(12) STANDARD PATENT APPLICATION (11) Application No. AU 2014201573 A1
(19) AUSTRALIAN PATENT OFFICE

(54) Title
Improved data integration tool

(51) International Patent Classification(s)
GO6F 11/36 (2006.01) GOG6F 9/44 (2006.01)
GOG6F 7/00 (2006.01)
(21) Application No: 2014201573 (22) Date of Filing: 2014.03.14

(30) Priority Data

(31) Number (32) Date (33) Country
14/044,800 2013.10.02 us
61/801,222 2013.03.15 us

(43) Publication Date: 2014.10.02

(43) Publication Journal Date: 2014.10.02

(71) Applicant(s)
Palantir Technologies, Inc.

(72) Inventor(s)
Nassar, Anthony Albert

(74) Agent/ Attorney
Davies Collison Cave, PO Box 2219 BUSINESS CENTRE, MILTON, QLD, 4064

14 Mar 2014

2014201573

ABSTRACT

Computer-implemented systems and methods are disclosed for providing proactive
validations of transformation scripts. In one implementation, a method is provided that
includes associating, with at least one processor, the transformation script with ontology
parameters. The method also includes initiating a debugging operation of the transformation
script having at least one condition and importing, from a data source, at least one data item
for transformation. The method further includes determining, as part of the debugging
operation, whether the at least one condition that uses the at least one data item is valid based
on the ontology parameters and notifying a user, on a display device, of a result associated

with the determination.

14 Mar 2014

2014201573

Australian Patents Act 1990 - Regulation 3.2

ORIGINAL COMPLETE SPECIFICATION
STANDARD PATENT

Invention Title
Improved data integration tool

The following statement is a full description of this invention, including the best method
of performing it known to me/us:-

14 Mar 2014

2014201573

- la

[0001] This application claims the benefit of priority to U.S. Provisional Patent Application
No. 61/801,222, filed on March 15, 2013, the disclosure of which is expressly incorporated

herein by reference in its entirety.

BACKGROUND OF THE INVENTION

[0002] The reference in this specification to any prior publication (or information derived
from it), or to any matter which is known, is not, and should not be taken as an
acknowledgment or admission or any form of suggestion that that prior publication (or
information derived from it) or known matter forms part of the common general knowledge
in the field of endeavour to which this specification relates.

[0003] Data is commonly stored in computer-based systems in fixed, rigidly structured data
stores. For example, one common type of data store is a “flat” file such as a spreadsheet,
plain-text document, or XML document. Another common type of data store is a relational
database comprising one or more tables. Other examples of data stores that comprise
structured data include, without limitation, files systems, object collections, record
collections, arrays, hierarchical trees, linked lists, stacks, and combinations thereof.

[0004] Often, the underlying structure of these types of data stores is poorly suited for data
analysis. One approach for facilitating a more efficient analysis of data in such data stores is
to reorganize that data according to an object model that defines object structures and
relationships between the object structures.

[0005] To create an object model, data items in underlying data stores, such as table rows or
cells, can be mapped to properties of the objects in the model. The semantics, or “meanings,”
of the various components of the object model are defined by an ontology that categorizes
objects, relationships, and/or properties according to various defined types. For example, an
ontology might categorize objects as being of one of the following types: person, entity, or
event. The ontology can define different properties for each object type, such as names,
dates, locations, documents, media, and so forth. Moreover, the ontology can further define

relationships (or links) between objects, such as employee, participant, sibling, and so forth.

SUMMARY

14 Mar 2014

2014201573

[0006] In one aspect the invention seeks to provide an apparatus for providing a proactive
validation of a transformation script, the apparatus comprising:
a memory device that stores a set of instructions;
one or more processors that execute the set of instructions to configure the one or
more processors to:
associate the transformation script with ontology parameters;
initiate a debugging operation of the transformation script having at least one
condition;
import, from a data source, at least one data item for transformation;
determine, as part of the debugging operation, whether the at least one
condition that uses the at least one data item is valid based on the ontology
parameters; and
provide an indication of a result associated with the determination, wherein the result
is at least one of an expressed result or an implicit result.
[0007] Typically the apparatus further comprises a display device configured to provide an
expressed result indicating that the at least one condition is not valid.
[0008] Typically the ontology parameters include parameters that assign an entity as being an
object or a property of an object and wherein the transformation script uses a builder that
defines the entity as being an object or a property of an object.
[0009] Typically the builder uses domain-specific language.
[0010] Typically the one or more processors determine that at least one condition is not valid
if the assignment of the entity in the ontology parameters is inconsistent with the definition of
the entity in the builder.
[0011] In one aspect the invention seeks to provide a method for providing a proactive
validation of a transformation script, the method being performed by one or more processors
and comprising:
associating the transformation script with ontology parameters;
initiating a debugging operation of the transformation script having at least one
condition;

importing, from a data source, at least one data item for transformation;

14 Mar 2014

2014201573

_3-

determining, as part of the debugging operation, whether the at least one condition
that uses the at least one data item is valid based on the ontology parameters; and

providing an indication of a result associated with the determination, wherein the
result is at least one of an expressed result or an implicit result.
[0012] Typically providing the indication of the result associated with the determination
comprises:

if the at least one condition is determined to be not valid, providing the indication of
the result to a display device for displaying an expressed result indicating that the at least one
condition is not valid.
[0013] Typically indicating the result associated with the determination comprises:

if the at least one condition is determined to be valid and the transformation script
includes at least one subsequent condition to be debugged, providing an implicit result
indicating that the at least one condition is valid; and

if the at least one condition is determined to be valid and if the transformation script
does not include any subsequent conditions to be debugged, displaying on the display device
an expressed result indicating that the transformation script has been validated.
[0014] Typically providing the indication of the result to the display device for displaying
comprises:

displaying the expressed result upon determining that the at least one condition is not
valid.
[0015] Typically the ontology parameters include parameters that assign an entity as being an
object or a property of an object and wherein the transformation script uses a builder that
defines the entity as being an object or a property of an object.
[0016] Typically the builder uses domain-specific language.
[0017] Typically determining comprises:

determining that the at least one condition is not valid if the assignment of the entity
in the ontology parameters is inconsistent with the definition of the entity in the builder.
[0018] The method of claim 6,

wherein the ontology parameters assigns a link between two entities; and

further wherein the transformation script uses a builder that creates a link between

two entities.

14 Mar 2014

2014201573

[0019] Typically determining comprises:

determining that the at least one condition is not valid if the assigned link in the
ontology parameters is inconsistent with the created link in the builder.
[0020] In one aspect the invention seeks to provide a non-transitory computer readable
medium that stores a set of instructions that are executable by at least one processor to cause
the at least one processor to perform a method for providing a proactive validation of a
transformation script, the method comprising:

associating the transformation script with ontology parameters;

initiating a debugging operation of the transformation script having at least one
condition;

importing, from a data source, at least one data item for transformation;

determining, as part of the debugging operation, whether the at least one condition
that uses the at least one data item is valid based on the ontology parameters; and

providing an indication of a result associated with the determination, wherein the
result is at least one of an expressed result or an implicit result.
[0021] Typically providing the indication of the result comprises:

if the at least one condition is determined to be not valid, providing the indication of
the result to a display device for displaying the expressed result indicating that the at least
one condition is not valid.
[0022] Typically providing the indication of the result to the display device comprises:

displaying the expressed result upon determining that the at least one condition is not
valid.
[0023] Typically the ontology parameters include parameters that assign an entity as being an
object or a property of an object and further wherein the transformation script uses a builder
that defines the entity as being an object or a property of an object.
[0024] Typically the builder uses domain-specific language.
[0025] Typically determining comprises:

determining that the at least one condition is not valid if the assignment of the entity

in the ontology parameters is inconsistent with the definition of the entity in the

builder.

14 Mar 2014

2014201573

-5-

BRIEF DESCRIPTION OF THE DRAWINGS

[0026] Reference will now be made to the accompanying drawings showing example
embodiments of the present application, and in which:

[0027] FIG. 1A shows, in block diagram form, an exemplary data fusion system for
providing interactive data analysis, consistent with embodiments of the present disclosure.
[0028] FIG. 1B is a screenshot of an exemplary graphical interface for the data.

[0029] FIG. 1B is a screenshot of an exemplary graphical interface for the data fusion system
of FIG. 1A, consistent with embodiments of the present disclosure.

[0030] FIG. 2shows an exemplary project providing one or more transformation scripts
associated with data transformation, consistent with embodiments of the present disclosure.
[0031] FIG. 3 shows an exemplary configuration file for a project, consistent with
embodiments of the present disclosure.

[0032] FIG. 4 shows an exemplary transform method of a transformation script, consistent
with embodiments of the present disclosure.

[0033] FIG. 5 shows exemplary link builder methods of the transform method described in
FIG. 4, consistent with embodiments of the present disclosure.

[0034] FIG. 6A and 6B show an exemplary content process method of the transform method
described in FIG. 4, consistent with embodiments of the present disclosure.

[0035] FIG. 7 shows an exemplary domain-specific language (DSL) builder called by the
content processor described in FIG. 6Aand 6B, consistent with embodiments of the present
disclosure.

[0036] FIG. 8 shows an exemplary software development environment for debugging a
transformation script, consistent with embodiments of the present disclosure.

[0037] FIG. 9 is a flowchart representing an exemplary method for proactive validation of a
transformation script, consistent with embodiments of the present disclosure.

[0038] FIG. 10 shows, in block diagram form, an exemplary computer system with which
embodiments described herein can be implemented, consistent with embodiments of the

present disclosure.

DETAILED DESCRIPTION OF EXEMPLARY EMBODIMENTS

14 Mar 2014

2014201573

-6 -

[0039] Reference will now be made in detail to the embodiments, the examples of which are
illustrated in the accompanying drawings. Whenever possible, the same reference numbers
will be used throughout the drawings to refer to the same or like parts.

[0040] FIG. 1A shows, in block diagram form, an exemplary data fusion system 100 for
providing interactive data analysis, consistent with embodiments of the present disclosure.
System 100 can include several components. The components of system 100 can
electronically transmit data/information in either direction with other components and can be
connected to one another with wired or wireless transmission links and/or via one or more
networks.

[0041] Among other things, system 100 facilitates transformation of one or more data
sources, such as data sources 130, into an object model 160 whose semantics are defined by
an ontology 150. The transformation can be performed for a variety of reasons. For
example, a database administrator may desire to import data from data sources 130 into a
database 170 for persistently storing object model 160. As another example, a data
presentation component (not depicted) can transform input data from data sources 130 on the
fly into object model 160. The object model 160 can then be utilized, in conjunction with
ontology 150, for analysis through graphs and/or other data visualization techniques.

[0042] As shown in FIG. 1A, system 100 comprises a definition component 110 and a
translation component 120, both implemented by one or more processors on one or more
computing devices executing hardware and/or software-based logic for providing various
functionality described herein. As will be appreciated from the present disclosure, system
100 can comprise fewer or additional components that provide various functionalities
described herein. Such components are, for clarity, omitted from FIG. 1A. Moreover, the
component(s) of system 100 responsible for providing various functionalities can further vary
from embodiment to embodiment.

[0043] Definition component 110 generates and/or modifies ontology 150 and a schema map
140. Exemplary embodiments for defining an ontology (such as ontology 150)are described
in U.S. 7,962,495 (the ’495 Patent), issued June 14, 2011, the entire contents of which are
expressly incorporated herein by reference for all purposes. Among other things, the 495
patent describes embodiments that define a dynamic ontology for use in creating data in a

database. For creating a database ontology, one or more object types are created where each

14 Mar 2014

2014201573

object type can include one or more properties. The attributes of object types or property
types of the ontology can be edited or modified at any time. And for each property type, at
least one parser definition is created. The attributes of a parser definition can be edited or
modified at any time.

[0044] In some embodiments, each property type is declared to be representative of one or
more object types. A property type is representative of an object type when the property type
is intuitively associated with the object type. For example, a property type of “Social Security
Number” may be representative of an object type “Person” but not representative of an object
type “Business.”

[0045] In some embodiments, each property type has one or more components and a base
type. In some embodiments, a property type may comprise a string, a date, a number, or a
composite type consisting of two or more string, date, or number elements. Thus, property
types are extensible and can represent complex data structures. Further, a parser definition
can reference a component of a complex property type as a unit or token.

[0046] An example of a property having multiple components is a Name property having a
Last Name component and a First Name component. An example of raw input data is “Smith,
Jane.” An example parser definition specifies an association of imported input data to object
property components as follows: {LAST NAME}, {FIRST NAME}—Name:Last,
Name:First. In some embodiments, the association {LAST_NAME}, {FIRST NAME} is
defined in a parser definition using regular expression symbology. The association
{LAST_NAME}, {FIRST_NAME} indicates that a last name string followed by a first name
string comprises valid input data for a property of type Name. In contrast, input data of
"Smith Jane" would not be valid for the specified parser definition, but a user could create a
second parser definition that does match input data of “Smith Jane.” The definition
Name:Last, Name:First specifies that matching input data values map to components named
"Last" and "First" of the Name property.

[0047] As a result, parsing the input data using the parser definition results in assigning the
value “Smith” to the Name:Last component of the Name property, and the value “Jane” to
the Name:First component of the Name property.

[0048] Referring again to FIG. 1A, schema map 140 can define how various elements of

schemas 135 for data sources 130 map to various elements of ontology 150. Definition

14 Mar 2014

2014201573

-8-

component 110 receives, calculates, extracts, or otherwise identifies schemas 135 for data
sources 130. Schemas 135 define the structure of data sources 130—for example, the names
and other characteristics of tables, files, columns, fields, properties, and so forth. Definition
component 110 furthermore optionally identifies sample data 136 from data sources 130.
Definition component 110 can further identify object type, relationship, and property
definitions from ontology 150, if any already exist. Definition component 110 can further
identify pre-existing mappings from schema map 140, if such mappings exist.

[0049] Based on the identified information, definition component 110 can generate a
graphical interface 115. Graphical interface 115 can be presented to users of a computing
device via any suitable output mechanism (e.g., a display screen, an image projection, etc.),
and can further accept input from users of the computing device via any suitable input
mechanism (e.g., a keyboard, a mouse, a touch screen interface, etc.). Graphical interface
115 features a visual workspace that visually depicts representations of the elements of
ontology 150 for which mappings are defined in schema map 140.FIG. 1B provides an
exemplary depiction of graphical interface 115 for visually depicting representations of the
elements of ontology 150.Graphical interface 115 also includes controls for adding new
elements to schema map 140 and/or ontology 150, including objects, properties of objects,
and relationships, via the visual workspace. After elements of ontology 150 are represented
in the visual workspace, graphical interface 115 can further provide controls in association
with the representations that allow for modifying the elements of ontology 150 and
identifying how the elements of ontology 150 correspond to elements of schemas 135.
Optionally, the graphical interface 115 can further utilize the sample data 136 to provide the
user with a preview of object model 160 as the user defines schema map 140. In response to
the input via the various controls of graphical interface 115, definition component 110 can
generate and/or modify ontology 150 and schema map 140.

[0050] Transformation component 120 can be invoked after schema map 140 and ontology
150 have been defined or redefined. Transformation component 120 identifies schema map
140 and ontology 150. Transformation component 120 further reads data sources 130 and
identifies schemas 135 for data sources 130. For each element of ontology 150 described in
schema map 140, transformation component 120 iterates through some or all of the data

items of data sources 130, generating elements of object model 160 in the manner specified

14 Mar 2014

2014201573

-9._

by schema map 140. In some embodiments, transformation component 120 can store a
representation of each generated element of object model 160 in a database 170. In some
embodiments, transformation component 120 is further configured to synchronize changes in
object model 160 back to data sources 130.

[0051] Data sources 130 can be one or more sources of data, including, without limitation,
spreadsheet files, databases, email folders, document collections, media collections, contact
directories, and so forth. Data sources 130 can include data structures stored persistently in
non-volatile memory. Data sources 130 can also or instead include temporary data structures
generated from underlying data sources via data extraction components, such as a result set
returned from a database server executing an database query.

[0052] Schema map 140, ontology 150, and schemas 135 can be stored in any suitable
structures, such as XML files, database tables, and so forth. In some embodiments, ontology
150 is maintained persistently. Schema map 140 can or cannot be maintained persistently,
depending on whether the transformation process is perpetual or a one-time event. Schemas
135 need not be maintained in persistent memory, but can be cached for optimization.

[0053] Object model 160 comprises collections of elements such as typed objects, properties,
and relationships. The collections can be structured in any suitable manner. In some
embodiments, a database 170 stores the elements of object model 160, or representations
thereof. In some embodiments, the elements of object model 160 are stored within database
170 in a different underlying format, such as in a series of object, property, and relationship
tables in a relational database.

[0054] FIG. 2 shows an exemplary project 200 providing one or more scripts 210. Project
200 and its corresponding scripts 210 can be processed by a transformer (such as
transformation component 120). Scripts 210 can include one or more transformation scripts
associated with transforming some or all data items of data sources 130 into elements for
object model 160. In this particular example, project 200 is titled “kea-examples” and has
scriptsCSVExample.groovy, MalwareReport.groovy, PhoneTransformer.groovy,
PiracySample.groovy, RecursivelnputSingleOutputDirectoryConversion.groovy, and
RSSFeed.groovy. Project 200 also includes, among other things, a log.properties file for
providing instructions for logging outputs and a configuration file for assisting with the

running of one or more scripts 210.

14 Mar 2014

2014201573

- 10 -

[0055] FIG. 3 shows an exemplary configuration file 300 for project 200 described above
with reference to FIG. 2. Configuration file 300 can be processed by a transformer (such as
transformation component 120). Among other things, configuration file 300 can be used for
setting parameters while running one or more scripts 210 associated with configuration file
200. Configuration file 300 can identify an ontology file 310 that provides naming and
arrangement of objects, properties, and/or links for determining whether proposed outputs
from scripts are valid. Ontology file 310 is part of ontology 150 described above. While
ontology file 310 is identified in configuration file 200, in some embodiments configuration
file 300 points to location where ontology file 310is located.

[0056] Ontology file 310 can have one or more ontology parameters. These ontology
parameters assign entities to either an object, property of an entity designated as an object, or
a link between objects. For example, an ontology parameter define entity “Organization” as
being an object. Additional ontology parameters can define entities “Charity,” “Church,”
and “Academic Organization” as being properties of object “Organization.” On the flip side,
the entity “Birthplace” would not be a property of “Organization”; thus, there would be no
ontology parameter assigning the “Birthplace” property to the “Organization” object.

[0057] FIG. 4shows exemplary transform method 400 of the PhoneTransformer.groovy
script identified in project 200 illustrated above in FIG. 2. Transform method 400includes,
among other things, a link builder 410 and a content processor interface 420. Transform
method 400 can be processed by a transformer (such as transformation component 120).
[0058] In the exemplary embodiment of FIG. 4, transform method 400includes code for
asking a user how to import data (such as calls), by providing two link build options. These
options include either (i) aggregating multiple calls between phone number xxx-Xxx-xxxx
and phone number yyy-yyy-yyyy into a single link or (ii) showing each call between the two
numbers as individual link events. In terms of the transformer, a difference between the two
options is how links are built. In this example, the building of a link is managed by passing a
link building closure (linkBuilder 410) to the link method that processes each row of data.
[0059] Exemplary link builder methods 500 are illustrated in FIG. 5 and can be processed by
a transformer (such as transformation component 120). Link builder methods 500 include

CreateAggregateCallLinks method 510 that creates links collapsing call events between

14 Mar 2014

2014201573

-11 -

common endpoints into a single link and CreatelndividualCallLinks method 520 that creates
links for individual call events for each call between endpoints.

[0060] After link builder 410 determines how calls are aggregated, content processor
interface 420 can call a process method that performs the transformation of one or more data
items from a data sources to elements of an object model. An exemplary process method
600 is shown in FIGs.6Aand6Band can be processed by a transformer (such as
transformation component 120). Process method 600 iterates through data items (such as a
row of table), creates a builder, and calls process Row to create an object model having
objects and links for the row. When creating a builder, process method 600 can leverage a
domain-specific language (DSL) builder 700 shown in the exemplary builder of FIG. 7.
DSL builder 700 can be processed by a transformer, such as transformation component 120.
[0061] DSL builder 700 is an exemplary builder that includes multiple entities: entityl 710
and entity2 720.Entityl 710 and entity2 720 are built using data items in order to create
objects in the ontology “person” and “phone call” defined in ontology file 310 (referred to
above in FIG. 3).Moreover, both entityl 710 and entity2 720 include their corresponding
properties 715, 725, which also should be defined in ontology file 310.

[0062] For example, DSL builder 700 could receive the following data items for building
objects entityl 710 and entity2 720 and their corresponding properties 715, 725:

[0063] Name [0064] Address [0065] Phone Number | [0066] SSN#

[0067] Tom Smith [0068] 123 Grant | [0069] 123-456-7890 | [0070] 999-88-7777

Avenue

[0071] David Bruce | [0072] 345 Lincoln | [0073] 987-654-3210 | [0074] 111-22-3333
Street

[0075]

[0076] DSL builder 700, using the first data item, could build a person object such as “Tom
Smith.” The properties further defining object “Tom Smith” could include first name value
“Tom,”last_name value “Smith,” address value “123 Grant Avenue, New York, NY”
phone_number value “123-456-7890,” and SSN value “999-88-7777.” Moreover, address
can be further defined as street_number value “123,” street value “Grant Avenue,” city value

“New York,” and state value “NY.”

14 Mar 2014

2014201573

-12 -

[0077] In some embodiments, DSL builder 700 can be created using a dynamic language,
such as Groovy. While Groovy supports the internal (or embedded) DSL used for DSL
builder 700, other dynamic languages, such as Python and Ruby, can also support the
embedded DSL. These dynamic languages allow an object method to be called without that
object method being defined, and the object can determine how to handle the method call. In
other words, DSL builder 700 allows for a shorthand notation (e.g., “name”) that can expand
out to a proper notation (e.g., “object.name”). If, however, the shorthand notation is
misspelled (e.g., “namme”) in the DSL builder 700 or if the shorthand notation does not
correspond with an ontology parameter in ontology file (e.g., property type identified in the
DSL builder 700 is not defined or allowed in ontology file), a validation error (further
addressed below) would occur during the debugging phase.

[0078] FIG. 8 illustrates an exemplary embodiment of a software development environment
800 used for debugging a transformation script. Before debugging the transformation script,
such as the PhoneTransformer script described above with reference to FIG. 2, project 200
should be loaded into software development environment 800. The debug configurations for
PhoneTransformer script can allow for the use of core helper functions, such as serialize()
function and createBuilder() function (e.g., DSL builder 700).

[0079] Using a DSL builder (such as a Groovy Builder) can provide the ability to create a
proactive debugging experience. Proactive debugging provides validation notifications as
they arise during the debugging process, as opposed to providing a series of error
notifications after the transformation script (which has transformed most, if not all, data items
of identified input data into elements of an object model) has been executed. By providing a
proactive debugging, a user or developer can then fix the problem that caused the error
notification and begin debugging the script again.

[0080] One advantage over previous large-scale data integration models is that the
embodiments of the present disclosure can avoid having to parse and transform large
amounts of data, which can take, for example, four to six hours before the user finds out
whether there are any error notifications and, if so, the types of error notifications. After
fixing any errors, the user would then have to go through the same process of parsing and
transforming the imported input data, which can take another four to six hours before the user

finds out whether there are any error notifications during the second round. Such

14 Mar 2014

2014201573

- 13-

conventional debugging can occur for several rounds before the script is successfully
debugged.

[0081] The embodiments described herein can overcome the inefficiencies of conventional
debugging of transformation scripts by providing proactive debugging of the transformation
script. As stated above, proactive debugging displays error notifications as they occur. For
example, if an error occurs based on row 1 of an imported table, an expressed result, such as
a displayed notification ,could then be displayed to the user after that validation issue is
detected at row 1. This allows the user to correct the error associated with the first row of the
imported table without having to go through the entire imported table, which could include
hundreds of thousands of rows, if not more.

[0082] In some embodiments, a software development environment is not needed for
debugging a script. For example, the debugging can occur by running the script over a
command line.

[0083] FIG. 9 is a flowchart representing an exemplary method for proactive validation of a
transformation script. The transformation script provides functionality for transforming large
amounts of data items of data sources into elements of an object model. While the flowchart
discloses the following steps in a particular order, it is appreciated that at least some of the
steps can be moved, modified, or deleted where appropriate.

[0084] In step 902, a transformation script is associated with one or more ontology
parameters. In some embodiments, the association can occur by linking the transformation
script to a configuration file identifying an ontology file (e.g., ontology file 310) having one
or more ontology parameters. In some other embodiments, the association can occur by
having the ontology file located in the same directory as the transformation script. For
example, as shown above in the exemplary embodiments of FIGs. 2 and 3, transformation
scripts 210 of project 200 correspond to ontology file 310 identified in configuration file 300
of project 200. In some other embodiments, the association occurs when the ontology file is
called during the debugging of transformation script (referenced below in step 904). The
ontology parameters identified in ontology file 310 could then be applied, where appropriate,
to conditions in transformation scripts 210.

[0085] In step 904, debugging of transformation script is initiated. The debugging can be

initiated by a number of means. For example, the debugging can be initiated via a software

14 Mar 2014

2014201573

-14 -

development environment, such as software development environment 800 described above
with reference to FIG. 8. The debugging can also be initiated via command line.

[0086] In step 906, input data to be transformed is imported from a data source. This input
data can be from one or more data sources. The input data can be structured data (such as
tables having rows and columns or a comma-separated value (CSV) files) or can be
unstructured data (such as documents, emails, PDF, PowerPoint, and HTML files). For
example, the input data can include tables having hundreds of thousands of rows to be
transformed.

[0087] In step 908, a determination is made whether a condition in transformation script is
valid based on the ontology parameters. Transformation script can include one or more
conditions. For example, a builder (such as DSL builder 700) can define an entity as an
object (e.g., entityl 710), a property of that object (e.g., entityProperty 715), and any links
(e.g., link 730). Any definitions in the builder can then be compared to one or more ontology
parameters in ontology file (e.g., ontology file 310). Referring back to the “Organization”
ontology above, if the builder defines an “Organization” entity as being an object, the
condition (defining “Organization” entity as being an object) in the builder will be
determined to be valid. Moreover, if the builder defines a “Charity” entity as being a
property of the “Organization” entity, the condition (defining “Organization” entity as being
an object) in the builder will be determined to be valid. On the other hand, if the builder
defines “Birthplace” as being a property of the “Organization” object, the condition will be
invalid. Moreover, if the builder incorrectly defines an “Association” object—instead of the
correct “Organization” object—this condition will also fail because there would be no
“Association” object ontology parameter.

[0088] If it is determined that the condition is not valid, at step 918, a notification indicating
that the condition is not valid can be proactively displayed. That is, the notification can be
displayed shortly after it is determined that the condition is not valid. For example, the
notification could be displayed almost instantaneously, seconds, or minutes after the
determination. As stated above, proactive debugging, which provides the proactive
displaying of appropriate invalidation notifications as they arise, provides an advantage of
saving a user’s time when debugging the code because it avoids having to parse and

transform large amounts of data. .In some embodiments, an expressed result is provided if the

14 Mar 2014

2014201573

- 15 -

condition is determined to be not valid. The expressed result can be the proactive displaying
of the notification in the debugger, an email or popup window showing that the condition is
not valid, or any other way for indicating that the condition is not valid. Moreover, the
expressed result can show that the condition is not valid by displaying an error message, an
acronym, a number, graphic, and/or any other indication showing that condition is not valid.
[0089] If, on the other hand, the condition is determined to be valid, the method proceeds
through connector 910 to determine (912) if there are additional conditions in the
transformation script. In some embodiments, an expressed result can be provided, indicating
that the condition is valid. The expressed result can be a displayed notification in the
debugger, an email or popup window showing that the condition is valid, and/or any other
way for indicating that the condition is valid. As indicated above, the expressed result can
show that the condition is valid by displaying a validation message, an acronym, a number,
graphic, and/or any other indication showing that condition is valid. In some embodiments,
an implicit result can be provided. The implicit result can include recording the result of the
valid condition to a file, a storage location, an email, and/or not displaying that the condition
is valid. If the results are recorded, the recorded results can show a validation message, an
acronym, a number, graphic, and/or any other indication showing that condition is valid. If
there are no additional conditions in the transformation script, then the debugging of script
ends (914). In some embodiments, an expressed result can be provided, indicating that the
transformation script is valid.

[0090] On the other hand, if there are additional conditions in the transformation script, at
step 916, a determination is made whether an additional condition in transformation script is
valid based on the ontology parameters. Determination step 916 is similar to determination
step 908. If the condition is determined to be invalid, an expressed result can be provided,
such as in this exemplary embodiment a notification indicating that the condition is
proactively displayed. As indicated above, the expressed result can show that the condition is
not valid by displaying an error message, an acronym, a number, graphic, and/or any other
indication showing that condition is not valid.

[0091] On the other hand, if the condition is determined to be valid, the method proceeds
through connector 910 to determination step 912.In some embodiments, an expressed result

can be provided, indicating that the condition is valid. The expressed result can be a

14 Mar 2014

2014201573

- 16 -

displayed notification in the debugger, an email or popup window showing that the condition
is valid, and/or any other way for indicating that the condition is valid. The expressed result
can show that the condition is valid by displaying a validation message, an acronym, a
number, graphic, and/or any other indication showing that condition is valid. Moreover, in
some embodiments an implicit result can be provided. The implicit result can include
recording the result of the valid condition to a file, a storage location, an email, and/or not
displaying that the condition is valid. If the results are recorded, the recorded results can
show a validation message, an acronym, a number, graphic, and/or any other indication
showing that condition is valid.

[0092] According to some embodiments, the operations, techniques, and/or components
described herein are implemented by one or more special-purpose computing devices. The
special-purpose computing devices can be hard-wired to perform the operations, techniques,
and/or components described herein, or can include digital electronic devices such as one or
more application-specific integrated circuits (ASICs) or field programmable gate arrays
(FPGAs) that are persistently programmed to perform the operations, techniques, and/or
components described herein, or can include one or more general purpose hardware
processors programmed to perform such features of the present disclosure pursuant to
program instructions in firmware, memory, other storage, or a combination. Such special-
purpose computing devices can also combine custom hard-wired logic, ASICs, or FPGAs
with custom programming to accomplish the techniques and other features of the present
disclosure. The special-purpose computing devices can be desktop computer systems,
portable computer systems, handheld devices, networking devices, or any other device that
incorporates hard-wired and/or program logic to implement the techniques and other features
of the present disclosure.

[0093] The one or more computing devices can be generally controlled and coordinated by
operating system software, such as 10S, Android, Blackberry, Chrome OS, Windows XP,
Windows Vista, Windows 7, Windows 8, Windows Server, Windows CE, Unix, Linux,
SunOS, Solaris, VxWorks, or other compatible operating systems. In other embodiments, the
computing device can be controlled by a proprietary operating system. Conventional

operating systems may control and schedule computer processes for execution, perform

14 Mar 2014

2014201573

-17 -

memory management, provide file system, networking, I/O services, and/or provide a user
interface functionality, such as a graphical user interface (“GUI”), among other things.

[0094] By way of example, FIG. 10 is a block diagram that illustrates an exemplary
computer system 1000. Computer system 1000 includes a bus 1002 or other communication
mechanism for communicating information, and one or more hardware processors1004
coupled with bus 1002 for processing information. One or more hardware processors1004
can be, for example, one or more general purpose microprocessors.

[0095] Computer system 1000 also includes a main memory 1006, such as a random access
memory (RAM) or other dynamic storage device, coupled to bus 1002 for storing
information and instructions to be executed by one or more processors1004. Main memory
1006 also can be used for storing temporary variables or other intermediate information
during execution of instructions to be executed by one or more processors1004. Such
instructions, when stored in non-transitory storage media accessible to one or more
processors1004, render computer system 1000 into a special-purpose machine that is
customized to perform the operations specified in the instructions.

[0096] Computer system 1000 further includes a read only memory (ROM) 1008 or other
static storage device coupled to bus 1002 for storing static information and instructions for
one or more processors1004. A storage device 1010, such as a magnetic disk, optical disk or
USB thumb drive (Flash drive) etc., is provided and coupled to bus 1002 for storing
information and instructions.

[0097] Computer system 1000 can be coupled via bus 1002 to a display 1012, such as a
cathode ray tube (CRT), for displaying information to a computer user. An input device
1014, including alphanumeric and other keys, is coupled to bus 1002 for communicating
information and command selections to one or more processors1004. Another type of user
input device is cursor control 1016, such as a mouse, a trackball, or cursor direction keys for
communicating direction information and command selections to one or more
processors1004 and for controlling cursor movement on display 1012. The input device
typically has two degrees of freedom in two axes, a first axis (for example, x) and a second
axis (for example, y), that allows the device to specify positions in a plane. In some
embodiments, the same direction information and command selections as cursor control may

be implemented via receiving touches on a touch screen without a cursor.

14 Mar 2014

2014201573

- 18 -

[0098] Computer system 1000 can include a user interface module to implement a GUI that
may be stored in a mass storage device as executable software codes that are executed by the
one or more computing devices. This and other modules may include, by way of example,
components, such as software components, object-oriented software components, class
components and task components, processes, functions, attributes, procedures, subroutines,
segments of program code, drivers, firmware, microcode, circuitry, data, databases, data
structures, tables, arrays, and variables.

[0099] In general, the word “module,” as used herein, refers to logic embodied in hardware
or firmware, or to a collection of software instructions, possibly having entry and exit points,
written in a programming language, such as, for example, Java, Lua, C or C++. A software
module can be compiled and linked into an executable program, installed in a dynamic link
library, or written in an interpreted programming language such as, for example, BASIC,
Perl, or Python. It will be appreciated that software modules can be callable from other
modules or from themselves, and/or can be invoked in response to detected events or
interrupts. Software modules configured for execution on computing devices can be
provided on a computer readable medium, such as a compact disc, digital video disc, flash
drive, magnetic disc, or any other tangible medium, or as a digital download (and can be
originally stored in a compressed or installable format that requires installation,
decompression, or decryption prior to execution). Such software code can be stored, partially
or fully, on a memory device of the executing computing device, for execution by the
computing device. Software instructions can be embedded in firmware, such as an EPROM.
It will be further appreciated that hardware modules can be comprised of connected logic
units, such as gates and flip-flops, and/or can be comprised of programmable units, such as
programmable gate arrays or processors. The modules or computing device functionality
described herein are preferably implemented as software modules, but can be represented in
hardware or firmware. Generally, the modules described herein refer to logical modules that
may be combined with other modules or divided into sub-modules despite their physical
organization or storage.

[0100] Computer system 1000 can implement the techniques and other features described
herein using customized hard-wired logic, one or more ASICs or FPGAs, firmware and/or

program logic which in combination with the computer system causes or programs computer

14 Mar 2014

2014201573

-19-

system 1000 to be a special-purpose machine. According to some embodiments, the
techniques and other features described herein are performed by computer system 1000 in
response to one or more processors1004 executing one or more sequences of one or more
instructions contained in main memory 1006. Such instructions can be read into main
memory 1006 from another storage medium, such as storage device 1010. Execution of the
sequences of instructions contained in main memory 1006 causes one or more
processors1004 to perform the process steps described herein. In alternative embodiments,

hard-wired circuitry can be used in place of or in combination with software instructions.

[0101] The term “non-transitory media” as used herein refers to any media storing data
and/or instructions that cause a machine to operate in a specific fashion. Such non-transitory
media can comprise non-volatile media and/or volatile media. Non-volatile media includes,
for example, optical or magnetic disks, such as storage device 1010. Volatile media includes
dynamic memory, such as main memory 1006. Common forms of non-transitory media
include, for example, a floppy disk, a flexible disk, hard disk, solid state drive, magnetic tape,
or any other magnetic data storage medium, a CD-ROM, any other optical data storage
medium, any physical medium with patterns of holes, a RAM, a PROM, and EPROM, a
FLASH-EPROM, NVRAM, any other memory chip or cartridge, and networked versions of
the same.

[0102] Non-transitory media is distinct from, but can be used in conjunction with,
transmission media. Transmission media participates in transferring information between
storage media. For example, transmission media includes coaxial cables, copper wire and
fiber optics, including the wires that comprise bus 1002. Transmission media can also take
the form of acoustic or light waves, such as those generated during radio-wave and infra-red
data communications.

[0103] Various forms of media can be involved in carrying one or more sequences of one or
more instructions to processor 1004 for execution. For example, the instructions can initially
be carried on a magnetic disk or solid state drive of a remote computer. The remote
computer can load the instructions into its dynamic memory and send the instructions over a
telephone line using a modem. A modem local to computer system 1000 can receive the data

on the telephone line and use an infra-red transmitter to convert the data to an infra-red

14 Mar 2014

2014201573

-20 -

signal. An infra-red detector can receive the data carried in the infra-red signal and
appropriate circuitry can place the data on bus 1002. Bus 1002 carries the data to main
memory 1006, from which one or more processors1004 retrieve and execute the instructions.
The instructions received by main memory 1006 can optionally be stored on storage device
1010 either before or after execution by one or more processors1004.

[0104] Computer system 1000 also includes a communication interface 1018 coupled to bus
1002. Communication interface 1018 provides a two-way data communication coupling to a
network link 1020 that is connected to a local network 1022. For example, communication
interface 1018 can be an integrated services digital network (ISDN) card, cable modem,
satellite modem, or a modem to provide a data communication connection to a corresponding
type of telephone line. As another example, communication interface 1018 can be a local
area network (LAN) card to provide a data communication connection to a compatible LAN.
Wireless links can also be implemented. In any such implementation, communication
interface 1018 sends and receives electrical, electromagnetic, or optical signals that carry
digital data streams representing various types of information.

[0105] Network link 1020 typically provides data communication through one or more
networks to other data devices. For example, network link 1020 can provide a connection
through local network 1022 to a host computer 1024 or to data equipment operated by an
Internet Service Provider (ISP) 1026. ISP 1026 in turn provides data communication services
through the world wide packet data communication network now commonly referred to as
the “Internet” 1028. Local network 1022 and Internet 1028 both use electrical,
electromagnetic or optical signals that carry digital data streams. The signals through the
various networks and the signals on network link 1020 and through communication interface
1018, which carry the digital data to and from computer system 1000, are example forms of
transmission media.

[0106] Computer system 1000 can send messages and receive data, including program code,
through the network(s), network link 1020 and communication interface 1018. In the
Internet example, a server 1030 might transmit a requested code for an application program
through Internet 1028, ISP 1026, local network 1022 and communication interface 1018.
[0107] The received code can be executed by one or more processors1004 as it is received,

and/or stored in storage device 1010, or other non-volatile storage for later execution.

14 Mar 2014

2014201573

-21 -

[0108] In one aspect the invention seeks to provide an apparatus for providing a proactive
validation of a transformation script, the apparatus comprising:
a memory device that stores a set of instructions;
one or more processors that execute the set of instructions to configure the one or
more processors to:
associate the transformation script with ontology parameters;
initiate a debugging operation of the transformation script having at least one
condition;
import, from a data source, at least one data item for transformation;
determine, as part of the debugging operation, whether the at least one
condition that uses the at least one data item is valid based on the ontology
parameters; and
provide an indication of a result associated with the determination, wherein the result
is at least one of an expressed result or an implicit result.
[0109] Typically the apparatus further comprises a display device configured to provide an
expressed result indicating that the at least one condition is not valid.
[0110] Typically the ontology parameters include parameters that assign an entity as being an
object or a property of an object and wherein the transformation script uses a builder that
defines the entity as being an object or a property of an object.
[0111] Typically the builder uses domain-specific language.
[0112] Typically the one or more processors determine that at least one condition is not valid
if the assignment of the entity in the ontology parameters is inconsistent with the definition of
the entity in the builder.
[0113] In one aspect the invention seeks to provide a method for providing a proactive
validation of a transformation script, the method being performed by one or more processors
and comprising:
associating the transformation script with ontology parameters;
initiating a debugging operation of the transformation script having at least one
condition;

importing, from a data source, at least one data item for transformation;

14 Mar 2014

2014201573

-22 -

determining, as part of the debugging operation, whether the at least one condition
that uses the at least one data item is valid based on the ontology parameters; and

providing an indication of a result associated with the determination, wherein the
result is at least one of an expressed result or an implicit result.
[0114] Typically providing the indication of the result associated with the determination
comprises:

if the at least one condition is determined to be not valid, providing the indication of
the result to a display device for displaying an expressed result indicating that the at least one
condition is not valid.
[0115] Typically indicating the result associated with the determination comprises:

if the at least one condition is determined to be valid and the transformation script
includes at least one subsequent condition to be debugged, providing an implicit result
indicating that the at least one condition is valid; and

if the at least one condition is determined to be valid and if the transformation script
does not include any subsequent conditions to be debugged, displaying on the display device
an expressed result indicating that the transformation script has been validated.
[0116] Typically providing the indication of the result to the display device for displaying
comprises:

displaying the expressed result upon determining that the at least one condition is not
valid.
[0117] Typically the ontology parameters include parameters that assign an entity as being an
object or a property of an object and wherein the transformation script uses a builder that
defines the entity as being an object or a property of an object.
[0118] Typically the builder uses domain-specific language.
[0119] Typically determining comprises:

determining that the at least one condition is not valid if the assignment of the entity
in the ontology parameters is inconsistent with the definition of the entity in the builder.
[0120] The method of claim 6,

wherein the ontology parameters assigns a link between two entities; and

further wherein the transformation script uses a builder that creates a link between

two entities.

14 Mar 2014

2014201573

-3

[0121] Typically determining comprises:

determining that the at least one condition is not valid if the assigned link in the
ontology parameters is inconsistent with the created link in the builder.
[0122] In one aspect the invention seeks to provide a non-transitory computer readable
medium that stores a set of instructions that are executable by at least one processor to cause
the at least one processor to perform a method for providing a proactive validation of a
transformation script, the method comprising:

associating the transformation script with ontology parameters;

initiating a debugging operation of the transformation script having at least one
condition;

importing, from a data source, at least one data item for transformation;

determining, as part of the debugging operation, whether the at least one condition
that uses the at least one data item is valid based on the ontology parameters; and

providing an indication of a result associated with the determination, wherein the
result is at least one of an expressed result or an implicit result.
[0123] Typically providing the indication of the result comprises:

if the at least one condition is determined to be not valid, providing the indication of
the result to a display device for displaying the expressed result indicating that the at least
one condition is not valid.
[0124] Typically providing the indication of the result to the display device comprises:

displaying the expressed result upon determining that the at least one condition is not
valid.
[0125] Typically the ontology parameters include parameters that assign an entity as being an
object or a property of an object and further wherein the transformation script uses a builder
that defines the entity as being an object or a property of an object.
[0126] Typically the builder uses domain-specific language.
[0127] Typically determining comprises:

determining that the at least one condition is not valid if the assignment of the entity

in the ontology parameters is inconsistent with the definition of the entity in the

builder.

14 Mar 2014

2014201573

-4 -

[0128] Each of the processes, methods, and algorithms described in the preceding sections
may be embodied in, and fully or partially automated by, code modules executed by one or
more computer systems or computer processors comprising computer hardware. The
processes and algorithms may be implemented partially or wholly in application-specific
circuitry.

[0129] The various features and processes described above may be used independently of
one another, or may be combined in various ways. All possible combinations and
subcombinations are intended to fall within the scope of this disclosure. In addition, certain
method or process blocks may be omitted in some implementations. The methods and
processes described herein are also not limited to any particular sequence, and the blocks or
states relating thereto can be performed in other sequences that are appropriate. For
example, described blocks or states may be performed in an order other than that specifically
disclosed, or multiple blocks or states may be combined in a single block or state. ~ The
example blocks or states may be performed in serial, in parallel, or in some other manner.
Blocks or states may be added to or removed from the disclosed example embodiments. The
example systems and components described herein may be configured differently than
described. For example, elements may be added to, removed from, or rearranged compared
to the disclosed example embodiments.

13

[0130] Conditional language, such as, among others, “can,” “could,” “might,” or “may,”
unless specifically stated otherwise, or otherwise understood within the context as used, is
generally intended to convey that certain embodiments include, while other embodiments do
not include, certain features, elements and/or steps. Thus, such conditional language is not
generally intended to imply that features, elements and/or steps are in any way required for
one or more embodiments or that one or more embodiments necessarily include logic for
deciding, with or without user input or prompting, whether these features, elements and/or
steps are included or are to be performed in any particular embodiment.

[0131] Any process descriptions, elements, or blocks in the flow diagrams described herein
and/or depicted in the attached figures should be understood as potentially representing
modules, segments, or portions of code which include one or more executable instructions for

implementing specific logical functions or steps in the process. Alternate implementations

are included within the scope of the embodiments described herein in which elements or

14 Mar 2014

2014201573

-25 -

functions may be deleted, executed out of order from that shown or discussed, including
substantially concurrently or in reverse order, depending on the functionality involved, as
would be understood by those skilled in the art.

[0132] Throughout this specification and the claims which follow, unless the context requires
otherwise, the word "comprise", and variations such as "comprises" and "comprising", will
be understood to imply the inclusion of a stated integer or step or group of integers or steps
but not the exclusion of any other integer or step or group of integers or steps.

[0133] In the foregoing specification, embodiments have been described with reference to
numerous specific details that can vary from implementation to implementation. Certain
adaptations and modifications of the described embodiments can be made. Other
embodiments can be apparent to those skilled in the art from consideration of the
specification and practice of the embodiments disclosed herein. It is intended that the
specification and examples be considered as exemplary only, with a true scope and spirit of
the invention being indicated by the following claims. It is also intended that the sequence of
steps shown in figures are only for illustrative purposes and are not intended to be limited to
any particular sequence of steps. As such, those skilled in the art can appreciate that these

steps can be performed in a different or modified order, as needed.

14 Mar 2014

2014201573

- 26 -

WHAT IS CLAIMED:
1. An apparatus for providing a proactive validation of a transformation script,
the apparatus comprising:
a memory device that stores a set of instructions;
one or more processors that execute the set of instructions to configure the one or
more processors to:
associate the transformation script with ontology parameters;
initiate a debugging operation of the transformation script having at least one
condition;
import, from a data source, at least one data item for transformation;
determine, as part of the debugging operation, whether the at least one
condition that uses the at least one data item is valid based on the ontology
parameters; and
provide an indication of a result associated with the determination, wherein the result

is at least one of an expressed result or an implicit result.

2. The apparatus of claim 1, further comprising a display device configured to

provide an expressed result indicating that the at least one condition is not valid.

3. The apparatus of claim 1 or claim 2,

wherein the ontology parameters include parameters that assign an entity as being an
object or a property of an object; and

further wherein the transformation script uses a builder that defines the entity as being

an object or a property of an object.
4. The apparatus of claim 3, wherein the builder uses domain-specific language.

5. The apparatus of claim 3 or claim 4, wherein the one or more processors
determine that at least one condition is not valid if the assignment of the entity in the

ontology parameters is inconsistent with the definition of the entity in the builder.

6. A method for providing a proactive validation of a transformation script, the

method being performed by one or more processors and comprising:

14 Mar 2014

2014201573

=27 -

associating the transformation script with ontology parameters;

initiating a debugging operation of the transformation script having at least one
condition;

importing, from a data source, at least one data item for transformation;

determining, as part of the debugging operation, whether the at least one condition
that uses the at least one data item is valid based on the ontology parameters; and

providing an indication of a result associated with the determination, wherein the

result is at least one of an expressed result or an implicit result.

7. The method of claim 6, wherein providing the indication of the result
associated with the determination comprises:

if the at least one condition is determined to be not valid, providing the indication of
the result to a display device for displaying an expressed result indicating that the at least one

condition is not valid.

8. The method of claim 7, wherein indicating the result associated with the
determination comprises:

if the at least one condition is determined to be valid and the transformation script
includes at least one subsequent condition to be debugged, providing an implicit result
indicating that the at least one condition is valid; and

if the at least one condition is determined to be valid and if the transformation script
does not include any subsequent conditions to be debugged, displaying on the display device

an expressed result indicating that the transformation script has been validated.

9. The method of claim 7 or claim 8, wherein providing the indication of the
result to the display device for displaying comprises:
displaying the expressed result upon determining that the at least one condition is not

valid.

10. The method of any one of the claims 6 to 9,
wherein the ontology parameters include parameters that assign an entity as being an
object or a property of an object; and

further wherein the transformation script uses a builder that defines the entity as being

14 Mar 2014

2014201573

-08 -

an object or a property of an object.
11. The method of claim 10, wherein the builder uses domain-specific language.
12. The method of claim 10 or claim 11, wherein determining comprises:

determining that the at least one condition is not valid if the assignment of the entity

in the ontology parameters is inconsistent with the definition of the entity in the builder.

13. The method of any one of the claims 6 to 12,
wherein the ontology parameters assigns a link between two entities; and
further wherein the transformation script uses a builder that creates a link between

two entities.

14. The method of claim 13 wherein determining comprises:
determining that the at least one condition is not valid if the assigned link in the

ontology parameters is inconsistent with the created link in the builder.

15. A non-transitory computer readable medium that stores a set of instructions
that are executable by at least one processor to cause the at least one processor to perform a
method for providing a proactive validation of a transformation script, the method
comprising:

associating the transformation script with ontology parameters;

initiating a debugging operation of the transformation script having at least one
condition;

importing, from a data source, at least one data item for transformation;

determining, as part of the debugging operation, whether the at least one condition
that uses the at least one data item is valid based on the ontology parameters; and

providing an indication of a result associated with the determination, wherein the

result is at least one of an expressed result or an implicit result.

16. The non-transitory computer readable medium of claim 15, wherein providing
the indication of the result comprises:
if the at least one condition is determined to be not valid, providing the indication of

the result to a display device for displaying the expressed result indicating that the at least

14 Mar 2014

2014201573

-9 .

one condition is not valid.

17. The non-transitory computer readable medium of claim 16, wherein providing
the indication of the result to the display device comprises:
displaying the expressed result upon determining that the at least one condition is not

valid.

18. The non-transitory computer readable medium of any one of the claims 15 to
17,

wherein the ontology parameters include parameters that assign an entity as being an
object or a property of an object; and

further wherein the transformation script uses a builder that defines the entity as being

an object or a property of an object.

19. The non-transitory computer readable medium of claim 18, wherein the

builder uses domain-specific language.

20. The non-transitory computer readable medium of claim 18 or claim 19,
wherein determining comprises:

determining that the at least one condition is not valid if the assignment of the entity

in the ontology parameters is inconsistent with the definition of the entity in the

builder.

vl 'Old

5t
ADmoaun

N

112

;/_V_..................,\

e,

7
i
i
i
i
i
i
i
i
i
i
i
M\

prrrrrechen h

ra

rd

v
&
&

n\\n.\a\.”\!!\!!\!\. \u

e,

T

VIOCITEIN 71 ¢LSTOCYI0T

g1 "old

2112

B

v 5 e

LRSI 5 YT

ST IS YR]

B i DG

5

SHATR @w\“ab\m.n

..&m;m« \\

o

A\

&.&

e

2snseBig

v10C BN 771

eLSTOCY10C

aoeio] eonpdein

Z '9id

P88

i

3/12

ANCOID IBULIO)
ra ; ”

SURJ | BUoU

ey

vIOCTEIN VI ¢LSTOCY10C

14 Mar 2014

2014201573

=

Configuration F

4/12

4
3

iogy File

et 111

310

FIG. 3

14 Mar 2014

2014201573

Phiome Vianstlormer gyonsy | Wansiomn

Transform Method

"
© 3
] g
= &
"q‘ AN
%
&
£ .
w £
=]
& 39
-§ R
& RS
\ Yy
N -5y
= § 3%
8 3 £ g
4\;}: k? 3 \)l'%\
o R el
R X I [&
2 3 3 (x
N] 33 - &l
q S N R
R ‘QS o ’m e
& ~ (R 4 e
B & W & § 3
S Y b SR 2
& N) W §
] kS he3 sll Nk
% « %)
by BN A A
§ % :
&-\\, y;g
bl
&

. 4% 5 ATE

L% I
L A

LreEtes

3oy oW
“ vt et

5/12

-

PRI L

F

DRER I, FRONETG

v
223
xag

L]
39
LN
s

|
SN §
2 3
SR
B

Faol M P 3
S IR

}lamal g E

ke

3%
Feiins S

3

4

B

B

SERR

400

PTG (IR

b 2t

Lk
R
g
)
el

TS
3721

£
%

4 process
P

P

sl e

B
Ny

¥

=3
et

I

A%

-

s ey,

&~

tyv prosides,

S

&

2

53

o

¥

o

&

e B,
hey
3

BN
% i
&
@\9
o
b
u X
= iy onf
= &
5
E.
=2

& oF o W
SOV R R WM N S S

fG.4a

14 Mar 2014

2014201573

6/12

N
o 3]
¥ a4
od w

W

. =

& I

ES ™
& o &
8 Lo @

WA
b

%

3

X 14 R o
& N R 0®
& S X
s R S
& BN
_ o
. "
% axy
¢ 8
3) s Q g
L3 e S 3 vl
= w e S S
o) IE e W o} X o kot
@ JE R i 5 &
e & b 3 Y e b
e 2 35 < 53 2
RBRXR _\i wi ' :: o
o w0 S8R § 2§ g
= o RY Ea % 0
=~ R e U el
o g &t I 44 e 0y
e [N NI ¥ o
= A2 e) o %
- & S R &opd W
o L] BN Al 1§ =3 0
§ £ E \én § NN
£3 SCR B 1
1 =g e gt
& W e D S o
L ® SN ok
i\ ENEEN

“

]
¥y
e

fpurant

Ll e Frss, %
Anksd

%
z
LRI v, O

s
%
o
5. &
LBLYLEE

Bt %7)

%%
%
bk Lidme .
Zid

Sy Ay

Link Builder ¥edhods

FIG. 5

Y9 "Oid

P

=1

¥
I DY

L

57 a&&&a GRS AT

{0 I SRS Y BRI Y i XY YRR, P 5 BTGB, SRR m‘wwamlx« o,
ey &x&&hwakxawﬁi@:\ = YR B
i YT IRATY T

B R R R s

3

™
=¥

O A WY AR R i £,

N
—
~—
N

wEg gy

% S\sv%u\k@

HAGTLY 7 W o v S Rt Vs T Vs N, ot s

T \\\\ %

8, B2

DO $53004d

VIOCITEIN 71 ¢LSTOCYI0T

14 Mar 2014

2014201573

[

5

"

IS BV Wo O S TFRNNY |
;s % =i

o

[N o

GO) wd b A el A g A G
B - R Lo “ 4

W

A8

LA
daf end = timeSuamp.t ’irEFwd

8/12

Process Method
{continued}
£00

bl Idar, Closurs baildl

ar., pame?? smefivmbent row ta r*ge*r}

!
-3
e

de¥ start = ti aeStang . T veStars

a phone catl
s&sf phaqe calkl = gh\me

igd: “phonsteii % 3
externalid; ‘*tmmxad $ ':‘.’iqueei{ey“ :
startTime: stadt, end?}m&.emj) 4

ig _TRENBER POMLC35e_tuaber
phone vumber {

rrdint Ry fargetlumhsn, couat iy
aveés Sode tapgedbiumber.dria
local targetiusber.local

¢ E‘ialea\ LEher O

duvation §
duration ToralSeommds

wnits Tseconds

St

&af personle = createPersand row. dialed yeme, builder row.disled

ohopefron ~ srestefhone{tarpetiuchon ~y buildeir}
creataPhicneddizl edlumber, builder)

Yider, phane_cail, phonestrom, ;‘h snaiay persond Tod

FIG. 6B

<

shar s parsePhoneliumberd Fow. dlaled numbir)

ity

L3Rk, Powdi

TireIoterval timeb m‘.p = Parselidls: parseTiselntepeal{rms cdath; row. time, row.duration)

o rowodinded: stated;

14 Mar 2014

2014201573

Pausds Transiormmer

9/12

B
¢
£
1y
B3 g «
by & Ry
ot Q e
f N 2 L] &% W
b W@ A 2oy N0 %
fechiibec ¥ x> A
et W 1
A 2 >
*o X e
T and
£ o N 3
LY G Ao b
o) PR §s 2
i 3 &£
et
B
X
&

. s

& SN

Py

.

i

J
R R £ T o Ui RO o) o S O 0 3 O 9 oS
i 2ot o o xd wd d {

s R N 3RY
e BN N RN % g N

FIG. 7

14 Mar 2014

2014201573

rment

VI

l4

Software Development En

23
RE)

10/12

e \55
R g
&N

5 G
3 it

i

thenh

bk

g
7

sl nstitsin

FIG. 8

14 Mar 2014

2014201573

11/12

bie]
2y

o Sa2
Associate 3 TransformationSeript [7

with Ortology Parmmstas

peitd
intiate Debugging of o

fransiormation Sonpt

Y Ny

mport from 2 Dala Souwrce nput Dala | o7
to be Transfomed

e, - b
alermine Iy
W ‘\eﬁ var Condifion in T

anaformation Sconpt is Valid Based
. on Grdology Parametens

e

e o

Drterming
’e\? e*hﬂ~ ’E\C‘SWEOCM:

¥

¥

Proactively Display &
Mobhcation indicating that the
Hiove s Mot Valkd

01 "Old

AL LIN

/o
_
Y 00T

12/12
el
g::,:]

VIOCITEIN 71 ¢LSTOCYI0T

	BIBLIOGRAPHY
	DESCRIPTION
	CLAIMS
	DRAWINGS

