

ACCEPTED AND AMENDMENTS
24-11-89

COMMONWEALTH OF AUSTRALIA
Patents Act 1952

P/00/001
Form 1
Regulation 9

ALLOWED

APPLICATION FOR A STANDARD PATENT OR A STANDARD PATENT OF ADDITION

4765136

Insert full
name(s) of
applicant(s)

(71) We UNITED TECHNOLOGIES CORPORATION

Insert address(es)
of applicant(s)

of 1 Financial Plaza, Hartford, Connecticut 06101, U.S.A.

Insert title
of invention

(54) hereby apply for the grant of a standard patent patent of addition for an invention entitled GAS TURBINE

(tick appropriate
box)

..... ENGINE AUGMENTOR

which is described in the accompanying provisional complete specification.

Insert name of
actual inventor

(72) The actual inventor(s) of the said invention is/are Thomas Rush CLEMENTS and
..... James Dale BLEVINS

Insert address
for service of
notices in
Australia

(74) My/our address for service is SANDERCOCK, SMITH & BEADLE, 207 Riversdale Road
(P.O. Box 410) Hawthorn, Victoria, 3122 Attorney Code SA

for Convention
cases only

*THESE SECTIONS ARE ONLY TO BE COMPLETED WHERE APPLICABLE:

(ONLY TO BE USED IN THE CASE OF A CONVENTION APPLICATION)

Details of basic application (s) —

(31) Number of basic application 801,642

(33) Name of Convention country in which basic application was filed U.S.A. ISO Code US

(32) Date of basic application 25th November 1985

(ONLY TO BE USED IN THE CASE OF A FURTHER APPLICATION MADE BY VIRTUE OF SECTION 51)

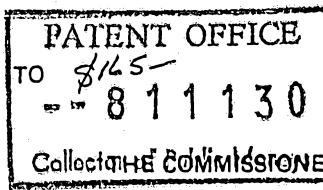
(62) Number of original application

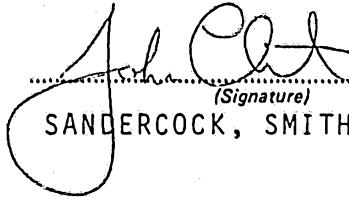
Person by whom made

(ONLY TO BE USED IN THE CASE OF AN APPLICATION FOR A PATENT OF ADDITION)

I request that the patent may be granted as a patent of addition to the patent applied for on

(61) Application No. Patent No.


in the name of


I request that the term of the patent of addition be the same as that for the main invention or so much of the term of the patent for the main invention as is unexpired.

Insert day, month
and year form
signed

Dated this 21ST day of NOVEMBER 19 86

Signature of
applicant or
Australian
attorney

(Signature)
SANDERCOCK, SMITH & BEADLE

This form must be accompanied by either a provisional specification (Form 9 and true copy) or by a complete specification (Form 10 and true copy).

AUSTRALIA

Patents Act 1952

**DECLARATION IN SUPPORT OF A CONVENTION OR NON-CONVENTION
APPLICATION FOR A PATENT OR PATENT OF ADDITION**

Name(s) of
Applicant(s)

In support of the application made by United Technologies
Corporation

Title

for a patent for an invention entitled Gas Turbine Engine Augmentor

Name(s) and
address(es)
of person(s)
making
declaration

I/W_{xx} Stephen Eli Revis of 4 Mountain View Drive, West Hartford, Connecticut 06117, United States of America

do solemnly and sincerely declare as follows:-

1. I am/we are the applicant(s) for the patent, or am/are authorised by the abovementioned applicant to make this declaration on its behalf.
2. The basic application(s) as defined by Section 141 of the Act was/were made in the following country or countries on the following date(s) by the following applicant(s) namely:-

in United States of America on November 25 1985

by Thomas Rush Clements and James Dale Blevins

in _____ on _____ 19

by _____

3. The said basic application(s) was/were the first application(s) made in a Convention country in respect of the invention the subject of the application.

4. The actual inventor(s) of the said invention is/are
Thomas Rush Clements, 5152 Southwest Ranchito Drive, Stuart,
Florida 33494, United States of America;
James Dale Blevins, 571 Riverside Drive, Palm Beach Gardens,
Florida 33410, United States of America

5. The facts upon which the applicant(s) is/are entitled to make this application are as follows:-
the applicant is the assignee of the actual inventors

DECLARED at East Hartford, this 14 day of October 1986
Connecticut
United States of America

UNITED TECHNOLOGIES CORPORATION

Stephen Eli Revis
Assistant Patent Counsel

This form may be completed and filed after the filing of a patent application but the form must not be signed until after it has been completely filled in as indicated by the marginal notes. The place and date of signing must be filled in. Company stamps or

(12) PATENT ABRIDGMENT

(11) Document No. AU-B-65626/86

(19) AUSTRALIAN PATENT OFFICE

(10) Acceptance No. 593858

(54) Title

GAS TURBINE ENGINE AUGMENTOR

International Patent Classification(s)

(51) F23R 003/18

(21) Application No. : 65626/86

(22) Application Date : 21.11.86

(30) Priority Data

(31) Number (32) Date (33) Country

801642 25.11.85 US UNITED STATES OF AMERICA

(43) Publication Date : 28.05.87

(44) Publication Date of Accepted Application : 22.02.90

(71) Applicant(s)

UNITED TECHNOLOGIES CORPORATION

(72) Inventor(s)

THOMAS RUSH CLEMENTS; JAMES DALE BLEVINS

(74) Attorney or Agent

SMITH SHELSTON BEADLE MELBOURNE

(56) Prior Art Documents

US 4423595

(57) Claim

1. An annular-shaped pilot section for a flameholder disposed in the augmentor of a gas turbine engine and said pilot section having a generally parabolic-shaped wall means defining a cavity, said parabolic-shaped wall means having a closed end portion at the fore end defining a leading edge having a generally concaved-shaped surface defining a portion of said cavity and an opened portion at the aft end for admitting fuel entrained exhaust gases, said augmentor having an axially extending centerline and said annular-shaped pilot section having a centerline in coincidence with said centerline of said augmentor, said fore end and said aft end being relative to the flow of the gas path in said gas turbine engine and an igniter disposed in said cavity, wherein the improvement comprises a slot in said wall means extending transverse to the direction of the flow of exhaust

(11) AU-B-65626/86
(10) 593858

-2-

from said gas turbine engine, and being located adjacent said leading edge, said slot being oriented perpendicular to the centerline of said annular-shaped pilot section and said slot is disposed a distance from said igniter wherein the flow of fuel enriched engine exhaust gases flowing through said slot is directed tangentially relative to said concave-shaped surface to create a vortical flow region, and said vortical flow region is located adjacent said igniter.

COMMONWEALTH OF AUSTRALIA
PATENTS ACT 1952

Form 10

COMPLETE SPECIFICATION

(ORIGINAL)

FOR OFFICE USE

Int. Class

Application Number:
Lodged:

65626/86

593856

Class

Complete Specification—Lodged:
Accepted:
Published:
Priority:

This document contains the
amendments made under
Section 49 and is correct for
printing.

Related Art:

TO BE COMPLETED BY APPLICANT

Name of Applicant: UNITED TECHNOLOGIES CORPORATION

Address of Applicant: 1 Financial Plaza,
Hartford, Connecticut 06101,
United States of America

Actual Inventor: Thomas Rush CLEMENTS and
James Dale BLEVINS

Address for Service: SANDERCOCK, SMITH & BEADLE
207 Riversdale Road, (P.O. Box 410)
Hawthorn, Victoria, 3122

Complete Specification for the invention entitled: GAS TURBINE ENGINE AUGMENTOR

The following statement is a full description of this invention, including the best method of performing it known to me:—

Description

Gas Turbine Engine Augmentor

Technical Field

This invention relates to gas turbine power
5 plants with augmentors and more particularly to means
for improving the ignition and stabilization charac-
teristics of the augmentor.

Background Art

As is well known, the augmentor comprises a well
10 known flameholder consisting of a pilot section
centrally supported in the housing of the augmentor
and carries a plurality of radially extending gutters.
A plurality of sprayrings upstream of the flameholder
serves to judiciously inject fuel in the engine's
15 exhaust to be entrained in and ignited in the aero-
dynamic wake of the flameholder. The pilot section is
designed to provide a recirculation zone to stabilize
the burning characteristics of the fuel so as to
sustain combustion and to propagate the combustion
20 around the perimeter of the flameholder.

The augmentor should be actuated at any time
within the flight envelope for the aircraft's mission.
It has been known that under certain aircraft operat-
ing conditions ignition and/or sustained operation has
25 not been successful.

The typical pilot section of the augmentor is
either domed or "V" shaped and the apex faces the fuel
being injected by the sprayring. After the fuel
entrained air flows past the aft station of the pilot

section, a portion of the fuel/air mixture migrates rearwardly relative to the flow of the engine's exhaust and recirculates inside the pilot section. The fuel entrained air is brought in close proximity 5 to the igniter mounted in the pilot section. Unless the fuel/air mixture is within the proper proportions combustion will not ensue. It has been found that the mixture in the heretofore known designs has often been either too lean or too rich for ignition to ensue. 10 Tests have shown that a pilot section incorporating this invention can accommodate operation over a much broader range of fuel-air mixture ratios at all operating conditions.

We have found that we can obviate the fuel/air 15 mixture problem in the pilot section by locating an opening or slot for discretely flowing the fuel entrained air into the pilot section at a pre-determined location and orientation relative to the igniter. In particular, in the dome-shaped (in cross 20 section) pilot section the opening is located downstream of the leading edge of the flameholder but in proximity thereto. The opening is oriented so that its plane is in coincidence with the walls of the opening and is perpendicular to the engine centerline 25 such that the flow admitted into the pilot section is tangential to the inner wall of the apex of the dome and spaced from the igniter so that the fuel/air mixture passes in proximity thereto. Tests have shown that a pilot section incorporating this invention 30 forms a small recirculating zone adjacent the igniter and has proven to provide efficacious ignition characteristics.

By creating the circulating vortices described in the paragraphs above around the full circumference of the pilot section in accordance with this invention the stability of the pilot section can be improved.

5 This invention contemplates, in addition to improving ignition, improving stability by locating openings as described above around the circumference of the pilot section in a plane perpendicular to the centerline of the pilot section. The openings are oriented such
10 that the flow into the pilot section is introduced tangentially to the inside surface of the leading edge.

In certain heretofore known systems the augmentor incorporated a shroud surrounding the pilot section
15 designed to profile the flow to achieve an improved aerodynamic recirculation zone. The shroud provided a flow path adjacent to the outer surface of the pilot section and directed the fuel entrained air in proximity to the aft end of the pilot section. Augmentor incorporating this design did not achieve the desired
20 stability characteristics for all operating conditions.

Disclosure of Invention

An object of this invention is to provide
25 improved ignition and stability characteristics of the pilot section of an augmentor of a gas turbine engine.

A feature of this invention is the judicious location of openings on the upstream end of the pilot section to introduce into the pilot zone a fuel/air
30 mixture in close proximity of the igniter. The location and orientation of the opening is selected to create a vortical flow field adjacent the igniter.

An additional feature is to improve the overall stability characteristics of the pilot section by providing a plurality of openings judiciously located around the circumference of the pilot section.

5 Other features and advantages will be apparent from the specification and claims and from the accompanying drawings which illustrate an embodiment of the invention.

Brief Description of Drawings

10 Figure 1 is an elevated view of the flameholder of an augmentor for a gas turbine engine.

Figure 2 is a sectional view taken along lines 2-2 of Figure 1 and showing a typical fuel sprayring.

15 Figure 3 is an enlarged partial plan view showing the invention.

Figure 4 is a graphical illustration showing the documented improvement in ignition capability effected by the present invention.

20 Figure 5 is a graphical illustration showing the results of tests in improving the stability envelope of the present invention with a typical pilot section in actual use.

25 Figure 6 is a partial view of the flameholder showing holes instead of slots as another embodiment of this invention.

Best Mode for Carrying Out the Invention

While the invention in its preferred embodiment is described in connection with a U-shaped or domed pilot section, and as would be understood by one skilled in the art, this invention has utility for

other configured augmentors. For the sake of convenience and simplicity only that portion of the augmentor that relates to the invention will be described, and for further details of the augmentor reference should be made to the F-100 engine manufactured by Pratt & Whitney Aircraft of United Technologies Corporation, and U.S. Patent No. 4,423,595 assigned to the same assignee as this patent application both of which are incorporated herein by reference herein.

As noted in Figs. 1 to 3, the augmentor consists of a flameholder assembly generally indicated by reference numeral 10 having a pilot section 12, igniter ports 14 and 16 and a plurality of radial gutters 18 extending radially inwardly and outwardly and circumferentially spaced around the pilot section 12.

As best seen in Fig. 2, a suitable spray ring 20 injects fuel into the engine exhaust stream indicated by arrow A whereupon the exhaust entrained fuel is directed toward the pilot section 12 as shown by the stream lines indicated by arrow B. As the exhaust entrained fuel passes the aft station 24 of the pilot section 12 the pressure pattern will cause the flow to migrate toward the igniter 26 supported in the igniter ports 16 and 14. The resulting fuel/air mixture flows over the pilot section 12 and is entrained in the aerodynamic recirculation zone 30. The recirculation brings a portion of the fuel/air mixture into close proximity of the igniter 26 and is ignited when the igniter sparks. In some situations the fuel/air mixture reaching the igniter is too lean to be ignited.

According to this invention an aperture critically located and oriented in the pilot section 12 serves to improve the ignition and stability characteristics of the augmentor 10. In one embodiment as best seen in Figs. 2 and 3 a slot 32 is formed in the wall of the pilot section extending transverse to the direction of the air flow in proximity to the leading edge 38 of the pilot section 12 so that the fore edge of slot is substantially in line with the inner surface 40 of the pilot section 12 on the back wall of leading edge 38. The slot is machined perpendicular to the engine centerline (parallel with the centerline of pilot section 12) so that it breaks through the inside surface of the pilot section 12 as nearly tangential to the surface 40 as possible.

In this configuration, exhaust entrained fuel is admitted through slot 32 whereupon a swirl is imparted thereto to form a vortical recirculating zone 42 in proximity to igniter 26. This enriches the fuel/air mixture and as is apparent no other complicated apparatus is necessary, as for example, a specialized spray bar configuration.

Another embodiment to this invention is exemplified in Fig. 6 which shows a plurality of drilled holes 44 extending laterally relative to the exhaust flow. Likewise each hole is drilled perpendicular to the engine centerline and in proximity to the inside wall 40 of leading edge 38. In either configuration the critical location and orientation is designed to produce a vortical recirculation zone adjacent the igniter.

When utilizing the slot configuration as shown in Figs. 1 to 3, it is preferred to incorporate some means for preventing the initiation of cracks. A suitable means would be by putting a sufficient radius 5 50 at the ends of the slot or "stop drilled".

As is exemplified in Fig. 1, a plurality of slots 32 (or drilled holes 44) may be located around the circumference of the pilot section 12 to enhance combustion stability. The ingestion of fuel/rich gas 10 through these slots 32 or holes 44 so as to provide a plurality of the vortices (zone 42) would improve stability. The number of slots and the spacings would depend on the particular application for each augmentor.

15 Actual tests of the present invention in comparison with a shrouded pilot utilized in heretofore known augmentors have shown that the flameholder with the invention operates over a wider range of fuel/air ratios and altitude than a flameholder without the 20 invention. These comparisons are illustrated in Fig. 4 comparing the ignition characteristics and Fig. 5 comparing the stability envelope characteristics.

In Fig. 4 the curve represented by the dash line C shows the range of where ignition will ensue over a 25 given fuel air ratio for a given altitude for the shrouded pilot. Line C' shows the expanded range for ignition when the invention is employed. While the shrouded pilot gives similar results at the low end of the scale, flameholders without the shroud have not 30 evidenced these results as shown by line C''. Hence, the flameholder utilized in the invention produces similar results in the low portion of the lean

fuel/air ratio without the encumbering hardware represented by the shroud while greatly extending the rich fuel/air and altitude ignition capability.

Figure 5 is actual test data comparing the 5 stability characteristics of the shrouded pilot flameholder and of the flameholder incorporating the invention. Line E illustrates the stability regime of the shrouded pilot flameholder and Line E' is that for the flameholder incorporating the invention. Stability 10 will be evidenced under all the fuel/air ratio values for a given altitude while the augmentor is operating under the respective curves.

Again, the flameholder incorporating the 15 invention has a much extended range of operation both in terms of acceptable fuel/air ratios and in terms of altitude capability.

It should be understood that the invention is not limited to the particular embodiments shown and described herein, but that various changes and 20 modifications may be made without departing from the spirit and scope of this novel concept as defined by the following claims.

1 The claims defining the invention are as follows:

2 1. An annular-shaped pilot section for a flameholder
3 disposed in the augmentor of a gas turbine engine and said
4 pilot section having a generally parabolic-shaped wall means
5 defining a cavity, said parabolic-shaped wall means having a
6 closed end portion at the fore end defining a leading edge
7 having a generally concaved-shaped surface defining a
8 portion of said cavity and an opened portion at the aft end
9 for admitting fuel entrained exhaust gases, said augmentor
10 having an axially extending centerline and said annular-
11 shaped pilot section having a centerline in coincidence with
12 said centerline of said augmentor, said fore end and said
13 aft end being relative to the flow of the gas path in said
14 gas turbine engine and an igniter disposed in said cavity,
15 wherein the improvement comprises a slot in said wall means
16 extending transverse to the direction of the flow of exhaust
17 from said gas turbine engine, and being located adjacent
18 said leading edge, said slot being oriented perpendicular to
19 the centerline of said annular-shaped pilot section and said
20 slot is disposed a distance from said igniter wherein the
21 flow of fuel enriched engine exhaust gases flowing through
22 said slot is directed tangentially relative to said concave-
23 shaped surface to create a vortical flow region, and said
24 vortical flow region is located adjacent said igniter.

25 2. An annular-shaped pilot section as in claim 1
26 wherein the flameholder includes a plurality of radially
27 extending gutter circumferentially spaced around said pilot
28 section wherein the improvement comprises having said slot
29 extending between two adjacent gutters of said plurality of

1 gutters.

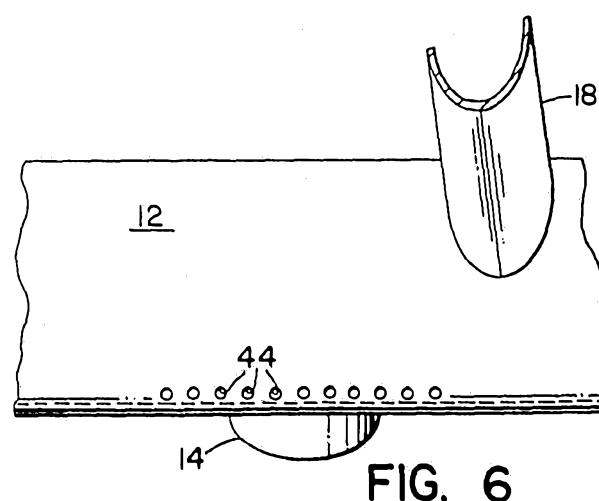
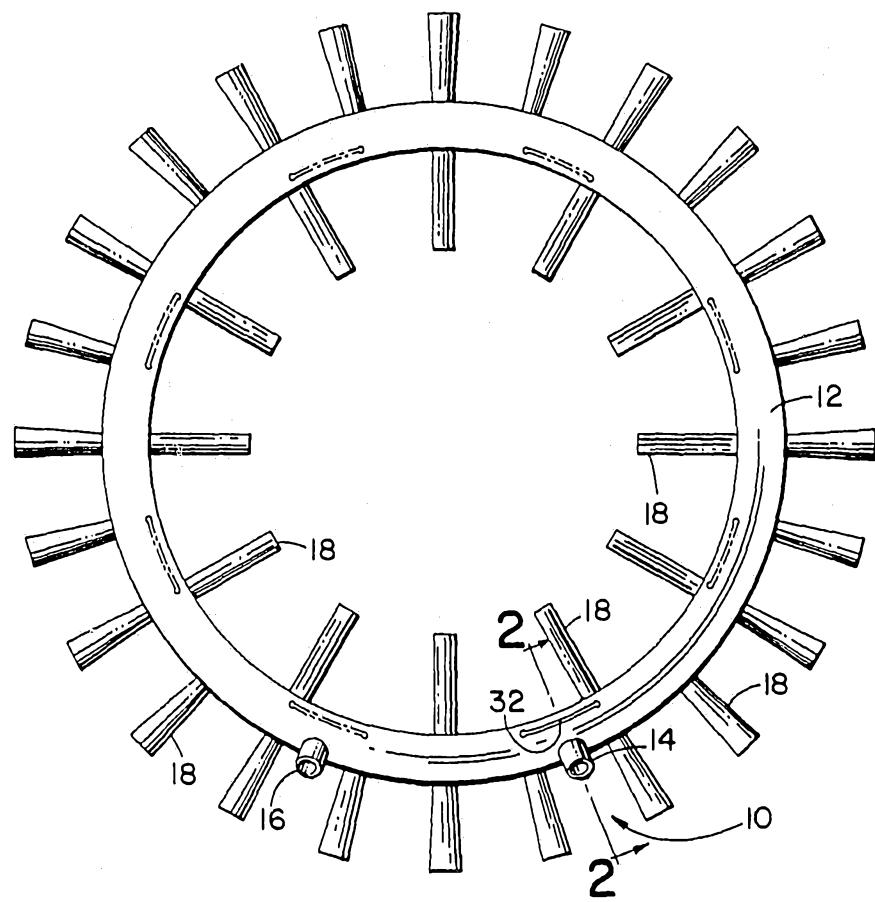
2 3. An annular-shaped pilot section as in claim 2
3 wherein said aperture is a drilled hole and a plurality of
4 drilled holes identically oriented relative to said leading
5 edge are circumferentially spaced about said parabolic-
6 shaped wall means.

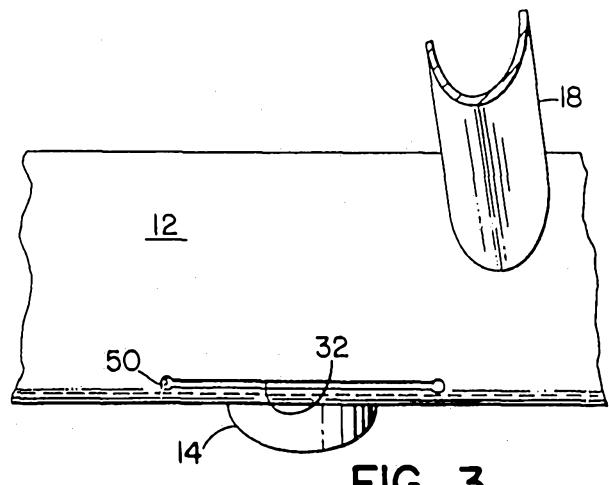
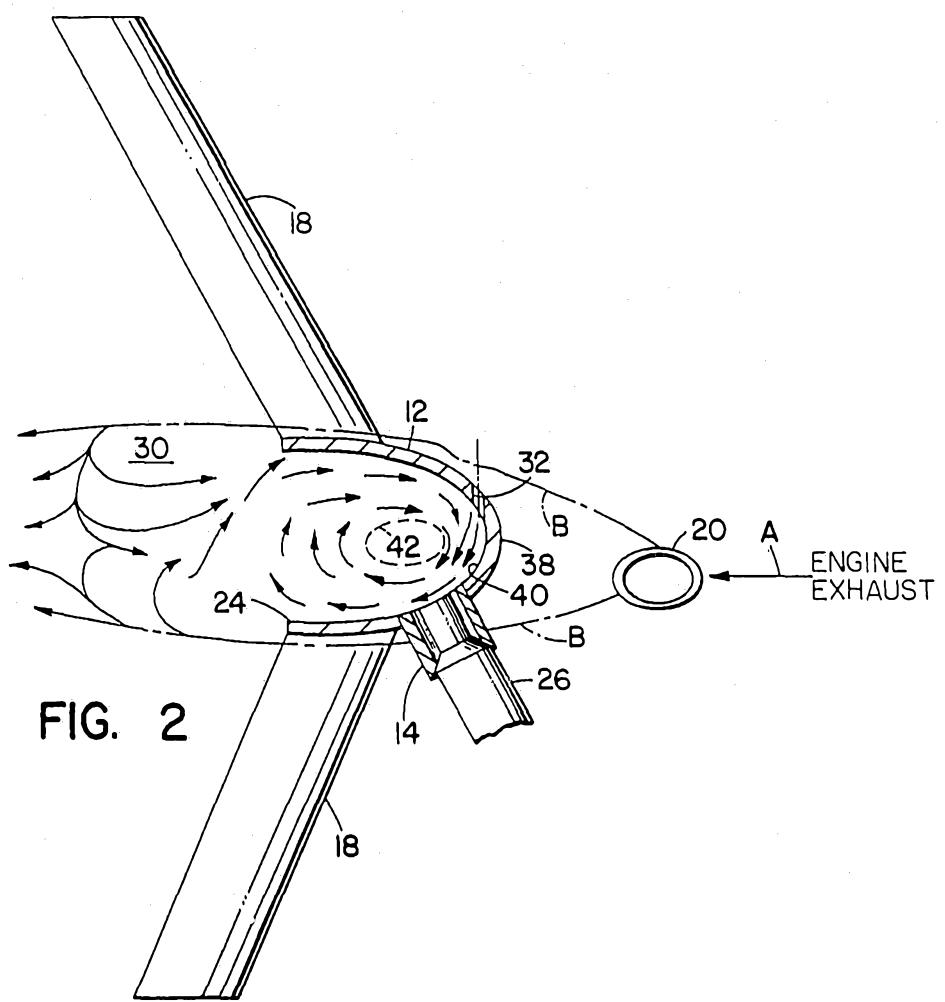
7 4. An annular-shaped pilot section as in claim 2
8 wherein the improvement includes a plurality of additional
9 slots identically oriented as said slot adjacent said
10 igniter, said plurality of additional slots circumferentially
11 spaced around said pilot section, each of said plurality of
12 additional slots being dimensioned so that its lateral
13 extent is not greater than the spacing between adjacent
14 gutters and each of said plurality of additional slots being
15 disposed between adjacent gutters whereby the stability
16 characteristic of said pilot section is enhanced.

17 5. An annular-shaped pilot section as in claim 1
18 wherein said slot is comprised of spaced holes extending in
19 a plane a predetermined distance.

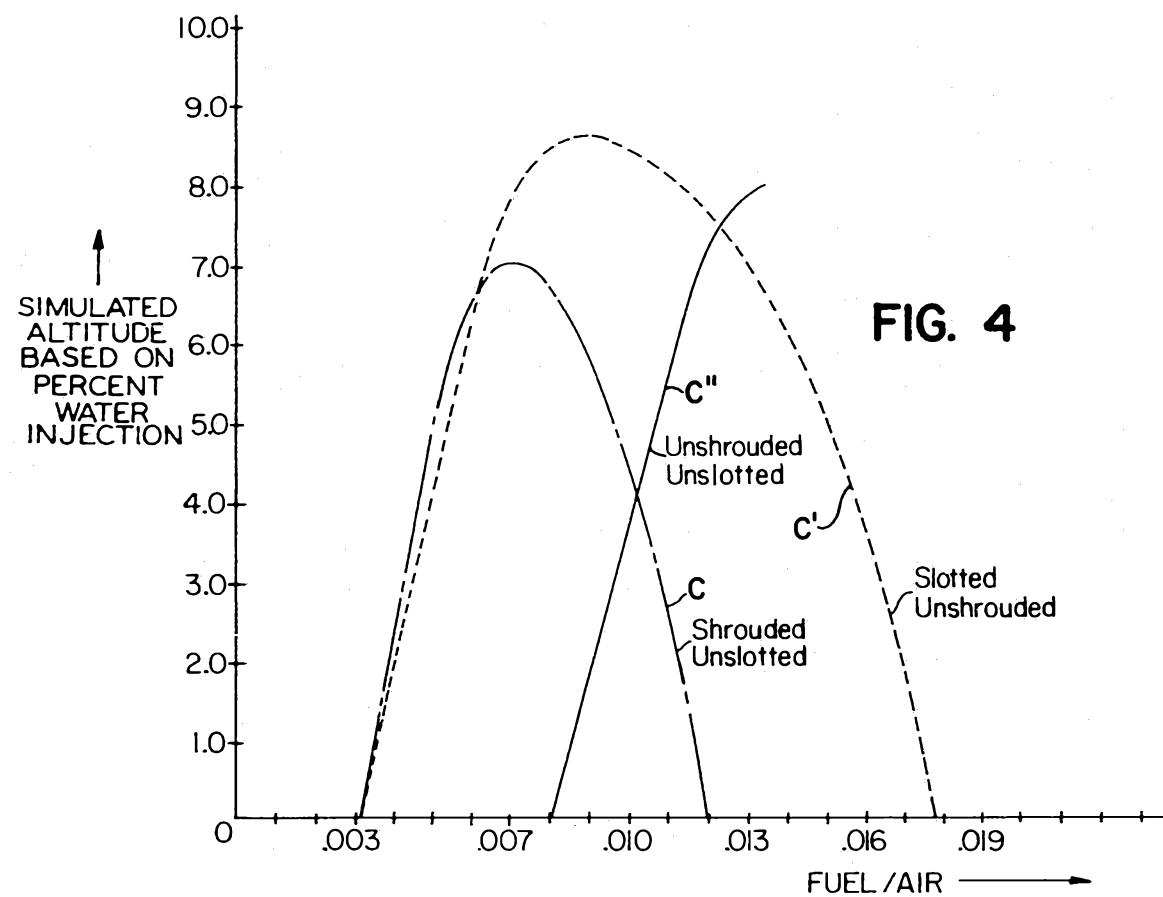
20 6. An annular-shaped pilot section for a flameholder
21 disposed in the augmentor of a gas turbine engine as defined
22 in claim 1 and substantially as hereinbefore described with
23 reference to the accompanying drawings.

24

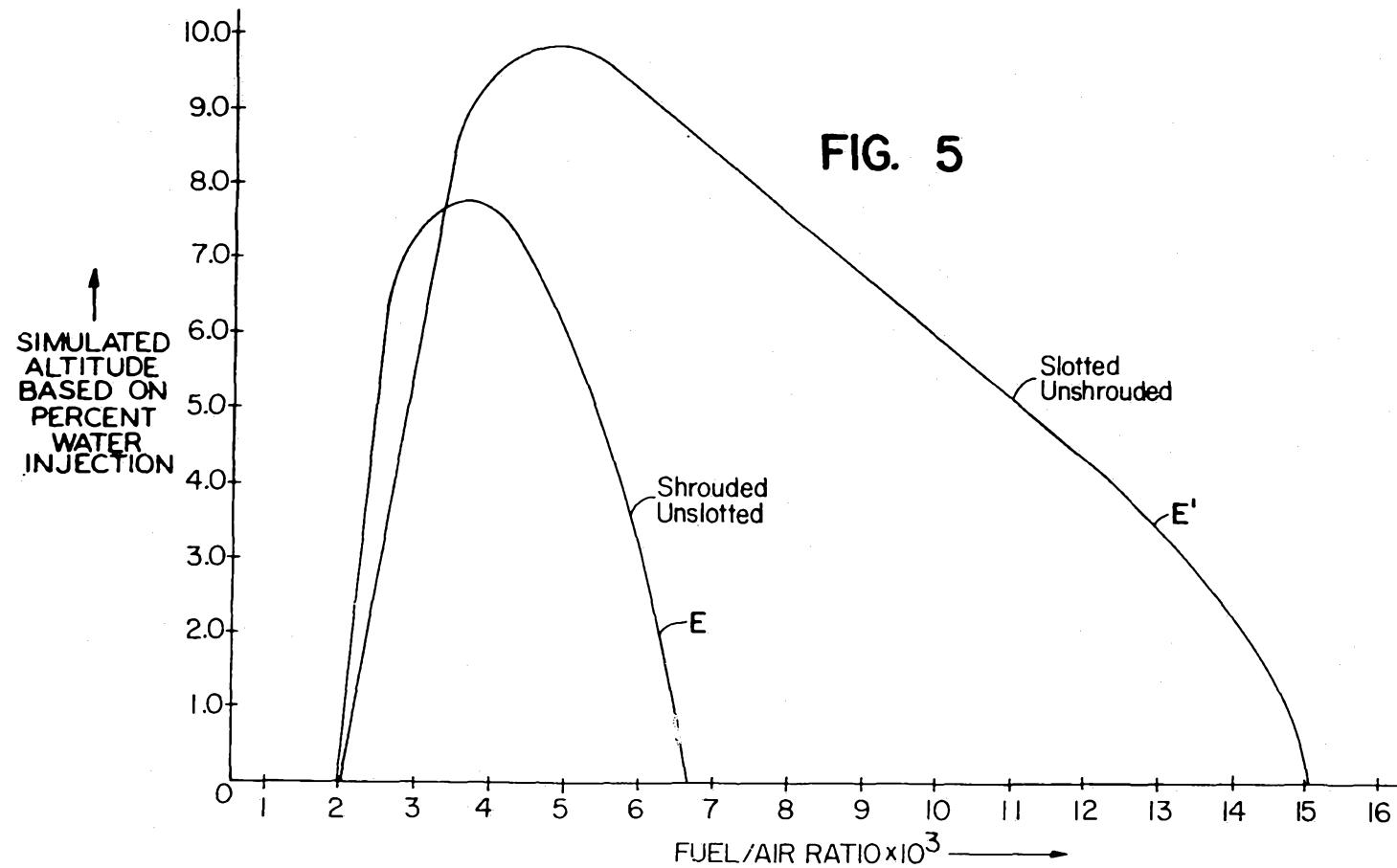





890828, !psspe012,unitec.res,

1
2 DATED THIS 28th August, 1989
3 SMITH SHELSTON BEADLE
4 Fellows Institute of Patent
5 Attorneys of Australia.
6 Patent Attorneys for the Applicant
7 UNITED TECHNOLOGIES CORPORATION



890828,1psspe012,unitec.res,



21 11 86 03026

21 11 86 (E5603)

