

US 20180140719A1

(19) **United States**

(12) **Patent Application Publication**

Elmaleh et al.

(10) **Pub. No.: US 2018/0140719 A1**

(43) **Pub. Date: May 24, 2018**

(54) **SELF ASSEMBLING MOLECULES FOR TARGETED DRUG DELIVERY**

A61K 31/337 (2006.01)

A61K 31/7068 (2006.01)

A61K 31/473 (2006.01)

A61K 39/39 (2006.01)

A61K 47/68 (2006.01)

A61P 35/00 (2006.01)

A61K 51/12 (2006.01)

A61K 49/18 (2006.01)

A61K 49/00 (2006.01)

(71) Applicant: **The General Hospital Corporation, Boston, MA (US)**

(72) Inventors: **David R. Elmaleh, Newton, MA (US); Kazue Takahashi, Cambridge, MA (US)**

(21) Appl. No.: **15/563,339**

(52) **U.S. Cl.**

CPC *A61K 47/6949* (2017.08); *A61K 49/0069*

(2013.01); *A61K 9/5052* (2013.01); *A61K*

31/337 (2013.01); *A61K 31/7068* (2013.01);

A61K 31/473 (2013.01); *A61K 39/39*

(2013.01); *A61K 47/6849* (2017.08); *A61P*

35/00 (2018.01); *A61K 51/1268* (2013.01);

A61K 51/1251 (2013.01); *A61K 49/189*

(2013.01); *A61K 49/1821* (2013.01); *A61K*

49/0091 (2013.01); *A61K 47/6925* (2017.08)

(22) PCT Filed: **Mar. 31, 2016**

(86) PCT No.: **PCT/US2016/025290**

§ 371 (c)(1),

(2) Date: **Sep. 29, 2017**

Related U.S. Application Data

(60) Provisional application No. 62/140,696, filed on Mar. 31, 2015.

(57)

ABSTRACT

Described herein are self-assembling protein molecules for delivering a payload, for example, a toxic anti-cancer agent, a cancer immunotherapy, a toxic anti-cancer agent and a cancer immunotherapy, or an imaging agent, to specific tissues. Examples of self-assembled proteins include clathrin and derivatives of clathrin.

Publication Classification

(51) **Int. Cl.**

A61K 47/69 (2006.01)

A61K 9/50 (2006.01)

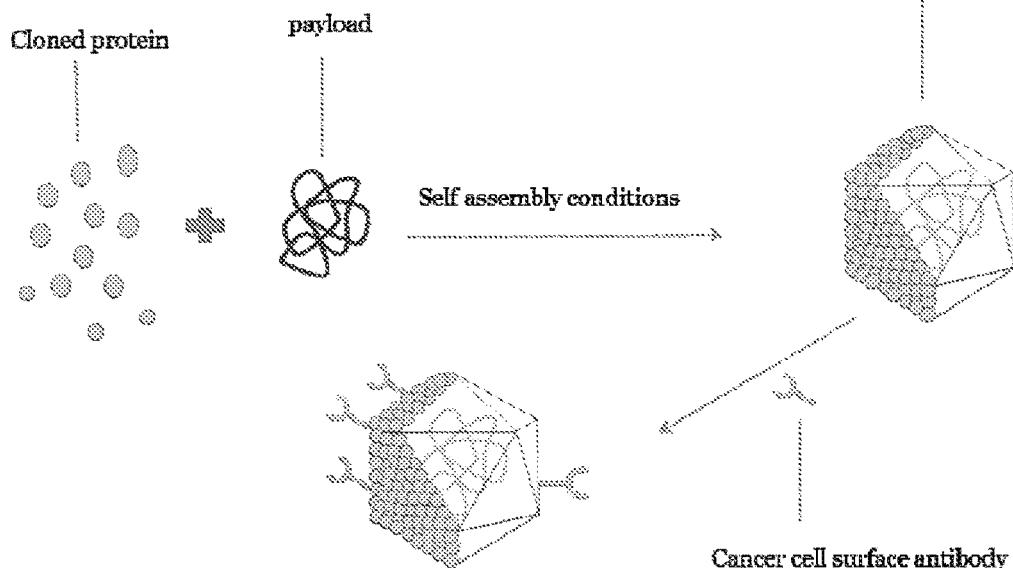


Figure 1

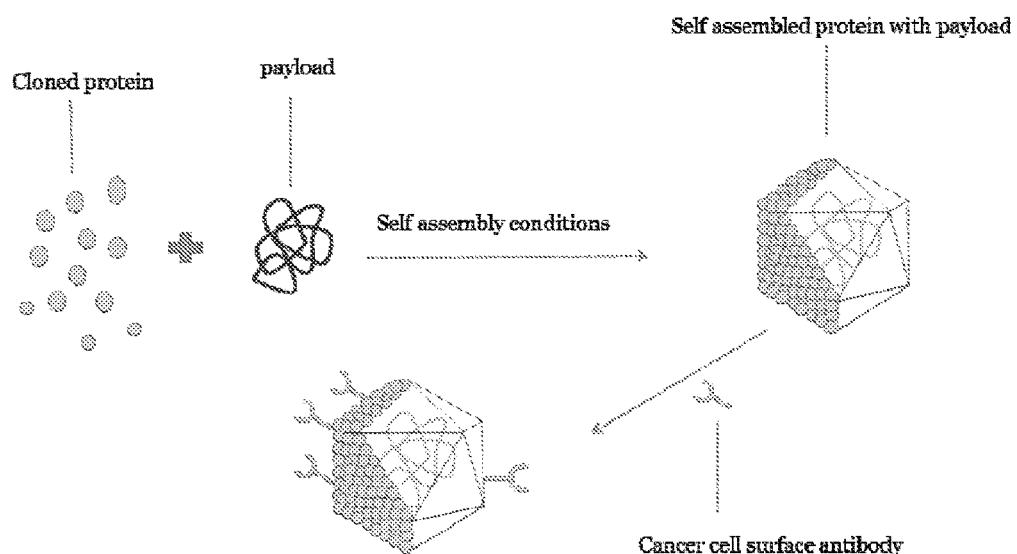


Figure 2

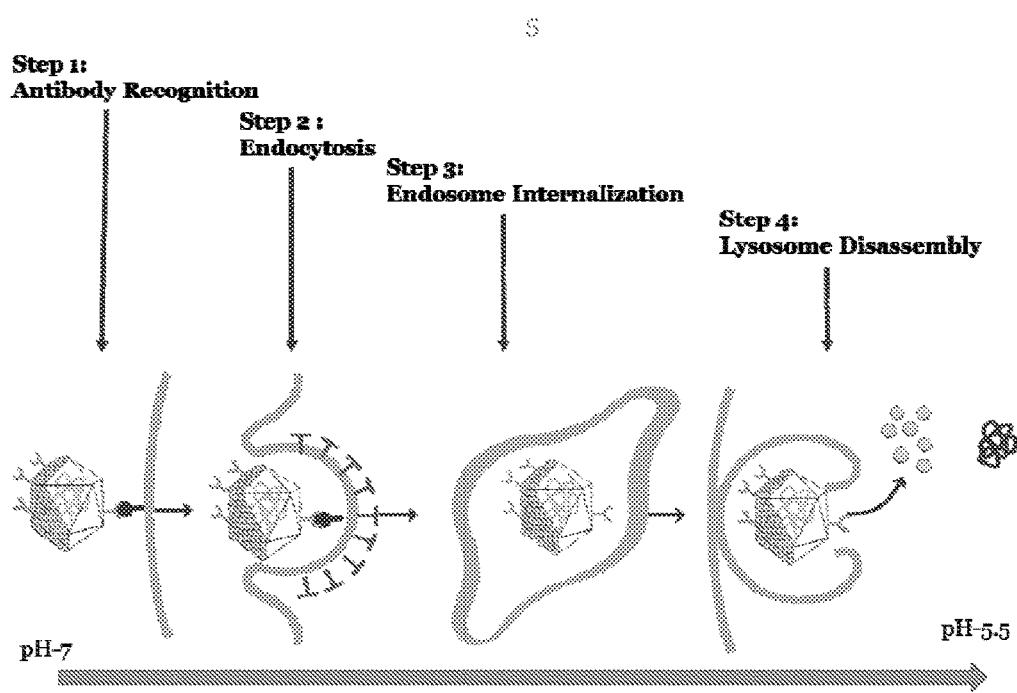
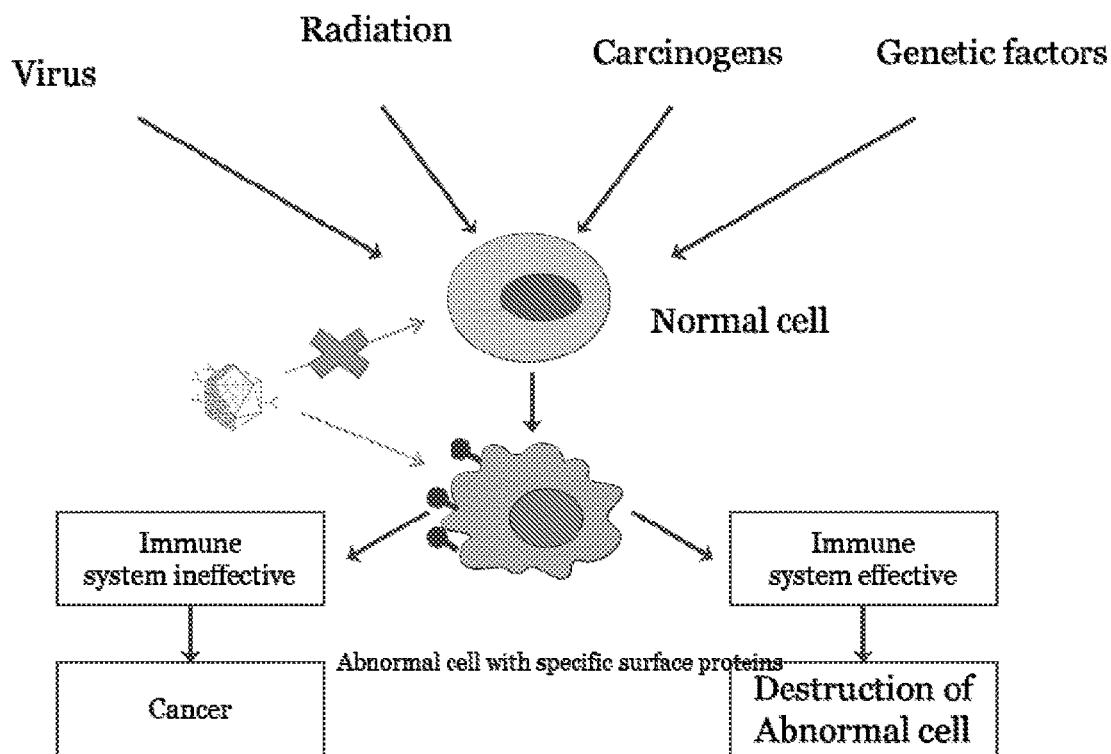
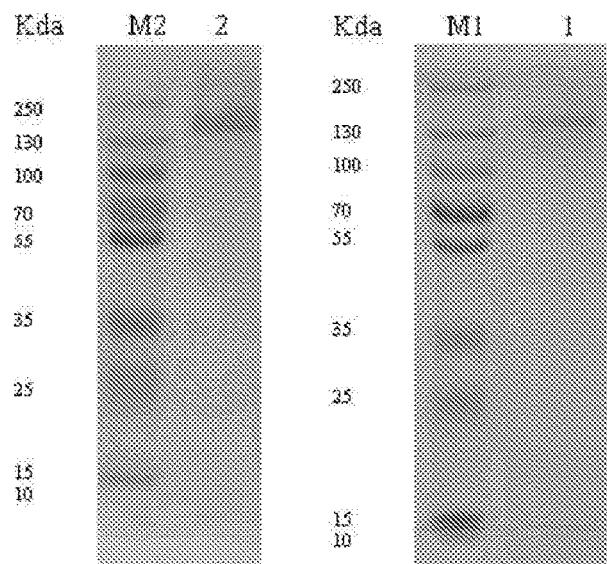
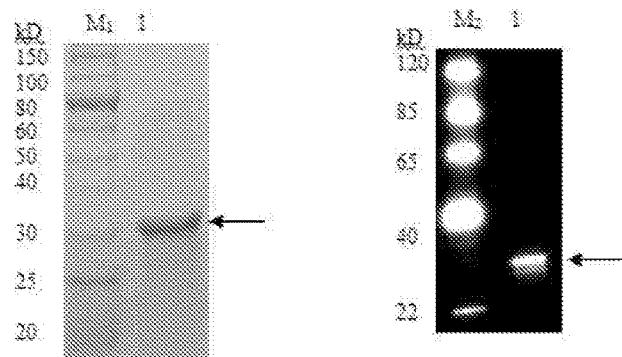
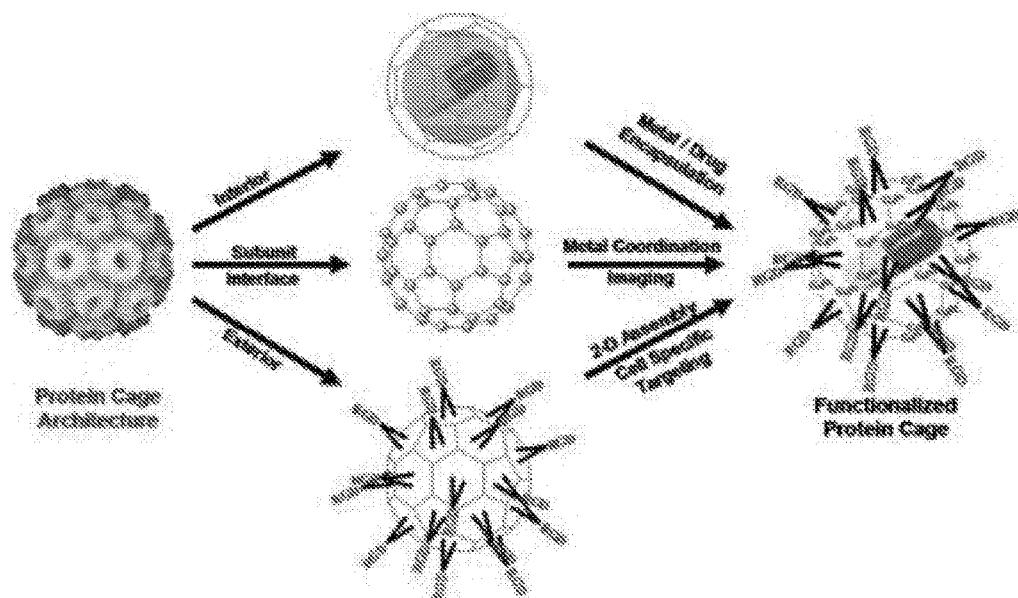


Figure 3


Figure 4

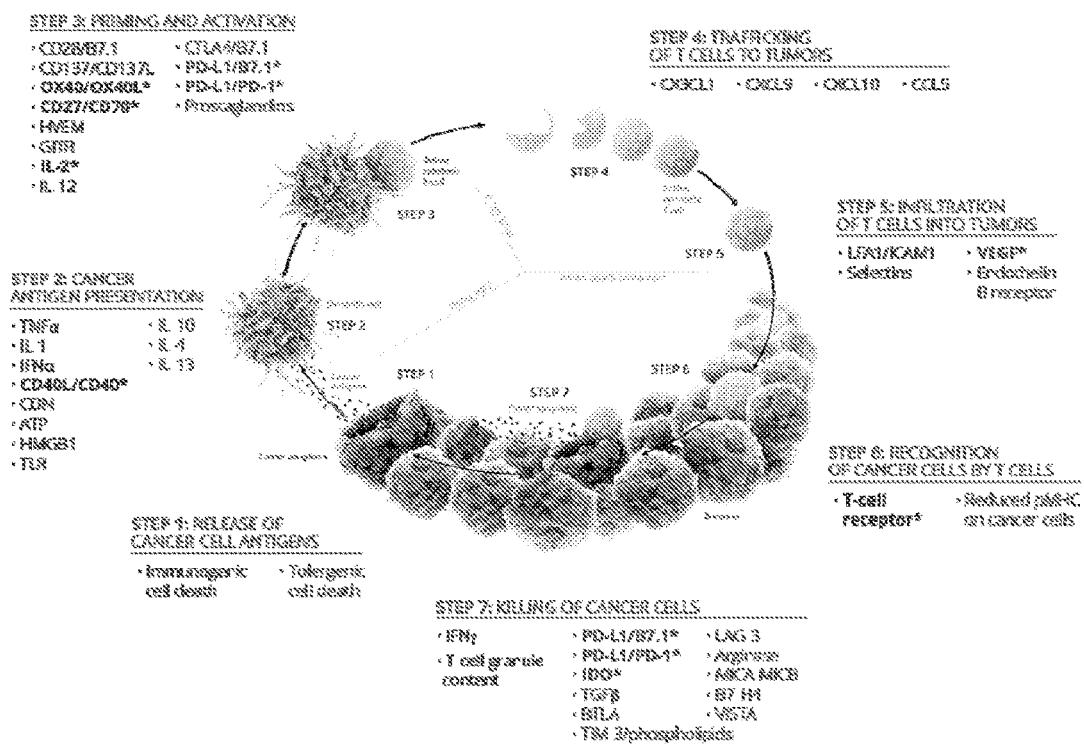

Figure 5

Figure 6

Figure 7

**SELF ASSEMBLING MOLECULES FOR
TARGETED DRUG DELIVERY****RELATED APPLICATIONS**

[0001] This application claims the benefit of priority to U.S. Provisional Patent Application Ser. No. 62/140,696, filed Mar. 31, 2015, the contents of which are hereby incorporated by reference.

BACKGROUND

[0002] Many extremely useful chemotherapeutics lose their potential utility as effective cancer therapy due to their systemic toxicity. As a result, drug delivery systems have been a significant focus of research in the anti-cancer arena. For example, large particulate assemblies of biologically compatible materials, such as liposomes, have been used as carriers for administration of drugs and paramagnetic contrast agents. For example, liposome compositions containing an entrapped agent, such as a drug, are known; these compositions are engineered to control biodistribution and recirculatory half-life.

[0003] In order to provide a therapeutic effect, a sufficient concentration of an active agent must be delivered to a targeted site. So, there is a need for recirculation of the active agent in the body. Active agents and delivery systems that avoid rapid endocytosis by the reticuloendothelial (RE) system or rapid filtration by the kidney are desirable. Experience with magnetic resonance contrast agents has provided useful information regarding circulation lifetimes. Small molecules, such as gadolinium diethylenetriaminepentaacetic acid, tend to have limited circulation times due to rapid renal excretion while most liposomes, having diameters greater than 800 nm, are quickly cleared by the reticuloendothelial system. Attempts to solve these problems have involved use of macromolecular materials, such as gadolinium diethylenetriaminepentaacetic acid-derived polysaccharides, polypeptides, and proteins. These agents have not achieved the versatility in chemical modification to provide for both long recirculation times and active targeting. In addition, the use of targeted antibodies, immune-enhancing drugs, slow-release peptides, or polymers for targeted drug delivery results in extreme side-effects or low delivery efficiency (e.g., the delivery systems are not internalized by the cells).

[0004] Accordingly, there is a need for improved anti-cancer therapeutics and delivery systems.

SUMMARY

[0005] In certain embodiments, the invention relates to a first composition comprising a protein, a first payload, and a first targeting agent, wherein the protein is in the form of a three-dimensional cage structure comprising an outer surface and an inner cavity; and the first targeting agent is conjugated to the outer surface of the three-dimensional cage structure.

[0006] In certain embodiments, the invention relates to any of the first compositions described herein, wherein the first payload is an anti-cancer agent.

[0007] In certain embodiments, the invention relates to any of the first compositions described herein, wherein the first payload is an imaging agent.

[0008] In certain embodiments, the invention relates to any of the first compositions described herein, wherein the first targeting agent selectively targets cancer cells as compared to healthy cells.

[0009] In certain embodiments, the invention relates to any of the first compositions described herein, wherein the first targeting agent specifically targets cancer cells.

[0010] In certain embodiments, the invention relates to any of the first compositions described herein, wherein the first targeting agent is an antibody.

[0011] In certain embodiments, the invention relates to any of the first compositions described herein, wherein the protein is clathrin or a clathrin derivative.

[0012] In certain embodiments, the invention relates to any of the first compositions described herein, wherein the first composition or the second composition is able to transfect cells *in vivo*.

[0013] In certain embodiments, the invention relates to a second composition comprising a protein, a second payload, and a second targeting agent, wherein the protein is in the form of a three-dimensional cage structure comprising an outer surface and an inner cavity; the second payload is an immunogen; and the second targeting agent conjugated to the outer surface of the three-dimensional cage structure.

[0014] In certain embodiments, the invention relates to any of the second compositions described herein, wherein the second targeting agent does not selectively target cancer cells as compared to healthy cells.

[0015] In certain embodiments, the invention relates to any of the second compositions described herein, wherein the second targeting agent is an antibody.

[0016] In certain embodiments, the invention relates to any of the second compositions described herein, wherein the second targeting agent is an anti-PD-1 antibody.

[0017] In certain embodiments, the invention relates to any of the second compositions described herein, wherein the protein is clathrin or a clathrin derivative.

[0018] In certain embodiments, the invention relates to any of the second compositions described herein, wherein the second composition is able to transfect cells *in vivo*.

[0019] In certain embodiments, the invention relates to a method of treating cancer in a subject in need thereof, comprising:

[0020] administering to the subject a therapeutically effective amount of any of the first compositions described herein wherein the first payload is an anti-cancer agent.

[0021] In certain embodiments, the invention relates to a method of treating cancer in a subject in need thereof, comprising:

[0022] administering to the subject a therapeutically effective amount of any of the first compositions described herein, wherein the first payload is an anti-cancer agent; and

[0023] administering to the subject a therapeutically effective amount of any of the second compositions described herein.

[0024] In certain embodiments, the invention relates to a method generating an image of a subject in need thereof, comprising:

[0025] administering to the subject a detectable amount of any of the first compositions described herein, wherein the first payload is an imaging agent; and

[0026] generating an image.

BRIEF DESCRIPTION OF THE FIGURES

[0027] FIG. 1 depicts a schematic representation of an exemplary procedure for preparing a drug-loaded vehicle of the invention.

[0028] FIG. 2 depicts a schematic representation of a mechanism by which the drug-loaded vehicles may be internalized.

[0029] FIG. 3 depicts a schematic representation of the selectivity of the drug-loaded vehicles for cancer cells over normal healthy cells.

[0030] FIG. 4 depicts the results of gel electrophoresis of the cloned clathrin heavy chain (M1: SDS-PAGE Protein Marker; Lane 1: PE1130119-1 protein; M2: Western-Blot Protein Marker; Lane 2: PE1130119-1 protein (using anti-6His antibody)).

[0031] FIG. 5 depicts the results of gel electrophoresis of the cloned clathrin light chain (M1: SDS-PAGE Protein Marker; Lane 1: PE1130119-2 protein; M2: Western-Blot ProteinMarker; Lane 2: PE1130119-2 protein (using anti-6His antibody)).

[0032] FIG. 6 depicts a schematic representation of protein cage functionalization. Protein cage architectures have three surfaces (interior, subunit interface, and exterior) amenable to both genetic and chemical modification.

[0033] FIG. 7 depicts a schematic representation of the steps and components involved in cancer immunotherapy.

DETAILED DESCRIPTION

Overview

[0034] In certain embodiments, this invention relates to the use of self-assembling protein molecules for delivering a payload, for example, a toxic anti-cancer agent, a cancer immunotherapy, or an imaging agent, to specific tissues. In certain embodiments, the protein is clathrin or a derivative of clathrin. In certain embodiments, the protein is endogenous. In certain embodiments, the protein is non-immunogenic. In certain embodiments, the protein is ferritin or a derivative of ferritin.

[0035] In some embodiments, the self-assembled protein cages or vehicles, made of heavy and light chains, mask the toxicity of the anti-cancer agent, thereby resulting in decreased serum and systemic toxicity.

[0036] In certain embodiments, the heavy chain and the light chain are fused (e.g., the protein may be a fusion protein).

[0037] In other embodiments, the self-assembled delivery vehicles are used to target specific tissues, such as cancer cells, using antigen biomarkers, antibodies, or peptides that are recognized by the cell membrane of the target cell. In certain embodiments, once delivered to the target tissues, the clathrin cages are internalized by the cell for in-cell deposition of drug.

[0038] In certain embodiments, the payload is an anti-cancer agent, for example, a chemotherapeutic, siRNA, miRNA, immunotherapeutics, or a radiotherapeutic. In certain embodiments, the payload is an imaging agent, such as a contrast medium or a fluorophore. In certain embodiments, the drug is a radiotherapeutic, such as a radionuclide.

[0039] In certain embodiments, the payload is conjugated to the protein, for example, to the light chain. "Conjugated" or "linked" as used herein means ionically or, preferably, covalently attached (e.g., via a crosslinking agent).

[0040] In certain embodiments, the invention relates to a method of treating a subject in need thereof comprising administering to the subject a therapeutically effective amount of any one of the drug-loaded vehicles described herein. In certain embodiments, the drug-loaded vehicle is administered to the subject intravenously or intraperitoneally.

[0041] This technology is expected to achieve synergistic results as compared to the protein alone, the payload alone, the targeting agent alone, or any combination of two of these components. The advantages include, but are not limited to: 1. The proteins self-assemble following their loading with known or newly developed therapeutic agents. 2. The proteins are easily internalized by cells. 3. The assembled, drug-loaded vehicles are stable in serum proteins and are non-toxic while transported in vivo via the blood and lymph system. 4. The proteins and vehicles are designed to specifically target diseased cells using specific antibodies or high-affinity fragments of antibodies. In some embodiments, the antibodies are designed to enhance the immune system by uncovering a cancer cell not identified by the immune system. 5. Once targeted to diseased cells, the delivery vehicles are internalized and during this process they disassemble and release their therapeutic agent and specifically kill the diseased cell or allow the immune system to fight it. 6. This platform has the potential to provide mono-, bi- and multi-specific targeting. 7. Because of the ease of internalization, if the payload is an imaging agent or a radiotherapeutic, the vehicles may be used for tumor imaging or radiotherapy. 8. For therapeutic applications where longer half-life is desired, the vehicles may be modified by increasing the molecular weight of the proteins or adding polymeric extensions. 9. The combination of (i) endogenous, self-assembled, cell-internalized proteins with (ii) self-internalized antibodies and (iii) payloads can improve cancer imaging or treatment while lowering systemic toxicity.

Exemplary Proteins

[0042] In certain embodiments, the invention relates to a protein having a heavy chain, wherein the heavy chain has greater than 85% sequence homology to SEQ ID NO:3. In certain embodiments, the invention relates to any of the proteins described herein, wherein the heavy chain has greater than 90% sequence homology to SEQ ID NO:3. In certain embodiments, the invention relates to any of the proteins described herein, wherein the heavy chain has greater than 95% sequence homology to SEQ ID NO:3. In certain embodiments, the invention relates to any of the proteins described herein, wherein the heavy chain has greater than 98% sequence homology to SEQ ID NO:3. In certain embodiments, the invention relates to any of the proteins described herein, wherein the heavy chain has greater than 99% sequence homology to SEQ ID NO:3. In certain embodiments, the invention relates to any of the proteins described herein, wherein the heavy chain has SEQ ID NO:3.

[0043] In certain embodiments, the invention relates to a protein having a light chain, wherein the light chain has greater than 85% sequence homology to SEQ ID NO:6. In certain embodiments, the invention relates to any of the proteins described herein, wherein the light chain has greater than 90% sequence homology to SEQ ID NO:6. In certain embodiments, the invention relates to any of the proteins described herein, wherein the light chain has greater than

95% sequence homology to SEQ ID NO:6. In certain embodiments, the invention relates to any of the proteins described herein, wherein the light chain has greater than 98% sequence homology to SEQ ID NO:6. In certain embodiments, the invention relates to any of the proteins described herein, wherein the light chain has greater than 99% sequence homology to SEQ ID NO:6. In certain embodiments, the invention relates to any of the proteins described herein, wherein the light chain has SEQ ID NO:6. [0044] In certain embodiments, the invention relates to any of the proteins described herein, wherein the protein has a heavy chain and a light chain.

Exemplary Compositions

[0045] In certain embodiments, the invention relates to a first composition comprising, consisting essentially of, or consisting of a protein, a first payload, and a first targeting agent, wherein the protein is in the form of a three-dimensional cage structure comprising an outer surface and an inner cavity; and the first targeting agent is conjugated to the outer surface of the three-dimensional cage structure. In certain embodiments, the first targeting agent selectively targets cancer cells as compared to healthy cells. In certain embodiments, the first targeting agent specifically targets diseased cells, such as cancer cells.

[0046] In certain embodiments, the invention relates to a second composition comprising, consisting essentially of, or consisting of a protein, a second payload, and a second targeting agent, wherein the protein is in the form of a three-dimensional cage structure comprising an outer surface and an inner cavity; the second payload is an immunogen; and the second targeting agent conjugated to the outer surface of the three-dimensional cage structure. In certain embodiments, the second targeting agent does not selectively target cancer cells as compared to healthy cells.

[0047] In certain embodiments, the compositions (i.e., the first composition or the second composition) are able to identify or transfect cells *in vivo*.

[0048] Protein

[0049] In certain embodiments, the invention relates to any of the compositions described herein (e.g., the first composition or the second composition), wherein the protein is able to deliver a payload into a cell.

[0050] In certain embodiments, the invention relates to any of the compositions described herein (e.g., the first composition or the second composition), wherein the protein is clathrin or a clathrin derivative.

[0051] In certain embodiments, the invention relates to any of the compositions described herein (e.g., the first composition or the second composition), wherein the protein comprises a heavy chain or a light chain. In certain embodiments, the invention relates to any of the compositions described herein, wherein the protein comprises a heavy chain and a light chain. In some embodiments scaffolding of truncated clathrin and their repeated sequences of these truncated peptides are used as payload carriers of anticancer internalizing peptides.

[0052] In certain embodiments, the invention relates to any of the compositions described herein, wherein the heavy chain has a molecular weight from about 100 kDa to about 300 kDa. In certain embodiments, the invention relates to any of the compositions described herein, wherein the heavy chain has a molecular weight of about 100 kDa, about 110 kDa, about 120 kDa, about 130 kDa, about 140 kDa, about

150 kDa, about 160 kDa, about 170 kDa, about 180 kDa, about 190 kDa, about 200 kDa, about 210 kDa, about 220 kDa, about 230 kDa, about 240 kDa, about 250 kDa, about 260 kDa, about 270 kDa, about 280 kDa, about 290 kDa, or about 300 kDa. In certain embodiments, the invention relates to any of the compositions described herein, wherein the heavy chain has a molecular weight of about 190 kDa.

[0053] In certain embodiments, the invention relates to any of the compositions described herein, wherein the heavy chain has greater than 85% sequence homology to SEQ ID NO:3. In certain embodiments, the invention relates to any of the compositions described herein, wherein the heavy chain has greater than 90% sequence homology to SEQ ID NO:3. In certain embodiments, the invention relates to any of the compositions described herein, wherein the heavy chain has greater than 95% sequence homology to SEQ ID NO:3. In certain embodiments, the invention relates to any of the compositions described herein, wherein the heavy chain has greater than 98% sequence homology to SEQ ID NO:3. In certain embodiments, the invention relates to any of the compositions described herein, wherein the heavy chain has greater than 99% sequence homology to SEQ ID NO:3. In certain embodiments, the invention relates to any of the compositions described herein, wherein the heavy chain has SEQ ID NO:3.

[0054] In certain embodiments, the invention relates to any of the compositions described herein, wherein the light chain has a molecular weight from about 15 kDa to about 45 kDa. In certain embodiments, the invention relates to any of the compositions described herein, wherein the light chain has a molecular weight of about 15 kDa, about 16 kDa, about 17 kDa, about 18 kDa, about 19 kDa, about 20 kDa, about 21 kDa, about 22 kDa, about 23 kDa, about 24 kDa, about 25 kDa, about 26 kDa, about 27 kDa, about 28 kDa, about 29 kDa, about 30 kDa, about 31 kDa, about 32 kDa, about 33 kDa, about 34 kDa, about 35 kDa, about 36 kDa, about 37 kDa, about 38 kDa, about 39 kDa, about 40 kDa, about 41 kDa, about 42 kDa, about 43 kDa, about 44 kDa, or about 45 kDa. In certain embodiments, the invention relates to any of the compositions described herein, wherein the light chain has a molecular weight of about 28 kDa.

[0055] In certain embodiments, the invention relates to any of the compositions described herein, wherein the light chain has greater than 85% sequence homology to SEQ ID NO:6. In certain embodiments, the invention relates to any of the compositions described herein, wherein the light chain has greater than 90% sequence homology to SEQ ID NO:6. In certain embodiments, the invention relates to any of the compositions described herein, wherein the light chain has greater than 95% sequence homology to SEQ ID NO:6. In certain embodiments, the invention relates to any of the compositions described herein, wherein the light chain has greater than 98% sequence homology to SEQ ID NO:6. In certain embodiments, the invention relates to any of the compositions described herein, wherein the light chain has greater than 99% sequence homology to SEQ ID NO:6. In certain embodiments, the invention relates to any of the compositions described herein, wherein the light chain has SEQ ID NO:6.

[0056] In certain embodiments, the invention relates to any of the compositions described herein, wherein the three-dimensional cage structure has a diameter from about 10 nm to about 100 nm. In certain embodiments, the invention relates to any of the compositions described

herein, wherein the three-dimensional cage structure has a diameter of about 10 nm, about 20 nm, about 30 nm, about 40 nm, about 50 nm, about 60 nm, about 70 nm, about 80 nm, about 90 nm, or about 100 nm. In certain embodiments, the invention relates to any of the compositions described herein, wherein the three-dimensional cage structures have an average diameter from about 10 nm to about 100 nm. In certain embodiments, the invention relates to any of the compositions described herein, wherein the three-dimensional cage structures have an average diameter of about 10 nm, about 20 nm, about 30 nm, about 40 nm, about 50 nm, about 60 nm, about 70 nm, about 80 nm, about 90 nm, or about 100 nm. In certain embodiments, the diameter of the three-dimensional cage structures may be estimated or measured by techniques known in the art, such as dynamic light scattering or high-resolution NMR spectroscopy.

[0057] In certain embodiments, the invention relates to any of the compositions described herein, wherein the three-dimensional cage structure is substantially spherical.

[0058] In certain embodiments, the invention relates to any of the compositions described herein, wherein the three-dimensional cage structure is non-covalently assembled, for example, self-assembled.

[0059] In certain embodiments, the invention relates to any of the compositions described herein, wherein the three-dimensional cage structure is substantially stable at about 37° C. at about pH greater than or equal to 7.

[0060] In certain embodiments, the invention relates to any of the compositions described herein, wherein the three-dimensional cage structure is substantially stable at about 37° C. at about pH 7.

[0061] In certain embodiments, the invention relates to any of the compositions described herein, wherein the three-dimensional cage structure is substantially stable at about 37° C. at about pH 6.5 to about pH 8.5.

[0062] In certain embodiments, the invention relates to any of the compositions described herein, wherein the three-dimensional cage structure is substantially unstable at about 37° C. at about pH less than or equal to 5.5.

[0063] In certain embodiments, the invention relates to any of the compositions described herein, wherein the three-dimensional cage structure is substantially unstable at about 37° C. at about pH 5.5.

[0064] Cage-like proteins such as clathrin, ferritins, DNA-binding proteins (dps), and heat shock proteins have three distinct surfaces (inside, outside, interface) that can be exploited to generate nanomaterials with multiple functionality by design. Protein cages are biological in origin and each cage exhibits extremely homogeneous size distribution. This homogeneity can be used to attain a high degree of homogeneity of the templated material and its associated property. A series of protein cages exhibiting diversity in size, functionality, and chemical and thermal stabilities can be utilized for materials synthesis under a variety of conditions. Since synthetic approaches to materials science often use harsh temperature and pH, in certain embodiments, it can be an advantage to utilize protein cages from extreme environments, such as acidic thermal hot springs.

[0065] Protein cage architectures, 10-100 nm in diameter, are self-assembled hollow spheres derived from viruses and other biological cages, including heat shock proteins (Hsp), DNA-binding proteins from starved cells (Dps), and ferritins. These architectures play critical biological roles. For example, heat shock proteins are thought to act as chaper-

ones that prevent protein denaturation, and ferritins are known to store iron (which is both essential and toxic) as a nanoparticle of iron oxide. While each of these structures has evolved to perform a unique natural function, they are similar in that they are all essentially proteinaceous containers with three distinct surfaces (interior, exterior, and subunit interface) to which one can impart function by design. Protein cage architectures have demonstrated utility in nanotechnology with applications including inorganic nanoparticle synthesis and the development of targeted therapeutic and imaging delivery agents.

[0066] Protein cage architectures are naturally diverse; each has unique attributes (including size, structure, solvent accessibility, chemical and temperature stability, structural plasticity, assembly and disassembly parameters, and electrostatics) useful to particular applications. Importantly, one can capitalize on these features or alter them via genetic or chemical modification. Atomic level structural information identifies the precise location of amino acids within protein cage architectures and in turn allows for the rational inclusion, exclusion, and substitution of amino acid(s) (at the genetic level) resulting in protein cages with novel functional properties.

[0067] Protein cages isolated from thermophilic environments are desirable as building blocks for nanotechnology due to their potential stability in harsh reaction conditions including high temperature and pH extremes. Interestingly, one of the most stable protein cage architectures, ferritin, is commonly found in mesophilic organisms, including animals, plants, and microbes. For example, horse spleen ferritin exhibits broad pH (pH 2-8) and temperature stability (<70° C.). Ferritins are involved in iron sequestration, which they accomplish through the oxidation of soluble Fe(II) using O₂. This oxidation results in the formation of a nanoparticle of Fe₂O₃ encapsulated (and rendered nontoxic) within the protein cage. High charge density on the inner surface of the protein cage promotes this reaction, which is assisted by an enzymatic (ferroxidase) activity in some ferritin subunits. Ferritins are made up of 24 subunits, which form a spherical cage 12 nm in diameter. The ferritin family also includes the 24 subunit bacterioferritins and the Dps class of proteins, which assemble from 12 monomers.

[0068] A cavity forming protein cage is described in U.S. Pat. No. 7,393,924 (incorporated by reference). The cage is formed in vitro from a plurality of 3-legged triskelia, each triskelion having 6 protein subunits; 3 Clathrin heavy chain and 3 Clathrin light chain subunits. In certain embodiments, the 3-legged triskelia are not required (see, e.g., U.S. Patent Application Publication No. 2015/0307570, incorporated by reference). For example, the protein may be an isolated, synthetic or recombinant, protein comprising in whole or in part one or more types of clathrin proteins of one or more isoforms, including cloned isoforms.

[0069] Payload

[0070] In certain embodiments, the invention relates to any of the first compositions described herein, wherein the payload is any therapeutic agent, but preferably an anti-cancer agent, such as paclitaxel, gemcitabine, or an azonafide (e.g., a compound described in U.S. Pat. No. 8,008,316, which is incorporated by reference).

[0071] As used herein, the terms “anti-cancer agent” and “therapeutic agent” are defined broadly as anything that cancer cells, including tumor cells, may be exposed to in a therapeutic protocol for the purpose of inhibiting their

growth or kill the cells. In one embodiments, such agents can be used according to the compositions and methods described herein in conjunction with each other (e.g., LY294002 plus gemcitabine, taxol plus U0126, taxol plus gemcitabine, etc.), or in any combination thereof. Such agents include, but are not limited to, chemotherapeutic agents, such as anti-metabolic agents, e.g., Ara AC, 5-FU and methotrexate, antimitotic agents, e.g., TAXOL, inblastine and vincristine, alkylating agents, e.g., melphalan, BCNU and nitrogen mustard, topoisomerase II inhibitors, e.g., VW-26, topotecan and Bleomycin, strand-breaking agents, e.g., doxorubicin and DHAD, cross-linking agents, e.g., cisplatin and CBDCA, radiation and ultraviolet light. [0072] As used herein, the term "chemotherapeutic agent" is intended to include chemical reagents which inhibit the growth of proliferating cells or tissues wherein the growth of such cells or tissues is undesirable. Particular chemotherapeutic agents include, but are not limited to (i) antimetabolites, such as cytarabine, fludarabine, 5-fluoro-2'-deoxyuridine, gemcitabine, hydroxyurea or methotrexate; (ii) DNA-fragmenting agents, such as bleomycin, (iii) DNA-crosslinking agents, such as chlorambucil, cisplatin, cyclophosphamide or nitrogen mustard; (iv) intercalating agents such as adriamycin (doxorubicin) or mitoxantrone; (v) protein synthesis inhibitors, such as L-asparaginase, cycloheximide, puromycin or diphtheria toxin; (vi) topoisomerase I poisons, such as camptothecin or topotecan; (vii)

topoisomerase II poisons, such as etoposide (VP-16) or teniposide; (viii) microtubule-directed agents, such as colcemid, colchicine, paclitaxel, vinblastine or vincristine; (ix) kinase inhibitors such as flavopiridol, staurosporin, ST1571 (CPG 57148B) or UCN-01 (7-hydroxystaurosporine); (x) enhancers of the AMPK signaling pathway, (xi) inhibitors of the PI3K/AKT/mTORC1 signaling pathway, (xii) inhibitors of the MEK/ERK signaling pathway, (xiii) miscellaneous investigational agents such as thioplatin, PS-341, phenylbutyrate, ET-18-OCH₃, or farnesyl transferase inhibitors (L-739749, L-744832); polyphenols such as quercetin, resveratrol, piceatannol, epigallocatechine gallate, theaflavins, flavanols, procyanidins, betulinic acid and derivatives thereof; (xiv) hormones such as glucocorticoids or fenretinide; and (xv) hormone antagonists, such as tamoxifen, finasteride or LHRH antagonists. In an embodiment, the chemotherapeutic compound is one or more of gemcitabine, cisplatin, doxorubicin, daunarubicin, paclitaxel, taxotere and mitomycin C. In a particular embodiment, the chemotherapeutic compound is one or more of gemcitabine, cisplatin and paclitaxel.

[0073] Chemotherapeutic agents are well known in the art (see e.g., Gilman A. G., et al., *The Pharmacological Basis of Therapeutics*, 8th Ed., Sec 12:1202-1263 (1990)), and are typically used to treat neoplastic diseases. The chemotherapeutic agents generally employed in chemotherapy treatments are listed below in Table 1.

TABLE 1

CLASS	TYPE OF AGENT	NONPROPRIETARY NAMES (OTHER NAMES)
Antimetabolites	Nitrogen Mustards	Mechlorethamine (HN ₂) Cyclophosphamide Ifosfamide Melphalan (L-sarcolysin) Chlorambucil
	Ethylenimines And Methylmelamines	Hexamethylmelamine Thiotepa
	Alkyl Sulfonates	Busulfan
	Nitrosoureas	Carmustine (BCNU) Lomustine (CCNU) Semustine (methyl-CCNU) Streptozocin (streptozotocin)
	Triazenes	Decarbazine (DTIC; imethyltriazenoimidazolecarboxamide)
	Alkytator	cis-diamminedichloroplatinum II (CDDP)
	Folic Acid Analogs	Methotrexate (amethopterin)
	Pyrimidine Analogs	Fluorouracil (5-fluorouracil; 5-FU) Floxuridine (fluorodeoxyuridine; FUdR) Cytarabine (cytosine arabinoside) gemcitabine (deoxycytidine analog)
	Purine Analogs and Related Inhibitors	Mercaptopurine (6-mercaptopurine; 6-MP) Thioguanine (6-thioguanine; TG) Pentostatin (2'-deoxycoformycin)
	Vinca Alkaloids	Vinblastin (VLB) Vincristine
Antibiotics	Topoisomerase Inhibitors	Etoposide Teniposide Camptothecin Topotecan 9-amino-camptothecin CPT-11
		Dactinomycin (actinomycin D)
		Adriamycin (Doxorubicin)
		Daunorubicin (daunomycin; rubidomycin)
		Doxorubicin
		Bleomycin
		Plicamycin (mithramycin)
		Mitomycin (mitomycin C)
		TAXOL (paclitaxel)
		Taxotere

TABLE 1-continued

CLASS	TYPE OF AGENT	NONPROPRIETARY NAMES (OTHER NAMES)
Misc. Agents	Enzymes	L-Asparaginase
	Biological Response Modifiers	Interferon alfa interleukin 2
	Platinum Coordination Complexes	cis-diamminedichloroplatinum II (CDDP) Carboplatin Oxaliplatin Cisplatin
	Anthracendione	Mitoxantrone
	Substituted Urea	Hydroxyurea
	Methyl Hydrazine	Procarbazine (N-methylhydrazine, (MIH)
	Derivative	
	Adrenocortical Suppressant	Mitotane (o,p'-DDD) Aminoglutethimide
	Adrenocorticosteroids	Prednisone Dexamethasone
	Progesterins	Hydroxyprogesterone Caproate Medroxyprogesterone Acetate Megestrol acetate
Hormones and Antagonists	Estrogens	Diethylstilbestrol Ethinyl estradiol
	Antiestrogen	Tamoxifen
	Androgens	Testosterone propionate Fluoxymesterone
	Antiandrogen	Flutamide
	Gonadotropin-releasing Hormone analog	Leuprolide

[0074] In certain embodiments, the chemotherapeutic agents used in the compositions and methods can be a single agent or a combination of agents. Preferred combinations will include agents that have different mechanisms of action, e.g., the use of an anti-mitotic agent in combination with an alkylating agent.

[0075] In some embodiments, the anti-cancer agent is an inhibitor of ERK signaling, such as an inhibitor of MEK. As used herein, the term “inhibitor of MEK” refers to a compound or agent, such as a small molecule, that inhibits, decreases, lowers, or reduces the activity of MEK. Examples of inhibitors of MEK include, but are not limited to, AZD6244 (6-(4-Bromo-2-chloro-phenylamino)-7-fluoro-3-methyl-3H-benzoimidazole-5-carboxylic acid (2-hydroxyethoxy)-amide; selumetinib; Structure IV), and U0126 (1,4-diamino-2,3-dicyano-1,4-bis [2-aminophenylthio] butadiene; ARRY-142886; Structure V). Further non-limiting examples of MEK inhibitors include PD0325901, AZD2171, GDC-0973/XL-518, PD98059, PD184352, GSK1120212, RDEA436, RDEA119/BAY869766, AS703026, BIX 02188, BIX 02189, CI-1040 (PD184352), PD0325901, and PD98059. These and other inhibitors of MEK, as well as non-limiting examples of their methods of manufacture, are described in U.S. Pat. Nos. 5,525,625; 6,251,943; 7,820,664; 6,809,106; 7,759,518; 7,485,643; 7,576,072; 7,923,456; 7,732,616; 7,271,178; 7,429,667; 6,649,640; 6,495,582; 7,001,905; US Patent Publication No. US2010/0331334, US2009/0143389, US2008/0280957, US2007/0049591, US2011/0118298, International Patent Application Publication No. WO98/43960, WO99/01421, WO99/01426, WO00/41505, WO00/42002, WO00/42003, WO00/41994, WO00/42022, WO00/42029, WO00/68201, WO01/68619, WO02/06213 and WO03/077914, the contents of which are herein incorporated by reference in their entireties.

[0076] In another embodiment, the anti-cancer agent is an inhibitor of Epidermal Growth Factor Receptor (EGFR). EGFR is a member of the type 1 subgroup of receptor tyrosine kinase family of growth factor receptors which play critical roles in cellular growth, differentiation and survival. Activation of these receptors typically occurs via specific ligand binding which results in hetero- or homodimerization between receptor family members, with subsequent auto-phosphorylation of the tyrosine kinase domain. Specific ligands which bind to EGFR include epidermal growth factor (EGF), transforming growth factor alpha (TGF alpha), amphiregulin and some viral growth factors. Activation of EGFR triggers a cascade of intracellular signaling pathways involved in both cellular proliferation (the ras/raf/MAP kinase pathway) and survival (the PI3 kinase/Akt pathway). Members of this family, including EGFR and HER2, have been directly implicated in cellular transformation. A number of human malignancies are associated with aberrant or overexpression of EGFR and/or overexpression of its specific ligands. Aberrant or overexpression of EGFR has been associated with an adverse prognosis in a number of human cancers, including head and neck, breast, colon, prostate, lung (e.g., NSCLC, adenocarcinoma and squamous lung cancer), ovarian, gastrointestinal cancers (gastric, colon, pancreatic), renal cell cancer, bladder cancer, glioma, gynecological carcinomas and prostate cancer. In some instances, overexpression of tumor EGFR has been correlated with both chemoresistance and a poor prognosis. Mutations in EGFR are associated with many types of cancer as well. For example, EGFR mutations are highly prevalent in non-mucinous BAC patients. Finberg, et al., *J. Mol. Diagnostics.* (2007) 9(3):320-26. In an embodiment the EGFR inhibitor is an antibody such as Erbitutux™ (cetuximab, Imclone Systems Inc.) and ABX-EGF (panitumumab, Abgenix, Inc.). In another embodiment the EGFR inhibitor is a small

molecule that competes with ATP such as Tarceva™ (erlotinib, OSI Pharmaceuticals), Iressa™ (gefitinib, Astra-Zeneca), tyrophostins described by Dvir, et al., *J Cell Biol.* 113:857-865 (1991); tricyclic pyrimidine compounds disclosed in U.S. Pat. No. 5,679,683; compound 6-(2,6-dichlorophenyl)-2-(4-(2-diethylaminooethoxy)phenylamino)-8-methyl-8H-pyrido(2,3-d)pyrimidin-7-one (known as PD166285) disclosed in Panek, et al., *Journal of Pharmacology and Experimental Therapeutics* 283, 1433-1444 (1997).

[0077] In addition to the specific agents described above, it is further contemplated that a polypeptide, an antibody or antigen binding fragment thereof, a toxin, an RNA interfering molecule, an siRNA molecule, and shRNA molecule, an antisense oligonucleotide, a peptide, a peptidomimetic, an aptamer, and the like, as well as combinations thereof, that appropriately enhance or inhibit the targets of pro-survival signaling pathways can also be used as a therapeutic agent according to the invention. In particular, the nucleic acid sequence, amino acid sequence, functional domain, structural domain, gene locus, and other identifying information for the signaling pathway targets described herein are well known in the art.

[0078] In certain embodiments, the payload is an siRNA moiety comprised of a sense strand and an antisense strand; the sense strand comprising a 3' end and a 5' end; and the antisense strand comprising a 3' end and a 5' end.

[0079] "Antisense" nucleic acids refer to nucleic acids that specifically hybridize (e.g., bind) with a complementary sense nucleic acid, e.g., cellular mRNA and/or genomic DNA, under cellular conditions so as to inhibit expression (e.g., by inhibiting transcription and/or translation). The binding may be by conventional base pair complementarity or, for example, in the case of binding to DNA duplexes, through specific interactions in the major groove of the double helix.

[0080] The siRNA moiety may further include a guanosine at the 5'-end.

[0081] The sense and/or antisense strands of the siRNA moiety may equal to or less than 30, 25, 24, 23, 22, 21, 20, 19, 18 or 17 nucleotides in length. An siRNA moiety may include one or more overhangs. For example, the siRNA moiety may include one or two 3' overhangs of 2-3 nucleotides. In certain embodiments, the invention relates to any of the compositions described herein, wherein the siRNA moiety is composed of 21-nt sense and 21-nt antisense strands, paired in a manner to have a 19-nucleotide duplex region and a 2-nt 3' overhang at each 3' terminus. In certain embodiments, the invention relates to any of the compositions described herein, wherein the 2-nt 3' overhang is either UU or dTdT. Symmetric 3'-overhangs ensure that the sequence-specific endonuclease complexes (siRNPs) are formed with approximately equal ratios of sense and antisense target RNA cleaving siRNPs. The 3'-overhang in the sense strand provides no contribution to recognition as it is believed the antisense siRNA strand guides target recognition. Therefore, the UU or dTdT 3'-overhang of the antisense sequences is complementary to the target mRNA but the symmetrical UU or dTdT 3'-overhang of the sense siRNA oligo does not need to correspond to the mRNA. The use of deoxythymidines in both 3'-overhangs may increase nucleic acid resistance, although siRNA duplexes with either UU or

dTdT overhangs work equally well. 2'-Deoxynucleotides in the 3' overhangs are as efficient as ribonucleotides, but are often cheaper to synthesize.

[0082] The targeted region in the mRNA, and hence the sequence in the siRNA duplex, are chosen using the following guidelines. The open reading frame (ORF) region from the cDNA sequence is recommended for targeting, preferably at least 50 to 100 nucleotides downstream of the start codon, most preferably at least 75-100. Both the 5' and 3' untranslated regions (UTRs) and regions near the start codon are not recommended for targeting as these may be richer in regulatory protein binding sites. UTR-binding proteins and/or translation initiation complexes may interfere with binding of the siRNP endonuclease complex.

[0083] The sequence of the mRNA or cDNA is searched seeking the sequence AA(N19)TT. Sequences with approximately 50% G/C-content (30% to 70%) are used. If no suitable sequences are found, the search is extended to sequences AA(N21). The sequence of the sense siRNA corresponds to 5'-(N19)dTdT-3' or N21, respectively. In the latter case, the 3' end of the sense siRNA is converted to dTdT. The rationale for this sequence conversion is to generate a symmetric duplex with respect to the sequence composition of the sense and antisense 3' overhangs. It is believed that symmetric 3' overhangs help to ensure that the siRNPs are formed with approximately equal ratios of sense and antisense target RNA-cleaving siRNPs. The modification of the overhang of the sense sequence of the siRNA duplex is not expected to affect targeted mRNA recognition, as the antisense siRNA strand glides target recognition.

[0084] If the target mRNA does not contain a suitable AA(N21) sequence, it is recommended to search for NA(N21). The sequence of the sense and antisense strand may still be synthesized as 5' (N19)TT as the sequence of the 3' most nucleotide of the antisense siRNA does not appear to contribute to specificity.

[0085] It is further recommended to search the selected siRNA sequence against EST libraries in appropriate databases (e.g., NCBI BLAST database search) to ensure that only one gene is targeted.

[0086] The appropriately designed siRNAs are either obtained from commercial sources (such as Dharmacon Research, Lafayette, Colo.; Xergon, Huntsville, Ala.; Ambion, Austin, Tex.) or chemically synthesized using appropriately protected ribonucleoside phosphoramidites and a conventional DNA/RNA synthesizer according to standard protocols. The RNA oligonucleotides are 2'-deprotected, desalting and the two strands annealed, according to manufacturer's specifications or conventional protocols, depending on how the siRNAs are obtained. All handling steps are conducted under strict sterile, RNase-free conditions.

[0087] In certain embodiments, linkers (also known as "linker molecules" or "cross-linkers" or "spacers") may be used to conjugate the payload to the protein. The majority of known cross-linkers react with amine, carboxyl, and sulfhydryl groups. Linker molecules may be responsible for different properties of the composition. The length of the linker should be considered in light of molecular flexibility during the conjugation step, and the availability of the conjugated molecule for its target. Longer linkers may thus improve the biological activity of the compositions of the invention, as well as the ease of preparation of them. The geometry of the linker may be used to orient a molecule for

optimal reaction with a target. A linker with flexible geometry may allow the entire composition to conformationally adapt as it binds a target sequence. The nature of the linker may be altered for other various purposes. For example, the hydrophobicity of a polymeric linker may be controlled by the order of monomeric units along the polymer, e.g. a block polymer in which there is a block of hydrophobic monomers interspersed with a block of hydrophilic monomers.

[0088] The chemistry of preparing and utilizing a wide variety of molecular linkers is well-known in the art and many pre-made linkers for use in conjugating molecules are commercially available from vendors such as Pierce Chemical Co., Roche Molecular Biochemicals, United States Biological. Exemplary linker molecules for use in the compositions of the invention include, but are not limited to: aminocaproic acid (ACA); polyglycine, and any other amino acid polymer, polymers such as polyethylene glycol (PEG), polymethyl methacrylate (PMMA), polypropylene glycol (PPG); homobifunctional reagents such as APG, AEDP, BASED, BMB, BMDB, BMH, BMOE, BM[PEO]3, BM[PEO]4, BS3, BSOCOES, DFDNB, DMA, DMP, DMS, DPDDB, DSG, DSP (Lomant's Reagent), DSS, DST, DTBP, DTME, DTSSP, EGS, HBVS, Sulfo-BSOCOES, Sulfo-DST, Sulfo-EGS; heterobifunctional reagents such as ABH, AEDP, AMAS, ANB-NOS, APDP, ASBA, BMPA, BMPH, BMPS, EDC, EMCA, EMCH, EMCS, KMUA, KMUH, GMBS, LC-SMCC, LC-SPDP, MBS, MBuS, M2C2H, MPBH, MSA, NHS-ASA, PDPH, PMPI, SAIDP, SAED SAND, SANPAH, SASD, SATP, SBAP, SFAD, SIA, SIAB, SMCC, SMPB, SMPH, SMPT, SPDP, Sulfo-EMCS, Sulfo-GMBS, Sulfo-HSAB, Sulfo-KMUS, Sulfo-LC-SPDP, Sulfo-MBS, Sulfo-NHS-LC-ASA, Sulfo-SADP, Sulfo-SANPAH, Sulfo-SIAB, Sulfo-SMCC, Sulfo-SMPB, Sulfo-LC-SMPT, SVSB, TFCS; and trifunctional linkers such as Sulfo-SBED.

[0089] Branched linkers may be prepared or used so that multiple moieties per linker are able to react. Such multiply reactive linkers allow the creation of multimeric binding sites.

[0090] An appropriate linker may be a macromolecular polymer. Any of the above-mentioned polymers may comprise the macromolecular polymer. In certain embodiments, such macromolecular polymers may be comprised entirely of one type of polymeric molecule. In other embodiments, the macromolecular polymers may be comprised of more than one type of polymeric molecule. The macromolecular polymers may exist in many possible structures, for example, linear, comb-branched, dendrigraft, dendrimer, or a linear dendron architectural copolymer. For example, PEG and PPG may be used to create a variety of bi- and multivalent linkers. Methods of synthesizing, activating, and modifying branched PEG/PPG polymers and PEG/PPG block co-polymers are well-known in the art. PEG is hydrophilic, while PPG is hydrophobic. For instance, a linker could be synthesized with a PPG core and PEG branches.

[0091] In certain embodiments, the invention relates to any of the first compositions described herein, wherein the payload is an imaging agent or a diagnostic agent. For example, the imaging agent may be a fluorescent imaging agent, such as a fluorophore or a gadolinium chelator, or a magnetic imaging agent, such as a magnetite mineral, a paramagnetic metal ion, or a metal chelating peptide. The imaging agent may be bound to an endogenous site (e.g., a paramagnetic metal ion), bound to a chemically modified

site (e.g., chemical modifications to covalently bind a fluorophore or a gadolinium chelator), or genetically incorporated (e.g., a metal chelating peptide).

[0092] Examples of imaging or diagnostic agents include fluorophores (e.g. Dy547), chromophores, chemoluminescing agents, radionuclides (e.g., In-111, Tc-99m, I-123, I-125 F-18, Ga-67, Ga-68) for Positron Emission Tomography (PET) and Single Photon Emission Tomography (SPECT), unpair spin atoms and free radicals (e.g., Fe, lanthanides, and Gd), and contrast agents (e.g., chelated (DTPA) manganese) for Magnetic Resonance Imaging (MRI).

[0093] Additional examples include radionuclides (e.g. F-18, 1-124, 1-123, 1-125, 1-131, Re-186, Re-188, Y-90, Bi-212, At-211, Sr-89, Ho-166, Sm-153, Cu-67, Cu-64, In-111, Tc-99m, Ga-67, and Ga-68).

[0094] In certain embodiments, the invention relates to any of the second compositions described herein, wherein the payload is an immunogen, for example, an immunogenic antigen. An immunogen is an antigen or any substance that may be specifically bound by components of the immune system (e.g., antibody, lymphocytes). An immunogen is capable of inducing humoral or cell-mediated immune response rather than immunological tolerance. For example, the immunogen may be selected from the group consisting of keyhole limpet hemocyanin (KLH), concholepas concbolepas hemacyanin (CCH), bovine serum albumin (BSA), and ovalbumin (OVA). Further information may be found in Chen D S, et al. *Immunity*. 2013; 39:1-10; and Chen D S, et al. *Clin Cancer Res*. 2012; 18:6580-6587 (both incorporated by reference).

[0095] In certain embodiments, the invention relates to any of the second compositions described herein, wherein the payload is an adjuvant. In certain embodiments, the invention relates to any of the second compositions described herein, wherein the payload is an immunogen and an adjuvant. recruiting of professional antigen-presenting cells (APCs) to the site of antigen exposure; increasing the delivery of antigens by delayed/slow release (depot generation); immunomodulation by cytokine production (selection of Th1 or Th2 response); inducing T-cell response (prolonged exposure of peptide-MHC complexes [signal 1] and stimulation of expression of T-cell-activating co-stimulators [signal 2] on the APCs' surface) and targeting (e. g. carbohydrate adjuvants which target lectin receptors on APCs). Examples of adjuvants include, but are not limited to Freund's Complete Adjuvant, lipopolysaccharides, muramylidipeptide from TB, synthetic polynucleotides, aluminum hydroxide, aluminum phosphate, cytokines, and squalene.

[0096] Targeting Agent

[0097] In certain embodiments, the invention relates to any of the compositions described herein, wherein the composition is a cell-specific therapeutic and imaging-agent delivery system. Targeted therapeutic delivery systems can enhance the effective dose at the site, such as a tumor, while decreasing general exposure to the drug and its associated side effects.

[0098] Protein cage architectures have three surfaces (interior, subunit interface, and exterior) amenable to both genetic and chemical modification. Each surface can play a distinct role in the development of new targeted therapeutic and imaging agent delivery systems. See FIG. 6. The cage interior can house therapeutics, the subunit interface incor-

porates gadolinium (an MRI contrast agent) and the exterior presents cell-specific targeting ligands (such as peptides and antibodies).

[0099] Protein cages have many beneficial attributes that are useful in their development as targeted therapeutic and imaging agent delivery systems. Their size falls into the nanometer range shown to localize in tumors due to the enhanced permeability and retention effect. Their multivalent nature enables the incorporation of multiple functionalities (including targeting peptides and imaging agents) on a single protein cage. They are malleable to both chemical and genetic manipulation and can be produced in heterologous expression systems (including bacterial, yeast, and baculoviral systems). In addition, detailed atomic resolution structural information enables the rational design of genetic mutants with specific functions, including cell-specific targeting.

[0100] Another key component for the development of protein cage architectures as imaging and therapeutic agents is cell-specific targeting. In vivo application of the phage display library technique enabled the identification of peptides that bind specifically to the vasculature of particular organs as well as tumors. One of the most characterized of these targeting peptides is RGD-4C (CDCRGDCFC), which binds $\alpha_1\beta_3$ and $\alpha_5\beta_1$ integrins that are more prevalently expressed within tumor vasculature. For example, RGD-4C and other targeting peptides may be incorporated on the exteriors of the proteins. Fluorescein labeling of cell-specific targeted cages enables their visualization by epifluorescence microscopy. In addition to genetic incorporation, cell-specific targeting ligands, including antibodies and peptides, have also been chemically coupled to protein cage platforms. For example, an anti-CD4 monoclonal antibody conjugated to a protein could enable targeting of CD4 $^{+}$ lymphocytes within a population of splenocytes. The multivalent nature of protein cage architectures results in the presentation of multiple targeting ligands on their surfaces and may potentially aid in the interaction of these protein cages with many surfaces including receptors on a variety of cell types.

[0101] In certain embodiments, the invention relates to any of the compositions described herein, wherein the targeting agent is an anti-PD-1 antibody.

[0102] A targeting agent, or affinity reagent, is a molecule that binds to an antigen or receptor or other molecule. In some embodiments, a targeting agent is a molecule that specifically binds to an antigen or receptor or other molecule. In certain embodiments, some or all of a targeting agent is composed of amino acids (including natural, non-natural, and modified amino acids), nucleic acids, or saccharides. In certain embodiments, a targeting agent is a small molecule.

[0103] Targeting agents in certain embodiments of the invention specifically bind to molecules or targets, such as a cell surface antigen, a cell surface receptor, or other cell surface molecule.

[0104] In some embodiments, the targeting agent is proteinaceous and may be present in a single peptide or polypeptide chain. In some embodiments, the polypeptide chain is a bispecific antibody.

[0105] Bispecific antibodies are well-established in the art as a standard technique to create a single polypeptide that binds to two different determinants. Bispecific antibodies may be made in many different formats, including but not

limited to quadroma, F(ab')2, tetravalent, heterodimeric scFv, bispecific scFv, tandem scFv, diabody and minibody formats, or scFvs appended to or recombinantly fused with whole antibodies.

[0106] Antibodies for use in the invention may be raised through any conventional method, such as through injection of immunogen into mice and subsequent fusions of lymphocytes to create hybridomas. Such hybridomas may then be used either (a) to produce antibody directly, which is purified and used for chemical conjugation to create a bispecific antibody, or (b) to clone cDNAs encoding antibody fragments for subsequent genetic manipulation. To illustrate one method employing the latter strategy, mRNA is isolated from the hybridoma cells, reverse-transcribed into cDNA using antisense oligo-dT or immunoglobulin gene-specific primers, and cloned into a plasmid vector. Clones are sequenced and characterized. They may then be engineered according to standard protocols to combine the heavy and light chains of each antibody, separated by a short peptide linker, into a bacterial or mammalian expression vector as previously described to produce a recombinant bispecific antibody, which are then expressed and purified according to well-established protocols in bacteria or mammalian cells. Antibodies, or other proteinaceous affinity molecules or targeting agents such as peptides, may also be created through display technologies that allow selection of interacting affinity reagents through the screening of very large libraries of, for example, immunoglobulin domains or peptides expressed by bacteriophage. Antibodies may also be humanized through grafting of human immunoglobulin domains, or made from transgenic mice or bacteriophage libraries that have human immunoglobulin genes/cDNAs.

[0107] In some embodiments, a targeting agent may comprise proteinaceous structures other than antibodies that are able to bind to protein targets specifically, including but not limited to avimers, ankyrin repeats and adnectins, and other such proteins with domains that can be evolved to generate specific affinity for antigens, collectively referred to as "antibody-like molecules." Modifications of proteinaceous affinity reagents through the incorporation of unnatural amino acids during synthesis may be used to improve their properties. Such modifications may have several benefits, including the addition of chemical groups that facilitate subsequent conjugation reactions.

[0108] In some embodiments, the targeting agent may be a peptide. In some embodiments, the peptide chain is a bispecific peptide. Peptides can readily be made and screened to create affinity reagents that recognize and bind to macromolecules such as proteins.

[0109] Bispecific affinity reagents may be constructed by separate synthesis and expression of the first and second affinity reagents. A polypeptide bispecific reagent can be expressed as two separately encoded chains that are linked by disulfide bonds during production in the same host cell, such as, for example, a bispecific scFv or diabody. Similarly, standard and widely used solid-phase peptide synthesis technology can be used to synthesize peptides, and chimeric bispecific peptides are well known in the art. A bispecific peptide strategy may be used to combine the first and second first and second affinity reagents in a single peptide chain. Alternatively, polypeptide chains or peptide chains can be expressed/synthesized separately, purified and then conjugated chemically to produce the bispecific affinity reagents useful in the compositions and methods described herein.

Many different formats of antibodies may be used. Whole antibodies, F(ab')₂, F(ab'), scFv, as well as smaller Fab and single-domain antibody fragments may all be used to create the first and second affinity reagents. Following their expression and purification, the targeting agents can be chemically conjugated to the protein vehicle. Many conjugation chemistries may be used to effect this conjugation, including homofunctional or heterofunctional linkers that yield ester, amide, thioether, carbon-carbon, or disulfide linkages.

[0110] In some embodiments, the targeting agent is a peptide aptamer. A peptide aptamer is a peptide molecule that specifically binds to a target protein, and interferes with the functional ability of that target protein. Peptide aptamers consist of a variable peptide loop attached at both ends of a protein scaffold. Such peptide aptamers can often have a binding affinity comparable to that of an antibody (nanomolar range). Due to the highly selective nature of peptide aptamers, they can be used not only to target a specific protein, but also to target specific functions of a given protein (e.g., a signaling function).

[0111] Peptide aptamers are usually prepared by selecting the aptamer for its binding affinity with the specific target from a random pool or library of peptides. Peptide aptamers can be isolated from random peptide libraries by yeast two-hybrid screens. They can also be isolated from phage libraries or chemically generated peptides/libraries.

[0112] In some embodiments, the targeting agent is a nucleic acid aptamer. Nucleic acid aptamers are nucleic acid oligomers that bind other macromolecules specifically; such aptamers that bind specifically to other macromolecules can be readily isolated from libraries of such oligomers by technologies such as SELEX.

[0113] In some embodiments, the targeting agent is an oligosaccharide. Certain oligosaccharides are known ligands for certain extracellular or cell surface receptors.

[0114] The targeting agent recognizes a cell surface antigen on the target cell. The targeting agent may be an antibody, antibody-like molecule, or a peptide, such as an integrin-binding RGD peptide, or a small molecule, such as vitamins, e.g., folate, sugars such as lactose and galactose, or other small molecules. The cell surface antigen may be any cell surface molecule that undergoes internalization, such as a protein, sugar, lipid head group or other antigen on the cell surface. Examples of cell surface antigens useful in the context of the invention include but are not limited to the transferrin receptor type 1 and 2, the EGF receptor, HER2/Neu, VEGF receptors, integrins, CD33, CD19, CD20, CD22 and the asialoglycoprotein receptor.

[0115] Following their expression/synthesis and purification, the targeting agents are associated with the protein (for example, the heavy chain or the light chain of clathrin) through a covalent coupling, either through recombinant fusion, or chemical conjugation or association.

[0116] In certain embodiments, the targeting agent is an HER-2-targeting antibody, for example, trastuzumab or pertuzumab.

[0117] In certain embodiments, the targeting agent is an EGFR-targeting antibody, such as IMC-225.

[0118] In certain embodiments, the targeting agent is a VEGFR-2-targeting antibody.

[0119] In certain embodiments, the targeting agent is a CD-20-targeting antibody.

[0120] In certain embodiments, the targeting agent is a CD-22-targeting antibody.

[0121] In certain embodiments, the targeting agent is a CD-4-targeting antibody.

Exemplary Methods of Therapy or Diagnostic Imaging

[0122] One aspect of the invention relates to a method of treating cancer in a subject in need thereof, comprising:

[0123] administering to the subject a therapeutically effective amount of any one of the first compositions described herein wherein the first payload is an anti-cancer agent.

[0124] One aspect of the invention relates to a method of treating cancer in a subject in need thereof, comprising:

[0125] administering to the subject a therapeutically effective amount of any one of the first compositions described herein wherein the first payload is an anti-cancer agent; and

[0126] administering to the subject a therapeutically effective amount of any one of the second compositions described herein.

[0127] The language “effective amount” of a targeted therapeutic agent refers to that amount necessary or sufficient to eliminate, reduce, or maintain (e.g., prevent the spread of) a tumor, or other target. The effective amount can vary depending on such factors as the disease or condition being treated, the particular targeted constructs being administered, the size of the subject, or the severity of the disease or condition. One of ordinary skill in the art can empirically determine the effective amount of a particular composition without undue experimentation.

[0128] In certain embodiments, the invention relates to any of the methods described herein, wherein the cancer is lung cancer. In certain embodiments, the invention relates to any of the methods described herein, wherein the cancer is non-small cell lung cancer (NSCLC).

[0129] In certain embodiments, the invention relates to any of the methods described herein, wherein the cancer is pancreatic cancer.

[0130] In certain embodiments, the invention relates to any of the methods described herein, wherein the first composition and the second composition are co-administered, i.e., wherein the first composition and the second composition are administered sequentially, simultaneously, or separately.

[0131] In certain embodiments, the invention relates to any of the methods described herein, wherein the first composition and the second composition are administered simultaneously, for example, in one pharmaceutical formulation.

[0132] Another aspect of the invention relates to a method generating an image of a subject in need thereof, comprising:

[0133] administering to the subject a detectable amount of any of the first compositions described herein wherein the first payload is an imaging agent or a diagnostic agent; and

[0134] generating an image.

[0135] The language “effective amount” of a targeted imaging agent refers to that amount necessary or sufficient to visualize a tumor, or other target. The effective amount can vary depending on such factors as the cells or tissue being imaged, the particular targeted constructs being administered, the size of the subject, or the severity of the disease or condition. One of ordinary skill in the art can empirically determine the effective amount of a particular composition without undue experimentation.

[0136] In certain embodiments, the invention relates to any one of the methods described herein, wherein the subject is a mammal; preferably, the subject is a human.

Exemplary Pharmaceutical Compositions

[0137] In another aspect, the invention provides pharmaceutically acceptable compositions which comprise a therapeutically-effective amount of one or more of the compositions described above, formulated together with one or more pharmaceutically acceptable carriers (additives) and/or diluents. As described in detail below, the pharmaceutical compositions of the invention may be specially formulated for administration in solid or liquid form, including those adapted for the following: (1) oral administration, for example, drenches (aqueous or non-aqueous solutions or suspensions), tablets, e.g., those targeted for buccal, sublingual, and systemic absorption, boluses, powders, granules, pastes for application to the tongue; (2) parenteral administration, for example, by subcutaneous, intramuscular, intravenous or epidural injection as, for example, a sterile solution or suspension, or sustained-release formulation; (3) topical application, for example, as a cream, ointment, or a controlled-release patch or spray applied to the skin; (4) intravaginally or intrarectally, for example, as a pessary, cream or foam; (5) sublingually; (6) ocularly; (7) transdermally; or (8) nasally.

[0138] As set out above, certain embodiments of the compositions may contain a basic functional group, such as amino or alkylamino, and are, thus, capable of forming pharmaceutically-acceptable salts with pharmaceutically-acceptable acids. The term "pharmaceutically-acceptable salts" in this respect, refers to the relatively non-toxic, inorganic and organic acid addition salts of components of the compositions of the invention. These salts can be prepared in situ in the administration vehicle or the dosage form manufacturing process, or by separately reacting a purified compound in its free base form with a suitable organic or inorganic acid, and isolating the salt thus formed during subsequent purification. Representative salts include the hydrobromide, hydrochloride, sulfate, bisulfate, phosphate, nitrate, acetate, valerate, oleate, palmitate, stearate, laurate, benzoate, lactate, phosphate, tosylate, citrate, maleate, fumarate, succinate, tartrate, naphthylate, mesylate, glucoheptonate, lactobionate, and laurylsulphonate salts and the like. (See, for example, Berge et al. (1977) "Pharmaceutical Salts", *J. Pharm. Sci.* 66:1-19)

[0139] The pharmaceutically acceptable salts of the subject components include the conventional nontoxic salts or quaternary ammonium salts of the compounds, e.g., from non-toxic organic or inorganic acids. For example, such conventional nontoxic salts include those derived from inorganic acids such as hydrochloride, hydrobromic, sulfuric, sulfamic, phosphoric, nitric, and the like; and the salts prepared from organic acids such as acetic, propionic, succinic, glycolic, stearic, lactic, malic, tartaric, citric, ascorbic, palmitic, maleic, hydroxymaleic, phenylacetic, glutamic, benzoic, salicylic, sulfanilic, 2-acetoxybenzoic, fumaric, toluenesulfonic, methanesulfonic, ethane disulfonic, oxalic, isothionic, and the like.

[0140] In other cases, components of the compositions of the invention may contain one or more acidic functional groups and, thus, are capable of forming pharmaceutically-acceptable salts with pharmaceutically-acceptable bases. The term "pharmaceutically-acceptable salts" in these

instances refers to the relatively non-toxic, inorganic and organic base addition salts of components of the compositions of the invention. These salts can likewise be prepared in situ in the administration vehicle or the dosage form manufacturing process, or by separately reacting the purified component in its free acid form with a suitable base, such as the hydroxide, carbonate or bicarbonate of a pharmaceutically-acceptable metal cation, with ammonia, or with a pharmaceutically-acceptable organic primary, secondary or tertiary amine. Representative alkali or alkaline earth salts include the lithium, sodium, potassium, calcium, magnesium, and aluminum salts and the like. Representative organic amines useful for the formation of base addition salts include ethylamine, diethylamine, ethylenediamine, ethanolamine, diethanolamine, piperazine and the like.

[0141] Wetting agents, emulsifiers and lubricants, such as sodium lauryl sulfate and magnesium stearate, as well as coloring agents, release agents, coating agents, sweetening, flavoring and perfuming agents, preservatives and antioxidants can also be present in the compositions.

[0142] Examples of pharmaceutically-acceptable antioxidants include: (1) water soluble antioxidants, such as ascorbic acid, cysteine hydrochloride, sodium bisulfate, sodium metabisulfite, sodium sulfite and the like; (2) oil-soluble antioxidants, such as ascorbyl palmitate, butylated hydroxyanisole (BHA), butylated hydroxytoluene (BHT), lecithin, propyl gallate, alpha-tocopherol, and the like; and (3) metal chelating agents, such as citric acid, ethylenediamine tetraacetic acid (EDTA), sorbitol, tartaric acid, phosphoric acid, and the like.

[0143] Formulations of the invention include those suitable for oral, nasal, topical (including buccal and sublingual), rectal, vaginal and/or parenteral administration. The formulations may conveniently be presented in unit dosage form and may be prepared by any methods well known in the art of pharmacy. The amount of active ingredient which can be combined with a carrier material to produce a single dosage form will vary depending upon the host being treated, the particular mode of administration. The amount of active ingredient which can be combined with a carrier material to produce a single dosage form will generally be that amount of the composition which produces a therapeutic effect. Generally, out of one hundred percent, this amount will range from about 0.1 percent to about ninety-nine percent of active ingredient, preferably from about 5 percent to about 70 percent, most preferably from about 10 percent to about 30 percent.

[0144] In certain embodiments, a formulation of the invention comprises an excipient selected from the group consisting of cyclodextrins, celluloses, liposomes, micelle forming agents, e.g., bile acids, and polymeric carriers, e.g., polyesters and polyanhydrides; and a compound of the invention. In certain embodiments, an aforementioned formulation renders orally bioavailable a composition of the invention.

[0145] Methods of preparing these formulations or compositions include the step of bringing into association a composition of the invention with the carrier and, optionally, one or more accessory ingredients. In general, the formulations are prepared by uniformly and intimately bringing into association a composition of the invention with liquid carriers, or finely divided solid carriers, or both, and then, if necessary, shaping the product.

[0146] Formulations of the invention suitable for oral administration may be in the form of capsules, cachets, pills, tablets, lozenges (using a flavored basis, usually sucrose and acacia or tragacanth), powders, granules, or as a solution or a suspension in an aqueous or non-aqueous liquid, or as an oil-in-water or water-in-oil liquid emulsion, or as an elixir or syrup, or as pastilles (using an inert base, such as gelatin and glycerin, or sucrose and acacia) and/or as mouth washes and the like, each containing a predetermined amount of a composition of the invention as an active ingredient. A composition of the invention may also be administered as a bolus, electuary or paste.

[0147] In solid dosage forms of the invention for oral administration (capsules, tablets, pills, dragees, powders, granules, trouches and the like), the composition is mixed with one or more pharmaceutically-acceptable carriers, such as sodium citrate or dicalcium phosphate, and/or any of the following: (1) fillers or extenders, such as starches, lactose, sucrose, glucose, mannitol, and/or silicic acid; (2) binders, such as, for example, carboxymethylcellulose, alginates, gelatin, polyvinyl pyrrolidone, sucrose and/or acacia; (3) humectants, such as glycerol; (4) disintegrating agents, such as agar-agar, calcium carbonate, potato or tapioca starch, alginic acid, certain silicates, and sodium carbonate; (5) solution retarding agents, such as paraffin; (6) absorption accelerators, such as quaternary ammonium compounds and surfactants, such as poloxamer and sodium lauryl sulfate; (7) wetting agents, such as, for example, cetyl alcohol, glycerol monostearate, and non-ionic surfactants; (8) absorbents, such as kaolin and bentonite clay; (9) lubricants, such as talc, calcium stearate, magnesium stearate, solid polyethylene glycols, sodium lauryl sulfate, zinc stearate, sodium stearate, stearic acid, and mixtures thereof; (10) coloring agents; and (11) controlled release agents such as crospovidone or ethyl cellulose. In the case of capsules, tablets and pills, the pharmaceutical formulation may also comprise buffering agents. Solid formulations of a similar type may also be employed as fillers in soft and hard-shelled gelatin capsules using such excipients as lactose or milk sugars, as well as high molecular weight polyethylene glycols and the like.

[0148] A tablet may be made by compression or molding, optionally with one or more accessory ingredients. Compressed tablets may be prepared using binder (for example, gelatin or hydroxypropylmethyl cellulose), lubricant, inert diluent, preservative, disintegrant (for example, sodium starch glycolate or cross-linked sodium carboxymethyl cellulose), surface-active or dispersing agent. Molded tablets may be made by molding in a suitable machine a mixture of the powdered composition moistened with an inert liquid diluent.

[0149] The tablets, and other solid dosage forms of the pharmaceutical formulations of the invention, such as dragees, capsules, pills and granules, may optionally be scored or prepared with coatings and shells, such as enteric coatings and other coatings well known in the pharmaceutical-formulating art. They may also be formulated so as to provide slow or controlled release of the composition or the payload therein using, for example, hydroxypropylmethyl cellulose in varying proportions to provide the desired release profile, other polymer matrices, liposomes and/or microspheres. They may be formulated for rapid release, e.g., freeze-dried. They may be sterilized by, for example, filtration through a bacteria-retaining filter, or by incorporating sterilizing agents in the form of sterile solid compositions which can be

dissolved in sterile water, or some other sterile injectable medium immediately before use. These formulations may also optionally contain opacifying agents and may be formulated so that they release the active ingredient(s) only, or preferentially, in a certain portion of the gastrointestinal tract, optionally, in a delayed manner. Examples of embedding compositions which can be used include polymeric substances and waxes. The active ingredient can also be in micro-encapsulated form, if appropriate, with one or more of the above-described excipients.

[0150] Liquid dosage forms for oral administration of the compositions of the invention include pharmaceutically acceptable emulsions, microemulsions, solutions, suspensions, syrups and elixirs. In addition to the active ingredient, the liquid dosage forms may contain inert diluents commonly used in the art, such as, for example, water or other solvents, solubilizing agents and emulsifiers, such as ethyl alcohol, isopropyl alcohol, ethyl carbonate, ethyl acetate, benzyl alcohol, benzyl benzoate, propylene glycol, 1,3-butylene glycol, oils (in particular, cottonseed, groundnut, corn, germ, olive, castor and sesame oils), glycerol, tetrahydrofuryl alcohol, polyethylene glycols and fatty acid esters of sorbitan, and mixtures thereof.

[0151] Besides inert diluents, the oral formulations can also include adjuvants such as wetting agents, emulsifying and suspending agents, sweetening, flavoring, coloring, perfuming and preservative agents.

[0152] Suspensions, in addition to the compositions, may contain suspending agents as, for example, ethoxylated isostearyl alcohols, polyoxyethylene sorbitol and sorbitan esters, microcrystalline cellulose, aluminum metahydroxide, bentonite, agar-agar and tragacanth, and mixtures thereof.

[0153] Dosage forms for the topical or transdermal administration of a composition of this invention include powders, sprays, ointments, pastes, creams, lotions, gels, solutions, patches and inhalants. The composition may be mixed under sterile conditions with a pharmaceutically-acceptable carrier, and with any preservatives, buffers, or propellants which may be required.

[0154] Pharmaceutical formulations of this invention suitable for parenteral administration comprise one or more compositions of the invention in combination with one or more pharmaceutically-acceptable sterile isotonic aqueous or nonaqueous solutions, dispersions, suspensions or emulsions, or sterile powders which may be reconstituted into sterile injectable solutions or dispersions just prior to use, which may contain sugars, alcohols, antioxidants, buffers, bacteriostats, solutes which render the formulation isotonic with the blood of the intended recipient or suspending or thickening agents.

[0155] Examples of suitable aqueous and nonaqueous carriers which may be employed in the pharmaceutical formulations of the invention include water, ethanol, polyols (such as glycerol, propylene glycol, polyethylene glycol, and the like), and suitable mixtures thereof, vegetable oils, such as olive oil, and injectable organic esters, such as ethyl oleate. Proper fluidity can be maintained, for example, by the use of coating materials, such as lecithin, by the maintenance of the required particle size in the case of dispersions, and by the use of surfactants.

[0156] These formulations may also contain adjuvants such as preservatives, wetting agents, emulsifying agents and dispersing agents. Prevention of the action of microorganisms upon the subject compounds may be ensured by the

inclusion of various antibacterial and antifungal agents, for example, paraben, chlorobutanol, phenol sorbic acid, and the like. It may also be desirable to include isotonic agents, such as sugars, sodium chloride, and the like into the compositions. In addition, prolonged absorption of the injectable pharmaceutical form may be brought about by the inclusion of agents which delay absorption such as aluminum monostearate and gelatin.

[0157] When the compositions of the invention are administered as pharmaceuticals, to humans and animals, they can be given *per se* or as a pharmaceutical formulation containing, for example, 0.1 to 99% (more preferably, 10 to 30%) of composition in combination with a pharmaceutically acceptable carrier.

[0158] The formulations of the invention may be given orally, parenterally, topically, or rectally. They are of course given in forms suitable for each administration route. For example, they are administered in tablets or capsule form, by injection, inhalation, eye lotion, ointment, suppository, etc. administration by injection, infusion or inhalation; topical by lotion or ointment; and rectal by suppositories.

[0159] These formulations may be administered to humans and other animals for therapy by any suitable route of administration, including orally, nasally, as by, for example, a spray, rectally, intravaginally, parenterally, intracistermally and topically, as by powders, ointments or drops, including buccally and sublingually.

[0160] Regardless of the route of administration selected, the compositions of the invention, which may be used in a suitable hydrated form, and/or the pharmaceutical formulations of the invention, are formulated into pharmaceutically acceptable dosage forms by conventional methods known to those of skill in the art.

[0161] Actual dosage levels of the active ingredients in the pharmaceutical formulations of this invention may be varied so as to obtain an amount of the payload which is effective to achieve the desired therapeutic response for a particular patient, composition, and mode of administration, without being toxic to the patient.

[0162] The selected dosage level will depend upon a variety of factors including the activity of the particular composition of the invention employed, or the ester, salt or amide thereof, the route of administration, the time of administration, the rate of excretion or metabolism of the particular composition being employed, the rate and extent of absorption, the duration of the treatment, other drugs, compositions and/or materials used in combination with the particular composition employed, the age, sex, weight, condition, general health and prior medical history of the patient being treated, and like factors well known in the medical arts.

[0163] A physician or veterinarian having ordinary skill in the art can readily determine and prescribe the effective amount of the pharmaceutical formulation required. For example, the physician or veterinarian could start doses of the compositions of the invention employed in the pharmaceutical formulation at levels lower than that required in order to achieve the desired therapeutic effect and gradually increase the dosage until the desired effect is achieved.

[0164] In general, a suitable daily dose of a composition of the invention will be that amount of the composition that is the lowest dose effective to produce a therapeutic effect. Such an effective dose will generally depend upon the factors described above.

[0165] If desired, the effective daily dose of the composition may be administered as two, three, four, five, six or more sub-doses administered separately at appropriate intervals throughout the day, optionally, in unit dosage forms. Preferred dosing is one administration per day.

[0166] While it is possible for a composition of the invention to be administered alone, it is preferable to administer the composition as a pharmaceutical formulation.

[0167] The composition according to the invention may be formulated for administration in any convenient way for use in human or veterinary medicine, by analogy with other pharmaceuticals.

[0168] In another aspect, the invention provides pharmaceutically acceptable formulations that comprise a therapeutically-effective amount of one or more of the subject compositions, as described above, formulated together with one or more pharmaceutically acceptable carriers (additives) and/or diluents. As described in detail below, the pharmaceutical formulations of the invention may be specially formulated for administration in solid or liquid form, including those adapted for the following: (1) oral administration, for example, drenches (aqueous or non-aqueous solutions or suspensions), tablets, boluses, powders, granules, pastes for application to the tongue; (2) parenteral administration, for example, by subcutaneous, intramuscular or intravenous injection as, for example, a sterile solution or suspension; (3) topical application, for example, as a cream, ointment or spray applied to the skin, lungs, or mucous membranes; or (4) intravaginally or intrarectally, for example, as a pessary, cream or foam; (5) sublingually or buccally; (6) ocularly; (7) transdermally; or (8) nasally.

[0169] The patient receiving this treatment is any animal in need, including primates, in particular humans, and other mammals such as equines, cattle, swine and sheep; and poultry and pets in general.

[0170] Conjunctive or combination therapy, thus includes sequential, simultaneous and separate administration of the compositions in a way that the therapeutical effects of the first administered one is not entirely disappeared when the subsequent is administered.

Exemplary Kits

[0171] In certain embodiments, the invention relates to a kit for treating or imaging cancer. For example, a kit may comprise one or more compositions as described above and optionally instructions for their use; preferably the kit comprises a first composition and a second composition. In still other embodiments, the invention provides kits comprising one or more pharmaceutical or diagnostic formulations and/or one or more devices for accomplishing administration. For example, a subject kit may comprise a pharmaceutical or diagnostic formulation and catheter for accomplishing direct injection.

EXEMPLIFICATION

[0172] The invention now being generally described, it will be more readily understood by reference to the following examples which are included merely for purposes of illustration of certain aspects and embodiments of the invention, and are not intended to limit the invention.

Example 1—Expression of Clathrin Heavy Chain

[0173] Clathrin human isoform 2 heavy chain was optimized for an *E. coli* expression system as follows:

(SEQ ID NO: 1):
 MAQILPIRFQEHLQLQNLGINPANIGFSTLTMESDKFICIREKVGEQAQV
 VIIDMNDPSNPIRPIADSASAIMNPASKVIALKAGKTLQIFNIEMKSKMK
 AHTMTDDTFWKWISLNTVALVTDNAVYHWSMEGESQPVKMFDRHSSLAG
 CQIINYRTDAKQKWLTLTGISAQQNRVVGAMQLYSVDRKVSQPIEGHAAS
 FAQFKMEGNAEESTLPCFAVRGQAGGKLHIEVGTPPTGNQFPKKAADV
 FPPPEAQNDFPVAMQISEKHDVVFILITKYGIHLYDLETGTCIYMNRI
 ETIFVTAPHEATAGIIGVNRKGQVLSVCVEEENIIPYITNVLQNPDLALR
 MAVRNNLAGAEELFARKFNALFAQGNYSEAAKVAANAPKGILRTPDTIRR
 FQSVPAQPGQTSPLLQYFGIILDQGQLNKYESLELCRPVLQQGRKQLLEK
 WLKEDKLECEELGLDVKSVDPLTLASVYLRANVPNKVIQCFQAGVQK
 IVLYAKKVGYPDWIFLLRNVMRISPDQGQFAQMLVQDEEPLADITQIV
 DVMFMEYNLIQQCTAFLLDALKNNRPSGPLQTRLLEMNLMPQVADAIL
 GNQMFTHYDRAHIAQLCEKAGLLQRALEHFTDLYDIKRAVVHTHLLNPEW
 LVNYFGSLSVEDSLECLRAMLSANIRQNLQICVQASKYHEQLSQSLIE
 LFESFKSFEGLFYFLGSIVNFSQDPDVHKYIQAACKTGQIKEVERICRE
 SNCYDPERVKNLKEAKLTDQLPLIIVCDRFDVFHDLVLYLYRNNLQKYI
 EIYVQKVNPSRLPVVIGGLLDVDCSEDVIKNLILVVRGQFSTDELVAEVE
 KRNRLKLKLPWLEARIHEGCEEPATHNALAKIYIDSNNNPERFLRENPPY
 DSRVVGKYCEKRDPHLACVAYERGQCDLELINVCNENSFKSLSRYLVR
 KDPFLWGSVLLESNPYRRLIDQVQQTALSETQDPEEVSTVKA
 PNELIELLEKIVLDNSVFSEHRNLQNLILTAIKADRTRVMEYINLDNY
 DADPIANIAISNELFEEAFAIFRKFDVNTSAVQVLIEHIGNLDRAYEFAE
 RCNEPAVWSQLAKAQLQKGMVKEAIDSYIKADDPSSYMEVVAQANTSGNW
 EELVVKYLQMARKKARESYVETELIFALAKTRLAELEEFINGPNNAHIQQ
 VGDRCYDEKMYDAAKLLYNNVSNFGLLASTLVLGEYQAAVDGARKANST
 RTWKEVCFACVGDGEKFRLAQMCGLHIVVHADELEELINYYQDRGYFEELI
 TMLEAALGLERAHMGMFTELAILYSFKPKQMKREHLELFWSRVNIPKVL
 AAEQAHLWAELVFLYDKYEEYDNAIITMMNHPDTDAKEGQFKDIITK
 VANEYRATQFYLEFKPLLNLMLVSPRLDHTRAVNYFSKVKQLPLV
 KPLVYLRSVQNHNNSVNESLNLFITEEDYQALRTSIDAYDNFDNISLAQR
 LEKHELIEFRRIAAYLFKGNNRWKQSVELCKKDSLKYK
 DAMQYASESKDTELAEELLQWFQEEKRECFGACLFTCYDLLRPDV
 VLETAWRHNIMDFAMPYFIQVMKEYLT
 KVDKLDASESLRKEEEQATETQPIVYGNLSL

(SEQ ID NO: 2):
 ATGGCGCAGATCTGCCGATTGCGTTCAGGAACACCTGCAaCTGCAaAA
 CCTGGGCATCAACCCGGCAACATCGGTTCTCACCTGACTATGGAGT

-continued

CTGATAAGTTATCTGTATCCGTGAGAAAGTGGGTGAGCAGGCTCAGGTG
 GTGATTATTGACATGAACGACCCGCTAACCGATCCGTGCCCCGATCTC
 CGCAGATTCGCAATCATGAACCCGGCGTCAAGGTTATCGCCTGAAAG
 CTGGTAAGACCTGCAATCTTAACATTGAGATGAAGTCCAAAATGAAG
 GCGCATACCATGACCGACGACGTTACCTCTGGAAGTGGATCTCTCTGAA
 CACCGTTGACTGGTTACTGACAACCGGGTGTACCACTGGTCTATGGAAG
 GTGAATCCAGCGGTTAAATGTCGACCGTCAATTCTCTGGCGGGT
 TGCCAGATTATCAACTACCGTACCGACGCGAACAGAAATGGCTGCTGCT
 GACTGGCATTCCGACAGCAGAACCCGCGTGGTGGTGAATGCACTG
 ACTCTGTGGACCGTAAGGTGTCTCAGCCGATCGAAGGTCACGCTGCGTCC
 TTTGCGCAGTTCAAGATGGAGGTAACCGCGAAGAACCCACCTGTTTG
 CTTTGCCTGCGTGGCAGGCGGGTGTAAACTGCAATTATCGAGGTTG
 GCACTCCCGGACCGGAAACCGCCGTTCCGAAAAAGCGGTTGACGTT
 TTCTTCCGCGGAAGCTCAGAACGACTCCGGTTGCGATGCAGATTAG
 CGAGAAACACGACGCTGGAGACTGGcACCTGCATCTATGAAACGTT
 TGACGACCTGGAGACTGGcACCTGCATCTATGAAACGTTATCTCTGG
 GAAACCATCTCGTTACTGCTCCGATGAGGCGACCGcGGTACGATTAG
 CGAGAAACACGACGCTGGAGACTGGcACCTGCATCTATGAAACGTT
 TGTTAACCGTAAAGTCAGGTGTCTGTTGTGAGGAAGAGAAC
 TCATCCCGTACATCACTAACGTTCTGCAaAACCCGGACTGGCGTGC
 ATGGCGGTTGCAACAAACCTGGCAGGGCTGAGGAGCTGTCGCGCTAA
 ATTCAACCGCCTGGCTCAGGGCAACTATTCTGAAGCGGAAAGTTG
 CTGCAAAACGCGCGAAAGGCATCCTGCGTACTCCGACACCACCGCG
 TTCCAGCTCGTCCGGCGCAGCGGGTCAAGACCTCCCGCTGTCGCAATA
 TTTGGTATCCTGCTGGACCAGGGTCAGCTGAACAAGTATGAAAGCTGG
 AACTGTGCGTCCGGTCTGCAaCAGGGCGTAAACAGCTGCTGGAGAAC
 TGGCTGAAGGAAGACAAACTGGAATGCTCCGAAGAGCTGGTACCTGG
 TAAATCCGTGGACCCACTCTGGCACTGAGCGTGTATCTGCGTGC
 TGCGAACAAAGTTACCTGCTGGCTATACCCGGATTGGATCTTCT
 GCTGCGTAACGTGATGCGTATCAGCCGGATCAGGGCAGCAGTTG
 AGATGCTGGTTAGGAGCCGCTGGCGACATTACCCAGATCGTT
 GATGTTTTATGGAATAACCTGATTAGCAGCTGACTGCGTCTGCT
 GGATGCTCTGAAAAACACCGTCCGCTGAGGGTCCGCTGCAaACTG
 TGCTGGAAATGAACCTGATGCAACGCGCCGAGGTGGCAGATGCA
 ATTCTG
 GGCAACCAAGATGTTACTCACTATGACCGCGCTCATATCGCG
 CAGCTGCGAACAAAGCGGGTCTGCGCAaCGTGCCTGGAGCATT
 ACCGACATTAAAGCGTGTGCTGGTGCATACTCATCTGCTGAAC
 CCGGAATGGCTGGTAACTATTCTGCGTCTGAGCGTGGAGACT
 CCCTGGAGTGCCTGCGCAGACCTGCAaATTGAGTGTTC
 GCGCGCGATGCTGTCGCAACATCGCTCAGAACCTGCAaATT
 TGTGTT

-continued

AGGTGGCTTCTAAATACCATGAACAGCTGAGCACCCAGTCTCTGATTGAG
 CTGTTGAATCTTCAGTCCTCGAGGGCTGTTCTACTTCCTGGGTC
 TATCGTGAACCTCTCAGGACCCGGACGTTCAATTCAAACATTCAGG
 CTGCGTCAAACGTTGGTCAAGAAGTGGAACTGATCTGCCCGAA
 TCTAACTGCTACGACCCGGAGCGCTGAAGAACCTTCTGAAAAGAAGCAGA
 GCTGACCGACCAAGCTGCCGCTGATCATGTTGTGACCGTTCGACTCG
 TTCATGATCTGGTGCTGTACCTGTATCGTAAACACCTGCAaAAAGTACATT
 GAGATT TACGTTCAAGGGTAACCCGTCGCTGCCGGTGGTTATTGG
 TGGCCTGCTGGATGTGGACTGCTCTGAAGACGTTCAAAACCTGATCC
 TGGTTGTCGTGCCAGTTCTCCACCGATGAACCTGGTGGCTGAGGTTGAA
 AAGCGTAACCGTCTGAAACTGCTGCTGCCGTGGAAAGCGCGTATCCA
 CGAAGGGTGTGAGGAACCGGCACCCATAACCGCTGGCAAAATCTATA
 TCGACTCTAACAACAACCGGAACGCTTCCCTGCTGAAAACCGTATTAC
 GACTCTCGTGTGTTGGTAAATACTGTGAGAACGTTGATCCGCACCTGGC
 GTGTGTTGCGTACGAACGTTGCTAGTGCACCTGGAACGATCAACGTT
 GTAAACGAAAACCTCTGTTCAAATCTCTGCTCGTTACCTGGTGCCTCGC
 AAAGATCCGGAGCTGTTGGGTTAGCGTTCTGCTGGAATCCAACCCGCTACCG
 TCGTCCGCTGATTGACCAGGTGGTCAGACTGCGCTGAGCGAGACTCAGG
 ACCCGGAGGAAGTTAGCGTTACCGTTAAAGCATTGACTGCGGACCTG
 CGAACGAGCTGAGCTGGAGAAAATTGTTCTGGACAACTCCGT
 TTTTAGCGAACACCGCAACCTGCAaAACCTGCTGATTCTGACTTGCGATCA
 AGGCGGATCGTACCCCGTGTGATGGAATATCAACCGCTGGATAACTAT
 GATGCGCCGGACATCGCAACATCGCTATCTCTAAGCAACTGTTGAGAAGA
 AGCgTTTGCATTTCCGTAATTGACGTTAACACCTCTGCGGTGCGAGG
 TGCTGATCGAACATATCGTAACCTGGACCGTGCATGAGTCGAGAG
 CGCTGCAACGAGCCGGCAGTTGGTCCAGCTGGCAAAGGCTCAGCTGCA
 aAAGGGTATGGTAAAGAAGCAATCGACTCTTACATCAAAGCGGATGATC
 CGCTAGCTATGGAAAGTTGTCAGGCAGCGAACACCTCGGTAACTGG
 GAGGAGCTGGTAAAGTACCTGCAaATGGCGCGCAAAAGGCGCTGAATC
 TTATGTGGAGACCGAGCTGATTTGCGCTGGCGAAAACCAACCGCCTGG

-continued

CGGAACCTGGAGGAGTTTATCAACGGTCCGAACAAACGCTCATATCCAGCAG
 GTTGGCGATCGTGCTACGACGAAAAAATGTACGACCGGGCGAAGCTGCT
 GTACAACAAACGTTCTAACTTCGGCCGCTGGCTCTACTCTGGTGATC
 TGGCGAGTATCAGGCTGCGTGGACGGTGCCTGAAAGCGAAGCTCACC
 CGCACTGGAAAGAAGTTGCTCGCGTGTGACGGCAAAGAATTTC
 TCTGGCGCAGATGTGCGGTCTGCACATTGTTGCGTACGCGTGAAGCTGG
 AAGAGCTGATCAACTACTATCAGGATCGTGGTTACTTGAAAGAACTGATC
 ACCATGCTGGAGGCGGACTGGTCTGGAACGTGCTCACATGGTATGTT
 CACCGAACTGGCAATCTGACTCTAAATTCAAGCCGAGAAAATGCGC
 AGCACCTGGAACGTGTTGGAGCCGCTAACATCCGAAGGTTCTGCGT
 GCGCGGAGCAGCGCATCTGTTGCGTGAACGGTGTATGTTCTGTATGATAA
 GTATGAGGAATATGACAACCGCATTATCACTATGATGAACCACCG
 ACACGCTGGAAGGAAGGTCAAGTTAAGGACATCATCACTAAAGTGGCGAAC
 GTGGAGGCTGACTACCGTGCATCCAGTTTACCTGGAGTTCAAACCGCT
 GCTGCTGAAACGATCTGCTGATGGTGTGCTCTCCGCTGCGTGGACCACCC
 GTGCTGTAACACTTCTCTAAGGTTAACAGCTGCCGTGGTTAACCG
 TATCTGCTAGCGTTCAAACACATAACACAGGCTGAACGAATCC
 GAAACACCTGTTCAATTACCGAAGAAGACTACCAAGGACTGCGTACCTCTA
 TCGATGCTTACGACAACATTGATAACATCTCTGGCACAGCGCCTGGAA
 AACATGAACTGATTGAGTTCCGTCGCATCGCGCTTATCTGTTCAAGGG
 CAACACCGTGGAAACAGTCTGTTGAGCTGTGCAAAAAGATTCTGT
 ATAAAGATGCAATGCACTGAGCTACGCGTCCGAATCTAAAGACACTGAGCTGG
 GAGGAACCTGCTGCAaTGGTCCGCAaAGGAGAAGCGCAGTGCTTCC
 TGCTTGCTGTTACTTGCTATGACCTGCTGCGTCCGGATGTTCTGG
 AACATGCTGGCGTCAAAACATTATGGACTTTGCGATGCCGTACTTATC
 CAGGTTATGAAAGAATATCTGACCAAAGTGGACAAGCTGGACGCGAGCGA
 AAGCCTGCGCAAGGAGGAAGAACAGGCTACCGAAACCCAGGCCATCGT
 ACGGTAACCTGCTCTG

[0174] The preparation yielded a protein with the following characteristics:

Protein Description:	1) 22.4 mg, >85%, soluble protein with 6His tag from <i>E. coli</i> ; 2) QC by SDS-PAGE and Western-Blot.
Protein Concentration:	0.8 mg/mL, as determined by Bradford protein assay with BSA as a standard.
Final Prep:	Fusion protein: 22.4 mg; 1.0 mL/vial; 28 vials.
Purity:	>85 % as estimated by a Coomassie blue-stained SDS-PAGE gel
Storage Buffer:	20 mM Tris.HCl, pH 7.5, 20% Glycerol
Storage:	Immediate Storage at -20° C. upon receiving; At first use, aliquot and store at -20° C. to avoid multiple freeze-thaws.

- continued

Intended Use: This product is intended for research use only. It is not for any human or animal diagnostic and therapeutic use.

Isoelectric Point 5.67

Molecular Weight 188,955 Da

Quality Assurance M1: SDS-PAGE Protein Marker
 Lane 1: PE1130119-1 protein
 (see FIG. 4) M2: Western-Blot Protein Marker
 Lane 2: PE1130119-1 protein (using anti-6His antibody)

Sequence (see below)

(SEQ ID NO: 3):

1 MAQILPIRFQ EHLQLQNLGI NPANIGFSTL TMESDKFICI REKVGEQAAQV
 VIIDMNDPSN PIRRPISADS
 AIMNPASKVVI FNIEMKSkmk AHTMTDDVTF
 WKWISLNTVA LVTDNAVYHW SMEGESQPVK MFDRHSSLAG CQIINYRTDA
 81ALKAGKTLQI 161

KQKWLTTGI SAQQNRRVGA MQLYSVDRKV SQPIEGHAAS FAQFKMEGNA
 EESTLPCFAV RGQAGGKLHI IEVGTTPPTGN 241

QFPFPKKAVDV FFPPEAQNDP PVAMQISEKH DVVFLITKYG YIHLYDLETG
 TCIYMNRI SG ETIFVTAPHE ATAGIIGVNR 321

KGQVLSVCVE EENIIPYITN VLQNPDLALR MAVRNNNLAGA EELFARKFNA
 LFAQGNYSEA AKVAANAPKG ILRTPDTIRR 401

FQSVPAPQPGQ TSPLLQYFGI LLDQQLNLYK ESLELCRPVQ QQGRKQLLEK
 WLKEDKLECS EELGDLVKS DPTLALSVYL 481

RANVPNVIQ CFAETGQVOK IVLYAKKVGY TPDWIFLLRN VMRISPQDQQ
 QFAQMLVQDE EPLADITQIV DVFMMEYNLIQ 561

QCTAFLLDAL KNNRPSEGQ QTRLLEMNLH HAPQVADAIL GNQMFTHYDR
 AHIAQLCEKA GLLQRALEHF TDLYDIKRAV 641

VTHHLLNPEW LVNVYFGSLSV EDSLECLRAM LSANIRQNLQ ICVQVASKYH
 EQLSTQSLIE LFESFKSFEG LEYFLGSIVN 721

FSQDPDVHFK YIQAACKTGQ IKEVERICRE SNCYDPERVK NFLKEAKLTD
 QLPLIIVCDR FDFVHDLVLY LYRNNLQKYI 801

EIYVQKVNP S RLPVVIGGLL DVDCSEDIK NLILVVVRQF STDELVAEVE
 KRNRLKLLLP WLEARIHEGC EEPATHNALA 881

KIYIDSNNNP ERFLRENPPY DSRVVGKYCE KRDPHLACVA YERGQCDLEL
 INVCNENSLF KSLSRYLVRK KDPPELWGSVL 961

LESNPYRRPL IDQVVQTALS ETQDPPEEVSV TVKAFMTADL PNELIELLEK
 IVLDNSVFSE HRNLQNLIL TAIKADRTRV 1041

MEYINKLDNY DAPDIANIAI SNELFEEAFA IFRKFQDVNTS AVQVLIEHIG
 NLDRAYEFAE RCNEPAVWSQ LAKAQLQKGM 1121

VKEAIDSYYK ADDPSSYMEV VQAANTSGNW EELVKYLQMA RKKARESYVE
 TELIFALAKT NRLAELLEFI NGPNNAHIIQ 1201

VGDRCYDEKM YDAAKLLYNN VSNFGRLAST LVHLGEYQAA VDGARKANST
 RTWKEVCFAC VDGKEFRLAQ MCGLHIVVHA 1281

DELEELINYY QDRGYFEELI TMLEAALGLE RAHMGMFTEL AILYSKFKPQ
 KMREHLELFW SRVNIPKVLR AAEQAHLWAE 1361

LVFLYDKYEE YDNAIIITMMN HPTDAWKEGQ FKDIITKVN VELYYRAIQF
 YLEFKPULLN DLLMVLSPRL DHTRAVNYFS 1441

KVKQLPLVLP YLRSVQNHNN KSVNESLNNL FITEEDYQAL RTSIDAYDNF
 DNISLAQRLE KHELIEFRRI AAYLFKGNRR 1521

- continued

WQSVELCKK DSLYKDAMQY ASESKDTELA EELLQWFLOE EKRECFGACL
FTCYDLLRPD VVLETAWRHN IMDFAMPYFI 1601

QVMKEYLTKV DKLDASESLR KEEEQATEQ PIVYGNLSSL EHHHHHH

Example 2—Expression of Clathrin Light Chain

[0175] Clathrin light chain (below) was expressed in *E. coli*:

(SEQ ID NO: 4):
MAELDPFGAPAGAPGGPALGNVGAGAGEEDPAAAFLAQQSEIAGIENDE
AFAILDGGAPGPQPHGEPPGGPDAVDGVMNQEYYQESNGPTDSYAAISQV
DRLQSEPESEIRKWREEQMERLEALDANSRKQEAWEKAKELEEWYARQ
DEQLQTKANNRVADEAFYKQPFADIVIGYVTNINHPCYSLEQAAEAFVN
DIDEDESPGTEWERVARLCDFNPKSSQAKDVSRMRSVLISLQAPLVH
(SEQ ID NO: 5):
ATGGCGGAACTGGACCCGTTCGCGCTCCGGCAGGCGCACCGGGCGTCC
GGCGCTGGGTAACGGCGTTGCGGGTGTGGTGAAGAAGACCCGGCAGCAG
CGTTCTGGCGAGCAGGAATCTGAAATCGCAGGTATCGAAAACGATGAA
GCGTTCGCGATCCTGGACGGTGGTGTCCGGTCCGCAGCCGACGGTGA
ACCGCCGGTGGTCCGGATCGCGTTGACGGTTATGAACGGCGAGTACT
ACCAAGGAGTCTAACGGTCCGACCGATTCTTACCGGGCAATTAGCCAGGTT
GATCGTCTGCAaTCCGAACCGGAATCTATCGTAAATGGCGTGAGGAGCA
GATGGAACGCGCTGGAAGCTCTGGACGCGAACCTCGCAAACAGGAGCGG
AATGGAAAGAAAAGCGATCAAAGAGCTGGAAGAATGGTATGCGCGTCAG

[0176] The preparation yielded a protein with the following characteristics:

Protein Description:

[0177] 12.96 mg, >85%, soluble protein with 6His tag from *E. coli*;

Protein Concentration:

[0178] 0.60 mg/mL, as determined by Bradford protein assay with BSA as a standard.

Final Prep:

[0179] 1.8 mL/tube, 12 tubes

Purity:

[0180] >85% as estimated by a Coomassie blue-stained SDS-PAGE gel

Storage Buffer:

50 mM Tris, 150 mM NaCl, 10% Glycerol, pH 8.0

Storage:

[0181] Immediate Storage at -20° C. upon receiving
At first use, aliquot and store at -20° C. to avoid multiple freeze-thaws.

Intended Use:

[0182] This product is intended for research use only. It is not for any human or animal diagnostic and therapeutic use.

Protein Sequence (SEQ ID NO: 6):
1 MAELDPFGAP AGAPGGPALG NGVAGAGEED PAAAFLAQQE SEIAGIENDE AFAILDGGAP
61 GPQPHGEPPG GPDAVDGVMN GEYYQESNGP TDSYAAISQV DRLQSEPESEI RKWREQMER
121 LEALDANSRK QEAWEKAKELEEWYARQ DEQLQTKAN NRVADEAFYK QPFADIVIGYV
181 TNINHPCYSLEQAAEAFVN DIDEDESPGTE WERVARLCDF NPSSKQAKD VSRMRSVLISL
241 LKQAPLVHLE HHHHHH

- continued

GACGAACAGCTGCAaAAAACAAAGCGAACACCGTGTGGCGGACGAAGC
ATTCTACAAACAGCGTTGCGGACGTTATCGGTTACGTTACCAACATCA
ACCATCCGTGCTACTCTGGAGCAGGCAGCGGAAGAACGCTTCGTAAC
GACATCGACGAATCTAGCCCaGGcACCGAATGGAACGTGTTGCGCGCCT
GTGCGACTTCAACCCGAAATCTTCTAAACAGGCTAAAGACGTTCTCGTA
TGCCTCTGTTGATCTCTGAAGCAGGCTCCGCTGGTTCAC

Protein Length

[0183] 256

MW

[0184] 28136.9

Predicted pI

[0185] 4.37

Quality Assurance (see FIG. 5):

M1: SDS-PAGE Protein Marker

[0186] Lane 1: PE1130119-2 protein

M2: Western-Blot ProteinMarker

[0187] Lane 2: PE1130119-2 protein (using Anti-6His antibody)

Example 3—Loading of Self-Assembled Protein

[0188] The self-assembled protein was loaded with a fluorescent compound to assess its ability to self-assembling following loading.

[0189] Recombinant clathrin heavy chain (HC) and light chain (LC) were diluted at 300 µg/mL and 800 µL/mL, respectively in 10 mM Tris-HCl (pH 7.9). A fluoresceinated test compound (FTC) was diluted at 500 µg/mL in the same buffer. Assembly of 100 µL in a 96-well assay plate was initiated by adding 4 µL of 1 M 2-(N-morpholino)ethanesulfonic acid (MES) buffer, pH 6.5 supplemented with 10 mM ethylene glycol tetraacetic acid (EGTA) and 75 mM CaCl₂. A control was used with pH 7 MES buffer. OD320 nm readings were measured using the SpectraMax M3 (molecular devices) and the results were plotted by the software provided by the equipment.

Example 4—Loading of Self-Assembled Protein (Prophetic)

[0190] A variety of ratios of HC, LC, and FTC, as well as low pH, are being tested in order to investigate assembling efficiency.

Other experiments to study drug loading are being tested.

1. Load or attach the drug to the light chain assembly cage and then load the loaded light chain to the heavy chain in self-assembling conditions (indirect loading to the main cage). The light chain may increase the stability of the main heavy chain cage.

2. Use direct mixing of drug and cages to change drug loading under different open and self-assembling conditions.

3. Use different size drugs, such as paclitaxel or gemcitabine.

Example 5—Animal Studies (Prophetic)

[0191] Compare efficacy of loaded vehicles to efficacy of drugs alone in animal models.

[0192] Perform acute and chronic toxicity studies in two animal species with the lead drug.

Example 6—Co-Administration of a First Composition and a Second Composition to Enhance Immunogenic Response (Prophetic)

[0193] Co-administration of a first composition (comprising a first self-assembled clathrin vehicle, an anti-cancer agent, and a targeting agent) with a second composition (comprising a second self-assembled clathrin vehicle and an anti-PD-1 antibody) is expected to provide enhanced therapeutic effect as compared to the first composition alone, the second composition alone, and the additive effect of the first composition and the second composition. The second composition may further comprise an immunogen payload.

REFERENCES

[0194] All publications and patents mentioned herein, including those items listed below, are hereby incorporated by reference in their entirety as if each individual publication or patent was specifically and individually indicated to be incorporated by reference.

EQUIVALENTS

[0195] While specific embodiments of the subject invention have been discussed, the above specification is illustrative and not restrictive. Many variations of the invention will become apparent to those skilled in the art upon review of this specification.

SEQUENCE LISTING

```

<160> NUMBER OF SEQ ID NOS: 9

<210> SEQ ID NO 1
<211> LENGTH: 1638
<212> TYPE: PRT
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Description of Artificial Sequence: Synthetic
polypeptide

<400> SEQUENCE: 1

Met Ala Gln Ile Leu Pro Ile Arg Phe Gln Glu His Leu Gln Leu Gln
1 5 10 15

Asn Leu Gly Ile Asn Pro Ala Asn Ile Gly Phe Ser Thr Leu Thr Met
20 25 30

Glu Ser Asp Lys Phe Ile Cys Ile Arg Glu Lys Val Gly Glu Gln Ala
35 40 45

Gln Val Val Ile Ile Asp Met Asn Asp Pro Ser Asn Pro Ile Arg Arg
50 55 60

Pro Ile Ser Ala Asp Ser Ala Ile Met Asn Pro Ala Ser Lys Val Ile
65 70 75 80

Ala Leu Lys Ala Gly Lys Thr Leu Gln Ile Phe Asn Ile Glu Met Lys
85 90 95

```

-continued

Ser Lys Met Lys Ala His Thr Met Thr Asp Asp Val Thr Phe Trp Lys
 100 105 110

Trp Ile Ser Leu Asn Thr Val Ala Leu Val Thr Asp Asn Ala Val Tyr
 115 120 125

His Trp Ser Met Glu Gly Glu Ser Gln Pro Val Lys Met Phe Asp Arg
 130 135 140

His Ser Ser Leu Ala Gly Cys Gln Ile Ile Asn Tyr Arg Thr Asp Ala
 145 150 155 160

Lys Gln Lys Trp Leu Leu Leu Thr Gly Ile Ser Ala Gln Gln Asn Arg
 165 170 175

Val Val Gly Ala Met Gln Leu Tyr Ser Val Asp Arg Lys Val Ser Gln
 180 185 190

Pro Ile Glu Gly His Ala Ala Ser Phe Ala Gln Phe Lys Met Glu Gly
 195 200 205

Asn Ala Glu Glu Ser Thr Leu Phe Cys Phe Ala Val Arg Gly Gln Ala
 210 215 220

Gly Gly Lys Leu His Ile Ile Glu Val Gly Thr Pro Pro Thr Gly Asn
 225 230 235 240

Gln Pro Phe Pro Lys Lys Ala Val Asp Val Phe Phe Pro Pro Glu Ala
 245 250 255

Gln Asn Asp Phe Pro Val Ala Met Gln Ile Ser Glu Lys His Asp Val
 260 265 270

Val Phe Leu Ile Thr Lys Tyr Gly Tyr Ile His Leu Tyr Asp Leu Glu
 275 280 285

Thr Gly Thr Cys Ile Tyr Met Asn Arg Ile Ser Gly Glu Thr Ile Phe
 290 295 300

Val Thr Ala Pro His Glu Ala Thr Ala Gly Ile Ile Gly Val Asn Arg
 305 310 315 320

Lys Gly Gln Val Leu Ser Val Cys Val Glu Glu Glu Asn Ile Ile Pro
 325 330 335

Tyr Ile Thr Asn Val Leu Gln Asn Pro Asp Leu Ala Leu Arg Met Ala
 340 345 350

Val Arg Asn Asn Leu Ala Gly Ala Glu Glu Leu Phe Ala Arg Lys Phe
 355 360 365

Asn Ala Leu Phe Ala Gln Gly Asn Tyr Ser Glu Ala Ala Lys Val Ala
 370 375 380

Ala Asn Ala Pro Lys Gly Ile Leu Arg Thr Pro Asp Thr Ile Arg Arg
 385 390 395 400

Phe Gln Ser Val Pro Ala Gln Pro Gly Gln Thr Ser Pro Leu Leu Gln
 405 410 415

Tyr Phe Gly Ile Leu Leu Asp Gln Gly Gln Leu Asn Lys Tyr Glu Ser
 420 425 430

Leu Glu Leu Cys Arg Pro Val Leu Gln Gln Gly Arg Lys Gln Leu Leu
 435 440 445

Glu Lys Trp Leu Lys Glu Asp Lys Leu Glu Cys Ser Glu Glu Leu Gly
 450 455 460

Asp Leu Val Lys Ser Val Asp Pro Thr Leu Ala Leu Ser Val Tyr Leu
 465 470 475 480

Arg Ala Asn Val Pro Asn Lys Val Ile Gln Cys Phe Ala Glu Thr Gly
 485 490 495

Gln Val Gln Lys Ile Val Leu Tyr Ala Lys Lys Val Gly Tyr Thr Pro

-continued

500	505	510
Asp Trp Ile Phe Leu Leu Arg Asn Val Met Arg Ile Ser Pro Asp Gln		
515	520	525
Gly Gln Gln Phe Ala Gln Met Leu Val Gln Asp Glu Glu Pro Leu Ala		
530	535	540
Asp Ile Thr Gln Ile Val Asp Val Phe Met Glu Tyr Asn Leu Ile Gln		
545	550	555
Gln Cys Thr Ala Phe Leu Leu Asp Ala Leu Lys Asn Asn Arg Pro Ser		
565	570	575
Glu Gly Pro Leu Gln Thr Arg Leu Leu Glu Met Asn Leu Met His Ala		
580	585	590
Pro Gln Val Ala Asp Ala Ile Leu Gly Asn Gln Met Phe Thr His Tyr		
595	600	605
Asp Arg Ala His Ile Ala Gln Leu Cys Glu Lys Ala Gly Leu Leu Gln		
610	615	620
Arg Ala Leu Glu His Phe Thr Asp Leu Tyr Asp Ile Lys Arg Ala Val		
625	630	635
Val His Thr His Leu Leu Asn Pro Glu Trp Leu Val Asn Tyr Phe Gly		
645	650	655
Ser Leu Ser Val Glu Asp Ser Leu Glu Cys Leu Arg Ala Met Leu Ser		
660	665	670
Ala Asn Ile Arg Gln Asn Leu Gln Ile Cys Val Gln Val Ala Ser Lys		
675	680	685
Tyr His Glu Gln Leu Ser Thr Gln Ser Leu Ile Glu Leu Phe Glu Ser		
690	695	700
Phe Lys Ser Phe Glu Gly Leu Phe Tyr Phe Leu Gly Ser Ile Val Asn		
705	710	715
Phe Ser Gln Asp Pro Asp Val His Phe Lys Tyr Ile Gln Ala Ala Cys		
725	730	735
Lys Thr Gly Gln Ile Lys Glu Val Glu Arg Ile Cys Arg Glu Ser Asn		
740	745	750
Cys Tyr Asp Pro Glu Arg Val Lys Asn Phe Leu Lys Glu Ala Lys Leu		
755	760	765
Thr Asp Gln Leu Pro Leu Ile Ile Val Cys Asp Arg Phe Asp Phe Val		
770	775	780
His Asp Leu Val Leu Tyr Leu Tyr Arg Asn Asn Leu Gln Lys Tyr Ile		
785	790	795
Glu Ile Tyr Val Gln Lys Val Asn Pro Ser Arg Leu Pro Val Val Ile		
805	810	815
Gly Gly Leu Leu Asp Val Asp Cys Ser Glu Asp Val Ile Lys Asn Leu		
820	825	830
Ile Leu Val Val Arg Gly Gln Phe Ser Thr Asp Glu Leu Val Ala Glu		
835	840	845
Val Glu Lys Arg Asn Arg Leu Lys Leu Leu Pro Trp Leu Glu Ala		
850	855	860
Arg Ile His Glu Gly Cys Glu Glu Pro Ala Thr His Asn Ala Leu Ala		
865	870	875
Lys Ile Tyr Ile Asp Ser Asn Asn Pro Glu Arg Phe Leu Arg Glu		
885	890	895
Asn Pro Tyr Tyr Asp Ser Arg Val Val Gly Lys Tyr Cys Glu Lys Arg		
900	905	910

-continued

Asp Pro His Leu Ala Cys Val Ala Tyr Glu Arg Gly Gln Cys Asp Leu
 915 920 925
 Glu Leu Ile Asn Val Cys Asn Glu Asn Ser Leu Phe Lys Ser Leu Ser
 930 935 940
 Arg Tyr Leu Val Arg Arg Lys Asp Pro Glu Leu Trp Gly Ser Val Leu
 945 950 955 960
 Leu Glu Ser Asn Pro Tyr Arg Arg Pro Leu Ile Asp Gln Val Val Gln
 965 970 975
 Thr Ala Leu Ser Glu Thr Gln Asp Pro Glu Glu Val Ser Val Thr Val
 980 985 990
 Lys Ala Phe Met Thr Ala Asp Leu Pro Asn Glu Leu Ile Glu Leu Leu
 995 1000 1005
 Glu Lys Ile Val Leu Asp Asn Ser Val Phe Ser Glu His Arg Asn
 1010 1015 1020
 Leu Gln Asn Leu Leu Ile Leu Thr Ala Ile Lys Ala Asp Arg Thr
 1025 1030 1035
 Arg Val Met Glu Tyr Ile Asn Arg Leu Asp Asn Tyr Asp Ala Pro
 1040 1045 1050
 Asp Ile Ala Asn Ile Ala Ile Ser Asn Glu Leu Phe Glu Glu Ala
 1055 1060 1065
 Phe Ala Ile Phe Arg Lys Phe Asp Val Asn Thr Ser Ala Val Gln
 1070 1075 1080
 Val Leu Ile Glu His Ile Gly Asn Leu Asp Arg Ala Tyr Glu Phe
 1085 1090 1095
 Ala Glu Arg Cys Asn Glu Pro Ala Val Trp Ser Gln Leu Ala Lys
 1100 1105 1110
 Ala Gln Leu Gln Lys Gly Met Val Lys Glu Ala Ile Asp Ser Tyr
 1115 1120 1125
 Ile Lys Ala Asp Asp Pro Ser Ser Tyr Met Glu Val Val Gln Ala
 1130 1135 1140
 Ala Asn Thr Ser Gly Asn Trp Glu Glu Leu Val Lys Tyr Leu Gln
 1145 1150 1155
 Met Ala Arg Lys Lys Ala Arg Glu Ser Tyr Val Glu Thr Glu Leu
 1160 1165 1170
 Ile Phe Ala Leu Ala Lys Thr Asn Arg Leu Ala Glu Leu Glu Glu
 1175 1180 1185
 Phe Ile Asn Gly Pro Asn Asn Ala His Ile Gln Gln Val Gly Asp
 1190 1195 1200
 Arg Cys Tyr Asp Glu Lys Met Tyr Asp Ala Ala Lys Leu Leu Tyr
 1205 1210 1215
 Asn Asn Val Ser Asn Phe Gly Arg Leu Ala Ser Thr Leu Val His
 1220 1225 1230
 Leu Gly Glu Tyr Gln Ala Ala Val Asp Gly Ala Arg Lys Ala Asn
 1235 1240 1245
 Ser Thr Arg Thr Trp Lys Glu Val Cys Phe Ala Cys Val Asp Gly
 1250 1255 1260
 Lys Glu Phe Arg Leu Ala Gln Met Cys Gly Leu His Ile Val Val
 1265 1270 1275
 His Ala Asp Glu Leu Glu Glu Leu Ile Asn Tyr Tyr Gln Asp Arg
 1280 1285 1290

-continued

Gly Tyr Phe Glu Glu Leu Ile Thr Met Leu Glu Ala Ala Leu Gly
 1295 1300 1305

Leu Glu Arg Ala His Met Gly Met Phe Thr Glu Leu Ala Ile Leu
 1310 1315 1320

Tyr Ser Lys Phe Lys Pro Gln Lys Met Arg Glu His Leu Glu Leu
 1325 1330 1335

Phe Trp Ser Arg Val Asn Ile Pro Lys Val Leu Arg Ala Ala Glu
 1340 1345 1350

Gln Ala His Leu Trp Ala Glu Leu Val Phe Leu Tyr Asp Lys Tyr
 1355 1360 1365

Glu Glu Tyr Asp Asn Ala Ile Ile Thr Met Met Asn His Pro Thr
 1370 1375 1380

Asp Ala Trp Lys Glu Gly Gln Phe Lys Asp Ile Ile Thr Lys Val
 1385 1390 1395

Ala Asn Val Glu Leu Tyr Tyr Arg Ala Ile Gln Phe Tyr Leu Glu
 1400 1405 1410

Phe Lys Pro Leu Leu Leu Asn Asp Leu Leu Met Val Leu Ser Pro
 1415 1420 1425

Arg Leu Asp His Thr Arg Ala Val Asn Tyr Phe Ser Lys Val Lys
 1430 1435 1440

Gln Leu Pro Leu Val Lys Pro Tyr Leu Arg Ser Val Gln Asn His
 1445 1450 1455

Asn Asn Lys Ser Val Asn Glu Ser Leu Asn Leu Phe Ile Thr Glu
 1460 1465 1470

Glu Asp Tyr Gln Ala Leu Arg Thr Ser Ile Asp Ala Tyr Asp Asn
 1475 1480 1485

Phe Asp Asn Ile Ser Leu Ala Gln Arg Leu Glu Lys His Glu Leu
 1490 1495 1500

Ile Glu Phe Arg Arg Ile Ala Ala Tyr Leu Phe Lys Gly Asn Asn
 1505 1510 1515

Arg Trp Lys Gln Ser Val Glu Leu Cys Lys Asp Ser Leu Tyr
 1520 1525 1530

Lys Asp Ala Met Gln Tyr Ala Ser Glu Ser Lys Asp Thr Glu Leu
 1535 1540 1545

Ala Glu Glu Leu Leu Gln Trp Phe Leu Gln Glu Glu Lys Arg Glu
 1550 1555 1560

Cys Phe Gly Ala Cys Leu Phe Thr Cys Tyr Asp Leu Leu Arg Pro
 1565 1570 1575

Asp Val Val Leu Glu Thr Ala Trp Arg His Asn Ile Met Asp Phe
 1580 1585 1590

Ala Met Pro Tyr Phe Ile Gln Val Met Lys Glu Tyr Leu Thr Lys
 1595 1600 1605

Val Asp Lys Leu Asp Ala Ser Glu Ser Leu Arg Lys Glu Glu Glu
 1610 1615 1620

Gln Ala Thr Glu Thr Gln Pro Ile Val Tyr Gly Asn Leu Ser Leu
 1625 1630 1635

<210> SEQ ID NO 2
 <211> LENGTH: 4917
 <212> TYPE: DNA
 <213> ORGANISM: Artificial Sequence
 <220> FEATURE:
 <223> OTHER INFORMATION: Description of Artificial Sequence: Synthetic

-continued

polynucleotide

<400> SEQUENCE: 2

-continued

ttctctcagg accccggacgt tcatttcaaa tacattcagg ctgcgtgcaa aactggtcag 2220
atcaaaagaag tggAACgttat ctggccgcaa tcttaactgt acgaccggaa ggcgtgaaag 2280
aactttctga aagaagcgaa gctgaccgac cagctggccg tgatcatcggt ttgtgaccgt 2340
ttcgacttcg ttcatgatct ggtgtgtac ctgtatcgta acaacccgtca aaagtgacatt 2400
gagatttacg ttcagaaggt gaaccggctc cgtctgcccgg tggttattgg tggccgtctg 2460
gatgtggact gctctgaaga cgttacaaa aacctgtatcc tgggttgc tggccgttcc 2520
tccaccgtatc aactgggtggc tgaggttgaa aagcgtaacc gtctgaaact gctgtgtccg 2580
tggcttggaaag cgcgtatccca cgaagggtgt gaggaaacgg cgaccatcaa cgcgtgtccg 2640
aaaatctata tcgactctaa caacaacccg gaacgcttcc tgcgtgaaaa cccgtattac 2700
gactctcggt ttgtgggtaa atactgtgag aaacgtgtatc cgcacccgtcc tgggttgc 2760
tacgaacgtg gtcagtgcga cctggaaactg atcaacgttt gtaacgaaaa ctctctgttc 2820
aaatctctgt ctgcgttaccc ggtgtgtccg aaagatccgg agctgtgggg tagcgttctg 2880
ctggaatccca acccgtaaccg tcgtccgtcattgaccagg tggttcagac tgcgtgtccg 2940
gagactcagg accccggagga agtttgcgtt accgttacccgattcatgac tgcggacccgt 3000
ccgaacgaggc tgatcgagct gctggagaaaa attgttctgg acaactccgt ttttagcgaa 3060
caccgcgaaacc tcgaaaacccgtctgactgcgtatc aaggccgtatcg taccggcgtg 3120
atggaaatata tcaaccgcct ggataactat gatgcgcggg acatcgaa catcgatc 3180
tctaaccgaac tggtaagaaga agcgtttgcg atttccgtatcattcgacgt taacaccctt 3240
gcgggtgcagg tgctgtatcga acatatcggt aacctggacc gtgcgtatga gttcgacag 3300
cgctgcacacg agccggcagt ttggcccgat ctggcaaaagg ctcaactgtca aaagggtatg 3360
gttaaaagaag caatcgactc ttacatcaaa gggatgtatc cgtctagctat tatggaaat 3420
gtgcaggcagg cgaacacccctc cggtaactgg gaggagctgg tgaagtttgc gcaatggcg 3480
cgcaaaaagg cgcgtgaatc ttatgtggag accgagctga ttttcgcgtt ggcgaaaacc 3540
aaccgcgtgg cggaaactgga ggagtttaccc aacggccgttca acaacccgtca tatccagcg 3600
gttggcgtatc cggtaactgg cggccgttca gggatgtatc ctttcgcgtt gtcacacac 3660
gtttcttaact tggccgtctt ggcttctact ctgggtgcattc tggggcgttca tcaaggctgcg 3720
gtggacccgtt cgcgttaaaggc gaactctacc cgcacttggaa aagaagtttgc ttttcgcgtt 3780
gttgacccgtt aagaatttcg tctggccgtatc tggccgttca gtcacattgtt ggtgcacccgt 3840
gacgagctgg aagagctgtatc caactactat caggatcgat gttactttgtt agaactgtatc 3900
accatgtgg aggcggcaact gggcttggaa cgtgtatcaca tgggtatgtt caccgttcc 3960
gcaatccgtt actctaaattt caaaggccgtatc aaaaatgcgtca agcaccctggaa actttttgg 4020
agccgcgttta acatccggaa gtttctgtgtt gccggccgttca aggcgttccgtt gttttgtt 4080
ctgggttttgc tttatgtatc tttatgtatc tttatgtatc tttatgtatc tttatgtatc 4140
catccgaccggc acgcgtggaa ggaaggttccg tttatgtatc tttatgtatc tttatgtatc 4200
gtggagctgtt actaccgtgc gatccaggatc tttatgtatc tttatgtatc tttatgtatc 4260
gatctgtatc tttatgtatc tttatgtatc tttatgtatc tttatgtatc tttatgtatc 4320
aagggtttaaac agctgtccgtt ggtttaaggccgttca tttatgtatc tttatgtatc tttatgtatc 4380
aaggagctgtatc acgaatccctt gtttattaccgttca aagaagacta ccaggactgtatc 4440

-continued

cgtacacctata	tcgatgctta	cgacaacttt	gataacatct	ctctggcaca	gcgcctggaa	4500
aaacatgaac	tgattgagtt	ccgtcgcatc	gcggcttatac	tgttcaaggg	caacaaccgt	4560
tggaaacagt	ctgttgagct	gtgcaaaaaa	gattcttgtt	ataaaagatgc	aatgcagttac	4620
gctccgaat	ctaaagacac	tgagctggct	gaggaactgc	tgcaatggtt	cctgcaagag	4680
gagaagcgcg	agtgcgtcg	tgcttgcctg	tttacttgct	atgacctgtt	gcgtccggat	4740
gttggcttgg	aaactgctt	gctcataac	attatggact	ttgcgtatgcc	gtactttatc	4800
cagggttatga	aagaatatct	gaccaaagtg	gacaagctgg	acgcgagcga	aagcctgcgc	4860
aaggaggaag	aacaggctac	cgaaacccag	cgatcgtgt	acggtaacct	gtctctg	4917

<210> SEQ ID NO 3
 <211> LENGTH: 1647
 <212> TYPE: PRT
 <213> ORGANISM: Artificial Sequence
 <220> FEATURE:
 <223> OTHER INFORMATION: Description of Artificial Sequence: Synthetic polypeptide

<400> SEQUENCE: 3

Met Ala Gln Ile Leu Pro Ile Arg Phe Gln Glu His Leu Gln						
1	5	10	15			

Asn Leu Gly Ile Asn Pro Ala Asn Ile Gly Phe Ser Thr Leu Thr Met						
20	25	30				

Glu Ser Asp Lys Phe Ile Cys Ile Arg Glu Lys Val Gly Glu Gln Ala						
35	40	45				

Gln Val Val Ile Ile Asp Met Asn Asp Pro Ser Asn Pro Ile Arg Arg						
50	55	60				

Pro Ile Ser Ala Asp Ser Ala Ile Met Asn Pro Ala Ser Lys Val Ile						
65	70	75	80			

Phe Asn Ile Glu Met Lys Ser Lys Met Lys Ala His Thr Met Thr Asp						
85	90	95				

Asp Val Thr Phe Trp Lys Trp Ile Ser Leu Asn Thr Val Ala Leu Val						
100	105	110				

Thr Asp Asn Ala Val Tyr His Trp Ser Met Glu Gly Glu Ser Gln Pro						
115	120	125				

Val Lys Met Phe Asp Arg His Ser Ser Leu Ala Gly Cys Gln Ile Ile						
130	135	140				

Asn Tyr Arg Thr Asp Ala Ala Leu Lys Ala Gly Lys Thr Leu Gln Ile						
145	150	155	160			

Lys Gln Lys Trp Leu Leu Leu Thr Gly Ile Ser Ala Gln Gln Asn Arg						
165	170	175				

Val Val Gly Ala Met Gln Leu Tyr Ser Val Asp Arg Lys Val Ser Gln						
180	185	190				

Pro Ile Glu Gly His Ala Ala Ser Phe Ala Gln Phe Lys Met Glu Gly						
195	200	205				

Asn Ala Glu Glu Ser Thr Leu Phe Cys Phe Ala Val Arg Gly Gln Ala						
210	215	220				

Gly Gly Lys Leu His Ile Ile Glu Val Gly Thr Pro Pro Thr Gly Asn						
225	230	235	240			

Gln Pro Phe Pro Lys Lys Ala Val Asp Val Phe Phe Pro Pro Glu Ala						
245	250	255				

Gln Asn Asp Phe Pro Val Ala Met Gln Ile Ser Glu Lys His Asp Val

-continued

260	265	270	
Val Phe Leu Ile Thr Lys Tyr Gly Tyr Ile His Leu Tyr Asp Leu Glu			
275	280	285	
Thr Gly Thr Cys Ile Tyr Met Asn Arg Ile Ser Gly Glu Thr Ile Phe			
290	295	300	
Val Thr Ala Pro His Glu Ala Thr Ala Gly Ile Ile Gly Val Asn Arg			
305	310	315	320
Lys Gly Gln Val Leu Ser Val Cys Val Glu Glu Glu Asn Ile Ile Pro			
325	330	335	
Tyr Ile Thr Asn Val Leu Gln Asn Pro Asp Leu Ala Leu Arg Met Ala			
340	345	350	
Val Arg Asn Asn Leu Ala Gly Ala Glu Glu Leu Phe Ala Arg Lys Phe			
355	360	365	
Asn Ala Leu Phe Ala Gln Gly Asn Tyr Ser Glu Ala Ala Lys Val Ala			
370	375	380	
Ala Asn Ala Pro Lys Gly Ile Leu Arg Thr Pro Asp Thr Ile Arg Arg			
385	390	395	400
Phe Gln Ser Val Pro Ala Gln Pro Gly Gln Thr Ser Pro Leu Leu Gln			
405	410	415	
Tyr Phe Gly Ile Leu Leu Asp Gln Gly Gln Leu Asn Lys Tyr Glu Ser			
420	425	430	
Leu Glu Leu Cys Arg Pro Val Leu Gln Gln Gly Arg Lys Gln Leu Leu			
435	440	445	
Glu Lys Trp Leu Lys Glu Asp Lys Leu Glu Cys Ser Glu Glu Leu Gly			
450	455	460	
Asp Leu Val Lys Ser Val Asp Pro Thr Leu Ala Leu Ser Val Tyr Leu			
465	470	475	480
Arg Ala Asn Val Pro Asn Lys Val Ile Gln Cys Phe Ala Glu Thr Gly			
485	490	495	
Gln Val Gln Lys Ile Val Leu Tyr Ala Lys Lys Val Gly Tyr Thr Pro			
500	505	510	
Asp Trp Ile Phe Leu Leu Arg Asn Val Met Arg Ile Ser Pro Asp Gln			
515	520	525	
Gly Gln Gln Phe Ala Gln Met Leu Val Gln Asp Glu Glu Pro Leu Ala			
530	535	540	
Asp Ile Thr Gln Ile Val Asp Val Phe Met Glu Tyr Asn Leu Ile Gln			
545	550	555	560
Gln Cys Thr Ala Phe Leu Leu Asp Ala Leu Lys Asn Asn Arg Pro Ser			
565	570	575	
Glu Gly Pro Leu Gln Thr Arg Leu Leu Glu Met Asn Leu Met His Ala			
580	585	590	
Pro Gln Val Ala Asp Ala Ile Leu Gly Asn Gln Met Phe Thr His Tyr			
595	600	605	
Asp Arg Ala His Ile Ala Gln Leu Cys Glu Lys Ala Gly Leu Leu Gln			
610	615	620	
Arg Ala Leu Glu His Phe Thr Asp Leu Tyr Asp Ile Lys Arg Ala Val			
625	630	635	640
Val His Thr His Leu Leu Asn Pro Glu Trp Leu Val Asn Tyr Phe Gly			
645	650	655	
Ser Leu Ser Val Glu Asp Ser Leu Glu Cys Leu Arg Ala Met Leu Ser			
660	665	670	

-continued

Ala Asn Ile Arg Gln Asn Leu Gln Ile Cys Val Gln Val Ala Ser Lys
 675 680 685
 Tyr His Glu Gln Leu Ser Thr Gln Ser Leu Ile Glu Leu Phe Glu Ser
 690 695 700
 Phe Lys Ser Phe Glu Gly Leu Phe Tyr Phe Leu Gly Ser Ile Val Asn
 705 710 715 720
 Phe Ser Gln Asp Pro Asp Val His Phe Lys Tyr Ile Gln Ala Ala Cys
 725 730 735
 Lys Thr Gly Gln Ile Lys Glu Val Glu Arg Ile Cys Arg Glu Ser Asn
 740 745 750
 Cys Tyr Asp Pro Glu Arg Val Lys Asn Phe Leu Lys Glu Ala Lys Leu
 755 760 765
 Thr Asp Gln Leu Pro Leu Ile Ile Val Cys Asp Arg Phe Asp Phe Val
 770 775 780
 His Asp Leu Val Leu Tyr Leu Tyr Arg Asn Asn Leu Gln Lys Tyr Ile
 785 790 795 800
 Glu Ile Tyr Val Gln Lys Val Asn Pro Ser Arg Leu Pro Val Val Ile
 805 810 815
 Gly Gly Leu Leu Asp Val Asp Cys Ser Glu Asp Val Ile Lys Asn Leu
 820 825 830
 Ile Leu Val Val Arg Gly Gln Phe Ser Thr Asp Glu Leu Val Ala Glu
 835 840 845
 Val Glu Lys Arg Asn Arg Leu Lys Leu Leu Pro Trp Leu Glu Ala
 850 855 860
 Arg Ile His Glu Gly Cys Glu Glu Pro Ala Thr His Asn Ala Leu Ala
 865 870 875 880
 Lys Ile Tyr Ile Asp Ser Asn Asn Asn Pro Glu Arg Phe Leu Arg Glu
 885 890 895
 Asn Pro Tyr Tyr Asp Ser Arg Val Val Gly Lys Tyr Cys Glu Lys Arg
 900 905 910
 Asp Pro His Leu Ala Cys Val Ala Tyr Glu Arg Gly Gln Cys Asp Leu
 915 920 925
 Glu Leu Ile Asn Val Cys Asn Glu Asn Ser Leu Phe Lys Ser Leu Ser
 930 935 940
 Arg Tyr Leu Val Arg Arg Lys Asp Pro Glu Leu Trp Gly Ser Val Leu
 945 950 955 960
 Leu Glu Ser Asn Pro Tyr Arg Arg Pro Leu Ile Asp Gln Val Val Gln
 965 970 975
 Thr Ala Leu Ser Glu Thr Gln Asp Pro Glu Glu Val Ser Val Thr Val
 980 985 990
 Lys Ala Phe Met Thr Ala Asp Leu Pro Asn Glu Leu Ile Glu Leu Leu
 995 1000 1005
 Glu Lys Ile Val Leu Asp Asn Ser Val Phe Ser Glu His Arg Asn
 1010 1015 1020
 Leu Gln Asn Leu Leu Ile Leu Thr Ala Ile Lys Ala Asp Arg Thr
 1025 1030 1035
 Arg Val Met Glu Tyr Ile Asn Arg Leu Asp Asn Tyr Asp Ala Pro
 1040 1045 1050
 Asp Ile Ala Asn Ile Ala Ile Ser Asn Glu Leu Phe Glu Glu Ala
 1055 1060 1065

-continued

Phe	Ala	Ile	Phe	Arg	Lys	Phe	Asp	Val	Asn	Thr	Ser	Ala	Val	Gln
1070			1075									1080		
Val	Leu	Ile	Glu	His	Ile	Gly	Asn	Leu	Asp	Arg	Ala	Tyr	Glu	Phe
1085			1090			1095								
Ala	Glu	Arg	Cys	Asn	Glu	Pro	Ala	Val	Trp	Ser	Gln	Leu	Ala	Lys
1100			1105								1110			
Ala	Gln	Leu	Gln	Lys	Gly	Met	Val	Lys	Glu	Ala	Ile	Asp	Ser	Tyr
1115			1120			1125								
Ile	Lys	Ala	Asp	Asp	Pro	Ser	Ser	Tyr	Met	Glu	Val	Val	Gln	Ala
1130			1135			1140								
Ala	Asn	Thr	Ser	Gly	Asn	Trp	Glu	Glu	Leu	Val	Lys	Tyr	Leu	Gln
1145			1150			1155								
Met	Ala	Arg	Lys	Lys	Ala	Arg	Glu	Ser	Tyr	Val	Glu	Thr	Glu	Leu
1160			1165			1170								
Ile	Phe	Ala	Leu	Ala	Lys	Thr	Asn	Arg	Leu	Ala	Glu	Leu	Glu	Glu
1175			1180			1185								
Phe	Ile	Asn	Gly	Pro	Asn	Asn	Ala	His	Ile	Gln	Gln	Val	Gly	Asp
1190			1195			1200								
Arg	Cys	Tyr	Asp	Glu	Lys	Met	Tyr	Asp	Ala	Ala	Lys	Leu	Leu	Tyr
1205			1210			1215								
Asn	Asn	Val	Ser	Asn	Phe	Gly	Arg	Leu	Ala	Ser	Thr	Leu	Val	His
1220			1225			1230								
Leu	Gly	Glu	Tyr	Gln	Ala	Ala	Val	Asp	Gly	Ala	Arg	Lys	Ala	Asn
1235			1240			1245								
Ser	Thr	Arg	Thr	Trp	Lys	Glu	Val	Cys	Phe	Ala	Cys	Val	Asp	Gly
1250			1255			1260								
Lys	Glu	Phe	Arg	Leu	Ala	Gln	Met	Cys	Gly	Leu	His	Ile	Val	Val
1265			1270			1275								
His	Ala	Asp	Glu	Leu	Glu	Glu	Leu	Ile	Asn	Tyr	Tyr	Gln	Asp	Arg
1280			1285			1290								
Gly	Tyr	Phe	Glu	Glu	Leu	Ile	Thr	Met	Leu	Glu	Ala	Ala	Leu	Gly
1295			1300			1305								
Leu	Glu	Arg	Ala	His	Met	Gly	Met	Phe	Thr	Glu	Leu	Ala	Ile	Leu
1310			1315			1320								
Tyr	Ser	Lys	Phe	Lys	Pro	Gln	Lys	Met	Arg	Glu	His	Leu	Glu	Leu
1325			1330			1335								
Phe	Trp	Ser	Arg	Val	Asn	Ile	Pro	Lys	Val	Leu	Arg	Ala	Ala	Glu
1340			1345			1350								
Gln	Ala	His	Leu	Trp	Ala	Glu	Leu	Val	Phe	Leu	Tyr	Asp	Lys	Tyr
1355			1360			1365								
Glu	Glu	Tyr	Asp	Asn	Ala	Ile	Ile	Thr	Met	Met	Asn	His	Pro	Thr
1370			1375			1380								
Asp	Ala	Trp	Lys	Glu	Gly	Gln	Phe	Lys	Asp	Ile	Ile	Thr	Lys	Val
1385			1390			1395								
Ala	Asn	Val	Glu	Leu	Tyr	Tyr	Arg	Ala	Ile	Gln	Phe	Tyr	Leu	Glu
1400			1405			1410								
Phe	Lys	Pro	Leu	Leu	Leu	Asn	Asp	Leu	Leu	Met	Val	Leu	Ser	Pro
1415			1420			1425								
Arg	Leu	Asp	His	Thr	Arg	Ala	Val	Asn	Tyr	Phe	Ser	Lys	Val	Lys
1430			1435			1440								
Gln	Leu	Pro	Leu	Val	Lys	Pro	Tyr	Leu	Arg	Ser	Val	Gln	Asn	His

-continued

1445	1450	1455
Asn Asn Lys Ser Val Asn Glu	Ser Leu Asn Asn Leu	Phe Ile Thr
1460	1465	1470
Glu Glu Asp Tyr Gln Ala Leu	Arg Thr Ser Ile Asp	Ala Tyr Asp
1475	1480	1485
Asn Phe Asp Asn Ile Ser Leu	Ala Gln Arg Leu Glu	Lys His Glu
1490	1495	1500
Leu Ile Glu Phe Arg Arg Ile	Ala Ala Tyr Leu Phe	Lys Gly Asn
1505	1510	1515
Asn Arg Trp Lys Gln Ser Val	Glu Leu Cys Lys Lys	Asp Ser Leu
1520	1525	1530
Tyr Lys Asp Ala Met Gln Tyr	Ala Ser Glu Ser Lys	Asp Thr Glu
1535	1540	1545
Leu Ala Glu Glu Leu Leu Gln	Trp Phe Leu Gln Glu	Glu Lys Arg
1550	1555	1560
Glu Cys Phe Gly Ala Cys Leu	Phe Thr Cys Tyr Asp	Leu Leu Arg
1565	1570	1575
Pro Asp Val Val Leu Glu Thr	Ala Trp Arg His Asn	Ile Met Asp
1580	1585	1590
Phe Ala Met Pro Tyr Phe Ile	Gln Val Met Lys Glu	Tyr Leu Thr
1595	1600	1605
Lys Val Asp Lys Leu Asp Ala	Ser Glu Ser Leu Arg	Lys Glu Glu
1610	1615	1620
Glu Gln Ala Thr Glu Thr Gln	Pro Ile Val Tyr Gly	Asn Leu Ser
1625	1630	1635
Leu Leu Glu His His His His		
1640	1645	

<210> SEQ_ID NO 4
 <211> LENGTH: 248
 <212> TYPE: PRT
 <213> ORGANISM: Artificial Sequence
 <220> FEATURE:
 <223> OTHER_INFORMATION: Description of Artificial Sequence: Synthetic
 polypeptide

<400> SEQUENCE: 4		
Met Ala Glu Leu Asp Pro Phe Gly Ala Pro Ala Gly Ala Pro Gly Gly		
1	5	10
Pro Ala Leu Gly Asn Gly Val Ala Gly Ala Gly Glu Glu Asp Pro Ala		
20	25	30
Ala Ala Phe Leu Ala Gln Gln Glu Ser Glu Ile Ala Gly Ile Glu Asn		
35	40	45
Asp Glu Ala Phe Ala Ile Leu Asp Gly Gly Ala Pro Gly Pro Gln Pro		
50	55	60
His Gly Glu Pro Pro Gly Gly Pro Asp Ala Val Asp Gly Val Met Asn		
65	70	75
Gly Glu Tyr Tyr Gln Glu Ser Asn Gly Pro Thr Asp Ser Tyr Ala Ala		
85	90	95
Ile Ser Gln Val Asp Arg Leu Gln Ser Glu Pro Glu Ser Ile Arg Lys		
100	105	110
Trp Arg Glu Glu Gln Met Glu Arg Leu Glu Ala Leu Asp Ala Asn Ser		
115	120	125

-continued

Arg Lys Gln Glu Ala Glu Trp Lys Glu Lys Ala Ile Lys Glu Leu Glu
 130 135 140

Glu Trp Tyr Ala Arg Gln Asp Glu Gln Leu Glu Lys Thr Lys Ala Asn
 145 150 155 160

Asn Arg Val Ala Asp Glu Ala Phe Tyr Lys Gln Pro Phe Ala Asp Val
 165 170 175

Ile Gly Tyr Val Thr Asn Ile Asn His Pro Cys Tyr Ser Leu Glu Gln
 180 185 190

Ala Ala Glu Glu Ala Phe Val Asn Asp Ile Asp Glu Ser Ser Pro Gly
 195 200 205

Thr Glu Trp Glu Arg Val Ala Arg Leu Cys Asp Phe Asn Pro Lys Ser
 210 215 220

Ser Lys Gln Ala Lys Asp Val Ser Arg Met Arg Ser Val Leu Ile Ser
 225 230 235 240

Leu Lys Gln Ala Pro Leu Val His
 245

<210> SEQ ID NO 5
 <211> LENGTH: 744
 <212> TYPE: DNA
 <213> ORGANISM: Artificial Sequence
 <220> FEATURE:
 <223> OTHER INFORMATION: Description of Artificial Sequence: Synthetic
 polynucleotide

<400> SEQUENCE: 5

atggcgaaac tggaccgcgtt cggcgctccg gcaggcgac cggcggtcc ggcgctgggt 60
 aacggcggtt cgggtgttgc tgaagaagac cccgcagcag cgttcctggc gcagcaggaa 120
 tctgaaatcg caggtatcga aaacgatgaa gcgttcgcga tcctggacgg tgggtgttccg 180
 ggtccgcagc cgcacgggtga accgcgggtt ggtccggatg cgggttgcacgg tgttatgaac 240
 ggcgagttact accaggagtc taacggtccg accgattttt acgcggcaat tagccagtt 300
 gatcgctgc aatccgaacc ggaatctatc cgtaaatggc gtgaggagca gatggAACgc 360
 ctggaaagctc tggacgcgaa ctctcgcaaa caggaggcgg aatggaaaga aaaagcgatc 420
 aaagagctgg aagaatggta tgcgcgtcag gacgaacagc tgcaaaaaac caaagcgAAC 480
 aaccgtgtgg cggacgaagc attctacaaa cagccgtttt cggacgttat cggttacgtt 540
 accaacatca accatccgtt ctactctgt gaggcaggcag cggaaagaagc gttcgtgaac 600
 gacatcgacg aatctagccc aggcaccgaa tgggaacgtt ttgcgcgcct gtgcgacttc 660
 aaccgcgaaat cttctaaaca ggctaaagac gtttctcgta tgcgttctgt tctgatctct 720
 ctgaaggcagg ctcccgctggt tcac 744

<210> SEQ ID NO 6
 <211> LENGTH: 256
 <212> TYPE: PRT
 <213> ORGANISM: Artificial Sequence
 <220> FEATURE:
 <223> OTHER INFORMATION: Description of Artificial Sequence: Synthetic
 polypeptide

<400> SEQUENCE: 6

Met Ala Glu Leu Asp Pro Phe Gly Ala Pro Ala Gly Ala Pro Gly Gly
 1 5 10 15

Pro Ala Leu Gly Asn Gly Val Ala Gly Ala Gly Glu Glu Asp Pro Ala

-continued

20	25	30
Ala Ala Phe Leu Ala Gln Gln Glu Ser Glu Ile Ala Gly Ile Glu Asn		
35	40	45
Asp Glu Ala Phe Ala Ile Leu Asp Gly Gly Ala Pro Gly Pro Gln Pro		
50	55	60
His Gly Glu Pro Pro Gly Gly Pro Asp Ala Val Asp Gly Val Met Asn		
65	70	75
Gly Glu Tyr Tyr Gln Glu Ser Asn Gly Pro Thr Asp Ser Tyr Ala Ala		
85	90	95
Ile Ser Gln Val Asp Arg Leu Gln Ser Glu Pro Glu Ser Ile Arg Lys		
100	105	110
Trp Arg Glu Glu Gln Met Glu Arg Leu Glu Ala Leu Asp Ala Asn Ser		
115	120	125
Arg Lys Gln Glu Ala Glu Trp Lys Glu Lys Ala Ile Lys Glu Leu Glu		
130	135	140
Glu Trp Tyr Ala Arg Gln Asp Glu Gln Leu Glu Lys Thr Lys Ala Asn		
145	150	155
Asn Arg Val Ala Asp Glu Ala Phe Tyr Lys Gln Pro Phe Ala Asp Val		
165	170	175
Ile Gly Tyr Val Thr Asn Ile Asn His Pro Cys Tyr Ser Leu Glu Gln		
180	185	190
Ala Ala Glu Glu Ala Phe Val Asn Asp Ile Asp Glu Ser Ser Pro Gly		
195	200	205
Thr Glu Trp Glu Arg Val Ala Arg Leu Cys Asp Phe Asn Pro Lys Ser		
210	215	220
Ser Lys Gln Ala Lys Asp Val Ser Arg Met Arg Ser Val Leu Ile Ser		
225	230	235
Leu Lys Gln Ala Pro Leu Val His Leu Glu His His His His His His		
245	250	255

```

<210> SEQ_ID NO 7
<211> LENGTH: 6
<212> TYPE: PRT
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Description of Artificial Sequence: Synthetic
6xHis tag

```

```
<400> SEQUENCE: 7
```

```
His His His His His His
1 5
```

```

<210> SEQ_ID NO 8
<211> LENGTH: 23
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Description of Artificial Sequence: Synthetic
oligonucleotide
<220> FEATURE:
<221> NAME/KEY: modified_base
<222> LOCATION: (3)..(21)
<223> OTHER INFORMATION: a, c, t, g, unknown or other

```

```
<400> SEQUENCE: 8
```

```
aannnnnnnnnnnnnnnn ntt
```

-continued

```

<210> SEQ ID NO 9
<211> LENGTH: 9
<212> TYPE: PRT
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Description of Artificial Sequence: Synthetic
peptide

<400> SEQUENCE: 9
Cys Asp Cys Arg Gly Asp Cys Phe Cys
1           5

```

1. A first composition comprising a protein, a first payload, and a first targeting agent, wherein the protein is in the form of a three-dimensional cage structure comprising an outer surface and an inner cavity; and the first targeting agent is conjugated to the outer surface of the three-dimensional cage structure.
2. The first composition of claim 1, wherein the first payload is an anti-cancer agent.
3. The first composition of claim 2, wherein anti-cancer agent is paclitaxel, gemcitabine, or an azonafide.
4. The first composition of claim 1, wherein the first payload is an imaging agent.
- 5-7. (canceled)
8. The first composition of claim 1, wherein the first targeting agent is an antibody.
9. The first composition of claim 1, wherein the protein is clathrin or a clathrin derivative.
10. The first composition of claim 1, wherein the protein comprises a heavy chain or a light chain.
11. The first composition of claim 1, wherein the protein comprises a heavy chain and a light chain.
- 12-13. (canceled)
14. The first composition of claim 11, wherein heavy chain has greater than 85% sequence homology to SEQ ID NO:3.
- 15-17. (canceled)
18. The first composition of claim 11, wherein the light chain has greater than 85% sequence homology to SEQ ID NO:6.
- 19-25. (canceled)
26. A second composition comprising a protein, a second payload, and a second targeting agent, wherein the protein is in the form of a three-dimensional cage structure comprising an outer surface and an inner cavity; the second payload is an immunogen; and the second targeting agent conjugated to the outer surface of the three-dimensional cage structure.
27. (canceled)
28. The second composition of claim 26, wherein the second targeting agent is an antibody.
29. The second composition of claim 26, wherein the second targeting agent is an anti-PD-1 antibody.
30. The second composition of claim 26, wherein the protein is clathrin or a clathrin derivative.
31. The second composition of claim 26, wherein the protein comprises a heavy chain or a light chain.
32. The second composition of claim 26, wherein the protein comprises a heavy chain and a light chain.
- 33-34. (canceled)
35. The second composition of claim 32, wherein the heavy chain has greater than 85% sequence homology to SEQ ID NO:3.
- 36-38. (canceled)
39. The second composition of claim 32, wherein the light chain has greater than 85% sequence homology to SEQ ID NO:6.
- 40-46. (canceled)
47. A method of treating cancer in a subject in need thereof, comprising:
 - administering to the subject a therapeutically effective amount of a first composition of claim 1 wherein the first payload is an anti-cancer agent.
48. The method of claim 47, further comprising:
 - administering to the subject a therapeutically effective amount of a second composition of claim 26.
49. The method of claim 47, wherein the cancer is lung cancer or pancreatic cancer.
- 50-51. (canceled)
52. A method generating an image of a subject in need thereof, comprising:
 - administering to the subject a detectable amount of a first composition of claim 1, wherein the first payload is an imaging agent; and
 - generating an image.
- 53-54. (canceled)
55. A pharmaceutical formulation comprising a first composition of claim 1 and a pharmaceutically acceptable carrier or diluent.
56. (canceled)
57. A pharmaceutical formulation comprising a second composition of claim 26 and a pharmaceutically acceptable carrier or diluent.
58. The method of claim 48, wherein the cancer is lung cancer or pancreatic cancer.

* * * * *