wo 2011/068631 A2 I 0K 000 DO O 0O

(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(19) World Intellcctual Property Organization /i 1IN NI A0 AT VY0100 DO O O AN
International Bureau S,/ 0
3\ 10) International Publication Number
(43) International Publication Date \'{:/_?___/ (10)
9 June 2011 (09.06.2011) PCT WO 2011/068631 A2
(51) International Patent Classification: HN, HR, HU, ID, IL, IN, IS, JP, KE, KG, KM, KN, KP,
GOG6F 9/44 (2006.01) GO6F 15/16 (2006.01) KR, KZ, LA, LC, LK, LR, LS, LT, LU, LY, MA, MD,
. L ME, MG, MK, MN, MW, MX, MY, MZ, NA, NG, NI,
(21) International Application Number: NO. NZ. OM. PE. PG. PH. PL. PT. RO. RS. RU. SC. SD
PCT/US2010/055734 SE, SG, SK, SL, SM, ST, SV, SY, TH, TJ, TM, TN, TR,
(22) International Filing Date: TT, TZ, UA, UG, US, UZ, VC, VN, ZA, ZM, ZW.
5 November 2010 (05.11.2010) (84) Designated States (unless otherwise indicated, for every
(25) Filing Language: English kind of regional protection available). ARIPO (BW, GH,
L.) GM, KE, LR, LS, MW, MZ, NA, SD, SL, SZ, TZ, UG,
(26) Publication Language: English ZM, ZW), Eurasian (AM, AZ, BY, KG, KZ, MD, RU, TJ,
(30) Priority Data: TM), European (AL, AT, BE, BG, CH, CY, CZ, DE, DK,
12/631,023 4 December 2009 (04.12.2009) US EE, ES, FI, FR, GB, GR, HR, HU, IE, IS, IT, LT, LU,
LV, MC, MK, MT, NL, NO, PL, PT, RO, RS, SE, SI, SK,
(71) Applicant (for all designated States except US). MI- SM, TR), OAPI (BF, BJ, CF, CG, CI, CM, GA, GN, GQ,
CROSOFT CORPORATION [US/US]; One Microsoft GW, ML, MR, NE, SN, TD, TG).
Way, Redmond, WA 98052-6399 (US). .
Declarations under Rule 4.17:
(72) Inventors: ALLEN, Nicholas, A.; ¢/o Microsott Corpo-

ration, LCA - International Patents, One Microsott Way,
Redmond, WA 98052-6399 (US). BROWN, Justin, D.;
c/o Microsoft Corporation, LCA - International Patents,
One Microsoft Way, Redmond, WA 98052-6399 (US).

(81) Designated States (unless otherwise indicated, for every
kind of national protection available): AE, AG, AL, AM,
AO, AT, AU, AZ, BA, BB, BG, BH, BR, BW, BY, BZ,
CA, CH, CL, CN, CO, CR, CU, CZ, DE, DK, DM, DO,
DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, GT,

as to applicant's entitlement to apply for and be granted
a patent (Rule 4.17(i1))

as to the applicant's entitlement to claim the priority of
the earlier application (Rule 4.17(iii))

Published:

without international search report and to be republished
upon receipt of that report (Rule 48.2(g))

(54) Title: LOCK RESOLUTION FOR DISTRIBUTED DURABLE INSTANCES

Application Host
01

108

Command

Persistence Provider

Lock Response 113

Execution
Thread
102A

Instance
Persistence
Command
Processor

lo4

m

Conditions|
133

Execution

Instance
Store
Driver

108

Instance 1084

Instance
Stare
107

112

Command

Command T
Thread 112 ‘—I Lock
1028 == R
. B A
Command Log Instance Instance
131, 109 - 108A [* *| 21088 |* "
Command
Clock
108
Figure 1

(57) Abstract: The present invention extends to methods, systems, and computer program products for resolving lock conflicts.
For a state persistence system, embodiments of the invention can employ a logical lock clock for each persisted state storage loca-
tion. Lock times can be incorporated into bookkeeping performed by a command processor to distinguish cases where the instance
is locked by the application host at a previous logical time from cases where the instance is concurrently locked by the application
host through a different name. A logical command clock is also maintained for commands issued by the application host to a state
persistence system, with introspection to determine which issued commands may potentially take a lock. The command processor
can resolve conflicts by pausing command execution until the effects of potentially contlicting locking commands become visible
and examining the lock time to distinguish among copies of a persisted state storage location.

10

15

20

25

30

WO 2011/068631 PCT/US2010/055734

LOCK RESOLUTION FOR DISTRIBUTED DURABLE INSTANCES
BACKGROUND

[0001] Computer systems and related technology affect many aspects of society. Indeed,
the computer system’s ability to process information has transformed the way we live and
work. Computer systems now commonly perform a host of tasks (e.g., word processing,
scheduling, accounting, etc.) that prior to the advent of the computer system were
performed manually. More recently, computer systems have been coupled to one another
and to other electronic devices to form both wired and wireless computer networks over
which the computer systems and other electronic devices can transfer electronic data.
Accordingly, the performance of many computing tasks are distributed across a number of
different computer systems and/or a number of different computing environments.

[0002] Long-running applications, such as, for example, workflow applications, often
benefit from periodically persisting their work to allow for the application to recover after
errors, crashes, or machine failures. Persisting work permits applications to temporarily
go idle and have their resources reassigned. To persist work, an application host
coordinates the persisted state with runtime state to ensure that a consistent checkpoint is
created. For example, the persisted state may need to coordinate with application
transactions, message notifications, locks, local state caches, etc.

[0003] Computer systems are also substantially parallelized dividing work among multiple
computation threads, cores, and processors, including executing many simultaneous long-
running applications. Thus, an application host must employ careful bookkeeping to allow
multiple simultaneous execution threads to interact with the persisted and runtime states.
As the application host and state persistence system can be located on different machines,
this coordination may further be embedded within a distributed system. The interactions
between the application host and the state persistence system may thereby be subject to
reordering even if an absolute order is placed on the execution threads at the application
host. Moreover, persisted state may be identified by a variety of aliases, making it non-
obvious that two execution threads are referencing the same state.

[0004] These conditions (as well as other combinations of conditions) can conspire to
create complexities that would be unlikely in sequential systems. For example, an
application host may be one of several similarly functioning programs competing to apply
modifications to persisted state in a shared state persistence system. As there may be

inherent races in such a system a portion of these modifications may be in conflict.

10

15

20

25

30

WO 2011/068631 PCT/US2010/055734

Further, due to these complexities and despite using careful and correct bookkeeping, an
application host can determine that it is in conflict with itself.

BRIEF SUMMARY

[0005] The present invention extends to methods, systems, and computer program
products for resolving lock conflicts. Embodiments of the invention include methods for
resolving lock conflicts between two or more execution threads attempting to lock an
instance stored in an instance store. In some embodiments, a persistence provider receives
a first command from a first execution thread included in an application host. The first
command is configured to request acquisition of a lock for a first instance when one or
more conditions are satisfied. The persistence provider records the first command in a
command log. The persistence provider submits the first command to the instance store.
[0006] The persistence provider receives a second command from a second execution
thread included in the application host. The second command is configured to request that
a second instance be locked to the second execution thread for processing by the second
command. The persistence provider records the second command in the command log.
The persistence provider submits the second command to the instance store.

[0007] The persistence provider receives a lock response for the second command from
the instance store. The lock response indicates that the application host is the holder of the
lock for the second instance. The lock response is received subsequent to submitting the
first command and prior to the completion of the first command.

[0008] The persistence provider refers to the command log to determine that the current
resolution of the first command provides insufficient information to determine: (a) if the
first command acquired a lock on the first instance and (b) if the first instance and second
instance are the same instance. The insufficient information results in ambiguity with
respect to whether or not the lock the second command requested was a lock previously
acquired by the first command. The persistence provider pauses processing of the second
command until reaching further resolution of the first command. Further resolution of the
first command provides at least additional information regarding the one or more
conditions being satisfied. The persistence provider determines that the first command
acquired the lock the second command requested based on the additional information.
The persistence provider fails the second command in response to the determination that
the first command had acquired the lock.

[0009] In other embodiments, a persistence provider receives a first command from a first

execution thread included in the application host. The first command is configured to

2

10

15

20

25

30

WO 2011/068631 PCT/US2010/055734

request acquisition of a lock for a first instance. The persistence provider submits the first
command to the instance store. The persistence provider receives a lock response for the
first command from the instance store. The lock response indicates that the application
host has acquired a lock for the first instance. The lock for the first instance is for a first
instance version.

[0010] The persistence provider receives a second command from a second execution
thread included in the application host. The second command is configured to request that
a second instance be locked to the second execution thread for processing by the second
command. The persistence provider submits the second command to the instance store.
The persistence provider receives a lock response for the second command from the
instance store. The lock response indicates that the application host has acquired a lock
for the second instance. The lock for the second instance is for a second instance version.
[0011] The persistence provider determines that the first instance and second instance are
the same instance. The persistence provider determines that the second instance version is
a newer instance version than the first instance version. The persistence provider fails the
first command in response to the determination that the first command is holding a lock
for an obsolete instance version.

[0012] This summary is provided to introduce a selection of concepts in a simplified form
that are further described below in the Detailed Description. This Summary is not
intended to identify key features or essential features of the claimed subject matter, nor is
it intended to be used as an aid in determining the scope of the claimed subject matter.
[0013] Additional features and advantages of the invention will be set forth in the
description which follows, and in part will be obvious from the description, or may be
learned by the practice of the invention. The features and advantages of the invention may
be realized and obtained by means of the instruments and combinations particularly
pointed out in the appended claims. These and other features of the present invention will
become more fully apparent from the following description and appended claims, or may
be learned by the practice of the invention as set forth hereinafter.

BRIEF DESCRIPTION OF THE DRAWINGS

[0014] In order to describe the manner in which the above-recited and other advantages
and features of the invention can be obtained, a more particular description of the
invention briefly described above will be rendered by reference to specific embodiments
thereof which are illustrated in the appended drawings. Understanding that these drawings

depict only typical embodiments of the invention and are not therefore to be considered to

3

10

15

20

25

30

WO 2011/068631 PCT/US2010/055734

be limiting of its scope, the invention will be described and explained with additional
specificity and detail through the use of the accompanying drawings in which:

[0015] Figure 1 illustrates an example computer architecture that facilitates resolving lock
conflicts.

[0016] Figure 2 illustrates another example computer architecture that facilitates resolving
lock conflicts.

[0017] Figure 3 illustrates a flow chart of an example method for resolving lock conflicts.
[0018] Figure 4 illustrates a flow chart of another example method for resolving lock
conflicts.

DETAILED DESCRIPTION

[0019] The present invention extends to methods, systems, and computer program
products for resolving lock conflicts. Embodiments of the invention include methods for
resolving lock conflicts between two or more execution threads attempting to lock an
instance stored in an instance store. In some embodiments, a persistence provider receives
a first command from a first execution thread included in an application host. The first
command is configured to request acquisition of a lock for a first instance when one or
more conditions are satisfied. The persistence provider records the first command in a
command log. The persistence provider submits the first command to the instance store.
[0020] The persistence provider receives a second command from a second execution
thread included in the application host. The second command is configured to request that
a second instance be locked to the second execution thread for processing by the second
command. The persistence provider records the second command in the command log.
The persistence provider submits the second command to the instance store.

[0021] The persistence provider receives a lock response for the second command from
the instance store. The lock response indicates that the application host is the holder of the
lock for the second instance. The lock response is received subsequent to submitting the
first command and prior to the completion of the first command.

[0022] The persistence provider refers to the command log to determine that the current
resolution of the first command provides insufficient information to determine: (a) if the
first command acquired a lock on the first instance and (b) if the first instance and second
instance are the same instance. The insufficient information results in ambiguity with
respect to whether or not the lock the second command requested was a lock previously
acquired by the first command. The persistence provider pauses processing of the second

command until reaching further resolution of the first command. Further resolution of the

4

10

15

20

25

30

WO 2011/068631 PCT/US2010/055734

first command provides at least additional information regarding the one or more
conditions being satisfied. The persistence provider determines that the first command
acquired the lock the second command requested based on the additional information.

The persistence provider fails the second command in response to the determination that
the first command had acquired the lock.

[0023] In other embodiments, a persistence provider receives a first command from a first
execution thread included in the application host. The first command is configured to
request acquisition of a lock for a first instance. The persistence provider submits the first
command to the instance store. The persistence provider receives a lock response for the
first command from the instance store. The lock response indicates that the application
host has acquired a lock for the first instance. The lock for the first instance is for a first
instance version.

[0024] The persistence provider receives a second command from a second execution
thread included in the application host. The second command is configured to request that
a second instance be locked to the second execution thread for processing by the second
command. The persistence provider submits the second command to the instance store.
The persistence provider receives a lock response for the second command from the
instance store. The lock response indicates that the application host has acquired a lock
for the second instance. The lock for the second instance is for a second instance version.
[0025] The persistence provider determines that the first instance and second instance are
the same instance. The persistence provider determines that the second instance version is
a newer instance version than the first instance version. The persistence provider fails the
first command in response to the determination that the first command is holding a lock
for an obsolete instance version.

[0026] Embodiments of the present invention may comprise or utilize a special purpose or
general-purpose computer including computer hardware, such as, for example, one or
more processors and system memory, as discussed in greater detail below. Embodiments
within the scope of the present invention also include physical and other computer-
readable media for carrying or storing computer-executable instructions and/or data
structures. Such computer-readable media can be any available media that can be
accessed by a general purpose or special purpose computer system. Computer-readable
media that store computer-executable instructions are physical storage media. Computer-
readable media that carry computer-executable instructions are transmission media. Thus,

by way of example, and not limitation, embodiments of the invention can comprise at least

5

10

15

20

25

30

WO 2011/068631 PCT/US2010/055734

two distinctly different kinds of computer-readable media: computer storage media and
transmission media.

[0027] Computer storage media includes RAM, ROM, EEPROM, CD-ROM or other
optical disk storage, magnetic disk storage or other magnetic storage devices, or any other
medium which can be used to store desired program code means in the form of computer-
executable instructions or data structures and which can be accessed by a general purpose
or special purpose computer.

[0028] A “network” is defined as one or more data links that enable the transport of
electronic data between computer systems and/or modules and/or other electronic devices.
When information is transferred or provided over a network or another communications
connection (either hardwired, wireless, or a combination of hardwired or wireless) to a
computer, the computer properly views the connection as a transmission medium.
Transmissions media can include a network and/or data links which can be used to carry
or desired program code means in the form of computer-executable instructions or data
structures and which can be accessed by a general purpose or special purpose computer.
Combinations of the above should also be included within the scope of computer-readable
media.

[0029] Further, upon reaching various computer system components, program code means
in the form of computer-executable instructions or data structures can be transferred
automatically from transmission media to computer storage media (or vice versa). For
example, computer-executable instructions or data structures received over a network or
data link can be buffered in RAM within a network interface module (e.g., a “NIC”), and
then eventually transferred to computer system RAM and/or to less volatile computer
storage media at a computer system. Thus, it should be understood that computer storage
media can be included in computer system components that also (or even primarily) utilize
transmission media.

[0030] Computer-executable instructions comprise, for example, instructions and data
which, when executed at a processor, cause a general purpose computer, special purpose
computer, or special purpose processing device to perform a certain function or group of
functions. The computer executable instructions may be, for example, binaries,
intermediate format instructions such as assembly language, or even source code.
Although the subject matter has been described in language specific to structural features
and/or methodological acts, it is to be understood that the subject matter defined in the

appended claims is not necessarily limited to the described features or acts described

6

10

15

20

25

30

WO 2011/068631 PCT/US2010/055734

above. Rather, the described features and acts are disclosed as example forms of
implementing the claims.

[0031] Those skilled in the art will appreciate that the invention may be practiced in
network computing environments with many types of computer system configurations,
including, personal computers, desktop computers, laptop computers, message processors,
hand-held devices, multi-processor systems, microprocessor-based or programmable
consumer electronics, network PCs, minicomputers, mainframe computers, mobile
telephones, PDAs, pagers, routers, switches, and the like. The invention may also be
practiced in distributed system environments where local and remote computer systems,
which are linked (either by hardwired data links, wireless data links, or by a combination
of hardwired and wireless data links) through a network, both perform tasks. In a
distributed system environment, program modules may be located in both local and remote
memory storage devices.

[0032] Figure 1 illustrates an example computer architecture 100 that facilitates resolving
lock conflicts. Referring to Figure 1, computer architecture 100 includes application host
101, persistence provider 103, and instance store 107. Each of the depicted computer
systems is connected to one another over (or is part of) a network, such as, for example, a
Local Area Network ("LAN"), a Wide Area Network (“WAN”), and even the Internet.
Accordingly, each of the depicted computer systems as well as any other connected
computer systems and their components, can create message related data and exchange
message related data (e.g., Internet Protocol (“IP”) datagrams and other higher layer
protocols that utilize IP datagrams, such as, Transmission Control Protocol (“TCP”),
Hypertext Transfer Protocol (“HTTP”), Simple Mail Transfer Protocol (“SMTP”), etc.)
over the network.

[0033] Application host 101 includes a plurality of execution threads, including execution
threads 102A and 102B. Generally, execution threads are configured to issue (e.g.,
persistence) commands for interacting with instances in instance store 107. Application
host 101 can be an entity, such as, for example, a program or administrative tool and
execution threads can be modules within application host 101 that manipulate instances
stored in instance store 107.

[0034] Within application host 101, execution threads 102A, 102B, etc., can correspond to
a program sequence of a long-running application. However, an execution thread may not
directly correspond to the computation threads provided by the operating system. For

example, in an application host runtime that supports asynchronous execution or

7

10

15

20

25

30

WO 2011/068631 PCT/US2010/055734

resumption from continuation points, the binding of an execution thread to a computation
thread may be dynamic and transient. Thus, some or all of the application host execution
threads may be executing simultaneously on one or more computation threads.

[0035] Each execution thread of application host 101, including execution threads 102A
and 102B, is configured to perform many of the functions of application host 101. For
example, an execution thread can be configured to request an instance handle for the
instance store from the persistence provider, submit commands to the instance persistence
command processor, and receive persisted application state responsive to the submitted
commands. Thus, generally references made to functions being performed by an
application host can include functions performed by execution threads of the application
host.

[0036] Instance store 107 provides durable storage for instances, such as, for example,
instance 108A and 108B. Instance store 107 is configured to receive and process (e.g.,
persistence) commands for interacting with instances. Instance store 107 can persist
application state as well as return persisted state to a requesting entity (e.g., an execution
thread) in response to persistence commands.

[0037] Generally, persistence provider 103 is configured to translate persistence
commands received from an execution thread into commands compatible with instance
store 107. For example, persistence provider 103 can translate persistence commands
from execution thread 102A or 102B into persistence commands compatible with instance
store 107.

[0038] As depicted, persistence provider 103 includes instance persistence command
processor 104, instance store driver 106, command clock 108, and command log 109.
Instance persistence command processor 104 defines a contract between application host
101 and instance store 107. As such, instance persistence command processor 104 is an
interface between application host 101 and instance store 107 that permits application host
101 to provide commands that modify or inspect instance store 107. For example, the
combination of an instance persistence command processor 104 and an instance store 107
implemented using SQL Server might be called a SQL persistence provider. The
persistence provider modifies the state of the instance store according to a host's
commands using a set of permissible state modifications defined by instance persistence
command processor 104.

[0039] Generally, command log 109 is configured to track commands submitted by an

application host for which the command results and/or effects have not yet been made

8

WO 2011/068631 PCT/US2010/055734

visible to the application host. Commands tracked in command log 109 can be referred to
as “in flight” commands.

[0040] Command clock 108 is a monotonically increasing counter used to create partial
causality order among the submission of commands and/or receipt of command results by
the execution threads of an application host.

[0041] Accordingly, command clock 108 is configured to maintain a logical time for
persistence provider 103. When appropriate, commands received at persistence provider
103 can be time stamped using a time from command clock 108 and logged into command
log 109. As such, command clock 108 facilitates a temporal understanding of the order
commands are received. Instance persistence command processor 103 can use this
temporal understanding (along with other information) when resolving lock conflicts (e.g.,
between competing execution threads of application host 101).

[0042] It may be that some but not all commands are logged into command log 109.
When determining whether or not to log a command in command log 109, persistence
provider 103 can distinguish between commands that have potential to cause a lock
conflict and commands that have no potential to cause a lock conflict. Commands that can
potentially cause a lock conflict are logged in command log 109. On the other hand,
commands that have no potential to cause a lock conflict may be allowed to execute
without logging.

[0043] Some commands can be determined to have no potential to cause a lock conflict
due to being a type of command that definitely does not request acquisition of any lock.
For example, commands that request uncoordinated read access to an instance have little,
if any, potential to conflict with other commands and thus may be allowed to execute
without logging (since these commands do not request acquisition of a lock).

[0044] On the other hand, commands determined to potentially cause a lock conflict can
be logged in command log 109. When a command is received, instance persistence
command processor 104 may have insufficient information to determine if the command is
to request acquisition of a lock for an instance that is already locked. For example, it may
be that an instance is identifiable using a variety of different aliases. Thus, upon receiving
a command including an instance alias, it may not be readily apparent what instance the
instance alias refers to. As such, instance persistence command processor 104 is unable to
classify the command as a command that has no potential to cause lock conflict until

further information (resolution of the alias to an instance handle) is obtained.

10

15

20

25

30

WO 2011/068631 PCT/US2010/055734

[0045] Whether or not a command requests acquisition of a lock can depend on various
conditions associated with the command being satisfied. Information both internal and
external (e.g., time, date, etc.) to persistence provider 103 can be utilized to determine if
associated conditions are satisfied. Further, persistence provider 103 can become aware of
information related to different associated conditions at different times, including before
or after a command is received at instance persistence command processor 104. Thus, a
detected potential to cause a lock conflict can be removed when additional information
becomes available. For example, a command that requests acquisition of a lock if it is
Wednesday can initially be logged in command log 109. However, upon persistence
provider 103 becoming aware that it is Thursday, the command can be removed from
command log 109.

[0046] In some embodiments, a command itself may contain information indicating the
possibility of requesting acquisition of a lock. As such, instance persistence command
processor 104 can ask the command if there is some possibility of it requesting acquisition
of a lock. In other embodiments, a list of commands that definitely do not request
acquisition of a lock is maintained. When a command is received, instance persistence
command processor 104 can refer to the list.

[0047] Generally, instance store driver 106 is configured to break down commands when
necessary for compatible communication with instance store 107. For example, an
application host command set may lack a particular command from an instance store
command set. However, it may be that using a combination of two or more commands
from an instance store command set, that a command from an application host command
set can be realized. Thus, when persistence provider 103 detects that a received
persistence command is not included in an instance store command set, persistence
provider 103 can refer to instance store driver 106 to break the command down into other
compatible commands.

[0048] From time to time, execution threads 102A, 102B, etc, can submit commands to
persistence provider 103. When appropriate, received commands can be time stamped by
command clock 108 and stored in command log 109.

[0049] Figure 3 illustrates a flow chart of an example method 300 for resolving a lock
conflict between two or more execution threads. Method 300 will be described with
respect to the components and data of computer architecture 100.

[0050] Method 300 includes an act of a persistence provider (e.g., persistence provider

103) receiving a first command from a first execution thread included in the application

10

10

15

20

25

30

WO 2011/068631 PCT/US2010/055734

host, the first command configured to request acquisition of a lock for a first instance
when one or more conditions are satisfied (act 301). For example, instances persistence
command processor 104 can receive command 111, including conditions 133, from
execution thread 102A. Command 111 is configured to request acquisition of a lock for
instance 108A when conditions 133 are satisfied. Conditions 133 can represent a
conditional statement, such as, for example, “if today is Wednesday take a lock.”

[0051] Method 300 includes an act of the persistence provider recording the first
command in a command log (act 302). For example, upon receiving command 111,
instance persistence command processor 104 may have insufficient information to
determine with certainty that command 111 has no potential to cause a lock conflict (e.g.,
instance persistence command processor 104 may not know whether it is Wednesday).
As such, instance persistence command processor 104 records command 111 in command
log 109. In some embodiments, entries in command log 109 include a command and time
stamp from command clock 108. For example, entry 131 includes command 111 and time
121.

[0052] Method 300 includes an act of the persistence provider submitting the first
command to the instance store (act 303). For example, instance store driver 106 can
submit command 111 to instance store 107.

[0053] Method 300 includes an act of the persistence provider receiving a second
command from a second execution thread included in the application host, the second
command configured to request that a second instance be locked to the second execution
thread for processing by the second command (act 304). For example, instance
persistence command processor 104 receives command 112 from execution thread 102B.
Command 112 is configured to request that a second instance be locked to execution
thread 102B for processing by command 112.

[0054] Method 300 includes an act of the persistence provider recording the second
command in the command log (act 305). For example, upon receiving command 112,
instance persistence command provider 104 may have insufficient information to
determine with certainty that command 112 has no potential to cause a lock conflict. For
example, instance persistence command processor 104 may lack information for
determining if an alias in command 112 refers to an instance for which lock acquisition
has already been requested. As such, instance persistence command processor 104 records
entry 132, including command 112 and time 122 (a time after time 121), in command log

109.
11

10

15

20

25

30

WO 2011/068631 PCT/US2010/055734

[0055] Method 300 includes an act of the persistence provider submitting the second
command to the instance store (act 306). For example, instance store driver 106 can
submit command 112 to instance store 107.

[0056] Method 300 includes an act of the persistence provider receiving a lock response
for the second command from the instance store, the lock response indicating that the
application host is the holder of the lock for the second instance, the lock response
received subsequent to submitting the first command and prior to the completion of the
first command (act 307). For example, instance store driver 106 can receive lock response
114 from instance store 107. Lock response 114 can indicate that application host 101 is
the holder of the lock for instance 108A. Lock response 114 can be received subsequent
to submitting command 111 and prior to completing command 111 (e.g., instance store
driver 106 may not yet have received lock response 113).

[0057] Method 300 includes an act of the persistence provider referring to the command
log to determine that the current resolution of the first command provides insufficient
information to determine: (a) if the first command acquired a lock on the first instance and
(b) if the first instance and second instance are the same instance, the insufficient
information resulting in ambiguity with respect to whether or not the lock the second
command requested was a lock previously acquired by the first command (act 308). For
example, persistence provider 103 may have insufficient information to determine if
command 111 acquired a lock and/or if commands 111 and 112 reference the same
instance. The insufficient information results in ambiguity with respect to whether the
lock requested by command 112 was previously obtained by command 111.

[0058] The persistence provider may exclude commands in the command log that can be
determined to have no potential to cause a lock conflict due to the commands only
referencing instances that are definitely not instance 108A. For example, instance
persistence command processor 104 may determine that a command in command log 109
has unresolved instance aliases that are known to not be any of the aliases for instance
108A.

[0059] Method 300 includes an act of the persistence provider pausing processing of the
second command until reaching further resolution of the first command, further resolution
providing at least additional information regarding the one or more conditions being
satisfied (act 309). For example, persistence provider 103 can pause processing command
112 until reaching further resolution of command 111. The further resolution of command

111 can provide information regarding conditions 133 being satisfied. For example, if

12

10

15

20

25

30

WO 2011/068631 PCT/US2010/055734

command 111 requests a lock for an unresolved instance alias, persistence provider 130
can pause processing command 112 until the instance alias is resolved to a specific
instance. Further, it may be that persistence provider 103 receives lock response 113,
indicating that command 111 has acquired a lock on instance 108A (and thus any alias in
command 111 referenced instance 108A).

[0060] Method 300 includes an act of the persistence provider determining how to
proceed with respect to the second command based on the additional information
regarding the resolution of the first command (act 310). In some embodiments the
persistence provider determines that the first command acquired a lock the second
command requested based on the additional information. For example, instance
persistence command processor 104 can determine that command 111 acquired a lock on
instance 108A. Instance persistence command processor 104 can also determine that
command 112 received lock response 114 because command 112 also requested a lock of
instance 108A (but after the lock of instance 108A was already acquired by command
111). When appropriate, instance persistence command processor 104 can refer to
command log 109 to determine that command 111 was received prior to command 112. In
these embodiments, the persistence provider fails the second command in response to the
determination that the first command had acquired the lock. For example, persistence
provider 103 can fail command 112 in response to determining that command 111 had
acquired the lock on instance 108A.

[0061] In other embodiments, the persistence provider determines that the first command
did not acquire the lock the second command requested based on the additional
information. For example, instance persistence command processor 104 can determine that
command 111 did not acquire a lock on instance 108A. In these other embodiments, an
application host can be directed to attempt to override the lock indicated by the lock
response received for the second command. For example, application host 101 can be
directed to attempt to override the lock indicated in lock response 114 for command 112.
[0062] One reason for overriding a lock is that it may be determined that the lock is a
spurious lock. For example, a lock left may be left over from a previous computation that
has been forgotten by the application host. Thus, the lock existed at the time the second
command was received by the instance store but the application host has no record of the
lock when the second command response is received. A spurious lock can be detected
when all of the previously issued commands potentially conflicting with the second

command turn out to not have acquired the lock.

13

10

15

20

25

30

WO 2011/068631 PCT/US2010/055734

[0063] Alternately, persistence provider 103 can direct application host 101 to use the
copy of instance 108 A that is already locked to command 111.

[0064] Embodiments of the invention also include resolving lock conflicts including
additional commands. For example, a persistence provider can receive a third command
from a third execution thread included in the application host. The third command can be
configured to request acquisition of a lock for a third instance when one or more
conditions are satisfied. The persistence provider can record the third command in a
command log.

[0065] The persistence provider submits the third command to the instance store. The
persistence provider refers to the command log to determine that the current resolution of
the third command provides insufficient information to determine: (a) if the third
command acquired a lock on the third instance and (b) if the third instance and second
instance are the same instance. The insufficient information results in ambiguity with
respect to whether or not the lock the second command (e.g., command 112) requested
was a lock previously acquired by the third command.

[0066] The persistence provider pauses processing of the second command until reaching
further resolution of the third command. Further resolution provides at least additional
information regarding the one or more conditions being satisfied. The persistence
provider determines how to proceed with respect to the second command based on the
additional information regarding the resolution of the third command.

[0067] Figure 2 illustrates an example computer architecture 200 that facilitates resolving
lock conflicts. Referring to Figure 2, computer architecture 200 includes application host
201, persistence provider 203, and instance store 207. Similar to computer architecture
100, each of the depicted computer systems is connected to one another over (or is part of)
a network, such as, for example, a Local Area Network ("LAN"), a Wide Area Network
(“WAN?), and even the Internet. Accordingly, each of the depicted computer systems as
well as any other connected computer systems and their components, can create message
related data and exchange message related data (e.g., Internet Protocol (“IP”) datagrams
and other higher layer protocols that utilize IP datagrams, such as, Transmission Control
Protocol (“TCP”), Hypertext Transfer Protocol (“HTTP”), Simple Mail Transfer Protocol
(“SMTP”), etc.) over the network.

[0068] Within Figure 2, similarly labeled components from Figure 1 include similar
functionality. For example, application host 201 includes a plurality of execution threads,

including execution threads 202A and 202B. Generally, execution threads are configured

14

10

15

20

25

30

WO 2011/068631 PCT/US2010/055734

to issue (e.g., persistence) commands for interacting with instances in instance store 207.
Application host 201 can be an entity, such as, for example, a program or administrative
tool and execution thread can be modules within application host 201 that manipulate
instances stored in instance store 207

[0069] Instance store 207 provides durable storage for instances, such as, for example,
instance 208. Instance store 207 is configured to receive and process (e.g., persistence)
commands for interacting with instances. Instance store 207 can persist application state as
well as return persisted state to a requesting entity (e.g., an execution thread) in response
to persistence commands.

[0070] Generally, persistence provider 203 is configured to translate persistence
commands received from an execution thread into commands compatible with instance
store 207. For example, persistence provider 203 can translate persistence commands
from execution thread 202 A or 202B into persistence commands compatible with instance
store 207.

[0071] As depicted, persistence provider 203 includes instance persistence command
processor 204, instance store driver 206, and command log 209. Instance persistence
command processor 204 defines a contract between application host 201 and instance
store 207. As such, instance persistence command processor 204 is an interface between
application host 201 and instance store 207 that permits application host 201 to provide
commands that modify or inspect instance store 207. For example, the combination of an
instance persistence command processor 204 and an instance store 207 implemented using
SQL Server might be called a SQL persistence provider. The persistence provider
modifies the state of the instance store according to a host's commands using a set of
permissible state modifications defined by instance persistence command processor 204.
[0072] Similar to functionality at persistence provider 103, it may be that some but not all
commands are logged into command log 209. When determining whether or not to log a
command in command log 209, persistence provider 203 can distinguish between
commands that have potential to cause a lock conflict and commands that have no
potential to cause a lock conflict. Commands that can potentially cause a lock conflict are
logged in command log 209. On the other hand, commands that have no potential to cause
a lock conflict may be allowed to execute without logging. Instance persistence command
processor 204 can make these determinations similar to how command processor 104

makes determinations with respect to logging a command in command log 109.

15

10

15

20

25

30

WO 2011/068631 PCT/US2010/055734

[0073] Generally, instance store driver 206 is configured to break down commands when
necessary for compatible communication with instance store 207. For example, an
application host command set may lack a particular command from an instance store
command set. However, it may be that using a combination of two or more commands
from an instance store command set, that a command from an application host command
set can be realized. Thus, when persistence provider 203 detects that a received
persistence command is not included in an instance sore command set, persistence
provider 203 can refer to instance store driver 206 to break the command down into other
compatible commands.

[0074] As depicted, instance store 207 includes instance clock 281. Instance clock 281 is
configured to maintain versions for instances stored in instance store 207. Instance clock
281 can maintain versions in accordance with version update rules that define when a
version is to be updated. For example, version update rules can dictate that an instance
version is to be updated (incremented) when an exclusive lock is taken for an instance,
each time an exclusive lock is released for an instance, when persisted state associated
with an instance is modified, etc. Maintaining instance versions can include incrementing
a counter when a version is to be updated. For example, upon modifying data from an
instance currently at version 3, the instance can be incremented to version 4. Persistence
provider 203 can use instance versions when resolving lock conflicts.

[0075] From time to time, execution threads 202A, 202B, etc, can submit commands to
persistence provider 203. Also as depicted, other commands/results 217 can be
communicated to/from instance store 207 and other applications hosts (possibly through
other intermediary persistence providers). Thus, application host 201 as well as other
application hosts can interact with instance store 207, potentially causing instance versions
to change. For example, in response to received commands (from application host 201
and/or other application hosts) instance 208 can transition from version 261 (an earlier
version) to version 263 (a later version).

[0076] Figure 4 illustrates a flow chart of an example method 200 for resolving a lock
conflict between two or more execution threads. Method 400 will be described with
respect to the components and data of computer architecture 200.

[0077] Method 400 includes an act of a persistence provider receiving a first command
from a first execution thread included in the application host, the first command
configured to request acquisition of a lock for a first instance (act 401). For example,

instance persistence command processor 204 can receive command 211 from execution

16

10

15

20

25

30

WO 2011/068631 PCT/US2010/055734

thread 202A. Command 211 can be configured to request acquisition of a lock for
instance 208.

[0078] Method 400 includes an act of the persistence provider submitting the first
command to the instance store (act 402). For example, instance store driver 206 can
submit command 211 to instance store 207.

[0079] Method 400 includes an act of the persistence provider receiving a lock response
for the first command from the instance store, the lock response indicating that the
application host has acquired a lock for the first instance, the lock for the first instance
being for a first instance version (act 403). For example, instance store driver 206 can
receive lock response 213 from instance store 207. Lock response 213 indicates that
command 211 has locked version 261 of instance 208. Instance persistence provider 204
can log entry 231 in command log 209. As depicted, entry 231 associates command 211
with lock response 213.

[0080] Method 400 includes an act of the persistence provider receiving a second
command from a second execution thread included in the application host, the second
command configured to request that a second instance be locked to the second execution
thread for processing by the second command (act 404). For example, instance
persistence command processor 204 can receive command 212 from execution thread
202B. Command 212 can be configured to request acquisition of a clock for instance 208.
[0081] Method 400 includes an act of the persistence provider submitting the second
command to the instance store (act 405). For example, instance store driver 206 can
submit command 212 to instance store 207.

[0082] Method 400 includes an act of the persistence provider receiving a lock response
for the second command from the instance store, the lock response indicating that the
application host has acquired a lock for the second instance, the lock for the second
instance being for a second instance version (act 406). For example, instance store driver
206 can receive lock response 214 from instance store 207. Lock response 214 indicates
that command 212 has locked version 263 of instance 208.

[0083] As previously described, other applications hosts can interact with instance store
207 (as indicated by other commands/results 217). Thus, it may be that commands 211
and 212 are interspersed with other commands (from other application hosts) received at
instance store 207. Due to any of a variety of factors, instance store 207 can release a lock
that was previously acquired by an application host. For example, due to communication

failure, instance store 207 can detect that it is no longer communicating with execution

17

10

15

20

25

30

WO 2011/068631 PCT/US2010/055734

thread 202A (and/or persistence provider 203) As a result, instance store 207 can release a
lock previously acquired by execution thread 202A. However, also as a result of the
communication failure, application host 201 and/or persistence provider 203 may have no
way to know that instance store 207 released the lock. Thus, for example, execution
thread 202A can continue as if it has acquired the lock indicated in lock response 213,
even though the lock has in fact been released at instance store 207.

[0084] Subsequent to releasing the lock, another application host can acquire a lock on the
same instance and cause a version to be updated. For example, through commands in
other/commands results 217, instance 208 can be updated from version 261 (an earlier
version) to version 263 (a later version). Further, this can occur during the time execution
thread 202A continues based on lock response 213 but does not in fact have a lock on
instance 208.

[0085] Method 400 includes an act of the persistence provider determining that the first
instance and second instance are the same instance (act 407). For example, instance
persistence command processor 204 can determine that lock response 213 and 214 have
both requested lock acquisition on instance 208.

[0086] Method 400 includes an act of the persistence provider determining that the second
instance version is a newer instance version than the first instance version (act 408). For
example, instance persistence provider 204 can compare version 261 and version 263.
From the comparison, instance persistence command processor 204 can determine that
version 263 of instance 208 is newer than version 261 of instance 208 and thus version
261 is obsolete.

[0087] Method 400 includes an act of the persistence provider failing the first command in
response to the determination that the first command is holding a lock for an obsolete
instance version (act 409). For example, instance persistence command processor 204 can
fail command 211 in response to determining that command 211 is holding a lock for
version 261.

[0088] Failing a command may include notifying an execution thread or application host
if the command was previously indicated to have completed successfully. For example,
prior to the detection of the lock conflict, instance persistence command processor 204
may have indicated to execution thread 202A that command 211 completed successfully.
Subsequent to the detection of the lock conflict, instance persistence command processor
204 may indicate to execution thread 202A or application host 201 that command 211 has

failed. Execution thread 202A or application host 201 may take a corrective action based

18

10

15

20

25

30

WO 2011/068631 PCT/US2010/055734

on the notification that command 211 has failed (e.g., by aborting the computation that
execution thread 202A is performing on instance 208).

[0089] As previously described, an application host can attempt to override a lock, such
as, for example, when a locked is determined to be spurious. Overriding a lock can include
repeating the attempt to acquire the lock, potentially disregarding an existing lock if it is
held by the application host with the specific lock version indicated by the lock conflict.
Because the lock may have been freed subsequent to the second command being received
by the instance store, it is possible that another application host or even the same
application host has since locked the instance during resolution of the lock conflict.
Accordingly, lock versioning provides a mechanism to detect that the lock in a second
lock conflict is different than the lock previously indicate during a first lock conflict while
attempting to acquire the lock.

[0090] As such, a second lock conflict could be either type of lock conflict (as described
with respect to methods 300 and 400). Further, either type of lock conflict can be handled
without knowledge of the first lock conflict. Accordingly, successive attempts are
independent. For example, it is even possible to receive the response to the new command
that locked the instance again before reattempting the second command. Thus, it can be
determined that the lock at a new version has been received and the lock acquisition is to
fail without having to go back to the instance store.

[0091] Embodiments of the invention also include resolving lock conflicts between three
or more commands through simultaneous implementation of techniques similar to those
described in methods 300 and 400. For example, a lock conflict between three commands
can be resolved using a combination of lock versions and determining when commands
were received.

[0092] Accordingly, embodiments of the invention can employ a logical lock clock
maintained by the state persistence system for each persisted state storage location. Lock
times can be incorporated into the bookkeeping performed by an instance persistence
command processor to distinguish cases where the instance is locked by the application
host at a previous logical time from cases where the instance is concurrently locked by the
application host through a different name. The instance persistence command processor
can additionally maintain a logical command clock for commands issued by the
application host to the state persistence system, with introspection to determine which
issued commands may potentially take a lock. The instance persistence command

processor can then resolve conflicts by pausing command execution until the effects of

19

10

15

20

25

30

WO 2011/068631 PCT/US2010/055734

potentially conflicting locking commands become visible and by examining the lock time
to distinguish among multiple copies of a persisted state storage location.

[0093] For example, embodiments of the invention can be used to resolve lock conflicts
caused by reordering of parallel requests. An instance persistence command processor can
receive a first application message from a first execution thread for delivery to an instance.
However, based on the content of the first application message the destination instance
may be unclear. For example, the first application message may contain business
information (such as an order number) that is part of the instance’s data rather than a
unique identifier for the instance itself. Even the application host may be unable to
resolve the first application message to the correct destination instance. For example, even
by checking the first application message for a unique instance identifier and searching the
previously loaded instances for data corresponding to the business information in the
message, the application host may fail to find a suitable instance. The instance store may
be able to resolve the first application message to a particular instance by correlating the
information in the message with the data of some instance. Therefore, the application host
may ask the instance store to load the appropriate instance (or create a new instance if no
appropriate instance already exists).

[0094] During essentially the same time, a second application message is received by the
application host on a second parallel execution thread. The second application message
may similarly not uniquely identify a destination instance. Furthermore, the second
application message may contain different business information. For example, rather than
containing an order number, the second application message may contain the customer’s
shipping address. Thus, although the two application messages may refer to the same
destination instance, the application host may be unable to detect this relationship. As
such, the second execution thread proceeds to ask the instance store to load the appropriate
instance (or create a new instance if no appropriate instance already exists).

[0095] Due to re-ordering, the response to the second execution thread can be that the
application host already has locked the relevant instance. However, the application host
may have yet to receive notification of the lock. Thus, an instance persistence command
processor can refer to a command log to resolve the conflict.

[0096] Other sequences of events may lead to a similar response by the instance store.

For example, the application host may have aborted an execution thread or previously
crashed, thus losing its record of having locked the instance while the instance store still

believes that the application host has a copy. Similar races can occur when the application

20

10

15

20

WO 2011/068631 PCT/US2010/055734

host on one execution thread saves and unloads an instance while simultaneously another
execution thread loads the same instance. A resolution to the lock conflict must
distinguish these various cases in order to consistently reconcile the state of the application
host and instance store. Embodiments of the invention can be used to resolve lock
conflicts resulting from these as well as other additional sequences of events.

[0097] Embodiments of the invention also include computer architectures having one or
more persistence providers. Each persistence provider provides a plurality of application
hosts, each with one more execution threads, with access to instances stored at an instance
store. Within these embodiments, each instance persistence provider can include a
command clock and the instance store can include an instance clock. Information
obtained from the command clocks and from the instance clock can be used to resolve
lock conflicts between application hosts based both on temporal ordering and versioning.
Thus, embodiments of the invention can resolve lock conflicts between a plurality of
applications hosts wherein commands are receive at different times and refer to different
versions of an instance.

[0098] The present invention may be embodied in other specific forms without departing
from its spirit or essential characteristics. The described embodiments are to be
considered in all respects only as illustrative and not restrictive. The scope of the
invention is, therefore, indicated by the appended claims rather than by the foregoing
description. All changes which come within the meaning and range of equivalency of the

claims are to be embraced within their scope.

21

WO 2011/068631 PCT/US2010/055734

CLAIMS

1. In a computer architecture including one or more processors and system memory,
the computer architecture also including an application host, a persistence provider, and an
instance store, the application host including a plurality of execution threads configured to
issue commands for persisting instances to and accessing instances from the instance store,
at least a subset of the commands resulting in an execution thread requesting an instance
lock during execution, a method for resolving a lock conflict between two or more
execution threads, the method comprising:

an act of the persistence provider receiving a first command from a first execution
thread included in the application host, the first command configured to request
acquisition of a lock for a first instance when one or more conditions are satisfied;

an act of the persistence provider recording the first command in a command log;

an act of the persistence provider submitting the first command to the instance
store;

an act of the persistence provider receiving a second command from a second
execution thread included in the application host, the second command configured to
request that a second instance be locked to the second execution thread for processing by
the second command;

an act of the persistence provider recording the second command in the command
log;

an act of the persistence provider submitting the second command to the instance
store;

an act of the persistence provider receiving a lock response for the second
command from the instance store, the lock response indicating that the application host is
the holder of the lock for the second instance, the lock response received subsequent to
submitting the first command and prior to the completion of the first command;

an act of the persistence provider referring to the command log to determine that
the current resolution of the first command provides insufficient information to determine:
(a) if the first command acquired a lock on the first instance and (b) if the first instance
and second instance are the same instance, the insufficient information resulting in
ambiguity with respect to whether or not the lock the second command requested was a

lock previously acquired by the first command;

22

WO 2011/068631 PCT/US2010/055734

an act of the persistence provider pausing processing of the second command until
reaching further resolution of the first command, further resolution providing at least
additional information regarding the one or more conditions being satisfied; and

an act of the persistence provider determining how to proceed with respect to the
second command based on the additional information regarding the resolution of the first
command.
2. The method as recited in claim 1, further comprising an act of the persistence
provider determining that the first command acquired the lock the second command
requested based on the additional information.
3. The method as recited in claim 2, wherein an act of the persistence provider
recording the first command in a command log comprises an act of recording the first
command along with a first time stamp in the command log, the first time stamp provided
by a command clock of the persistence provider; and

wherein an act of the persistence provider recording the second command in a
command log comprises an act of recording the second command along with a second
time stamp in the command log, the second time stamp provided by the command clock of
the persistence provider.
4. The method as recited in claim 3, wherein the act of the persistence provider
determining that the first command acquired the lock the second command requested
based on the additional information comprises an act of determining that the first
command was received before the second command based on the first time stamp and the
second time stamp.
5. The method as recited in claim 2, wherein the act of the persistence provider
determining how to proceed with respect to the second command comprises an act of
failing the second command.
6. The method as recited in claim 2, wherein the act of the persistence provider
determining how to proceed with respect to the second command comprises an act of
directing the application host to the copy of the instance the first command acquired a lock
to.
7. The method as recited in claim 2, wherein the act of the persistence provider
determining that the first command acquired the lock the second command requested
comprises:

an act of determining that the first command acquired a lock for a version of the

instance; and

23

WO 2011/068631 PCT/US2010/055734

an act of determining that the lock response for the second command was for a
lock for the same version of the instance.
8. The method as recited in claim 1, further comprising an act of the persistence
provider determining that the first command did not acquire the lock the second command
requested based on the additional information.
9. The method as recited in claim 8, further comprising:

an act of the persistence provider receiving a third command from a third execution
thread included in the application host, the third command configured to request
acquisition of a lock for a third instance when one or more conditions are satisfied;

an act of the persistence provider recording the third command in a command log;

an act of the persistence provider submitting the third command to the instance
store;

an act of the persistence provider referring to the command log to determine that
the current resolution of the third command provides insufficient information to
determine: (a) if the third command acquired a lock on the third instance and (b) if the
third instance and second instance are the same instance, the insufficient information
resulting in ambiguity with respect to whether or not the lock the second command
requested was a lock previously acquired by the third command;

an act of the persistence provider pausing processing of the second command until
reaching further resolution of the third command, further resolution providing at least
additional information regarding the one or more conditions being satisfied; and

an act of the persistence provider determining how to proceed with respect to the
second command based on the additional information regarding the resolution of the third
command.
10. The method as recited in claim 1, wherein the act of the persistence provider
receiving a second command comprises an act of the persistence provider receiving the
second command subsequent to receiving the first command; and

wherein an act of the persistence provider receiving a lock response for the second
command from the instance store comprises an act of receiving the lock response for the
second command prior to receiving a response corresponding to the first command.
1. The method as recited in claim 1, wherein the act of the persistence provider
referring to the command log to determine that the current resolution of the first command
provides insufficient information comprise an act of determining that an alias in the first

command has not yet been resolved to an instance.

24

WO 2011/068631 PCT/US2010/055734

12. In a computer architecture including one or more processors and system memory,
the computer architecture also including one or more application hosts, a persistence
provider, and an instance store, each of the one or more application hosts including at least
one execution thread configured to issue commands for persisting instances to and
accessing instances from the instance store, at least a subset of the commands resulting in
an execution thread requesting an instance lock during execution, a method for resolving a
lock conflict between two or more execution threads, the method comprising:

an act of the persistence provider receiving a first command from a first execution
thread included in the application host, the first command configured to request
acquisition of a lock for a first instance;

an act of the persistence provider submitting the first command to the instance
store;

an act of the persistence provider receiving a lock response for the first command
from the instance store, the lock response indicating that the application host has acquired
a lock for the first instance, the lock for the first instance being for a first instance version;

an act of the persistence provider receiving a second command from a second
execution thread included in the application host, the second command configured to
request that a second instance be locked to the second execution thread for processing by
the second command;

an act of the persistence provider submitting the second command to the instance
store ;

an act of the persistence provider receiving a lock response for the second
command from the instance store, the lock response indicating that the application host
has acquired a lock for the second instance, the lock for the second instance being for a
second instance version;

an act of the persistence provider determining that the first instance and second
instance are the same instance;

an act of the persistence provider determining that the second instance version is a
newer instance version than the first instance version; and

an act of the persistence provider failing the first command in response to the
determination that the first command is holding a lock for an obsolete instance version.
13. The method as recited in claim 12, wherein an act of the persistence provider

receiving a lock response for the first command from the instance store comprises an act

25

WO 2011/068631 PCT/US2010/055734

of receiving the lock response for the first command prior to receiving the lock response
for the second command.
14. The method as recited in claim 12, further comprising;:
an act of the instance store receiving one or more other commands from one or
more other application hosts subsequent to the instance store sending the first lock
response to the persistence provider and prior to the instance store receiving the second
command from the persistence provider; and
an act of an instance clock updating the version of the instance from the first
version instance to the second version instance in accordance with version update rules in
response to the one or more other commands.
15. A computer system for resolving lock conflicts for durable instances, the computer
system comprising:
one or more Processors;
system memory;
one or more computer storage media having stored there on computer-executable
instructions representing one or more application hosts, a persistence provider, and an
instance store, each of the one or more application hosts including at least one execution
thread, each of the one or more applications configured to:
send commands for persisting instances to and accessing instances from the
instance store, at least a subset of the commands resulting in an execution thread
requesting an instance lock during execution;
wherein the instance store is configured to:
receive commands from the persistence provider requesting the acquisition
of locks for instances stored in the instance store;
use an instance clock to maintain instance versions in accordance with an
instance versioning policy;
indicate to the persistence provider when a lock has been acquired for an
instance in response to a received command, including indicating the version of the
instance for which a lock was acquired; and
indicate to the persistence provider when a request for lock acquisition for a
received command is directed to an instance that is already locked; and

wherein the persistence provider is configured to:

26

WO 2011/068631 PCT/US2010/055734

receive commands from execution threads included in the one or more
application hosts, including receiving commands configured to request acquisition
of a lock for an instance;

determine a logical time when commands are received;

record the logical time when commands are received in a command log;

receive indications from the instance store indicating when a lock has been
acquired for an instance in response to a received command;

receive indications from the instance store indicating when a request for
lock acquisition for a received command is directed to an instance that is already
locked;

detect lock conflicts between application hosts based on received
indications along with information recorded in the command log; and

resolve lock conflicts based on received indications along with information

recorded in the command log.

27

PCT/US2010/055734

WO 2011/068631

1/4

g80l |.
aoue)su|

« | V80L
aoue)su|

A vl A
asuodsoy

J ainbi4

) o7)

701 71T _ocm.EEoow
2101S
souesu| T _ocmg_g_oow

m,&woF aoue)su| m \
[1 osuodsay 3007

CEl
zzr ewnl (
va PUBWIWOY
801
30010 _
puBWILWOD LZl dwil A
»TTT PUBWWOD)
601 el
607 puewwon
901 701
oAU 10SS990.1d
21015 PUBWIWOY
‘|v souegs ooUd)SISIod
9oUEB)SU|

gcor
peaiyy

€01

JopINOId 92UB)sIsIod

Ll
pUBLUWOYD

uonnooxg

V2ol
peaiyL

)

L

00l

uonnooxg

TOT
1SOH uoneolddy

PCT/US2010/055734

WO 2011/068631

2/4

18¢

001D
aoue)su|

€9¢
UOISIoN

80¢
aoue)su|

19¢
UOISIB A

80¢
aoue)su|

10C
2101
aoue)su|

712

s)nsoy
/Spuewwo)
18410

'

Ag co_m‘_m>m
v% mocmgwco

[2%4
asuodsay 3007

Z 8inbi4

_%v

€l
asuodsay oo

\ﬂ vcmEEoo\

502 Us2

607 puewwon

A T4

gcoc
pealyl

pUBLUWOYD

A 174 A

uonnoaxg

ve0c

N 0¢ ¥0C
=17 puewwon (__ 10SS8201d
) JaAl(Q puBWIWOD
— a101S 9oUd)SISIO
[TZ Puewwo) (1sIstod
) | ®duelsu| 9oUE)SU|
(79z uotsien (Aﬁﬁ@
vﬂ mocmgwc_v
€lcesuodsay 3007 02 JOPINOI 99UB}SISIod

W_ocmEEooV

X

00¢

pealyl
uonnosxg

10¢ .
1soH uoneolddy

WO 2011/068631 PCT/US2010/055734

r/3Q'0x"\L 3/4
301~

A Persistence Provider Receiving A First Command From A First Execution Thread
Included In The Application Host, The First Command Configured To Request
Acquisition Of A Lock For A First Instance When One Or More Conditions Are Satisfied

302 ™
The Persistence Provider Recording The First Command In A Command Log

303~

The Persistence Provider Submitting The First Command To The Instance Store

304 —~

The Persistence Provider Receiving A Second Command From A Second
Execution Thread Included In The Application Host, The Second Command
Configured To Request That A Second Instance Be Locked To The Second
Execution Thread For Processing By The Second Command

306 ™
The Persistence Provider Recording The Second Command In The Command Log

306 ™
The Persistence Provider Submitting The Second Command To The Instance Store

307~

The Persistence Provider Receiving A Lock Response For The Second Command
From The Instance Store, The Lock Response Indicating That The Application
Host Is The Holder Of the Lock For The Second Instance, The Lock Response

Received Subsequent To Submitting The First Command And Prior To The

Completion Of the First Command

308~

The Persistence Provider Referring To The Command Log To Determine That The
Current Resolution Of The First Command Provides Insufficient Information To
Determine: (a) If The First Command Acquired A Lock On The First Instance And
(b) If The First Instance And The Second Instance Are The Same Instance, The
Insufficient Information Resulting In Ambiguity With Respect To Whether Or Not
The Lock The Second Command Requested Was A Lock Previously Acquired By
The First Command

309~
The Persistence Provider Pausing Processing Of The Second Command Until

Reaching Further Resolution Of The First Command, Further Resolution Providing At

Least Additional Information Regarding The One Or More Conditions Being Satisfied

310

The Persistence Provider Determining How to Proceed With Respect To The Second
Command Based On The Additional Information Regarding
Resolution Of the First Command

Figure 3

WO 2011/068631 PCT/US2010/055734

0y 474

401—

A Persistence Provider Receiving A First Command From A First Execution
Thread Included In The Application Host, The First Command Configured To
Request Acquisition Of A Lock For A First Instance

02—

The Persistence Provider Submitting The First Command To The Instance Store

403 —

The Persistence Provider Receiving A Lock Response For The First Command
From The Instance Store, The Lock Response Indicating That The Application
Host Has Acquired A Lock For The First Instance, The Lock For The First
Instance Being For A First Instance Version

404~

The Persistence Provider Receiving A Second Command From A Second
Execution Thread Included In The Application Host, The Second Command
Configured To Request That A Second Instance Be Locked To The Second

Execution Thread For Processing By The Second Command

405—~

The Persistence Provider Submitting The Second Command To
The Instance Store

406~

The Persistence Provider Receiving A Lock Response For The Second
Command From The Instance Store, The Lock Response Indicating That The
Application Host Has Acquired A Lock For The Second Instance, The Lock For
The Second Instance Being For A Second Instance Version

407~

The Persistence Provider Determining That The First Instance And The Second
Instance Are The Same Instance

408—

The Persistence Provider Determining That The Second Instance Version Is A
Newer Instance Version Than The First Instance Version

409 —~

The Persistence Provider Failing The First Command In Response To The
Determination That The First Command Is Holding A Lock For An Obsolete
Instance Version

Figure 4

	Page 1 - front-page
	Page 2 - description
	Page 3 - description
	Page 4 - description
	Page 5 - description
	Page 6 - description
	Page 7 - description
	Page 8 - description
	Page 9 - description
	Page 10 - description
	Page 11 - description
	Page 12 - description
	Page 13 - description
	Page 14 - description
	Page 15 - description
	Page 16 - description
	Page 17 - description
	Page 18 - description
	Page 19 - description
	Page 20 - description
	Page 21 - description
	Page 22 - description
	Page 23 - claims
	Page 24 - claims
	Page 25 - claims
	Page 26 - claims
	Page 27 - claims
	Page 28 - claims
	Page 29 - drawings
	Page 30 - drawings
	Page 31 - drawings
	Page 32 - drawings

