5,106,891; 5,298,067; 5,300,414; 5,354,794; 5,461,151; 5,476,937; 5,489,503; 5,543,518; 5,556,973; 5,597,854; 5,681,955; 5,726,309; 5,736,597; 5,942,626; 5,959,008; 5,998,116; 6,013,704; 6,060,543;
6,242,598 and 6,255,483, for example 4,6-bis-(2,4-dimethylphenyl)-2-(2-hydroxy-4-octyloxyphenyl)-s-triazine, Cyasorb® 1164, Cytec Corp, 4,6-bis-(2,4-dimethylphenyl)-2-(2,4-dihydroxyphenyl)-s-triazine, 2,4-bis(2,4-dihydroxyphenyl)-6-(4-chlorophenyl)-s-triazine, 2,4-bis[2-hydroxy-4-(2-hydroxyethoxy)phenyl]-6-(4-chlorophenyl)-s-triazine, 2,4-bis[2-hydroxy-4-(2-hydroxyethoxy)phenyl]-6-(2,4-dimethylphenyl)-s-triazine, 2,4-bis[2-hydroxy-4-(2-hydroxyethoxy)phenyl]-6-(4-bromophenyl)-s-triazine, 2,4-bis[2-hydroxy-4-(2-acetoxyethoxy)phenyl]-6-(4-chlorophenyl)-s-triazine, 2,4-bis[2-hydroxy-4-(2-hydroxyethoxy)phenyl]-6-(4-di-n-butylphenyl)-s-triazine, 2,4-bis[2-hydroxy-4-(2-hydroxyethoxy)phenyl]-6-(2,4-di-n-butylphenyl)-s-triazine, 2,4-bis[2-hydroxy-4-(2-hydroxyethoxy)phenyl]-6-(2,4-di-n-butylphenyl)-s-triazine, 2,4-bis[2-hydroxy-4-(2-hydroxyethoxy)phenyl]-6-(4-bromophenyl)-s-triazine. 2,4-bis[2-hydroxy-4-(3-sec-butyl oxy-2-hydroxypropoxy)phenyl]-6-[2-hydroxy-4-(3-sec-amyloxy-2-hydroxypropoxy)phenyl]-s-triazine, 2,4-bis[2-hydroxy-4-(3-sec-amyloxy-2-hydroxypropoxy)phenyl]-s-triazine, 2,4-bis[2-hydroxy-4-(3-sec-amyloxy-2-hydroxypropoxy)phenyl]-s-triazine, 2,4-bis[2-hydroxy-4-(3-sec-amyloxy-2-hydroxypropoxy)phenyl]-s-triazine (* denotes a mixture of octyloxy, nonyloxy and decyloxy groups), methylenebis[2,4-bis(2,4-dimethylphenyl)-6-(2-hydroxy-4-(3-butyloxy-2-hydroxypropoxy)phenyl]-s-triazine], methylene bridged dimer mixture bridged in the 3:5', 5:5' and 3:3' positions in a 5:4:1 ratio, 2,4,6-tris(2-hydroxy-4-isooctyloxycarbonylisopropylideneoxyphenyl)-s-triazine, 2,4-bis(2,4-dimethylphenyl)-6-(2-hydroxy-4-hexyloxy-5-α-cumylphenyl)-s-triazine, 2-(2,4,6-trimethylphenyl)-4,6-bis[2-hydroxy-4-(3-butyloxy-2-hydroxypropoxy)phenyl]-s-triazine, 2,4,6-tris[2-hydroxy-4-(3-sec-butyloxy-2-hydroxypropoxy)phenyl]-s-triazine, mixture of 4,6-bis-(2,4-dimethylphenyl)-2-(2-hydroxy-4-(3-dodec oxy-2-hydroxypropoxy)-phenyl)-s-triazine and 4,6-bis-(2,4-dimethylphenyl)-2-(2-hydroxy-4-(3-tridec oxy-2-hydroxypropoxy)-phenyl)-s-triazine, Tinuvin® 400, Ciba Specialty Chemicals Corp., 4,6-bis-(2,4-dimethylphenyl)-2-(2-hydroxy-4-(3-(2-ethylhexyloxy)-2-hydroxypropoxy)-phenyl)-s-triazine and 4,6-diphenyl-2-(4-hexyloxy-2-hydroxyphenyl)-s-triazine.

3. Metal deactivators, for example N,N'-diphenyloxamide, N-salicylal-N'-salicyloyl hydrazine, N,N'-bis(salicyloyl) hydrazine, N,N'-bis(3,5-di-tert-butyl-4-hydroxyphenylpropionyl) hydrazine, 3-salicyloylamino-1,2,4-triazole, bis(benzylidene)oxalyl dihydrazide, oxaniilide, isophthaloyl dihydrazide, sebacoyl bisphenyldiazide, N,N'-diacetyladipoyl dihydrazide, N,N'-bis(salicyloyl)oxalyl dihydrazide, N,N'-bis(salicyloyl)thiopropionyl dihydrazide.
4. **Phosphites and phosphonites**, for example triphenyl phosphite, diphenyl alkyl phosphites, phenyl dialkyl phosphites, tris(nonylphenyl) phosphite, trilauryl phosphite, trioctadecyl phosphite, distearyl pentaerythritol diphosphate, tris(2,4-di-tert-butylphenyl) phosphite, diisodecyl pentaerythritol diphosphate, bis(2,4-di-tert-butylphenyl) pentaerythritol diphosphate, bis(2,6-di-tert-butyl-4-methylphenyl)-pentaerythritol diphosphate, diisodecyloxypentaerythritol diphosphate, bis(2,4,6-di-tert-butyl-6-methylphenyl)pentaerythritol diphosphate, bis(2,4,6-tris(tert-butylphenyl)pentaerythritol diphosphate, tristearyl sorbitol triphosphate, tetrakis(2,4-di-tert-butylphenyl) 4,4'-biphenylene diphosphonite, 6-isooctyloxy-2,4,8,10-tetra-tert-butyl-dibenzo[d,f][1,3,2]dioxaphosphepin, 6-fluoro-2,4,8,10-tetra-tert-butyl-12-methyl-dibenzo[d,g][1,3,2]dioxaphosphocin, bis(2,4-di-tert-butyl-6-methylphenyl) methyl phosphite, bis(2,4-di-tert-butyl-6-methylphenyl) ethyl phosphite, 2,2',2'''-nitrilo[triethyltris(3,3',5,5'-tetra-tert-butyl-1,1'''-biphenyl-2,2'''-diyl)phosphate], 2-ethylhexyl(3,3',5,5'-tetra-tert-butyl-1,1'''-biphenyl-2,2'''-diyl)phosphate.

Especially preferred are the following phosphites:

Tris(2,4-di-tert-butylphenyl) phosphite (Irgafos®168, Ciba Specialty Chemicals Corp.), tris(nonylphenyl) phosphite,
5. Hydroxylamines, for example N,N-dibenzylhydroxylamine, N,N-diethylhydroxylamine, N,N-dioctylhydroxylamine, N,N-dilaurylhydroxylamine, N,N-ditetradecylhydroxylamine, N,N-dihexadecylhydroxylamine, N,N-dioctadecylhydroxylamine, N-hexadecyl-N-octadecylhydroxylamine, N-heptadecyl-N-octadecylhydroxylamine, N-methyl-N-octadecylhydroxylamine and the N,N-dialkylhydroxylamine derived from hydrogenated tallow amine.
6. **Nitrones**, for example N-benzyl-α-phenylnitrone, N-ethyl-α-methylnitrone, N-octyl-α-heptylnitrone, N-lauryl-α-undecynitrone, N-tetradecyl-α-tridecynitrone, N-hexadecyl-α-pentadecynitrone, N-octadecyl-α-heptadecynitrone, N-hexadecyl-α-heptadecynitrone, N-octadecyl-α-pentadecynitrone, N-heptadecyl-α-heptadecynitrone, N-octadecyl-α-hexadecynitrone, N-methyl-α-heptadecynitrone and the nitrone derived from N,N-dialkylhydroxylamine derived from hydrogenated tallow amine.

7. **Amine oxides**, for example amine oxide derivatives as disclosed in U.S. Patent Nos. 5,844,029 and 5,880,191, didecyl methyl amine oxide, tridecyl amine oxide, tridodecyl amine oxide and trihexadecyl amine oxide.

9. **Thiosynergists**, for example dilauryl thiodipropionate or distearyl thiodipropionate.

10. **Peroxide scavengers**, for example esters of β-thiodipropionic acid, for example the lauryl, stearyl, myristyl or tridecyl esters, mercaptobenzimidazole or the zinc salt of 2-mercapto benzimidazole, zinc dibutylthiocarbamate, dioctadecyl disulfide, pentaerythritol tetrakis(β-dodecylmercapto)propionate.

11. **Polyamide stabilizers**, for example copper salts in combination with iodides and/or phosphorus compounds and salts of divalent manganese.

12. **Basic co-stabilizers**, for example melamine, polyvinylpyrrolidone, dicyandiamide, triallyl cyanurate, urea derivatives, hydrazine derivatives, amines, polyamides, polyurethanes,
alkali metal salts and alkaline earth metal salts of higher fatty acids, for example, calcium stearate, zinc stearate, magnesium behenate, magnesium stearate, sodium ricinoleate and potassium palmitate, antimony pyrocatecholate or zinc pyrocatecholate.

13. **Nucleating agents**, for example inorganic substances such as talcum, metal oxides such as titanium dioxide or magnesium oxide, phosphates, carbonates or sulfates of, preferably, alkaline earth metals; organic compounds such as mono- or polycarboxylic acids and the salts thereof, e.g. 4-tert-butylbenzoic acid, adipic acid, diphenylacetic acid, sodium succinate or sodium benzoate; polymeric compounds such as ionic copolymers (ionomers).

14. **Fillers and reinforcing agents**, for example calcium carbonate, silicates, glass fibers, glass bulbs, asbestos, talc, kaolin, mica, barium sulfate, metal oxides and hydroxides, carbon black, graphite, wood flour and flours or fibers of other natural products, synthetic fibers.

15. **Dispersing Agents**, such as polyethylene oxide waxes or mineral oil.

16. **Other additives**, for example plasticizers, lubricants, emulsifiers, pigments, dyes, optical brighteners, rheology additives, catalysts, flow-control agents, slip agents, crosslinking agents, crosslinking boosters, halogen scavengers, smoke inhibitors, flameproofing agents, antistatic agents, clarifiers such as substituted and unsubstituted bisbenzylidene sorbitols, benzoxazinone UV absorbers such as 2,2′-p-phenylene-bis(3,1-benzoxazin-4-one), Cysorb® 3638 (CAS# 18600-59-4), and blowing agents.

Of interest are compositions comprising as further additives one or more additives selected from the group consisting of the hydroxylamine stabilizers, the organic phosphorus stabilizers, the benzofuranone stabilizers and the hydroxyphenylbenzotriazole, hydroxyphenyl-s-triazine or benzophenone ultraviolet light absorbers.

Nano-scaled fillers, or nanocomposites, may also be employed in the present compositions. Included are “nanoclays”, disclosed for example in U.S. Pat. Nos. 5,853,886 and 6,020,419.

Nano-scaled fillers are for example phyllosilicates or smectite clays, for example organophilic phyllosilicates, naturally occuring phyllosilicates, synthetic phyllosilicates or a
mixture of such phyllosilicates. The present nano-scaled fillers are for example montmorillonites, bentonites, beidellite, hectorites, saponites or stevensites.

For example, nano-scaled montmorillonites have a “platey” or platelet structure. The platelets generally have a thickness below about 2 nm. The platelets or particles generally have an average diameter between about 20 and about 30,000 nm, and a ratio of length to width of between about 30,000:1 and 20:1. Commercially available nano-scaled montmorillonites of such structure are Nanomer® I.42E, available from Nanocor, and Cloisite® 30B, available from Southern Clay.

Nano-scaled fillers possess an extremely large surface with high surface energy. The deactivation of the surface energy and the compatibilization of the nano-scaled fillers with a polymer is therefore even more important than with a common micro-scaled filler in order to avoid coagulation and reach an excellent dispersion of the nano-scaled filled in the polymer. The nano-scaled fillers like the phyllosilicates are made organophilic by ion exchange, for example with alkylammonium salts. Such nano-scaled organophilic phyllosilicates are better swellable and easier to disperse in a polymer matrix.

Treated nano-scaled fillers are also referred to as “treated layered clay material” or “organoclay”.

The nano-scaled filler is present in the compositions of the present invention at a concentration of about 0.5 to about 10% by weight, based on the weight of the polyolefin, for example, about 1 to about 9% by weight, for instance about 3 to about 7% by weight, for example about 5% by weight, based on the weight of the polyolefin.

The present polyolefin compositions exhibit good weatherability (stability towards heat, oxygen and light), scratch resistance, good processability, good mechanical strength, good gloss retention, and are non-sticky. The polyolefin molded parts are suitable for example for automotive applications, i.e. bumper fascia and the like.

The present polyolefin compositions may also be for example in the form of sheets, part of multilayer structures, wire or cable insulation, films or composites.
For example, the compositions of the present invention are useful for many applications, for example outdoor applications, including:

Thermoplastic olefins
Paintable thermoplastic olefins
Polypropylene molded articles
Polyethylene film
Grease-filled wire and cable insulation
Polyolefin tanks or containers containing chemicals
Polyolefin films with an antifog agent
Polyolefin films with IR thermal fillers such as hydrotalcites, e.g. DHT4A
Polyolefin films with an antistatic agent
Flame-resistant molded polypropylene articles
Flame-resistant molded thermoplastic olefins
Flame-resistant polyethylene film
Pre-formed films for lamination to plastic substrates
Electronic appliances
Containers, boxes, bins for storage and transportation
Automotive applications e.g. bumper fascia, dashboard, back board
Furniture e.g. stadium seats, public seats
Roofing sheets
Roofing membranes
Flooring materials
Liners
Profiles, for example window and door profiles
Polyolefin tapes
Geomembranes
Banner films
Thermoplastic electrical parts (plugs, sockets or wire insulations)
Polyolefin Hollow Articles by the Rotomolding Process
Natural products composites

The present compositions are also useful for expandable polypropylene and expandable polyethylene foams (EPP and EPE).
The present compositions exhibit, besides an anti-scratch effect also an anti-squeak (anti-noise) effect and an anti-stress-whitening (anti-marking) effect, for example anti-squeak and anti-whitening effects during production of polyolefin articles.

The following Examples illustrate the invention in more detail. Unless otherwise indicated, all percentages are in parts by weight.

Example 1: Scratch resistance of polypropylene.

The present functionalized olefin polymers b) are:

- b1) polymer of C\textsubscript{22}-C\textsubscript{28} alpha-olefin with maleic anhydride,
- b2) tallow fatty alcohol ester of the polymer of C\textsubscript{22}-C\textsubscript{28} alpha-olefin with maleic anhydride:

![Chemical Structure](image)

where \(R_1\) and \(R_2\) are tallow, \(R\) is C\textsubscript{20}-C\textsubscript{24} alkyl and \(n\) is an average value of about 45,

- b3) maleic acid grafted polypropylene or
- b4) tallow fatty alcohol ester of the maleic acid grafted polypropylene.

The present fatty acid amides of component c) are:

- c1) stearyl erucamide or
- c2) oleyl palmitamide.

The present low molecular weight sterically hindered amines are:
d i1) bis(2,2,6,6-tetramethylpiperidin-4-yl) sebacate (HALS 2)),

d i2) bis(1-octyloxy-2,2,6,6-tetramethylpiperidyl) sebacate (HALS 6)),

d i3) 1-(2-hydroxy-2-methylpropoxy)-4-octadecanoyloxy-2,2,6,6-
tetramethylpiperidine (HALS 14)) or

d i4) bis(1-(2-hydroxy-2-methylpropoxy)-2,2,6,6-tetramethylpiperidin-4-yl) sebacate (HALS 15)).

The high molecular weight hindered amine stabilizers are:

d ii1) the reaction product of 2,4-bis[[1-cyclohexyloxy-2,2,6,6-piperidin-4-yl]-
butylamino]-6-chloro-s-triazine with N,N'-bis(3-aminopropyl)ethylenediamine)
(HALS 33)),

d ii2) the condensate of 1-(2-hydroxyethyl)-2,2,6,6-tetramethyl-4-hydroxypiperidine
and succinic acid (HALS 34)),

d ii3) linear or cyclic condensates of N,N'-bis(2,2,6,6-tetramethyl-4-piperidyl)-hexa-
methylenediamine and 4-tert-octylamino-2,6-dichloro-1,3,5-triazine (HALS 35)),

d ii4) linear or cyclic condensates of N,N'-bis-(2,2,6,6-tetramethyl-4-piperidyl)hexa-
methylenediamine and 4-morpholino-2,6-dichloro-1,3,5-triazine (HALS 37)),

d ii5) linear or cyclic condensates of N,N'-bis-(1,2,2,6,6-pentamethyl-4-
piperidyl)hexamethylenediamine and 4-morpholino-2,6-dichloro-1,3,5-triazine
(HALS 38)),

d ii6) the condensate of 2-chloro-4,6-bis(4-n-butylamino-2,2,6,6-
tetramethylpiperidyl)-1,3,5-triazine and 1,2-bis(3-aminopropylamino)ethane
(HALS 39)) or

d ii7) the oligomeric compound which is the condensation product of 4,4'-hexamethy-
lene-bis(amo-2,2,6,6-tetramethylpiperidine) and 2,4-dichloro-6-[(2,2,6,6-tetra-
methylpiperidin-4-yl)butylamino]-s-triazine end-capped with 2-chloro-4,6-bis(di-
butylamino)-s-triazine (HALS 44)).

A 2:1 weight:weight blend of the carboxylic acid reagent functionalized olefin polymer b) to
the primary or secondary fatty acid amide c) is prepared. Likewise, 1:1 weight:weight blends
and 1:2 weight:weight blends are prepared.

The components b) and c) are present at weight levels, in total, of 3%, based on the weight
of the polypropylene.
The hindered amines of component d) are present at weight levels of 1%, 2% and 3%, based on the polypropylene.

The weight:weight ratio of the low mol. wt. hindered amines to the high mol. weight hindered amines is about 1:1.

Other additives evaluated for comparative performance are oleamide, stearyl erucamide and Dow Corning MB 50-321 polysiloxane additive. Weight percents are on polypropylene. The additives are compounded in impact modified copolymer polypropylene (PROFAX 7523 commercially available from Basell) and high impact polypropylene (3-5 melt flow) containing 20-30% talc and 2-3% carbon black. All compounding is done using 25 mm twin-screw extruder using industry standard conditions. All of the formulations also contain stabilizers such as a hydroxyphenylbenzotriazole or a tris-aryl-s-triazine ultraviolet light absorber, a hindered phenolic antioxidant and an organic phosphorus processing stabilizer. Injection molded plaques are made from the compounded samples using BOY 50-M injection molding machine using standard conditions.

Several tests are performed to evaluate scratch resistance before and after weathering, in addition to impact properties.

Standard Five Finger Scratch test guidelines (Daimler Chrysler Corporation Test Number LP-463DD-18-1, dated 2002-07-24)

<table>
<thead>
<tr>
<th>Rating</th>
<th>Scratch Width</th>
<th>Whitening</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 (best)</td>
<td><0.2 mm wide, almost invisible</td>
<td>none</td>
</tr>
<tr>
<td>2</td>
<td>0.2-0.3 mm wide, slight deformation, visible at close range</td>
<td>none</td>
</tr>
<tr>
<td>3</td>
<td>0.3-0.4 mm wide, clearly visible</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>0.4-0.5 mm wide</td>
<td>visible whitening over entire scratch</td>
</tr>
</tbody>
</table>
5 (worst) >0.5 mm wide white over entire scratch and possibly accompanied by debris

The present inventive blends provide for excellent scratch resistance and are non-sticky.

Results after Weathering: In a separate detailed study, results are shown after weathering. Xenon arc WeatherOmeter at 0.55 W/m² irradiance (340 nm), SAE J 1885 – NAFTA interior automotive protocol, 89°C black panel temperature, dry conditions. Scratch resistance to 600 kJ/m² is desirable. Standard five-finger test ratings are measured. After 600 KJS weathering, the present inventive blends exhibit outstanding scratch resistance.

Plaques containing stearyl erucamide alone become sticky after exposure to 600KJS. The inventive blend gives a surprising synergistic effect without any adverse effect upon weathering. That is, the inventive blends provide for excellent scratch resistance and weathering stability, and are non-sticky.

Modified Taber Abrasion Test: Visual inspection guidelines

<table>
<thead>
<tr>
<th>Rating</th>
<th>Scratch Width</th>
<th>Relative Performance</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 (best)</td>
<td><50 mm</td>
<td>excellent</td>
</tr>
<tr>
<td>2</td>
<td>200-300 mm</td>
<td>good</td>
</tr>
<tr>
<td>3</td>
<td>300-400 mm</td>
<td>fair</td>
</tr>
<tr>
<td>4</td>
<td>400-500 mm</td>
<td>poor</td>
</tr>
<tr>
<td>5 (worst)</td>
<td>>500 mm</td>
<td>very poor</td>
</tr>
</tbody>
</table>

The present inventive blends provide for excellent abrasion resistance according to the Taber Abrasion Test.

The present inventive additive blends provide for excellent impact strength according to the Notched Izod Impact test.
Example 2: Surface Tack of polyolefins.

The fatty acid amide components, although necessary as part of the present antiscratch additive package, may cause "stickiness" or "surface tack". Formulations with erucamide and different hindered amine light stabilizers are tested for surface tack.

The formulations are prepared in thermoplastic olefin (TPO) via melt compounding. The TPO formulations are extruded at 200 to 220°C in a Leistritz twin screw extruder, 27 mm, co-rotating screws. The TPO formulations are injection molded at a melt temperature of 200 to 240°C, holding pressure of 500 psi, injection pressure stage 1 of 700 psi, back pressure of 200 psi, mold temperature of 70°C. The finished TPO products are 3.2 mm thick, 10 cm by 15.3 cm smooth, flat plaques.

The plaques are allowed to stand at room temperature and ambient humidity for at least 24 hours before initiating any exposure testing. Molded plaques are exposed for various intervals in accelerated weathering. UV exposures are conducted according to SAE J 1885 protocol. Exposure designated as kJ/m² at 340 nm.

Test specimens are removed at various intervals while the samples are hot. An LDPE film is placed on each plaque completely covering the surface. Plaque-film composites are then stacked together (no more than 10 high) separated with Teflon spacers. A 5 kg weight is placed on the stack which is allowed to equilibrate for 30 minutes at room temperature. After 30 minutes under the 5 kg weight, the stack of composites is carefully separated making sure not to disturb the film on any of the plaque surfaces. A plaque-film assembly is then placed on a Kayeness Film Block-Reblock Tester Model #D-9046 with the plaque on the stationary platen and secured with two magnetic strips. The Film Block Tester is activated and the weight necessary to separate the film from the plaque is recorded. A weight of 14-20 g is a "zero" value. A weight of 212 g is a maximum value. This means that a measurement of 212 g may in fact have taken substantially more than 212 g to separate the film from the plaque.

The LDPE film is produced on a blown film line using unstabilized polymer (to ensure that no migration of additives occurs).
The side of the plaque that faces the xenon lamp is tested for surface tack.

Formulations:

1) 0.9 weight percent erucamide

2) 0.9 weight percent erucamide and 0.2 weight percent of the hindered amine

3) 0.9 weight percent erucamide and 0.2 weight percent of the hindered amine

4) 0.9 weight percent erucamide and 0.2 weight percent of the hindered amine
5) 0.9 weight percent erucamide and 0.2 weight percent of a 1:1 weight combination of

![Chemical Structure](image)

MW 480 and

MW ca. 2500

The results are disclosed in Table 1.
Table 1:

<table>
<thead>
<tr>
<th>Formulation</th>
<th>Tack Test (grams) at 352 kJ/m²</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>212 (maximum)</td>
</tr>
<tr>
<td>2</td>
<td>48</td>
</tr>
<tr>
<td>3</td>
<td>212 (maximum)</td>
</tr>
<tr>
<td>4</td>
<td>186</td>
</tr>
<tr>
<td>5</td>
<td>26 (present invention)</td>
</tr>
</tbody>
</table>

It is seen that the formulations of the present invention, containing a high molecular weight hindered amine and a low molecular weight hindered amine, are superior towards surface tack (lowest weight to separate the film from the plaque).

The formulation with only a high molecular weight hindered amine fails (at least maximum weight required, formulation 3).

The formulation with only a low molecular weight hindered amine performs poorly (formulation 4).

The formulation with a hindered amine with a molecular weight that is between low and high is about twice as sticky as the inventive formulation.

Example 3: Multi-layer Polymer Structures.

The present components b) and c) have utility as anti-scratch additives in polyolefin layers present in multilayer polymer structures. Examples of such polymer structures include but are not limited to:

1.) Sheets and signs as seen in United States Patent Nos. 6,150,440 and 5,387,458.

3.) Base stock or cap stock for coextrusion structures such as window profiles, laminates over automotive bumpers or auto exterior panels.

A multilayer polymer composite is prepared by different routes, such as co-extrusion of one or more polymer compositions to form the multilayer composite. Alternatively, compression molding or thermoforming of polymer compositions produces the desired polymer composite. In particular, these techniques are used in the manufacture of signage, typically composed of one or more layers of polymeric materials formed on top of a base material (metal sheet, plastic, etc).

Example 4: TPO Roofing Membranes.

The polyolefin molded articles of this invention may be used for example as roofing membranes, siding, window profiles and moldings. Such molded articles are for example about 0.127 mm to about 2.54 mm thick. The polyolefin is in particular thermoplastic polyolefin (TPO). The molded articles of this invention exhibit excellent scratch resistance.

A typical state of the art formulation for such applications is for example:

<table>
<thead>
<tr>
<th>parts</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Polypropylene copolymer</td>
<td>100</td>
</tr>
<tr>
<td>TiO₂ or carbon black</td>
<td>3</td>
</tr>
<tr>
<td>CaCO₃</td>
<td>5</td>
</tr>
<tr>
<td>Magnesium hydroxide</td>
<td>35</td>
</tr>
<tr>
<td>UV stabilizer</td>
<td>1</td>
</tr>
<tr>
<td>Lubricant or other</td>
<td>1</td>
</tr>
<tr>
<td>Flame retardant</td>
<td>6</td>
</tr>
<tr>
<td>Present anti-scratch system</td>
<td>3</td>
</tr>
</tbody>
</table>
Example 5: Scratch resistance of polyethylene and polypropylene films.

Film grade polyethylene is dry blended with test additives and then melt compounded into pellets. The pelletized fully formulated resin is then blown at 205°C using a MPM Superior Blown film extruder.

The films exhibit excellent scratch resistance.

Film grade polypropylene is handled in a similar fashion and polypropylene films containing the present additive combinations also show excellent scratch resistance.

Example 6: Preparation of polyolefin hollow articles by the rotomolding process.

100 parts by weight medium density polyethylene, copolymerized with hexene (Novapol® TR-0735, nominal melt index 6.8 g/10 minutes, density 0.935 g/cm³) are dry blended with 0.050 parts of calcium stearate and a combination of additional stabilizers (see below). The mixtures are melt compounded into pellets at 232°C in a Superior/MPM extruder using a 24:1 L/D screw with Maddock mixing head at 100 rpm.

The compounded pellets are ground to a uniform particle size (150-500 μm) prior to the rotational molding process. This grinding step increases the surface area of the particles leading to a faster heat absorption, and thus reducing overall energy consumption.

The rotational molding process is performed in a laboratory scale equipment FSP M20 "Clamshell". The ground resin is placed in a cast aluminum mold, which is rotated biaxially in a gas fired oven. Hot air is circulated by blowers in the chamber while the temperature is increased to 288°C within 4 minutes. This temperature is maintained for a specific time. Subsequently, the oven is opened and while still rotating, the mold is cooled with forced air circulation for 7 minutes, followed by water spray mist for 7 minutes, and an additional air cooling step for 2 minutes. Throughout the entire heating and cooling cycles, the speed of the major axis is maintained at 6 rpm with a 4.5 : 1 ratio of rotation. After the cooling cycles, the mold is opened and the hollow object removed.
Present formulations are additionally blended with a combination of 0.100 parts of a phosphite processing stabilizer, 0.050 parts of a dialkylhydroxylamine processing stabilizer, 0.200 parts of a hindered amine combination and 3 parts of a present anti-scratch additive combination. The articles exhibit excellent scratch resistance.

Example 7: Natural Products Composites.

Natural products composites are provided by the combination of wood fibers or flour (sawdust), coconut shells, sugar cane bagasse, flax, hemp, jute, kenaf, rice husk and the like with thermoplastic resins. They may for example be natural fiber/plastic composites as disclosed in U.S. Pat. Nos. 6,290,885 and 6,511,757. Both the thermoplastic resin component and the natural products component may come from recycled materials.

The composites are in the form of extruded products, for example, pressed wood, particle board, chip board, wafer board, plywood, laminated materials and the like.

The composites may be employed as construction and building materials, for example decking, fencing, frames and molding, window and door profiles, shingles, roofing, siding and the like. They may be employed in for example automotive applications, e.g. interior panels, rear shelves, and spare tire covers. The natural products composites are suitable for infrastructure applications, for example boardwalks, docks and related structures. They may also be used in consumer/industrial applications, for instance as picnic tables, park benches, pallets, etc. The composites may be used to replace parts currently being produced from wood, thermoplastics or metal, or combinations thereof.

To a 1:1 mixture of 100 parts by weight wood flour/PE is added about 3 weight percent of present components b) and c). The mixtures are processed in a Haake mixer at 160°C and the processed material is compression molded at 193°C into 1.0 mm plaques. The plaques exhibit excellent scratch resistance.
What is claimed is:

1. A polyolefin composition comprising

 a) a polyolefin substrate and

an amount effective to improve the scratch resistance and light stability of said polyolefin
substrate of an additive combination of

 b) a carboxylic acid reagent functionalized olefin polymer or copolymer,
 c) a primary or secondary fatty acid amide and
 d) a combination of

 i) a low molecular weight sterically hindered amine light stabilizer and
 ii) a high molecular weight sterically hindered amine light stabilizer.

2. A composition according to claim 1 wherein component (a) is polypropylene, polyethylene or thermoplastic polyolefin.

3. A composition according to claim 1 wherein component (b) is an olefin polymer or copolymer grafted with an alpha, beta-unsaturated carboxylic acid reagent.

4. A composition according to claim 1 wherein component (b) is an olefin polymer or copolymer grafted with an alpha, beta-unsaturated carboxylic acid reagent selected from the group consisting of acrylic acid, methacrylic acid, methyl acrylate, methyl methacrylate, 2-hydroxypropyl methacrylate, butyl acrylate and maleic anhydride.

5. A composition according to claim 1 wherein component (b) is an olefin polymer or copolymer grafted with maleic anhydride.

6. A composition according to claim 1 wherein component (c) is stearyl erucamide or oleyl palmitamide.
7. A composition according to claim 1 wherein the low molecular weight hindered amines have a molecular weight of from 200 to 1000 g/mol and the high molecular weight hindered amines have a molecular weight of from 1200 to 10,000 g/mol.

8. A composition according to claim 1 wherein the low molecular weight hindered amines are selected from the group consisting of

1) 1-cyclohexyloxy-2,2,6,6-tetramethyl-4-octadecylaminopiperidine,
2) bis(2,2,6,6-tetramethylpiperidin-4-yl) sebacate,
3) bis(1-acetoxy-2,2,6,6-tetramethylpiperidin-4-yl) sebacate,
4) bis(1,2,2,6,6-pentamethyl-4-yl) sebacate,
5) bis(1-cyclohexyloxy-2,2,6,6-tetramethylpiperidin-4-yl) sebacate,
6) bis(1-octyloxy-2,2,6,6-tetramethylpiperidin-4-yl) sebacate;
7) bis(1-acyl-2,2,6,6-tetramethylpiperidin-4-yl) sebacate,
8) bis(1,2,2,6,6-pentamethyl-4-piperidyl) n-butyl-3,5-di-tert-butyl-4-hydroxybenzylmalonate
9) 2,4-bis[(1-cyclohexyloxy-2,2,6,6-tetramethylpiperidin-4-yl)butylamino]-6-(2-hydroxyethylamino)-s-triazine,
10) bis(1-cyclohexyloxy-2,2,6,6-tetramethylpiperidin-4-yl) adipate,
11) 2,4-bis[(1-cyclohexyloxy-2,2,6,6-piperidin-4-yl)butylamino]-6-chloro-s-triazine,
12) 1-(2-hydroxy-2-methylpropoxy)-4-hydroxy-2,2,6,6-tetramethylpiperidine,
13) 1-(2-hydroxy-2-methylpropoxy)-4-oxo-2,2,6,6-tetramethylpiperidine,
14) 1-(2-hydroxy-2-methylpropoxy)-4-octadecanoyloxy-2,2,6,6-tetramethylpiperidine,
15) bis(1-(2-hydroxy-2-methylpropoxy)-2,2,6,6-tetramethylpiperidin-4-yl) sebacate,
16) bis(1-(2-hydroxy-2-methylpropoxy)-2,2,6,6-tetramethylpiperidin-4-yl) adipate,
17) 2,4-bis[N-[1-(2-hydroxy-2-methylpropoxy)-2,2,6,6-tetramethylpiperidin-4-yl]-N-butyramino]-6-(2-hydroxyethylamino)-s-triazine,
18) 4-benzoyl-2,2,6,6-tetramethylpiperidine,
19) di-(1,2,2,6,6-pentamethylpiperidin-4-yl) p-methoxybenzylidenemalonate,
20) 4-stearyloxy-2,2,6,6-tetramethylpiperidine,
21) bis(1-octyloxy-2,2,6,6-tetramethylpiperidyl) succinate,
22) 1,2,2,6,6-pentamethyl-4-aminopiperidine,
23) 2-undecyl-7,7,9,9-tetramethyl-1-oxa-3,8-diaza-4-oxo-spiro[4,5]decane,
24) tris(2,2,6,6-tetramethyl-4-piperidyl) nitrilotriacetate,
25) tris(2-hydroxy-3-(amino-(2,2,6,6-tetramethylpiperidin-4-yl)propyl) nitrilotriacetate,
26) tetrakis(2,2,6,6-tetramethyl-4-piperidyl)-1,2,3,4-butane-tetracarboxylate,
27) tetrakis(1,2,2,6,6-pentamethyl-4-piperidyl)-1,2,3,4-butane-tetracarboxylate,
28) 1,1’-(1,2-ethanediyl)-bis(3,3,5,5-tetramethylpiperazinone),
29) 3-n-octyl-7,7,9,9-tetramethyl-1,3,8-triaza-2,4-dione[4.5]decan-2,4-dione,
30) 8-acetyl-3-dodecyl-7,7,9,9-tetramethyl-1,3,8-triaza-2,4-dione[4.5]decan-2,4-dione,
31) 3-dodecyl-1-(2,2,6,6-tetramethyl-4-piperidyl)pyrrrolidine-2,5-dione,
32) 3-dodecyl-1-(1,2,2,6,6-pentamethyl-4-piperidyl)pyrrrolidine-2,5-dione and
33) N,N'-bis-formyl-N,N'-bis(2,2,6,6-tetramethyl-4-piperidyl)hexamethylenediamine

and the high molecular weight hindered amines are selected from the group consisting of

34) the reaction product of 2,4-bis[(1-cyclohexyloxy-2,2,6,6-piperidin-4-yl)butylamino]-6-chloro-s-triazine with N,N'-bis(3-aminopropyl)hexamethylenediamine,
35) the condensate of 1-(2-hydroxyethyl)-2,2,6,6-tetramethyl-4-hydroxypiperidine
and succinic acid,
36) linear or cyclic condensates of N,N'-bis(2,2,6,6-tetramethyl-4-piperidyl)-hexamethylenediamine and 4-tert-octylamino-2,6-dichloro-1,3,5-triazine,
37) linear or cyclic condensates of N,N'-bis(2,2,6,6-tetramethyl-4-piperidyl)-hexamethylenediamine and 4-cyclohexylamino-2,6-dichloro-1,3,5-triazine,
38) linear or cyclic condensates of N,N'-bis(2,2,6,6-tetramethyl-4-piperidyl)-hexamethylenediamine and 4-morpholine-2,6-dichloro-1,3,5-triazine,
39) linear or cyclic condensates of N,N'-bis(1,2,2,6,6-pentamethyl-4-piperidyl)-hexamethylenediamine and 4-morpholine-2,6-dichloro-1,3,5-triazine,
40) the condensate of 2-chloro-4,6-bis(4-n-butylamino-2,2,6,6-tetramethylpiperidyl)-1,3,5-triazine and 1,2-bis(3-aminopropylamino)ethane,
41) the condensate of 2-chloro-4,6-di-(4-n-butylamino-1,2,2,6,6-pentamethylpiperidyl)-1,3,5-triazine and 1,2-bis-(3-aminopropylamino)ethane,
42) a reaction product of 7,7,9,9-tetramethyl-2-cycloundecyl-1-oxa-3,8-diaza-4-oxospiro [4,5]decan and epichlorohydrin,
43) poly[methyl,(3-oxy-(2,2,6,6-tetramethylpiperidin-4-yl)propyl]] siloxane,
 CAS#182635-99-0,
44) reaction product of maleic acid anhydride-C_{18}-C_{22} oligo-α-olefin-copolymer with
 2,2,6,6-tetramethyl-4-aminopiperidine,
45) the oligomeric compound which is the condensation product of 4,4′-hexamethylen-bis(amo-no-2,2,6,6-tetramethylpiperidine) and 2,4-dichloro-6-{[2,2,6,6-tetramethylpiperidi-n-4-yl]butylamino]-s-triazine end-capped with 2-chloro-4,6-bis(dibutylamino)-s-triazine,

46) the oligomeric compound which is the condensation product of 4,4′-hexamethylen-bis(amo-no-1,2,2,6,6-pentamethylpiperidine) and 2,4-dichloro-6-{[1,2,2,6,6-pentamethylpiperidi-n-4-yl]butylamino]-s-triazine end-capped with 2-chloro-4,6-bis(dibutylamino)-s-triazine,

47) the oligomeric compound which is the condensation product of 4,4′-hexamethylen-bis(amo-no-1-propoxy-2,2,6,6-tetramethylpiperidine) and 2,4-dichloro-6-{[1-propoxy-2,2,6,6-tetramethylpiperidi-n-4-yl]butylamino]-s-triazine end-capped with 2-chloro-4,6-bis(dibutylamino)-s-triazine,

48) the oligomeric compound which is the condensation product of 4,4′-hexamethylen-bis(amo-no-1-acyloxy-2,2,6,6-tetramethylpiperidine) and 2,4-dichloro-6-{[1-acyloxy-2,2,6,6-tetramethylpiperidi-n-4-yl]butylamino]-s-triazine end-capped with 2-chloro-4,6-bis(dibutylamino)-s-triazine and

49) product obtained by reacting a product, obtained by reacting 1,2-bis(3-amino-propylamino)ethane with cyanuric chloride, with (2,2,6,6-tetramethylpiperidi-n-4-yl)butylamine.

9. A composition according to claim 1 wherein the low molecular weight hindered amines are selected from the group consisting of

2) bis(2,2,6,6-tetramethylpiperidi-n-4-yl) sebacate,

6) bis(1-octyloxy-2,2,6,6-tetramethylpiperidyl) sebacate,

14) 1-(2-hydroxy-2-methylpropoxy)-4-octadecanoyloxy-2,2,6,6-tetramethylpiperidine, and

15) bis(1-(2-hydroxy-2-methylpropoxy)-2,2,6,6-tetramethylpiperidi-n-4-yl) sebacate,

and the high molecular weight hindered amines are selected from the group consisting of

34) the reaction product of 2,4-bis{[1-cyclohexyloxy-2,2,6,6-piperidi-n-4-yl]butylamino]-6-chloro-s-triazine with N,N′-bis(3-aminopropyl)ethylenediamine,
35) the condensate of 1-(2-hydroxyethyl)-2,2,6,6-tetramethyl-4-hydroxypiperidine and succinic acid,
36) linear or cyclic condensates of N,N'-bis(2,2,6,6-tetramethyl-4-piperidyl)-hexamethylenediamine and 4-tert-octylamino-2,6-dichloro-1,3,5-triazine,
38) linear or cyclic condensates of N,N'-bis(2,2,6,6-tetramethyl-4-piperidyl)-hexamethylenediamine and 4-morpholino-2,6-dichloro-1,3,5-triazine,
39) linear or cyclic condensates of N,N'-bis-(1,2,2,6,6-pentamethyl-4-piperidyl)-hexamethylenediamine and 4-morpholino-2,6-dichloro-1,3,5-triazine,
40) the condensate of 2-chloro-4,6-bis(4-n-butylamino-2,2,6,6-tetramethylpiperidyl)-1,3,5-triazine and 1,2-bis(3-aminopropylamino)ethane, and
45) the oligomeric compound which is the condensation product of 4,4'-hexamethylene-bis(aminoo-2,2,6,6-tetramethylpiperidine) and 2,4-dichloro-6-[(2,2,6,6-tetramethylpiperidin-4-yl)butylamino]-s-triazine end-capped with 2-chloro-4,6-bis(di-butylamino)-s-triazine.

10. A composition according to claim 1 further comprising one or more additives selected from the group consisting of the hydroxylamine stabilizers, the organic phosphorus stabilizers, the benzofuranone stabilizers and the hydroxyphenylbenzotriazole, hydroxyphenyl-s-triazine or benzophenone ultraviolet light absorbers.

11. A method for providing scratch resistance and light stability to a polyolefin substrate, which method comprises incorporating into said polyolefin an effective amount of an additive combination of

b) a carboxylic acid reagent functionalized olefin polymer or copolymer,
c) a primary or secondary fatty acid amide and
d) a combination of
 i) a low molecular weight sterically hindered amine light stabilizer and
 ii) a high molecular weight sterically hindered amine light stabilizer.

12. Use of an additive combination of

b) a carboxylic acid reagent functionalized olefin polymer or copolymer,
c) a primary or secondary fatty acid amide and
d) a combination of
i) a low molecular weight sterically hindered amine light stabilizer and
ii) a high molecular weight sterically hindered amine light stabilizer,

for improving the scratch resistance and light stability of a polyolefin substrate.
INTERNATIONAL SEARCH REPORT

A. CLASSIFICATION OF SUBJECT MATTER

INV. C08L51/06 C08L23/08 C08K5/20 C08K5/10 C08F255/02

According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols)
C08L C08F C08K

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

Electronic data base consulted during the international search (name of data base and, where practical, search terms used)
EPO-Internal, WPI Data, PAJ

C. DOCUMENTS CONSIDERED TO BE RELEVANT

<table>
<thead>
<tr>
<th>Category</th>
<th>Citation of document, with indication, where appropriate, of the relevant passages</th>
<th>Relevant to claim No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>P, X</td>
<td>WO 2006/003127 A (CIBA SPECIALITY CHEMICALS HOLDING INC; SHARMA, ASHUTOSH, H)</td>
<td>1-12</td>
</tr>
<tr>
<td></td>
<td>12 January 2006 (2006-01-12)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>*same invention, same applicant - priority date not valid *</td>
<td></td>
</tr>
<tr>
<td></td>
<td>abstract</td>
<td></td>
</tr>
<tr>
<td></td>
<td>claims 1-14</td>
<td></td>
</tr>
<tr>
<td></td>
<td>page 2, paragraphs 6,7</td>
<td></td>
</tr>
<tr>
<td></td>
<td>page 7, paragraph 1 - page 9, paragraph 1</td>
<td></td>
</tr>
<tr>
<td></td>
<td>page 14, paragraph 6 - page 15, paragraph 2</td>
<td></td>
</tr>
<tr>
<td></td>
<td>page 17, paragraph 3 - page 19, paragraph 1</td>
<td></td>
</tr>
<tr>
<td></td>
<td>page 19, paragraph 3</td>
<td></td>
</tr>
<tr>
<td></td>
<td>page 22, paragraph 1</td>
<td></td>
</tr>
<tr>
<td></td>
<td>page 24, lines 1,2</td>
<td></td>
</tr>
<tr>
<td></td>
<td>page 20, paragraph 3 - page 24, paragraph 3</td>
<td></td>
</tr>
</tbody>
</table>

Further documents are listed in the continuation of Box C.

See patent family annex.

** Special categories of cited documents:
* A* document defining the general state of the art which is not considered to be of particular relevance
* E* earlier document but published on or after the international filing date
* L* document which may throw doubt on priority claim(s) or which is cited to establish the publication date of another citation or other special reason (as specified)
* O* document referring to an oral disclosure, use, exhibition or other means
* P* document published prior to the international filing date but later than the priority date claimed

1 later document published after the international filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the invention
1C document of particular relevance; the claimed invention cannot be considered novel or cannot be considered to involve an inventive step when the document is taken alone
1V document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such documents, such combination being obvious to a person skilled in the art.
* & document member of the same patent family

Date of the actual completion of the International search: 27 July 2006

Date of mailing of the international search report: 14/08/2006

Name and mailing address of the ISA
European Patent Office, P.B. 5018 Patentlaan 2
NL - 2280 HV Rijswijk
Tel. (+31-70) 340-2040, Tx. 31 651 epo nl
Fax: (+31-70) 340-3010

Authorized officer
Hammond, A
<table>
<thead>
<tr>
<th>Category</th>
<th>Citation of document, with indication, where appropriate, of the relevant passages</th>
<th>Relevant to claim No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Y</td>
<td>WO 2004/099303 A (HONDA MOTOR CO., LTD; ADVANCED COMPOSITES, INC; MCENHILL, COREY, S; CE) 18 November 2004 (2004-11-18) abstract; claims 1-8 page 6, line 6 – page 7, line 3 page 9, lines 15-36 page 2, lines 1-4 page 4, lines 28-35</td>
<td>1-12</td>
</tr>
<tr>
<td>Y</td>
<td>EP 0 921 152 A (CIBA SPECIALTY CHEMICALS HOLDING INC; SOLVAY ENGINEERED POLYMERS; SOLV) 9 June 1999 (1999-06-09) abstract; claims 1,3-6,17 page 8, lines 12-51 page 7, lines 8-10 page 7, lines 15-34</td>
<td>1-12</td>
</tr>
<tr>
<td>A</td>
<td>EP 0 382 559 A (TONEN SEKIYUKAGAKU KABUSHIKI KAISHA; TONEN CHEMICAL CORPORATION) 16 August 1990 (1990-08-16) abstract; claims 1-9 page 4, lines 1-58 page 5, lines 28-35 page 5, lines 2-11</td>
<td>1-12</td>
</tr>
<tr>
<td>A</td>
<td>US 5 973 070 A (BAANN ET AL) 26 October 1999 (1999-10-26) abstract; claims 1-16 column 3, lines 29-59</td>
<td>1-12</td>
</tr>
<tr>
<td>A</td>
<td>EP 0 430 545 A (SUMITOMO CHEMICAL COMPANY, LIMITED) 5 June 1991 (1991-06-05) abstract; claims 1-8</td>
<td>1-12</td>
</tr>
<tr>
<td>A</td>
<td>WO 00/09607 A (BP CHEMICALS LIMITED; BONNER, JAMES, GRAHAM; GRAY, ALAN) 24 February 2000 (2000-02-24) abstract; claims 1-14</td>
<td>1-12</td>
</tr>
<tr>
<td>Patent document cited in search report</td>
<td>Publication date</td>
<td>Patent family member(s)</td>
</tr>
<tr>
<td>--------------------------------------</td>
<td>-----------------</td>
<td>-------------------------</td>
</tr>
<tr>
<td>WO 2006003127 A</td>
<td>12-01-2006</td>
<td>NONE</td>
</tr>
<tr>
<td>WO 2004099303 A</td>
<td>18-11-2004</td>
<td>NONE</td>
</tr>
<tr>
<td></td>
<td></td>
<td>JP 11236467 A</td>
</tr>
<tr>
<td></td>
<td></td>
<td>US 2001020047 A1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>AU 4938290 A</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CA 2009727 A1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>DE 69013711 D1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>DE 69013711 T2</td>
</tr>
<tr>
<td></td>
<td></td>
<td>JP 2212533 A</td>
</tr>
<tr>
<td></td>
<td></td>
<td>AU 4497696 A</td>
</tr>
<tr>
<td></td>
<td></td>
<td>BR 9606915 A</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CN 1168148 A</td>
</tr>
<tr>
<td></td>
<td></td>
<td>DE 69601780 D1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>DE 69601780 T2</td>
</tr>
<tr>
<td></td>
<td></td>
<td>ES 2128831 T3</td>
</tr>
<tr>
<td></td>
<td></td>
<td>JP 11511768 T</td>
</tr>
<tr>
<td></td>
<td></td>
<td>NO 950160 A</td>
</tr>
<tr>
<td></td>
<td></td>
<td>GO 9622328 A1</td>
</tr>
<tr>
<td>JP 2002338778 A</td>
<td>27-11-2002</td>
<td>NONE</td>
</tr>
<tr>
<td></td>
<td></td>
<td>DE 6902874 D1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>DE 69027743 T2</td>
</tr>
<tr>
<td></td>
<td></td>
<td>US 5185188 A</td>
</tr>
<tr>
<td>WO 0009607 A</td>
<td>24-02-2000</td>
<td>AU 4920699 A</td>
</tr>
</tbody>
</table>