发明名称
丹酚酸L在制备治疗肿瘤药物中的应用

摘要
本发明涉及丹酚酸L在制备治疗肿瘤药物中的应用，丹酚酸L属于酚酸类化合物是从中药丹参提取得到的并确认结构的水溶性新化合物，药理研究表明具有抗氧化作用和抗心肌缺血作用，本专利公开了丹酚酸L诱导肿瘤细胞凋亡，对肿瘤细胞有杀伤作用，动物实验显示，丹酚酸L具有一定抗肿瘤活性且未体现出毒性。显著增强几种肿瘤药物5-氟尿嘧啶、丝裂霉素C等抗肿瘤活性，该化合物有望应用于临床肿瘤治疗。
1. 丹酚酸L或其药学上可接受的盐作为唯一活性成分在制备治疗和预防肿瘤的药物中的应用，所述治疗和预防肿瘤是诱导肿瘤细胞凋亡和对肿瘤细胞具有杀伤作用，所述肿瘤为人宫颈癌、人脑胶质瘤，
丹酚酸 L 在制备治疗肿瘤药物中的应用

技术领域
[0001] 本发明涉及植物提取物或化学合成酚酸类成分丹酚酸 L 以及其药学上可接受的
盐类、溶剂化物和可水解酯的制剂的抗肿瘤用途，包括单独使用抗肿瘤用途，以及联合多种
肿瘤药物用于临床肿瘤治疗。

背景技术
[0002] 丹参为唇形科鼠尾草属植物的根部，性味苦，微寒，归心、肝经，具有祛瘀止痛、活
血通经、消心除烦之功效，中医传统及其配伍组方。现代药理研究证明，丹参具有扩张冠脉、
改善微循环、保护心脏的作用，能抑制和解除血小板聚集，提高机体耐缺氧能力以及抗肝
炎、抗肿瘤和抗病毒等活性。2001 年，中国医学科学院协和医科大学药物研究所报道了丹参
及其同属植物的水溶性活性成分 13 个酚酸类化合物，包括丹酚酸 A、B、C、D、E、F、G、H、I、J、
紫草酸，迷迭香酸及异丹酚酸 C 等（黎连盛等人《医学研究通讯》2001 年第 30 卷第 7 期），
并报道了这 13 个酚酸类化合物的药理作用。丹酚酸 L 属于酚酸类化合物是从丹参提取得
到的并确认结构的一种水溶性新化合物（中国专利，申请号 201010135800.6）。药理研究表
明其具有较强的抗氧化作用和治疗心血管疾病用途。本发明所述丹酚酸 L 抗肿瘤活性，以
及单独使用或联合多种肿瘤药物用于临床肿瘤治疗，迄今尚未见有报道。

发明内容
[0003] 本发明的一个目的是提供了丹酚酸 L 以及其药学上可接受的盐类，溶剂化物和可
水解酯在治疗和预防肿瘤的药理作用。
[0004] 本发明的另一个目的是提供了丹酚酸 L 以及其药学上可接受的盐类，溶剂化物和
可水解酯在制备治疗和预防肿瘤药物的方法和用法。
[0005] 为此，本发明提供丹酚酸 L (式 I) 或其药学上可接受的盐、溶剂化物，可水解酯在
制备治疗和预防肿瘤的药物中的应用
[0006]

[0007] (式 I)。
[0008] 其中所述治疗和预防肿瘤是诱导肿瘤细胞凋亡和对肿瘤细胞具有杀伤作用。
[0009] 所述治疗和预防肿瘤是具有抗肿瘤活性，也具有增强抗肿瘤药物的抗肿瘤活性的
作用。
[0010] 所述治疗和预防的肿瘤包括：宫颈癌、肠癌、脑癌、肝癌、皮肤癌、乳腺癌、肺癌或胃癌。
[0011] 所述治疗和预防的肿瘤包括人宫颈癌 Hela 细胞、MS751 细胞和 ME180 细胞、人脑胶质瘤 U251 细胞、人胃癌 BGC-823 细胞、人结肠癌 HT-29 细胞和 CaCo-2 细胞、人黑色素瘤 MeWo 细胞、WM266-4 细胞和 C32 细胞。
[0012] 所述治疗和预防肿瘤包括增强抗肿瘤药物的抗肿瘤活性，所述抗肿瘤药物包括：5-氟尿嘧啶、丝裂霉素 C 或替莫唑胺。
[0013] 所述丹酚酸 L 药学上可接受的盐包括与下列离子形成的盐：钠，钾，锂，镁，铝，钙，锌，或与 N,N'二苯基乙二胺、氯普鲁卡因、胆碱、二乙醇胺、氯普鲁卡因、胆碱、N-甲基葡糖胺、普鲁卡因，或（±）-L-抗坏血酸形成的盐。
[0014] 所述丹酚酸 L 的溶剂化物和可水解的酯，包括但不限于聚乙二醇 (PEG)。
[0015] 所述药物包括以下制剂形式：注射剂、片剂、胶囊剂、颗粒剂、丸剂、粉剂、口服液体制剂、滴丸或涂剂。
[0016] 所述应用包括丹酚酸 L 或其盐在药学上可接受的剂型，溶剂化物，可水解酯和其他适合联合使用的药物联合使用或与其他适合制备成复方制剂的药物一起制备成复方药物制剂。
[0017] 本发明丹酚酸 L 适宜以药物制剂组合物的形式给药。这些组合物可以以常规方式与一种或多种生理上可接受的载体或赋形剂混合使用。若有可能在治疗上将本发明的丹酚酸 L 作为原料药给药，优选活性成分直接作为药物制剂，在与其他成分相容和对其服药者无害的意义上，载体必须是药学上可接受的。
[0018] 因此，本发明进一步提供本发明丹酚酸 L 的药物制剂，包括本发明丹酚酸 L，和一种或多种药学上可接受的载体，以及含有或不含有其他治疗和/或预防性成分。这些制剂适用于口服、胃肠外、皮下注射、肌肉注射、肌肉注射或静脉注射，直肠和局部（如直肠）给药，但最适合的给药途径应取决于患者的病症。该制剂可已为单位制剂，并且可以通过与药学领域熟知的任一种方法制备。所有方法包括使本发明丹酚酸 L 与载体结合的步骤，该载体构成一种或多种辅助成分。一般来说，该制剂的制备过程如下：使本发明丹酚酸 L 与液体载体或微粒粉碎的固体载体或二者的结合均匀而紧密的结合，然后根据必要的话使产物成型为所需制剂。
[0019] 通常可使用标准的制药技术，即可将本发明的丹酚酸 L 和药物载体制成本发明药物组合物，这些方法包括混合、制粒和压片。本领域技术人员熟知，可药用载体或稀释剂的形式和特性取决于与其混合的活性成分的量、给药途径和其他已知因素。在所有所述的药物载体应与组合物联用给药的各种有机或无机载体，例如：用于固体制剂的赋形剂、润滑剂、粘合剂、崩解剂和包衣剂，也可使用药用添加剂如着色剂和甜味剂。所述药用载体选自：甘露醇、山梨醇、酒石酸钠、亚硫酸氢钠、硫酸钠、碳酸钠、盐酸、氯化钠、氯化钾、氯化钠、乳酸钠、木糖醇、麦芽糖、葡萄糖、果糖、右旋糖苷、甘氨酸、淀粉、蔗糖、乳糖、甘露糖醇、硅和氧化物、纤维素及其衍生物、藻酸盐、明胶、聚乙烯醇、阿拉伯胶、甘油、水、80%、琼脂、碳酸钙、碳酸氢钙、表面活性剂、聚乙二醇、环糊精、β-环糊精、磷酸脂类粘合剂、高岭土、滑石粉、硬脂酸钙、硬脂酸镁等。
【0020】其药物制剂形式可以是任何可药用的剂型，这些剂型包括：片剂、糖衣片剂、薄膜衣片剂、肠溶衣片剂、胶囊剂、硬胶囊剂、软胶囊剂、口服液、口含剂、颗粒剂、冲剂、丸剂、散剂、膏剂、丹剂、混悬剂、粉剂、溶液剂、注射剂、栓剂、软膏剂、硬膏剂、霜剂、喷雾剂、滴剂、贴剂。本发明的制剂，优选的是口服剂型，如：胶囊剂、片剂、口服液、颗粒剂、丸剂、散剂、丹剂、膏剂等；和注射剂，如：粉针剂、注射液、输液等。本发明的制剂，最优选粉针剂。

【0021】本发明丹酚酸L还可以配制成药库制剂。这类长效制剂可以通过植入（如皮下或肌肉）或肌肉注射给药。所以，本发明丹酚酸L可以与适合的聚合物或疏水性材料（例如在可接受的油中的乳剂）或离子交换树脂进行配制，或者配制成微溶性衍生物，例如微溶性盐。

【0022】根据本领域的普通技术和现有技术，本发明所涉及的治疗包括预防和既定疾病的治疗。而且，用于治疗所需的本发明丹酚酸L的量应根据所治疗病症的性质和患者条件而异，或遵医嘱。一般说来，用于治疗的剂量通常将在0.02～5000mg/天的范围，优选1000mg/天。所需剂量可以是单一的剂量或多次的计量，按适当的间隔给药，例如每天两次、三次、四次或更多。根据本发明的制剂可以根据患者情况，对粉针剂优选30～95%，液体制剂优选3～50%。

【0023】下面通过具体的实验数据进一步说明本发明丹酚酸L的抗肿瘤活性。

【0024】试验1：丹酚酸L抑制肿瘤细胞增殖的实验

【0025】(1) 实验材料

【0026】受试样品：丹酚酸L，95%纯度，从丹参中提取。

【0027】实验细胞：人神经胶质瘤细胞SHG44、U251购于中科院上海细胞所，人宫颈癌细胞HeLa、人结肠癌细胞Caco-2、人肝癌细胞HepG2、人胃癌细胞BGC-823，均购于中国医学科学院基础医学细胞中心。人黑色素瘤细胞WM-266-4、人黑色素瘤细胞MeWo，人宫颈癌细胞MS751、人宫颈癌细胞ME180，均购于美国ATCC。

【0028】试剂耗材：DMEM、RPMI1640、Hank's液、胎牛血清(FBS)、100×抗生素购于Gibco公司，MTT四甲基噻唑蓝购于Sigma公司。分析纯DMSO购于天津分析试剂厂。RPMI1640完全培养基：RPMI1640+10%FBS+1%的100×抗生素；DMEM完全培养基：DMEM+10%FBS+1%的100×抗生素。

【0029】(2) 实验方法

【0030】Caco-2细胞采用DMEM完全培养基进行培养：SHG44、U251、WM-266-4、MeWo、MS751、HepG2、BGC-823、HeLa和ME180细胞采用RPMI1640完全培养基进行培养。所有细胞培养均在37℃5%CO2条件下培养，当细胞贴壁达80%融合后，弃去培养基，Hank’s液清洗两次，用0.25%胰蛋白酶消化，配制成一定浓度的细胞悬液，接种于96孔酶标板，每孔加100μL，细胞种植密度为1×6×104cells/孔，于37℃5%CO2培养24小时。

【0031】24小时后更换含有不同浓度受试样品(DMSO终浓度≤0.1%)及DMSO对照的新鲜培养液200μL，受试药设4个剂量组，受试物浓度范围0.1～1000mg/ml，每个浓度设3个平行孔，并设空白孔对照。于37℃5%CO2培养48hr后，每孔加无血清培养液新配制的5mg/mlMTT10μL，继续培养4h，每孔加100μL DMSO溶解MTT甲基蓝，用微型振荡器振荡混合后，用酶标仪在检测波长578nm下测定OD值，计算受试样品对细胞增殖的半数抑制浓度(50%中抑制浓度)。
[0032] (3) 实验结果
[0033] 表 1 结果显示了丹酚酸 L 对多种肿瘤细胞增殖的半数抑制浓度 IC50。结果表明，
丹酚酸 L 对多人源肿瘤细胞株增殖均有较强的抑制作用，其中对人源宫颈癌细胞 Hela、
人脑胶质瘤细胞 U251、SHG-44 具有较强的抑制作用，对肿瘤细胞增殖的半抑制浓度在
4.6～13.8 μg/ml 之间，对其它人源肿瘤细胞增殖的半抑制浓度在 23.5～65.3 μg/ml 之间。
[0034] 表 1 丹酚酸 LM 对不同肿瘤细胞株的半数抑制浓度

<table>
<thead>
<tr>
<th>细胞株</th>
<th>IC50 (μg/ml)</th>
</tr>
</thead>
<tbody>
<tr>
<td>人宫颈癌</td>
<td>Hela</td>
</tr>
<tr>
<td></td>
<td>4.6</td>
</tr>
<tr>
<td></td>
<td>MS751</td>
</tr>
<tr>
<td></td>
<td>45.2</td>
</tr>
<tr>
<td></td>
<td>ME180</td>
</tr>
<tr>
<td></td>
<td>36.2</td>
</tr>
<tr>
<td>人脑胶质瘤</td>
<td>SHG-44</td>
</tr>
<tr>
<td></td>
<td>13.8</td>
</tr>
<tr>
<td></td>
<td>U251</td>
</tr>
<tr>
<td></td>
<td>7.1</td>
</tr>
<tr>
<td>人胃癌</td>
<td>BGC-823</td>
</tr>
<tr>
<td></td>
<td>65.3</td>
</tr>
<tr>
<td>人结肠癌</td>
<td>HT-29</td>
</tr>
<tr>
<td></td>
<td>52.0</td>
</tr>
<tr>
<td></td>
<td>CaCo-2</td>
</tr>
<tr>
<td></td>
<td>41.0</td>
</tr>
<tr>
<td>人黑色素瘤</td>
<td>MeWo</td>
</tr>
<tr>
<td></td>
<td>23.5</td>
</tr>
<tr>
<td></td>
<td>WM266-4</td>
</tr>
<tr>
<td></td>
<td>42.6</td>
</tr>
<tr>
<td></td>
<td>C32</td>
</tr>
<tr>
<td></td>
<td>31.1</td>
</tr>
</tbody>
</table>

[0035] 试验 2 丹酚酸 L 对人宫颈癌 Hela 裸鼠移植瘤的抑瘤效果观察
[0036] (1) 实验材料
[0037] 丹酚酸 L, 95%纯度，从丹参中提取。环磷酸胺
[0038] SPF 级 5-6 周龄 BALB/c-nu 裸小鼠购于北京军事医学科学院，实验动物合格证编号
SCXK-2005-0013。于无特定病原体 (SPF) 环境饲养，环境温度、湿度适宜，无菌饲料及灭
菌自来水，观察裸鼠生长情况。
[0039] 人宫颈癌细胞 Hela 购于中国医学科学院基础医学细胞中心。
[0040] 试剂耗材 : RPMI1640、Hank’s 液、胎牛血清 (FBS)、100×抗生素购于 Gibco 公司，
MTT 四甲基噻唑蓝购于 Sigma 公司。分析纯 DMSO 购于天津分析试剂一厂。RPMI1640 完全
培养基 : RPMI1640+10% FBS+1% 的 100×抗生素。
[0041] (2) 实验方法
[0042] 人宫颈癌 Hela 细胞按常规方法复苏、培养、传代、接种。于裸鼠右腋下近背部皮下
接种 Hela 细胞 0.2ml (1×10^7/ml)，大约 14 天长出瘤块。45 天后处死荷瘤裸鼠，消毒皮肤后
剥取肿瘤组织，置于无菌生理盐水中，在超净工作台上选取生长良好的肿瘤组织，切成 1mm^3
的小块，置于 18 号套管针，于碘酒消毒裸鼠右侧胸窝背侧皮肤后行皮下接种传代，应传
2～3 代后再用于体内抗肿瘤试验。
[0043] 处死 Hela 第 3 代荷瘤鼠，取瘤块接种于 BALB/c-nu 小 50 只，待肿瘤体积生长至
100～300mm^3 时将动物按肿瘤大小分组，每组 9 只小鼠。用药前采用随机数字表法将小鼠按
照肿瘤体积大小分为 4 组，分别为正常组、丹酚酸 L 高剂量 (100mg/kg/d)、低剂量 (50mg/
kg/d) 组和环磷酸胺组 (83.3mg/kg/d)，其中模型组为小鼠肿瘤自然生长作对照组。其余各
组分别腹腔注射各自药物。每三天测量动物肿瘤体积，动态观察、记录肿瘤生长情况并绘制
肿瘤增长曲线图, 并监测动物体重变化。于给药 28 天后处死动物, 剥离肿瘤, 称瘤重, 计算
g药组瘤重抑制率(%) , 用给药组与模型组肿瘤相对体积计算相对肿瘤增殖率(T/C)。

[0045] 瘤重抑制率(%) = (阴性对照组平均瘤重 - 治疗组平均瘤重) / 阴性对照组平均瘤重 × 100%

[0046] T/C% = T_{RTV}/C_{RTV}×100%。 (T_{RTV}:治疗组 RTV; C_{RTV}:阴性对照组 RTV)

[0047] RTV = V_t/V_0 (V_0 为分笼给药时测量所得肿瘤体积, V_t 为每一次测量时肿瘤体积)

[0048] (3) 实验结果

[0049] 表 2 显示了, 丹酚酸 L 对人宫颈癌 Hela 裸鼠移植瘤的抑瘤效果。体内动物实验显
示, 丹酚酸 L 对肿瘤生长具有明显抑制作用, 且具有剂型依赖性。用药期间, 高、低剂量的丹
酚酸 L 对小鼠活动和体重未见明显的影响。

[0050] 表 2 丹酚酸 L 对 Hela 荷瘤小鼠肿瘤大小的影响

<table>
<thead>
<tr>
<th>组别</th>
<th>瘤重(g)</th>
<th>体积(mm³)</th>
<th>抑制率(%)</th>
<th>T/C (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>模型组</td>
<td>1.632±0.427</td>
<td>1806.24±426.42</td>
<td>--</td>
<td>--</td>
</tr>
<tr>
<td>低剂量组</td>
<td>1.120±0.546</td>
<td>966.54±512.44</td>
<td>31.4</td>
<td>65.2</td>
</tr>
<tr>
<td>高剂量组</td>
<td>0.703±0.297</td>
<td>645.14±362.62</td>
<td>56.9</td>
<td>38.3</td>
</tr>
<tr>
<td>环磷酰胺组</td>
<td>0.055±0.044</td>
<td>154.12±105.51</td>
<td>96.6</td>
<td>6.2</td>
</tr>
</tbody>
</table>

[0053] *P < 0.05; **P < 0.01

[0054] 试验 3 丹酚酸 L 对小鼠皮下鼠源性肿瘤的抑制作用

[0055] (1) 实验材料

[0056] 丹酚酸 L, 95% 纯度, 从丹参中提取。环磷酰胺购于

[0057] SPF 级 C57 小鼠 140 只, 体重 18 ~ 22g, 购于北京维通利华公司, 动物合格证号: SCXK(京) 2007-0001。在有空调的动物室饲养, 温度为 20℃ ~ 25℃, 相对湿度 60%, 每笼
10 只, 照明时间 12 小时, 定时定量添加饲料, 食用鼠专用饲料 (北京科谱优饲料有限公司生
产), 自由饮水, 每日更换垫料。小鼠肝癌 H22 腹水瘤小鼠购于中国协和医科大学基础医学院。

[0058] (2) 实验方法和结果

[0059] 小鼠肝癌 H22 细胞于 C57 腹腔接种后取腹水传代保存。接种时, 取腹水传代第 10
日小鼠肝癌 H22 腹瘤小鼠, 脱颈椎处死, 消毒腹部皮肤, 以无菌注射器吸取乳白色腹水, 以
注射用生理盐水调整肿瘤细胞浓度为 1×107 细胞/ml。以酒精棉球消毒 C57 小鼠右侧腋下
皮肤, 于皮下接种上述瘤细胞悬液 0.2ml。实验分为模型组、丹酚酸 L 高 (100mg/kg/d)、低
剂量 (50mg/kg/d) 组和环磷酰胺组共 4 组。小鼠腹瘤后第二日开始腹腔注射各自药物, 环
磷酰胺组仅于接种后第二日给药一次, 模型组每日腹腔注射生理盐水一次, 连续 10 天。给
药体积为 0.1ml/10g 体重。末次给药 24 小时后, 脱颈椎处死小鼠, 判取瘤组织称重, 计算给
药组瘤重抑制率(%)。结果以 ± s 表示, 组间采用 t 检验进行统计学比较。

[0060]
抑瘤率（%）= (1 - 给药组平均瘤重 / 对照组平均瘤重) x 100

【0061】如表3所示，丹酚酸L对肝癌H22荷瘤小鼠的癌体有明显的抑制作用，且在用药期间，小鼠精神状态良好，体重与对照组相比没有显著性差异。
【0062】表3丹酚酸L对小鼠肝癌H22的抑瘤作用

<table>
<thead>
<tr>
<th>组别</th>
<th>剂量 (mg/kg)</th>
<th>n</th>
<th>体重 (g)</th>
<th>瘤重 (g)</th>
<th>抑瘤率 (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>模型组</td>
<td>0.4ml</td>
<td>10</td>
<td>30.61±4.98</td>
<td>2.16±0.80</td>
<td>-</td>
</tr>
<tr>
<td>胆酸钠组</td>
<td>83.3</td>
<td>10</td>
<td>22.57±3.52</td>
<td>0.33±0.52</td>
<td>89.6</td>
</tr>
</tbody>
</table>

【0064】

| LM低剂量组 | 50 | 10 | 28.92±4.02 | 1.45±0.69 | 32.9 |
| LM高剂量组 | 100| 10 | 26.44±3.62 | 1.09±0.64 | 49.5 |

具体实施方式
【0065】以下通过实施例进一步说明本发明，但不作为对本发明的限制。
【0066】实施例1丹酚酸L的制备
【0067】取丹酚酸片，置提取器中，加入4倍药材量体积的水（含0.45％的碳酸氢钠），煮沸3小时，滤过；药渣继续用3倍量水煮1小时，滤过，合并滤液，浓缩至相对密度为1.2 (80℃) 的浸膏；浸膏中加入95％乙醇醇沉至70％(25℃)，静置12小时以上，减压回收乙醇，浓缩至相对密度为1.37 (60℃) 的浸膏。
【0068】将得到的浸膏用水溶解，过AB-8大孔吸附树脂，用12倍量柱床体积的水冲洗，水洗液用盐酸调节至pH值3.0。将上述酸性的水洗液再次过AB-8大孔吸附树脂，用pH值3.0的酸水冲洗至近无色后，用4倍量的95％乙醇洗脱，洗脱液浓缩至浓浸膏，洗脱液浓缩至无醇味，得浸膏。
【0069】将得到的浸膏用甲醇溶解，加入相当重量的200-300目的层析硅胶柱样，将拌好的样品铺在装好的硅胶柱上，用氯仿：甲醇：甲酸 (5 : 15 : 3) 洗脱，用薄层层析法检测，将同类的馏分合并，即得丹酚酸L。
【0070】实施例2丹酚酸L冻干粉针的制备，处方：
【0071】丹酚酸L 100g
【0072】甘露醇 100g

【0073】注射用水 2000ml
【0074】制成1000支

【0075】工艺：称取丹酚酸L及处方中辅料甘露醇，加注射用水1500ml，搅拌溶解，0.5克活性碳
搅拌脱色 20 分钟，0.45 微米微孔滤膜脱碳，补水到 2000 毫升，除菌过滤、分装、冷冻干燥，即得。

【0077】实施例 3 丹酚酸 L 注射液的制备
【0078】处方：
【0079】丹酚酸 L 100g
【0080】甘露醇 100g
【0081】注射用水 加至 2500ml
【0082】制成 1000 支
【0083】取丹酚酸 L，加注射用水 1000ml 适量，使溶解，搅匀；另取甘露醇，加注射用水 500ml 使溶解，加入上述溶液中，搅匀，0.5 克活性炭保温搅拌 20 分钟，过滤，滤液调节 pH 值为 4.5 ~ 5.0，加注射用水至 2500ml，除菌过滤，分装，即得。

【0084】实施例 4 丹酚酸 L 片剂制备
【0085】丹酚酸 L 片剂的制备处方：
【0086】丹酚酸 L 100g
【0087】微晶纤维素 50g
【0088】乳糖 50g
【0089】淀粉 51g
【0090】羧甲基淀粉钠 12g
【0091】5% PVP 无水乙醇 适量
【0092】硬脂酸镁 3g
【0093】制成 1000 片
【0094】工艺：
【0095】1 制粒
【0096】丹酚酸 L 及处方中其它辅料分别过 100 目筛，称取处方量丹参总酚酸提取物与微晶纤维素、淀粉及羧甲基淀粉钠采用等量递加法混合均匀，用适量 PVP 无水乙醇溶液制软材，14 目筛制粒，50 ~ 60℃ 干燥 1 小时，加入处方量的硬脂酸镁用 14 目筛整粒。
【0097】2 压片
【0098】取上述颗粒用特制菱形异型冲模压片。
【0099】实施例 4 丹酚酸 L 胶囊剂的制备处方：
【0100】丹酚酸 L 100g
【0101】淀粉 200g
【0102】羧甲基淀粉钠 12g
【0103】5% PVP 无水乙醇 适量
【0104】硬脂酸镁 3g
【0105】制成 1000 粒
【0106】工艺：
【0107】1 制粒
[0108] 丹酚酸 L 及处方中其它辅料分别过 100 目筛，称取处方量丹参总酚酸提取物与淀粉及羧甲基淀粉钠再相应量递加法混合均匀，置适量 PVP 无水乙醇溶液制软材，14 目筛制粒，50 ～ 60℃干燥 1 小时，加入处方量的硬脂酸镁用 14 目筛整粒。
[0109] 2 灌装
[0110] 取上述颗粒装入胶囊。