Title: AUTOINJECTOR WITH DESHIELDER COMPRISING TAMPER EVIDENCE MEANS

The invention relates to a device (1) for automatic injection of a product into an injection site, said device (1) further comprising a needle (6) and a needle shield (2) for protection of said needle (6) prior to use of said device, and a housing (300) receiving the container (50) and a deshider (8) for removing said needle shield (2) from said device (1), said deshider (8) being coupled to said needle shield (2) and being mounted on the housing (300) in a separable manner, for example through breakable or snap-fit means, said deshider (8) comprising tamper evidence means that are activated by the removal of at least one part of said deshider (8). Said at least one part of said deshider (8) can be removed from the housing (300) by exerting a traction force equal or less to 30 N.
The invention relates to a device for automatic injection of a product into an injection site.

In this application, the distal end of a component or of a device is to be understood as meaning the end furthest from the user's hand and the proximal end is to be understood as meaning the end closest to the user's hand. Likewise, in this application, the "distal direction" is to be understood as meaning the direction of injection, and the "proximal direction" is to be understood as meaning the opposite direction to the direction of injection.

Some illnesses necessitate regular injections of drugs or products, for instance on a daily basis. In order to simplify the treatment, some self-injectors have been provided in order to allow the patient to perform the injection on its own.

In the injection devices of the prior art, the product to be injected is generally carried by a container having an open proximal end and a substantially closed distal end and having a reservoir defined therebetween, and a needle provided at the distal end and in fluid communication with the reservoir to provide an outlet port for the product from the container, and a piston provided in the container and movable with respect with the container, the movement of the piston causing the product to be expelled from the container through the needle, said device further comprising a needle shield for protection of said needle prior to use of said device, and a housing receiving the container and a deshielder for removing said needle shield from said device, said deshielder being coupled to said needle shield and being mounted on the housing in a separable manner, for example through breakable or snap-fit means, said deshielder comprising tamper evidence means that are activated by the removal of at least one part of said deshielder.

The removal of said part of the deshielder is generally difficult for ill people with declined movement and force, because of the high force needed to separate said part of the deshielder from the housing.

Therefore, there is a need to facilitate the use of such device.

In addition, the holding of said part of the deshielder on the housing needs to be sufficient to avoid any accidental removal of said part, for example during manufacture or handling of the device.

The invention meets these needs by proposing a device for automatic injection of a product into an injection site, said device comprising:

- a housing capable of receiving a container;
- a needle shield for protection of a needle provided on the container prior to use of said device; and
- a deshielder for removing said needle shield from said device, said
deshielder being coupled to said needle shield and being mounted on the housing in
a separable manner, for example through breakable or snap-fit means, said
deshielder comprising tamper evidence means that are activated by the removal of
at least one part of said deshielder,
characterized in that
said at least one part of said deshielder can be removed from the
housing by exerting a force equal or below 30 N.
Preferably, said force ranges from 2 to 30 N.
According to an embodiment of the invention, said tamper evidence
means comprise at least one peg located on the housing, at least one window
located on the deshielder and at least one frangible tongue extending into the
window, in a direction substantially perpendicular to the longitudinal axis of said
device, said peg being engaged into the window before activation of the tamper
evidence means, said peg being designed to break said frangible tongue when said
part of the deshielder is removed from the housing.
Preferably, said window extends from the proximal end of the deshielder.
According to a an additional feature of the invention, the deshielder
comprises at least one leg articulated on the deshielder and extending along the
longitudinal axis of said deshielder, said leg comprising an end forming a hook that
cooperate with at least one complementary recess formed in the housing, so as to
couple said deshielder to said housing.
Alternatively, the deshielder comprises a tubular part receiving a part of
the housing, said window being formed on said tubular part, said deshielder
comprising at least two legs extending into the window, in the proximal direction, the
free ends of the legs being linked by a frangible tongue.
Preferably, in the removed state of the deshielder, the frangible tongue is
separated from at least one of the legs, the free ends of said legs then defining a
stop on which the peg comes in abutment, thereby preventing the deshielder to be
put back on the housing.
According to another embodiment of the invention, said at least one
frangible tongue comprises a first and second tabs, each tab comprising a narrow
first end connected to the deshielder and a narrow second end connected to the
other tab thereby forming a frangible point between the tabs, said at least one peg
comprising a first part forming an abutment able to cooperate with the first tab during
the removal of said deshielder, and a second part able to cooperate with the second tab during the removal of said deshielder.

Preferably, the breaking threshold of the frangible point is lower than the breaking thresholds of the connections between the first ends of the tabs and the deshielder.

According to a feature of the invention, the first and second parts of said peg are spaced one to another perpendicularly to the longitudinal axis of said device, said deshielder comprising a guiding tongue extending between said first and second parts of said peg.

According to another embodiment of the invention, the housing is mounted into a tubular part of the deshielder, said deshielder comprising at least one flexible leg extending inwardly into the tubular part, said leg cooperating with a complementary recess formed on the housing, thereby forming snap-fit means, the free end of the flexible leg forming an abutment for the distal end of the housing after the removal of the deshielder from the housing, thereby preventing the deshielder to be put back on the housing.

According to a still another embodiment of the invention the deshielder comprises a ring and a cap, said ring being mounted on the housing and frangibly connected to the cap.

Preferably, the cap comprises at least one window extending from the proximal edge of the cap, said ring comprising at least one flexible hook extending into said window, said hook being frangibly connected to the cap, for example by welding.

According to a feature of the invention, the ring comprises at least two flexible hooks extending into said window.

Preferably, at least one of said flexible hooks comprises a different thickness or shape relative to the other one, so that the breaking thresholds of the corresponding frangible connections are different.

Alternatively, the housing is equipped with at least one cutting element extending into the window of the cap and able to cut the frangible connection during the removal of the cap.

Preferably, the housing is equipped with a first and a second cutting elements, respectively able to cut the frangible connections of a first and a second hook, the second cutting element being axially spaced with regard to the first cutting element along the longitudinal axis of said device.

According to another embodiment of the invention, at least one deformable arm equipped with a hook is provided on one of the sleeve or housing and for engaging a complementary recess or groove provided on the other of the
sleeve or housing, in a mounted state of the deshielder, thereby forming press-fit means.

According to a feature of the invention, after the removal of said at least one part of said deshielder, said hook forms an abutment that prevents the deshielder to be put back on the housing.

Preferably, the cap comprises flexible wings extending substantially perpendicular to the longitudinal axis of the deshielder, the flexible wings comprising free ends spaced one to another thereby defining an opening, the sleeve comprising, at its distal end, a grooved pin engaged into said opening.

According to a still another embodiment of the invention, the housing comprises at least one abutment, a first part of the ring resting on said abutment during removal of the cap, said ring being deformable so that a second part of the ring is movable along the housing during removal of said cap.

Preferably, the housing comprises at least a first and a second abutments axially spaced along the longitudinal axis of said device, the first and the second abutments being respectively able to cooperate with the first and the second parts of the ring.

Alternatively, said first abutment is formed by a first peg, said second abutment is formed by a second peg, each peg extending along the longitudinal axis of said device, the first and the second pegs having two different lengths.

The device of the invention will now be further described in reference to the following description and attached drawings in which:

Figure 1 is an exploded perspective view of an embodiment of the device of the invention;

Figure 2 is a longitudinal cross section view of the device of Figure 1, before use, with a needle shield and a deshielder;

Figure 3 is a partial front view of a first embodiment of the invention;

Figure 4 is a partial side view of the embodiment of Figure 3;

Figure 5 is a partial longitudinal cross view of the embodiment of Figures 3 and 4, according to the line V-V of Figure 4;

Figure 6 is a front view of a second embodiment of the invention, in a mounted state of the deshielder;

Figure 7 is a partial cut view according to the line VII-VII of Figure 6;

Figures 8 and 9 are views corresponding to Figures 6 and 7, showing the mounting of the deshielder on the housing;

Figures 10 and 11 are views corresponding to Figures 6 and 7, illustrating the removal of the deshielder with regard to the housing;
Figures 12 and 13 are partial front views of a third embodiment of the invention, respectively in a mounted and removed position of the deshiderer;
Figure 14 is a perspective view of the deshiderer of a fourth embodiment of the invention;
Figure 15 is an enlarged view of the connection between the cap and the ring of the deshiderer of Figure 14;
Figure 16 is a view corresponding to Figure 15 during removal of the deshiderer;
Figure 17 is a view corresponding to Figure 15 of a fifth embodiment of the invention;
Figure 18 is a view corresponding to Figure 14 of a sixth embodiment of the invention;
Figure 19 is a view corresponding to Figure 18 of a seventh embodiment of the invention;
Figure 20 is a partial front view of an eighth embodiment of the invention;
Figure 21 is a view corresponding to Figure 20 during the removal of the deshiderer;
Figure 22 is a view corresponding to Figure 20, the deshiderer being completely removed from the housing.
Figures 23 to 25 are views corresponding to Figures 20 to 22, showing a ninth embodiment of the invention.
Figure 26 is a partial longitudinal cross view of a tenth embodiment of the invention;
Figure 27 is a view corresponding to Figure 26 during removal of the deshiderer;
Figure 28 is a view corresponding to Figure 26, the deshiderer being completely removed from the housing.
Figures 29 and 30 are partial front views of an eleventh embodiment of the invention, respectively in a mounted and removed positions of the deshiderer;
Figures 31 and 32 are longitudinal cross views of the device of Figures 29 and 30;
Referring now to the drawings, the present invention will now be described in detail. Figure 1 shows an exploded perspective view of a device for automatic injection according to an embodiment of the present invention and generally designated by reference number 1. The inventive device 1 comprises a housing 300 comprised of an upper housing assembly 100 and a lower housing assembly 200 that may be connected to each other by means of a snap-fit connection, screw-type connection, bayonet connection, or other means of...
connecting two parts together, in an unreleasable way or not. When the device of the injection is of a single use type, the means for connecting the upper housing assembly 100 to the lower housing assembly 200 are made unreachable to the user. A container 50 such as, for example, a syringe, is received in at least one of the upper and lower housing assemblies 100, 200. Preferably, the container 50 is partially received in each of the upper and lower housing assemblies 100, 200, as discussed in more detail herein. The container 50 has a flange 5a defined at an open proximal end, and an injection needle 6 (see, e.g., Figure 2) at a substantially closed distal end 5b. Lateral walls 5 extend between the proximal and distal ends and define a reservoir 5c sized and shaped to contain a predetermined amount of a product 3 for injection. The injection needle 6 may be fixed to the distal end 5b, or removable therefrom, as a matter of design choice. The injection needle 6 is in fluid communication with the reservoir 5c and provides an outlet port of the container 50 for the product 3. A needle shield 2 is provided at the distal end of the container 50 to cover and protect the needle 6 before use of the device 1. The needle shield 2 also provides for a sealing means of the distal end of the container 50 before use. A piston 7 is provided in the container 50 and which is movable within the reservoir 5c. Movement of the piston 7 causes the product 3 to be expelled from said container 50 through the injection needle 6 during the injection of the product 3 into the patient.

The device 1 of the present invention is also provided with a deshiderer 8 for removing the needle shield 2. As shown in Figures 1 and 2, the deshiderer 8 comprises a tubular part carrying the needle shield 2. The deshiderer 8 is coupled to the needle shield 2. Prior to use of the device 1, a user removes the deshiderer 8, which also removes the needle shield 2.

The deshiderer 8 is being mounted on the housing 300 in a separable manner, for example through breakable or snap-fit means, said deshiderer 8 comprising tamper evidence means that are activated by the removal of at least one part of said deshiderer 8, the at least one part of said deshiderer being able to be removed from the housing by exerting a force equal or below 30 N (Newtons), preferably ranging from 2 to 30 N.

The invention concerns in particular the tamper evidence means and the separable connection between the deshiderer and the body.

A first embodiment of the invention is illustrated in Figures 3 to 5.

As it can be seen, the tamper evidence means of the deshiderer comprise two opposite legs 10 located on the housing 300. Each leg 10 comprises a first part 11 extending outwardly from the deshiderer and a second part 12 extending longitudinally and equipped with a hook 13 extending into the deshiderer 8. Each leg 10 is disposed in a lateral opening and is linked to the deshiderer 8 by means of
lateral bridges 14 enabling the leg 10 to be pivoted or swivelled with regard to the
deshielder 8 when actuated by the user.

Each hook 13 cooperates with a complementary recess 15 arranged in
the housing 300. When the legs 10 are actuated, the hooks 13 are disengaged from
the recess 15 and the deshielder 8 can be removed. On the contrary, when the legs
10 are not actuated, the hooks 13 secure the deshielder 8 in position with regard to
the housing 300.

In addition a window 16 is located on the deshielder 8, said window 16
extending from the proximal end of the deshielder 8. A frangible tongue 17 extends
into the window 16, in a direction substantially perpendicular to the longitudinal axis
A of said device. A peg 18 extends from the housing 300, said peg 18 being
engaged into the window 16 when the deshielder 8 is in its non removed state, said
peg 18 being designed to break said frangible tongue 17 when said deshielder 8 is
removed from the housing 300.

The frangible tongue 17 and the peg 18 are thereby forming the tamper
evidence means.

The traction force exerted by the user to remove the deshielder 8 can be
considerably reduced, and is effective below or equal to 30 Newtons, because the
legs 10 hold in place the deshielder 8 on the housing 300 before removal. Therefore,
the tamper evidence means do not have to provide such function and the strength of
the frangible tongue 17 can be reduced.

A second embodiment of the invention is shown on Figures 6 to 11.

In this embodiment, the components having a function similar to those
detailed above are designated by the same reference.

The tamper evidence means comprise two pegs 18 located on the
housing 300 and extending opposite one to another from the housing 300, two
windows 16 located on the deshielder 8 and a frangible tongue 17 extending into
each window 16, in a direction substantially perpendicular to the longitudinal axis A
of said device.

Each peg 18 is engaged into the corresponding window 16 before
activation of the tamper evidence means, said peg 18 being designed to break said
frangible tongue 17 when the deshielder 18 is removed from the housing 300.

More particularly, each peg 18 has a trapezoidal shape, as detailed on
Figure 6, the peg 18 defining a slope 19 inwardly in direction of the distal end, the
proximal end of the peg defining an abutment 20 (see Figures 7 and 11).

The deshielder 8 receives the distal end of the housing 300.
In addition, each window 16 of the deshielder 8 comprises two leg 21 extending into it, in the proximal direction, the free ends of the leg 21 being linked by the frangible tongue 17 in the non-removed state of the deshielder.

The peg 18 and the leg 21 are designed in such a manner that the abutment 20 is able to cooperate with the frangible tongue 17 during removal of the deshielder 8 so that the frangible tongue 17 is removed from at least one leg 21.

In addition, the proximal edge 22 of the deshielder 8 comprises recesses enabling the movement of the pegs 8 without coming in abutment with said edge 22 (see Figure 11).

As it can be seen on Figures 8 and 9, when positioning for the first time the deshielder 8 on the housing 300, the slope 19 of the peg 18 pushes the flexible leg 21 and the peg 18 is inserted in the aperture delimited by the leg 21 and the frangible tongue 17.

As it can be seen on Figures 10 and 11, the abutment 20 cooperates with the frangible tongue 17 during the removal of the deshielder so that said frangible tongue 17 is separated from at least one of the leg 21. After complete removal of the deshielder 8, the free ends 21a of the legs 21 come closer to another due to the elasticity of the legs 21, thereby defining a stop on which the peg 18 comes in abutment if the user intends to recap the deshielder 8.

Consequently the legs 21 prevent the deshielder 8 to be put back on the housing 300.

A third embodiment of the invention is depicted on Figures 12 and 13.

In this embodiment, the window 16 extends from the proximal edge 22 of the deshielder 8. The deshielder comprises a frangible tongue having a first and second tabs 23a, 23b, each tab comprising a narrow first end 23c connected to the deshielder 8 and a narrow second end 23d connected to the other tab thereby forming a frangible point between the tabs 23, 24.

The breaking threshold of the frangible point is lower than the breaking thresholds of the connections between the first ends of the tabs 23, 24 and the deshielder 8.

In addition, the peg 18 comprises a first part 18a forming an abutment able to cooperate with the first tab 23a during the removal of said deshielder 8, and a second part 18b able to cooperate with the second tab 23b during the removal of said deshielder 8. The first and second parts 18a, 18b of said peg 18 are spaced one to another perpendicularly to the longitudinal axis A of said device, said deshielder 8 comprising a guiding tongue 24 extending between said first and second parts 18a, 18b of said peg.
Therefore, during removal of the deshielder 8, the peg 18 break the
frangible point of the frangible tongue 17 and the first and the second tabs 18a, 18b
are moved aside one to another. In addition, each tab 18a, 18b remains connected
to the deshielder 8 through said narrow first end 23c forming a pivot for the
corresponding tab with regard to the deshielder 8.

A fourth embodiment of the invention is illustrated on Figures 14 to 16.

In this embodiment, the deshielder 8 comprises a ring 25 and a cap 26,
said ring 25 being mounted on the housing 300 and frangibly connected to the cap
26.

The cap 26 comprises a plurality of windows 16 extending from the
proximal edge 22 of the cap 26, said ring 25 comprising a plurality of flexible hooks
27 extending into the corresponding windows 16, each hook 27 being frangibly
connected to the cap 26 by welding.

The cap 26 also comprises an abutment 28 extending from its proximal
edge 22 in direction of the ring 25. This abutment 28 prevents from separating the
hook 27 from the deshielder 8 while pressing on the deshielder 8. Indeed, the
abutment 27 avoids any substantial displacement between the ring 25 and the cap
26 if a user accidentally press on the cap 26.

As it can be seen on figure 16, the flexible hook 27 firstly tends to bend
during removal the cap 26 and, when the traction force exerted by the user is
sufficient, the hook 27 is separated from the cap 26.

In another embodiment of the invention depicted on Figure 17, the ring
25 comprises two flexible hooks 27a, 27b extending into said window 16 and
arranged in the opposite direction one to another.

In a still another embodiment shown on Figure 18, each hook 27a, 27b
comprises a different thickness or shape relative to the other one, so that the
breaking thresholds of the corresponding frangible connections with the cap 26 are
different.

Therefore, during removal of the deshielder by the user, the hook 27b,
which is thinner than the hook 27a, will break in a first time and the hook 27a will
break in a second time.

The traction force needed for removing the cap 26 can therefore be
reduced because only one hook 27a, 27b needs to be broken at once. Such force is
effective for removing the cap 26 at a value equal or less than 30 Newtons.

In a still another embodiment depicted on Figure 19, the housing 300 is
equipped with cutting elements 29a, 29b, respectively able to cut the frangible
connections of hooks 27a, 27b. The cutting element 29b is axially spaced with
regard to the cutting element 29a in direction of the distal end.
Therefore, during removal of the cap 26, the cutting element 29b first breaks the connection point between the hook 27b and the cap 26. Then, the cutting element 27a breaks the connection point between the hook 27a and the cap 26.

This embodiment provides the advantage exposed above because only one hook 27a, 27b needs to be broken at once.

Another embodiment is illustrated on Figures 20 to 22.

In this embodiment the deshider 8 also comprises a ring 25 and a cap 26 mounted on the housing 300. The ring 25 is connected to the cap 26 through at least a first and a second connection points 30a, 30b spaced one to another perpendicularly to the longitudinal axis A of the housing 300. More specifically, the housing 300 and the deshider 8 are substantially symmetrical with regard to their longitudinal axis, defining a first and a second parts separated by the plane of symmetry.

The first part of housing 300 is equipped with an abutment 31 (see Figure 21) extending from the external face of the housing 300 and able to cooperate with the first part of the ring 25.

During removal of the cap 26, the first part of the ring 25 rests on said abutment 31 so as to break the first connection point 30a, said ring 25 being deformable so that the second part of the ring 25 is movable along the housing 300 (Figure 21).

Then, the second connection point 30b is also broken so that the cap 26 can be completely removed from the housing (Figure 22).

Again, the traction force needed for removing the cap can therefore be reduced, and can be effective at 30 Newtons or less, because only one frangible connection point needs to be broken at once.

A still another embodiment is depicted on Figures 23 to 25. In this embodiment, the housing 300 and the deshider 8 comprise a first and a second parts 43, 44 separated by the plane of symmetry. The housing 300 has respectively a first and a second pegs 31a, 31b of two different lengths forming a first and a second abutments arranged respectively on the first and the second parts 43, 44.

The proximal end of the first peg 31a is axially spaced from the proximal end of the second pegs 31b in direction of the distal end of the device.

The first and the second pegs 31a, 31b are respectively able to cooperate with the first and the second parts of the ring 25, the ring 25 being linked to the cap 26 by a first and a second legs 32a, 32b arranged respectively on the first and the second parts 43, 44 of the deshider 8. The first and the second connection points 30a, 30b are formed by narrower portions arranged on the median part of the legs 32a, 32b.
During removal of the cap 26, the first peg 31a abuts on the first part of the ring 25, thereby breaking the first connection point 30a. Therefore, the ring 25 which is still linked to the cap 26 through the second leg 32b is progressively deformed (Figure 24). Then, the second peg 31b abuts on the second part of the ring 25, thereby breaking the second connection point 30b (Figure 25). Consequently, the ring 25 is completely separated from the cap 26, said cap 26 being able to be completely removed from the housing 300.

A still another embodiment is shown on Figures 26 to 28.

As it can be seen on these Figures, the deshielder 8 comprises a sleeve 33 having two deformable arms 34a, 34b equipped with a hook 35a, 35b engaging a complementary recess or groove 45 arranged on the housing 300 in a mounted state of the deshielder 8, thereby forming press-fit means.

The sleeve 33 is inserted, at least partly, into a tubular cap 26, the sleeve 33 being movable along the longitudinal axis A of the deshielder 8 into the cap 26 between an inserted position (Figure 26) in which said deformable arms 34a, 34b are inserted into the sleeve 33 so that they cannot be deformed and a pulled out position (Figure 27) in which the arms 34a, 34b are pulled out of the sleeve 33 and can be deformed.

In addition, the cap 26 comprises flexible wings 36 extending substantially perpendicular to the longitudinal axis A of the deshielder 8, the flexible wings 36 comprising free ends spaced one to another thereby defining an opening, the sleeve 33 comprising, at its distal end, a grooved pin 37 engaged into said opening.

The distal end of the cap 26 is equipped with a top 38 protecting the grooved pin 37 and the wings 36.

Therefore, as it can be seen on Figure 27, during removal of the deshielder 8, the flexible wings 36 are progressively deformed so that the sleeve 33 is pulled out of the cap 26. In this position, the arms 34a, 34b can be deformed in order to disengage the deshielder 8 from the housing 300.

After the removal of the deshielder 8, the sleeve 33 is inserted into the cap 26 under the effect of the flexible wings 36 and said hooks 35a, 35b form abutments with respect to the distal end of the housing 300, thereby preventing the deshielder 8 to be put back on the housing 300, as it can be seen on Figure 28.

Another embodiment of the invention is shown on Figures 29 to 32.

In this embodiment, the deshielder 8 comprises two opposite flexible legs 39 extending inwardly into the deshielder 8, each leg 39 cooperating with a complementary recess 40 formed in the housing 300, thereby forming snap-fit means. As it can be seen on Figure 32, the free ends 41 of the flexible legs 39 form
abutments for the distal end 42 of the housing 300 after the removal of the deshielder 8 from the housing 300, thereby preventing the deshielder 8 to be put back on the housing 300.
CLAIMS

1. Device (1) for automatic injection of a product into an injection site, said device (1) comprising:
 - a housing (300) capable of receiving a container (50);
 - a needle shield (2) for protection of a needle (6) provided on the container (6) prior to use of said device; and
 - a deshielder (8) for removing said needle shield (2) from said device (1), said deshielder (8) being coupled to said needle shield (2) and being mounted on the housing (300) in a separable manner, for example through breakable or snap-fit means, said deshielder (8) comprising tamper evidence means that are activated by the removal of at least one part of said deshielder (8), characterized in that said at least one part of said deshielder (8) can be removed from the housing (300) by exerting a force equal or below 30 N.

2. Device (1) according to claim 1, characterized in that said force ranges from 2 to 30 N.

3. Device (1) according to claim 1 or 2, characterized in that said tamper evidence means comprise at least one peg (18) located on the housing (300), at least one window (16) located on the deshielder (8) and at least one frangible tongue (17) extending into the window (16), in a direction substantially perpendicular to the longitudinal axis (A) of said device (1), said peg (18) being engaged into the window (16) before activation of the tamper evidence means, said peg (18) being designed to break said frangible tongue (17) when said part of the deshielder (8) is removed from the housing.

4. Device (1) according to claim 3, characterized in that said window (16) extends from the proximal end (22) of the deshielder (8).

5. Device (1) according to claim 4, characterized in that the deshielder (8) comprises at least one leg (10) articulated on the deshielder (8) and extending along the longitudinal axis (A) of said deshielder (8), said leg (10) comprising an end forming a hook (13) that cooperate with at least one complementary recess (15) formed in the housing (300), so as to couple said deshielder (8) to said housing (300).

6. Device (1) according to claim 3, characterized in that the deshielder (8) comprises a tubular part receiving a part of the housing (300), said window (16) being formed on said tubular part, said deshielder (8) comprising at least two legs (21) extending into the window (16), in the proximal direction, the free ends of the legs (21) being linked by a frangible tongue (17).
7. Device (1) according to claim 6, characterized in that, in the removed state of the deshilder (8), the frangible tongue (17) is separated from at least one of the legs (21), the free ends of said legs (21) then defining a stop on which the peg (18) comes in abutment, thereby preventing the deshilder (8) to be put back on the housing (300).

8. Device (1) according to claim 3, characterized in that said at least one frangible tongue (17) comprises a first and second tabs (23a, 23b), each tab comprising a narrow first end connected to the deshilder (8) and a narrow second end connected to the other tab thereby forming a frangible point between the tabs (23a, 23b), said at least one peg comprising a first part (23a) forming an abutment able to cooperate with the first tab (23a) during the removal of said deshilder (8), and a second part (18b) able to cooperate with the second tab (23b) during the removal of said deshilder (8).

9. Device (1) according to claim 8, characterized in that the breaking threshold of the frangible point is lower than the breaking thresholds of the connections between the first ends of the tabs (23a, 23b) and the deshilder (8).

10. Device (1) according to claims 8 and 9, characterized in that the first and second parts (18a, 18b) of said peg are spaced one to another perpendicularly to the longitudinal axis (A) of said device (1), said deshilder (8) comprising a guiding tongue (24) extending between said first and second parts (18a, 18b) of said peg.

11. Device (1) according to claim 1 or 2, characterized in that the housing (300) is mounted into a tubular part of the deshilder (8), said deshilder (8) comprising at least one flexible leg (39) extending inwardly into the tubular part, said leg (39) cooperating with a complementary recess (40) formed on the housing (300), thereby forming snap-fit means, the free end of the flexible leg (39) forming an abutment for the distal end (42) of the housing (300) after the removal of the deshilder (8) from the housing (300), thereby preventing the deshilder (8) to be put back on the housing (300).

12. Device (1) according to claim 1 or 2, characterized in that the deshilder (8) comprises a ring (25) and a cap (26), said ring (25) being mounted on the housing (300) and frangibly connected to the cap (26).

13. Device (1) according to claim 12, characterized in that the cap (26) comprises at least one window (16) extending from the proximal edge (22) of the cap (26), said ring (25) comprising at least one flexible hook (27) extending into said window (16), said hook (27) being frangibly connected to the cap (26), for example by welding.
14. Device (1) according to claim 13, characterized in that the ring (25) comprises at least two flexible hooks (27) extending into said window (16).

15. Device (1) according to claim 14, characterized in that at least one of said flexible hooks (27) comprises a different thickness or shape relative to the other one, so that the breaking thresholds of the corresponding frangible connections are different.

16. Device (1) according to at least one of the claims 12 to 15, characterized in that the housing (300) is equipped with at least one cutting element (29a, 29b) extending into the window (16) of the cap (26) and able to cut the frangible connection during the removal of the cap (26).

17. Device (1) according to claim 16, characterized in that the housing (300) is equipped with a first and a second cutting elements (29b, 29a), respectively able to cut the frangible connections of a first and a second hook (27b, 27a), the second cutting element (29b) being axially spaced with regard to the first cutting element (29a) along the longitudinal axis of said device.

18. Device (1) according to claim 1 or 2, characterized in that at least one deformable arm (34a, 34b) equipped with a hook (35a, 35b) is provided on one of the sleeve (33) or housing (300) and for engaging a complementary recess or groove (36) provided on the other of the sleeve (33) or housing (300), in a mounted state of the deshider (8), thereby forming press-fit means.

19. Device (1) according to claim 18, characterized in that, after the removal of said at least one part of said deshider (8), said hook (35a, 35b) forms an abutment that prevents the deshider (8) to be put back on the housing.

20. Device (1) according to claims 18 and 19, characterized in that the cap (26) comprises flexible wings (36) extending substantially perpendicular to the longitudinal axis (A) of the deshider (8), the flexible wings (36) comprising free ends spaced one to another thereby defining an opening, the sleeve (33) comprising, at its distal end, a grooved pin (37) engaged into said opening.

21. Device (1) according to claim 12, characterized in that the housing (300) comprises at least one abutment (31), a first part of the ring (25) resting on said abutment during removal of the cap (26), said ring (25) being deformable so that a second part of the ring (25) is movable along the housing (300) during removal of said cap (26).

22. Device (1) according to claim 21, characterized in that the housing (300) comprises at least a first and a second abutments (31a, 31b) axially spaced along the longitudinal axis (A) of said device (1), the first and the second abutments (31a, 31b) being respectively able to cooperate with the first and the second parts of the ring (25).
23. Device (1) according to claim 22, characterized in that said first abutment is formed by a first peg (31 a), said second abutment is formed by a second peg (31 b), each peg extending along the longitudinal axis (A) of said device (1), the first and the second pegs (31 a, 31 b) having two different lengths.
INTERNATIONAL SEARCH REPORT

International application No
PCT/IB2007/003974

A. CLASSIFICATION OF SUBJECT MATTER
INV. A61M5/20

According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols)
A61M

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

Electronic data base consulted during the international search (name of data base and, where practical, search terms used)
EPO-Internal, WPI Data, PAJ

C. DOCUMENTS CONSIDERED TO BE RELEVANT

<table>
<thead>
<tr>
<th>Category</th>
<th>Citation of document, with indication, where appropriate, of the relevant passages</th>
<th>Relevant to claim No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>X</td>
<td>GB 2 424 836 A (CILAG AG INTERNAT [CH]; CILAG GMBH INTERNAT [CH]) 11 October 2006 (2006-10-11) page 5, paragraph 1 - page 6, paragraph 3; figures 1-9</td>
<td>1-23</td>
</tr>
</tbody>
</table>

X Further documents are listed in the continuation of Box C. X See patent family annex.

* Special categories of cited documents :

A document defining the general state of the art which is not considered to be of particular relevance

E earlier document but published on or after the international filing date

L document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another document, or both, or other special reason (as specified)

O document referred to in an oral discussion, use, exhibition or other means

P document published prior to the international filing date but later than the priority date claimed

'T' later document published after the international filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the invention

'X' document of particular relevance; the claimed invention cannot be considered a novel or cannot be considered to involve an inventive step when the document is taken alone

'Y' document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such documents, such combination being obvious to a person skilled in the art

'A' document member of the same patent family

Date of the actual completion of the international search

30 April 2008

Date of mailing of the international search report

13/05/2008

Name and mailing address of the ISA/ European Patent Office, P.B. 5818 Paterlaan 2 NL - 2280 HV Rijswijk, Tel. (+31-70) 340-2040, Tx. 31 651 epc nl, Fax (+31-70) 340-3016

Authorized officer

Björklund, Andreas
<table>
<thead>
<tr>
<th>Category</th>
<th>Citation of document, with indication, where appropriate, of the relevant passages</th>
<th>Relevant to claim No</th>
</tr>
</thead>
<tbody>
<tr>
<td>Y</td>
<td>WO 2007/036676 A (CILAG GMBH INTERNAT [CH]; HABESHAW ROSIE LOUISE [GB]; JOHNSTON DAVID M) 5 April 2007 (2007-04-05) page 8, lines 3-10; figures 1-8</td>
<td>1-23</td>
</tr>
<tr>
<td>Y</td>
<td>US 5 295 965 A (WILMOT JOHN G [GB]) 22 March 1994 (1994-03-22) column 6, lines 3-28</td>
<td>1-23</td>
</tr>
<tr>
<td>Y</td>
<td>US 6 585 702 B1 (BRUNEL MARC [FR]) 1 July 2003 (2003-07-01) column 6, line 66 - column 7, line 10; figures 1-4,12</td>
<td>1-23</td>
</tr>
<tr>
<td>Patent document cited in search report</td>
<td>Publication date</td>
<td>Patent family member(s)</td>
</tr>
<tr>
<td>--</td>
<td>-----------------</td>
<td>------------------------</td>
</tr>
<tr>
<td></td>
<td></td>
<td>AT 400925 B</td>
</tr>
<tr>
<td></td>
<td></td>
<td>AU 639955 B2</td>
</tr>
<tr>
<td></td>
<td></td>
<td>AU 6691290 A</td>
</tr>
<tr>
<td></td>
<td></td>
<td>BE 1003835 A5</td>
</tr>
<tr>
<td></td>
<td></td>
<td>BR 9006006 A</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CA 2030742 A1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CH 687234 A5</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CZ 9702029 A3</td>
</tr>
<tr>
<td></td>
<td></td>
<td>DK 281990 A</td>
</tr>
<tr>
<td></td>
<td></td>
<td>ES 2038088 A6</td>
</tr>
<tr>
<td></td>
<td></td>
<td>FI 905832 A</td>
</tr>
<tr>
<td></td>
<td></td>
<td>FR 2654938 A</td>
</tr>
<tr>
<td></td>
<td></td>
<td>GB 2239180 A</td>
</tr>
<tr>
<td></td>
<td></td>
<td>GR 90100824 A</td>
</tr>
<tr>
<td></td>
<td></td>
<td>HK 19295 A</td>
</tr>
<tr>
<td></td>
<td></td>
<td>HU 61207 A2</td>
</tr>
<tr>
<td></td>
<td></td>
<td>IE 904240 A1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>IL 96487 A</td>
</tr>
<tr>
<td></td>
<td></td>
<td>IN 179332 A1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>IT 1243841 B</td>
</tr>
<tr>
<td></td>
<td></td>
<td>JP 3229962 A</td>
</tr>
<tr>
<td></td>
<td></td>
<td>LU 87851 A1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>NL 9002598 A</td>
</tr>
<tr>
<td></td>
<td></td>
<td>NO 905125 A</td>
</tr>
<tr>
<td></td>
<td></td>
<td>NZ 236219 A</td>
</tr>
<tr>
<td></td>
<td></td>
<td>PL 287996 A1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>PT 96005 A</td>
</tr>
<tr>
<td></td>
<td></td>
<td>SE 469262 B</td>
</tr>
<tr>
<td></td>
<td></td>
<td>SE 9003776 A</td>
</tr>
<tr>
<td></td>
<td></td>
<td>RU 2108116 CI</td>
</tr>
<tr>
<td></td>
<td></td>
<td>ZA 9009514 A</td>
</tr>
<tr>
<td>GB 2424836 A</td>
<td>11-10-2006</td>
<td>AU 2006231099 A1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>EP 1888147 A1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>WO 2006106290 A1</td>
</tr>
<tr>
<td>WO 2007036676 A</td>
<td>05-04-2007</td>
<td>NONE</td>
</tr>
<tr>
<td>US 5506015 A</td>
<td>09-04-1996</td>
<td>NONE</td>
</tr>
<tr>
<td>US 5295965 A</td>
<td>22-03-1994</td>
<td>CN 1076371 A</td>
</tr>
<tr>
<td></td>
<td></td>
<td>IL 104263 A</td>
</tr>
<tr>
<td></td>
<td></td>
<td>MX 9300030 A1</td>
</tr>
<tr>
<td>US 6585702 B</td>
<td>01-07-2003</td>
<td>AT 290898 T</td>
</tr>
<tr>
<td></td>
<td></td>
<td>AU 7527000 A</td>
</tr>
<tr>
<td></td>
<td></td>
<td>BR 0014460 A</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CA 2385181 A</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CN 1378468 A</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CZ 20021164 A3</td>
</tr>
<tr>
<td></td>
<td></td>
<td>DE 60018774 D1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>DE 60018774 T2</td>
</tr>
<tr>
<td>Patent document cited in search report</td>
<td>Publication date</td>
<td>Patent family member(s)</td>
</tr>
<tr>
<td>---------------------------------------</td>
<td>-----------------</td>
<td>-------------------------</td>
</tr>
<tr>
<td></td>
<td></td>
<td>ES 2237456 T3</td>
</tr>
<tr>
<td></td>
<td></td>
<td>HK 1049125 A1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>HU 0203044 A2</td>
</tr>
<tr>
<td></td>
<td></td>
<td>JP 2003511106 T</td>
</tr>
<tr>
<td></td>
<td></td>
<td>MX PA02003479 A</td>
</tr>
<tr>
<td></td>
<td></td>
<td>PL 356185 A1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>PT 1218047 T</td>
</tr>
<tr>
<td></td>
<td></td>
<td>RU 2217175 C1</td>
</tr>
</tbody>
</table>

| US 6193688 | B1 | NONE | 27-02-2001 |

| US 4667837 | A | NONE | 26-05-1987 |