I *I Innovation, Sciences et Innovation, Science and CA 2829104 C 2019/01/15

Developpement economique Canada Economic Development Canada
Office de |la Propriete Intellectuelle du Canada Canadian Intellectual Property Office (1 1)(21) 2 829 1 04
(12) BREVET CANADIEN
CANADIAN PATENT
(13) C
(86) Date de depot PCT/PCT Filing Date: 2011/03/09 (51) Cl.Int./Int.Cl. GO6F 21/00 (2013.01)
(87) Date publication PCT/PCT Publication Date: 2012/09/13 (72) Inventeurs/Inventors:
. _ LITVA, PAUL, CA;
(45) Date de delivrance/lssue Date: 2019/01/15 JONES. DAVID. CA:
(85) Entree phase nationale/National Entry: 2013/09/05 VANDERGEEST, RON, CA
(86) N° demande PCT/PCT Application No.: CA 2011/050135 (73) Propriétaire/Owner:
(87) N° publication PCT/PCT Publication No.: 2012/119218 IRDETO B.V., NL

(74) Agent: SMART & BIGGAR

(54) Titre : PROCEDE ET SYSTEME POUR ASSURER UNE SECURITE DE PLATEFORME DYNAMIQUE DANS UN SYSTEME
D'EXPLOITATION D'UN DISPOSITIF
(54) Title: METHOD AND SYSTEM FOR DYNAMIC PLATFORM SECURITY IN A DEVICE OPERATING SYSTEM

210a 210b
500 Android Android
\ Application] |Application

211

Android
Virtual Machine

212
224 Native Android
Application JAC
OS Native
Application Android OS

223
QS Kernel Application Interface Layer (system calls)
215
Agent Remote
(LSM |/F Comp“ant Ommands

Stage 2 Hard Drive or
Bootloader l Flash '

21 B
Secure 217
Stage 1 Store
Bootloader
221

220

(57) Abrege/Abstract:
A system and method Is provided for implementing platform security on a consumer electronic device having an open development
platform. The device is of the type which includes an abstraction layer operable between device hardware and application software.

50 rue Victoria e Place du Portage1l e Gatineau, (Québec) K1AOC9 e www.opic.ic.gc.ca I*I
50 Victoria Street e Place du Portage 1 ¢ Gatineau, Quebec K1AO0C9 e www.cipo.ic.gc.ca al I a

CA 2829104 C 2019/01/15

anen 2 829 104
(13) C

(57) Abrege(suite)/Abstract(continued):

A secure software agent Is provided for embedding within the abstraction layer forming the operating system. A secure store Is
provided for storing security information unigue to one or more instances of the application software. The secure software agent
uses the security information for continuous runtime assurance of ongoing operational Integrity of the operating system and
application software and thus operational integrity of the device.

(43) International Publication Date
13 September 2012 (13.09.2012)

CA 02829104 2013-09-05

(19) World Intellectual Property
Organization
International Bureau

WIPO I PCT

(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

CORRECTED VERSION

(10) International Publication Number

WO 2012/119218 A8

(1)

(21)

(22)

(25)

(26)
(71)

(72)
(75)

223

221

WO 2012/119218 A8 I|| AR O R 10 E

Stage 2
Bootloader
Stage 1
Bootloader

International Patent Classification:
GO6LF 21/00 (2006.01)

International Application Number:
PCT/CA2011/050135

International Filing Date:

9 March 2011 (09.03.2011)
Filing Language: English
Publication Language: English

Applicant (for all designated States except US). IRDETO
CANADA CORPORATION [CA/CA]; 84 Hines Road,
Suite 300, Ottawa, Ontario K2K 3G3 (CA).

Inventors; and

Inventors/Applicants (for US only): LITVA, Paul
[CA/CA]; 118 Marsh Sparrow Private, Ottawa, Ontario
K2K 3P3 (CA). JONES, David [CA/CA]; 8 Oakham
Ridge, Ottawa, Ontario K2K 3B3 (CA). VANDER-

FIGURE 2A 210a 210b
200 Android Android
\ Application] |Application
Android
Virtual Machine
224

Native Android
Application

0S Kernel Application Interface Layer (system calls)

Agent

(LSM I/F Compliant)
Secure
Store

220

Hard Drive or

l Flash I

219

(74)

(81)

(84)

211

212
_/
OS Native
Application Android OS

215

Remote

216

GEEST, Ron [CA/CA]; 221 Sunnyside Avenue, Ottawa,
Ontario K1S OR4 (CA).

Agents: SMITH, Dallas, F. et al.; Gowling Latfleur
Henderson LLP, 160 FElgin Street, Suite 2600, Ottawa,
Ontario K1P 1C3 (CA).

Designated States (unless otherwise indicated, for every
kind of national protection available). AE, AG, AL, AM,
AO, AT, AU, AZ, BA, BB, BG, BH, BR, BW, BY, BZ,
CA, CH, CL, CN, CO, CR, CU, CZ, DE, DK, DM, DO,
DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, GT, HN,
HR, HU, ID, IL, IN, IS, JP, KE, KG, KM, KN, KP, KR,
KZ, LA, LC, LK, LR, LS, LT, LU, LY, MA, MD, ME,
MG, MK, MN, MW, MX, MY, MZ, NA, NG, NI, NO, NZ,
OM, PE, PG, PH, PL, PT, RO, RS, RU, SC, SD, SE, SG,
SK, SL, SM, ST, SV, SY, TH, TJ, TM, TN, TR, TT, TZ,
UA, UG, US, UZ, VC, VN, ZA, ZM, ZW.

Designated States (unless otherwise indicated, for every

kind of regional protection available). ARIPO (BW, GH,
GM, KE, LR, LS, MW, MZ, NA, SD, SL, SZ, TZ, UG,

[Continued on next page]

(34) Title: METHOD AND SYSTEM FOR DYNAMIC PLATFORM SECURITY IN A DEVICE OPERATING SYSTEM

(57) Abstract: A system and method 1s provided for im-
plementing platform security on a consumer electronic
device having an open development platform. The
device is of the type which includes an abstraction layer
operable between device hardware and application soft-
ware. A secure software agent i1s provided for embed-
ding within the abstraction layer forming the operating
system. A secure store 1s provided for storing security
information unique to one or more instances of the ap-
plication sotftware. The secure software agent uses the
security mnformation for continuous runtime assurance
of ongoing operational imtegrity of the operating system
and application software and thus operational integrity
of the device.

ommands

CA 02829104 2013-09-05

WO 2012/119218 A8 MO0 00 A AN A 0

ZM, ZW), Eurasian (AM, AZ, BY, KG, KZ, MD, RU, TJ, Published:
TM), European (AL, AT, BE, BG, CH, CY, CZ, DE, DK,

EE. ES. FL FR. GB. GR. HR. HU. IE, IS, IT. LT. LU, with international search report (Art. 21(3))
LV, MC, MK, MT, NL, NO, PL, PT, RO, RS, SE, SI, SK, (48) Date of publication of this corrected version:
SM, TR), OAPI (BF, BJ, CF, CG, CI, CM, GA, GN, GQ, 10 January 2013

GW, ML, MR, NE, SN, TD, TG). , ,
(15) Information about Correction:
Declarations under Rule 4.17: see Notice of 10 January 2013

— as to applicant’s entitlement to apply for and be granted
a patent (Rule 4.17(ii))

10

15

20

25

30

WO 2012/119218

CcA 02829104 2013-09-05

METHOD AND SYSTEM FOR DYNAMIC PLATFORM SECURITY IN A DEVICE
OPERATING SYSTEM

FIELD OF THE INVENTION

[0001] The present invention relates generally to mitigating security threats and
recovering from security breaches on electronic devices. More particularly, the present
invention relates to: (a) preventing unauthorized use and access of an electronic device
and digital assets such as games, applications, e-books, video files, text files and other
digital data considered of value on that electronic device using a secure software agent
embedded In the device; (b) providing a means to mitigate the damage that may be
caused by automated attacks that may occur by installing secure software agents that are
diverse from on agent to the next; and (c) providing a means to recover from attacks that
may occur by updating the secure software agent with one that is diverse from the
original agent In functionality (for example, introducing additional security checks) and

structure (for example, by re-ordering the location of binary code in the agent).

BACKGROUND OF THE INVENTION

[0002] Devices such as mobile phones, tablets, games consoles, set top boxes,
televisions, personal navigation devices, and other consumer electronics devices (or
simply "devices"™) are typically purchased by consumers from retail distribution channels
(e.g., consumer electronics stores) or may be sold to or leased to consumers by service
providers (or simply "operators™) — e.g9., mobile network operators, broadcast television
network providers, or Internet video providers. Traditionally, such devices were closed
devices or embedded devices that were based on proprietary hardware and operating
systems and that did not support third party software applications. However, such
devices have increasingly become open devices. It should be understood that "open” In
the context of this background discussion can include varying degrees including, but not
limited to, standard hardware (such as a system on a chip based on an Intel or ARM
processor), open source operating systems and software, open or published APIs to
enable third party applications development, and/or freely modifiable programming.

[0003] Such devices may include open source operating systems, including those

such as Linux (an open source Unix-type operating system originally created by Linus

Torvalds with the assistance of developers around the world) or Android (an open source

_ 1 -

PCT/CA2011/050133

10

15

20

25

30

39

WO 2012/119218

CaA 02829104 2013-09-05

mobile operating system based on a modified version of the Linux kernel and marketed
by Google, Inc. of Mountain View, Californiaj.

[0004] Attacks on closed or embedded devices, In the form of unauthorized use
and access, have taken place for many years. However, such hacking of embedded
devices has been a specialized and highly technical process that required a specialized
combination of hardware and software skills. In contrast, open devices have hardware
and operating systems that are well understood by many developers and hackers.
Accordingly, this trend to open devices greatly increases the potential number of hackers
with knowledge and expertise that renders such open devices much more susceptible to
attack. Such open devices also support the capability for third party application
developers to develop applications for those device (e.g., open API's) and hence such
devices also increasingly support the capability for consumers to download, install, and
execute third-party software applications (or simply "applications™) on such devices. Such
applications are not developed by the operator or the original equipment manufacturer (or
simply "OEM” which could include companies such as Apple Inc., of Cupertino, California)
of the device. In terms of software design, such applications may be developed using a
script language (e.g., JavaScript) or native code (e.g., a C or C++ program).

[0005] The capability for consumers to purchase or lease and to download and
install third-party software applications on devices may be provided by the OEM (e.qg.
Apple Inc.), an operator, or a company that I1s unaffiiated with the OEM or operator
typically via an Internet-based retail interface -- e.g., the ITunes Store or the Android
Market (software-based online digital media stores operated by Apple Inc. and Google
InC., respectively). Internet-based retail interface provides a system by which the third-
party application developer (or simply "developer”) shares part of the revenue from sales
of an application with the Internet-based retail interface provider. The trend to enable
consumers to download and install such third-party applications (or simply “apps”™) on
devices also Increases the potential security concerns for consumers, operators,
developers and OEM's beyond those that would normally be associated with an
embedded device.

[0006] One such security concern is malware whereby the third-party software
sold to the consumer may contain malicious software known as malware (e.g., worms,
viruses, Trojans, rootkits, and backdoors). Such malware may cause a breach of
consumer privacy -- e.g., malware on a mobile phone might monitor a user's position via
the GPS capabilities of the mobile phone and transmit such positional data to a remote
server. Malware may also cause identity theft or fraudulent use of the device or related

services -- e.g., malware on a mobile phone could automatically dial services which add
2.

PCT/CA2011/05013S

10

15

20

25

30

39

WO 2012/119218

CaA 02829104 2013-09-05

charges to a user's mobile phone subscription. Malware may also cause network stability
problems for operators -- e.g., malware on mobile phones could inappropriately use
network capabilities such as SMS or mobile voice calling to create a denial of service
attack against a mobile network operator's network impacting the network service quality
or availability.

[0007] Another significant security concern Is application piracy. Here,
applications are subject to piracy whereby a consumer may obtain a copy of the
application for free and install it on their device or on a similar device that Is not
authorized or supported by the provider of the Internet-based retail interface. Application
piracy causes the provider of the Internet-based retail interface and the developer to
generate less revenue than they would in the absence of application piracy.

[0008] Additional security concerns include unauthorized applications. Providers
of Internet-based retail interfaces may "certify” applications to ensure that malware is not
present in the applications sold through their Internet-based retail interfaces. This serves
to provide some level of protection against the malware concerns noted above and to
prevent applications from otherwise compromising the security of the device and/or
device network (1.e., mobile network). If this certification process can be circumvented or
IS not exhaustive, then consumers may unknowingly download malware onto their
devices from an unauthorized Internet-based retail interface or other Internet web site. If
this certification process can be circumvented or Is not adequate to detect potential
malware then consumers may unknowingly download malware onto their devices from an
Internet-based retail interface.

[0009] Another important security concern Involves content piracy. It IS known
that media applications (e.g., a video player, music player or e-book reader) may be used
on devices by consumers to access high value digital content, such as digital video,
music or electronic publications, that is licensed from media content providers (e.g., a
movie studio, music producer, or book publisher) by the providers of Internet-based retall
interfaces for sale to consumers. A hostile user (e.g., a content pirate) may install
software on a device owned by the hostile user to enable the hostile user to access
cryptographic keys used by a media application to decrypt content, siphon digital content
(l.e., capture decrypted, compressed digital content at some point in the media rendering
path) or "screen scrape” digital content (i.e., capture decrypted, decompressed digital
content at some point in the media rendering path). Such captured media content could
therefore be used and reproduced without further control or approval by the media

content providers.

PCT/CA2011/05013S

10

15

20

25

30

39

WO 2012/119218

CaA 02829104 2013-09-05

[0010] Existing approaches to platform security (i.e., security intended to address
one or more of the security problems noted above) typically involve one or more of the
following methods further grouped and described herein below.

[0011] “‘Operating system security” Is a security method whereby one or more
functions or capabilities including process isolation, access control, private application
programming Interfaces (APIs), and application certification/signing, and application
licensing services may be provided by an operating system. Such functions and
capabilities are further described as follows.

[0012] “‘Process isolation” may be supported by the operating system (or a
hypervisor installed beneath the operating system) to ensure that each application and
parts of the system runs In its own process and dedicated memory space such that, by
default, no application has the capability to perform any operation that could adversely
affect another application, the operating system (OS), or the consumer. Each application
process can be considered to be running in its own operating environment often referred
to as its own “sandbox.” However, to develop applications that are useful to users, most
applications must be able to access operating system services (e.g., on a mobile phone
OS, send short message service (SMS) text messages, get user location, record phone
calls, take pictures, or the like) that are not supported within the basic sandbox. This
limits the effectiveness of process isolation or the “sandbox” as the application must
access operating system services outside the sandbox which increases the probability
that the application may perform operations that negatively affect other applications, the
OS, or the consumer.

[0013] "Access control” Involves the ability to address the requirement for
applications to use OS services or resources outside the sandbox or for native
applications, OS services or resources that could enable a native application to adversely
affect other applications, the consumer or a network. Here, the OS Includes access
control functionality that makes decisions about whether to grant such access to a
requesting application. This access control functionality may be combined with the
concept of permissions. For example in the Android OS from Google Inc., application
developers must declare the permissions required by their applications in an associated
manifest file to enable the application to perform any operation that might adversely affect
other applications, the OS5, or the consumer. Access control decisions may also be
based on the privileges inherently granted to an application (e.g., user application or root
access In the Linux OS). One of the problems associated with permissions i1s related to
the question of who or what grants permissions to an application and whether the grantor

understands the implications of such approval (e.g., in the Android OS case 1t is the
-4 -

PCT/CA2011/05013S

10

15

20

25

30

39

WO 2012/119218

CaA 02829104 2013-09-05

consumer that grants such permissions). Another problem is that such permissions may
be modified by malware or an attacker following such grant of permissions by the
consumer or the certitying authority. Some operating systems have access control
frameworks that enable different access control models to be implemented (e.g., Linux
Security Module (LSM)). LSM enables different access control models and functions to
be iImplemented as loadable kernel modules.

[0014] “Private APIs” are another mechanism to limit the ability of applications to
access operating system services or resources that may adversely affect platform
security. Here, although many system APIl's may be open or public, the OEM may limit
access to certain operating system services by maintaining the secrecy of API's required
to access such services from applications developers. This Is normally coupled with an
application certification process to ensure that applications submitted for certification do
not attempt to call such private API's.

[00195] “Application certification/signing” Involves various existing application
certification processes in current use that ensure applications do not perform malicious
operations and/or access private APl's. These processes generally include static
verification (e.9., scanning the object code prior 1o execution) of the application (e.g., to
verify that private API's are not called by the application) and dynamic verification (e.g. to
verify the “stability” of the application during execution). If the Application passes the
certification process it is then digitally signed by the certifying authority (which may also
be the Internet-based retail interface provider) in a form that can later be verified. One of
the problems with current application certification schemes is that a comprehensive
verification 1s not readily automated and, hence, is not exhaustive. Because of this, a
malicious operation could be embedded In the application In such a manner that it will
only execute at a pre-specified time following the application certification/signing process.
Accordingly, such malicious operation can avoid detection during the verification process.
Another problem with application certification is the sheer number of applications that
may have to be certified by an Internet-based retail interface provider. For example, it is
estimated that the App Store (an Internet-based retail interface offered by Apple Inc. for
providing mobile software applications for their IPhone™ brand smartphone) has over
300,000 applications and that there are 10,000 new applications submitted to Apple Inc.
each week. This makes It cost-prohibitive to perform exhaustive verification of
applications before certification. Another problem is that a hacker could modify or replace
the root of trust In the OS (i.e., a digital certificate and software) used to verify the integrity
of the application against the signature generated by the Internet-based retail interface

provider such that the application can be modified following application
- 5.

PCT/CA2011/05013S

10

15

20

25

30

39

WO 2012/119218

CaA 02829104 2013-09-05

certification/signing, such that the permissions associated with the application can be
modified, such that a hostile third party could load an unauthorized application onto the
device or such that a pirated application can be loaded onto the device by a consumer.
[0016] “‘Application licensing services”™ Involves protection against application
piracy whereby the system provides a license service. For example, the Android OS
provides a licensing service that lets an application developer enforce licensing policies
for paid applications. However, these types of application licensing services can be
readily circumvented by hackers by modifying the application to extract such license
verification checks.

[0017] In addition to the problems noted in each of the above functions and
capabilities found within platform security, there is a problem that is common o process
Isolation, access control, and application licensing services whereby the portions of the
OS that support such security functions can be subverted or bypassed by modifying
portions of the operating system that perform such functions. To prevent such changes
to the OS security functions or other OS functions, a further method of utilizing a “secure
boot loader” is often implemented in devices.

[0018] A “secure boot loader” (or "secure boot” for short) I1s used to ensure that
only the intended boot software and OS kernel are loaded onto the device. Here, the
authentication compares the applicable software against a signhature generated by the
device OEM. The authentication or integrity verification of the boot software and the OS
kernel occur only during device start-up such that this mechanism can be circumvented
by dynamic attacks occurring during the boot process. Once the secure boot loader has
been bypassed, the OS can be modified 10 bypass other security functions that may be
present In the OS. These dynamic attacks can be highly automated so that they are
accessible by consumers that do not otherwise have the technical skills to independently
Implement such attacks (i.e., jailbreaking techniques). Moreover, there iIs no way to
restore device security for devices already deployed In the field once the secure boot
process has been compromised.

[0019] In addition to the problems noted above relating to platform security, there
IS a problem that iIs common to process isolation, access control, application licensing
services, virtual machines, and secure boot loaders that relates to the ability to recover
from an attack. Generally, once an attack has occurred there is no mechanism In place
to recover platform security for devices that have been sold or licensed or otherwise
distributed to consumers. We refer to this as “static security” because the assumption
iInherent in the design of such platform security is that the platform security mechanisms

put in place will resist any and all attacks during the useful lifespan of the device. Static
-6 -

PCT/CA2011/05013S

10

15

20

25

30

39

WO 2012/119218

CaA 02829104 2013-09-05

security 1s often attacked and such attacks are then “packaged” into automated attacks
that can be implemented by the average consumer (e.g., the known jailbreak attack on
the IPhone™ developed by Apple™).

[0020] “Virus detection and intrusion prevention software” is another security
method used to detect malware and mitigate any damage that such malware may cause.
To date, nearly every solution to detect malware on devices, such as mobile phones, has
relied upon the same “signature’-based mechanisms that personal computer (PC) anti-
virus solutions have used for years. The term “signature” here does not involve a digital
signature, but rather a set of attributes by which a specific piece of malware can be
iIdentified — e.g., an attribute such as being of a specific length and having a specific
sequence of bytes at a certain location within it. However, these signatures are only
understood once the malware has been deployed, meaning the malware may have
already caused damage. Additionally, these signature-based types of solutions must be
constantly updated and must be able to detect 10's of thousands of malware signatures.
These alone cannot be relied upon as the only means of detecting and preventing
damage from malware on devices. Additionally, anti-virus software itself can be modified
or disabled by malware to prevent such detection.

[0021] “Virtual machines” is yet another security method used to apply platform
security. Virtual machines, such as the Java™ virtual machine (JVM), are designed to
allow the safe execution of applications obtained from potentially untrusted sources. The
JVM accepts a form of computer intermediate language commonly referred to as Java™
bytecode which is a programming language conceptually representing the instruction set
of a stack-oriented, capabillity architecture from Oracle Corporation of Redwood Shores,
California. Java™ applications run in a restricted sandbox which is designed to protect
the user from misbehaving code or malware. This comes with performance limitations
and limitations In terms of the functionality -- e.9., applications are prevented from
accessing operating system functions and resources that are deemed to be "hazardous”.
[0022] Each of the aforementioned security methods form part of a static platform
security functionality 100 as shown in prior art FIGURE 1. Additionally, secure bootstrap
loading 110 as shown In FIGURE 1 is well known, for example within United States
Patent No. 6,185,678 Issued to Arbaugh et al. on February 6, 2001, and not further
described herein.

[0023] “‘Media application obfuscation”, is a security method which can be used In
conjunction with platform security, or in cases where platform security does not exist,
whereby software obfuscation techniques may be applied to media applications to

prevent cryptographic keys that are used to decrypt the content from being discovered by
-7 -

PCT/CA2011/05013S

10

15

20

25

81787446

a hostile user and to prevent media siphoning or screen scraping attacks on the
media playback path. There are four problems that arise in protecting the media
playback path. First, the media playback path may be implemented by the OEM or
another third party that gives the provider of the media application limited ability to
implement obfuscation techniques within the media playback path. Second,
obfuscating the media playback path can introduce additional central processing unit
(CPU) overhead which could increase the power consumption of a device, and
Introduce delays in the functioning of the application or other applications on the
device. Third, the high data rates of certain media types (e.g., high definition video)
associated with decompressed high definition video may limit the ability to obfuscate
the media playback path. Finally, the hardware used to render the media (i.e., a
graphics processing unit (GPU)) may not be secure or may have secure API's that
are not commercially accessible to the media application provider, in order to prevent

screen scraping type attacks.

[0024] It Is, therefore, desirable to provide a security mechanism that
overcomes the problems associated with previous methods of preventing
unauthorized use of a device and digital assets on that device and the limitations of

static platform security.
SUMMARY OF THE INVENTION

[0025] It Is an object of the present invention to obviate or mitigate at least one
disadvantage of previous platform security methods and mechanisms. More
specifically, the present invention addresses the deficiencies of previous platform
security methods and mechanisms in terms of improving security against at least

application piracy, malware, unauthorized applications, and content piracy.

[00253a] According to an aspect of the present invention, there is provided a
system for improving security of a device, said device including an operating system
between device hardware and application software said system comprising: a secure
software agent embedded within an operating system kernel of an operating system,

wherein the secure software agent is integral to the operating system kernel such that
-8 -

CA 2829104 2018-05-11

10

15

20

29

81787446

the operating system will not function correctly without the secure software agent;
and a secure store accessible only by the secure software agent for storing security
Information unique to said application software, the security information being
continuously available for use by said secure software agent during runtime to assure
ongoing Integrity of said device by monitoring the security information during runtime

to monitor ongoing operational integrity of said device.

[0025D] According to another aspect of the present invention, there is provided
a method of improving security of a device where said device includes an operating
system between device hardware and application software, said method comprising:
embedding a secure software agent within an operating system kernel of the

operating system, wherein the secure software agent is integral to the operating

system kernel such that the operating system will not function correctly without the
secure software agent; and providing a secure store that is accessible only by the
secure software agent for storing security information unique to said application
software, the security information being continuously available for use by said secure
software agent during runtime; and monitoring the security information during runtime

to monitor ongoing operational integrity of said device.

[0026] In a first embodiment, the present invention provides a system for
improving security of a device, the system including: an abstraction layer operable
between device hardware and application software; a secure software agent
embedded within the abstraction layer; and a secure store for storing security
iInformation unique to the application software for continuous runtime use by the

secure software agent to assure ongoing integrity of the system.

[0027] In a further embodiment, there is provided a method of improving
security of a device where the device includes an abstraction layer operable between
device hardware and application software, the method including: embedding a secure
software agent within the abstraction layer; and providing a secure store for storing
security information unique to the application software for continuous runtime use by

the secure software agent to assure ongoing operational integrity of the device.

. 9.

CA 2829104 2018-05-11

10

15

20

81787446

[0028] Other aspects and features of some embodiments of the present
iInvention will become apparent to those ordinarily skilled in the art upon review of the
following description of specific embodiments of the invention in conjunction with the

accompanying figures.
BRIEF DESCRIPTION OF THE DRAWINGS

[0029] Embodiments of the present invention will now be described, by way of

example only, with reference to the attached Figures.

[0030] FIGURE 1 is a schematic representing prior art static platform security

functionality.

[0031] FIGURE 2A is a layer schematic showing one embodiment of the

present invention as applied to an Android OS.

[0032] FIGURE 2B is a layer schematic showing another embodiment of the

present invention as applied to an Android OS.

[0033] FIGURE 2C is a layer schematic showing yet another embodiment of

the present invention as applied to an Android OS.

[0034] FIGURE 3 is a schematic showing certain aspects of dynamic platform

security functionality in accordance with the embodiment of FIGURE 2A.

[0035] FIGURE 4 is a schematic illustrating a typical boot loading sequence in

accordance with the embodiment of FIGURE 3.

[0036] FIGURE 5 is a schematic illustrating a provisioning sequence in
accordance with the embodiment of FIGURE 3.

[0037] FIGURE 6 is a schematic illustrating an installation of application

permissions in accordance with the embodiment of FIGURE 3.

- O3 -

CA 2829104 2018-05-11

10

81787446

[0038] FIGURE 7 is a schematic illustrating continuous system integrity during

runtime in accordance with the embodiment of FIGURE 3.

[0039] FIGURE 8 is a schematic illustrating validation of a user application

request during runtime in accordance with the embodiment of FIGURE 3.

[0040] FIGURE 9 is schematic illustrating application permission enforcement

during runtime in accordance with the embodiment of FIGURE 3.

DETAILED DESCRIPTION

[0041] Generally, the present invention provides a method and system for
renewable or "dynamic” platform security. Though applicable to any mobile phones,
games consoles, tablets, set top boxes, televisions or other consumer electronic

devices,

_ 0D -

CA 2829104 2018-05-11

10

15

20

25

30

39

WO 2012/119218

CaA 02829104 2013-09-05

the present invention will be described in terms of such devices that use an open 0OS
such as, but not limited to, the Linux or Android™ OS. |n particular, the preferred
embodiment will be shown and described relative to the Android™ OS for purposes of
illustration only and should not be construed as limiting the intended scope of the present
invention. Indeed, advantages of the present invention in terms of countering malware,
application piracy or modification, improving platform access control, and securing media
playback on devices are universally applicable to any device OS with particular
usefulness to any open device as a result of the inherently greater security risks
associated with such open devices. Moreover, the present invention is intended as a new
method and system of application control and which is usable with, and in addition to,
existing platform security.

[0042] With reference to FIGURE 2, an overall layer schematic 200 is shown to
iIndicate the present invention as implemented in an Android™ OS embodiment. Here,
the basic architecture of the present invention 1s seen to Include a layered execution
stack. The base layer 219 involves typical system on a chip (SOC) components including
a central processing unit (CPU), graphics processing unit (GPU), and memory (read only
memory (ROM)) within which the basic input/output system (BIOS) resides. The highest
layer in FIGURE 2 is the device application shown here as one or more Android™
applications 210a, 210b. Intervening layers include the various known software and
hardware elements Including a hard disk drive (HDD) storage device or flash memory
220, the OS kernel 215 and OS kernel application interface layer 214 which manages
system calls between the OS native applications 223 and the Android™ OS 213. In
accordance with the present invention, the layered execution stack further includes a
Java™ access control (JAC) layer 212 between the Android™ OS 213 and the virtual
machine (VM) layer 211 (i.e., Dalvik, which is the Android™ VM that forms an integral
part of the Android™ OS). The VM layer serves to convert the given application into a
compact executable form (i.e., the “.dex’ format In terms of Android™ applications)
suitable for execution in a known manner on the given device. The JAC layer 212 serves
to provide secure access control by authenticating communication between the machine
executable code of the VM layer 211 and a security agent (or simply "agent”) 217. Such
access control functionality may Iinclude any suitable known mechanism that provides a
bridge between scripted apps and the native agent to allow the agent to verify the
integrity of the scripted application thereby extending the range of “"applications” to
scripted applications. It should further be understood that if all applications are assumed

to be native applications 224, then the JAC layer 212 would not be required.

- 10 -

PCT/CA2011/05013S

10

15

20

25

30

39

WO 2012/119218

CaA 02829104 2013-09-05

[004 3] It should be understood that the present invention may be implemented In
conjunction with known static platform security functionality 100 as shown in FIGURE 1.
More specifically, the present Invention incorporates existing OS system security
functions, such as process isolation, by ensuring that the portions of the operating system
that perform such functions are not modified during the boot process or during run time.
As well, the present invention complements existing secure boot loader functions (Stage
1 Bootloader 221 and Stage 2 Bootloader 222 as shown in FIGURE 2) by verifying that
the correct secure boot loader path was followed and by dynamically verifying the
Integrity of the OS and boot loader. It should be understood that such secure boot loader
only functions as such during start-up.

[0044] In accordance with the present invention, the agent 217 is embedded In
the OS kernel 215. The agent 217 is Linux Security Module interface (LSM I/F)
compliant. LSM is not further discussed herein as it is a known framework (which Is
applicable to Android™ as well as Linux distributions) that allows the Linux kernel to
support a variety of computer security models without favoring any single security
implementation. In order to render the agent 217 resistant to tampering, modification,
and reverse engineering attacks, the agent 217 is itself protected using known software
protection techniques such as, but not limited to, those described in more detail in United
States Patent Nos. 6,594,761, 6,779,114, 6,842,862, and 7,506,177 each issued to Chow
et al. which Illustrate examples of such tamper resistance that may be usable In
conjunction with the present invention.

[0045] It should be understood that the agent 217 forms an integral and un-
detachable part of the OS5 kernel 215 without which the device OS5 213 and/or the
applications 210a, 210b, 224 will cease to function correctly. One example of the
functions of the agent 217 is to monitor the integrity of both the OS 213 and the
applications 210a, 210b, 224 loaded onto the device, and to detect any breaches of the
OS 213 or secure boot 221, 222. The agent 217 maintains and has sole access to a
secured data store 218 within which the agent 217 keeps information relevant for the
agent's performance of kernel resource access control, integrity verification, application
licensing and application resource access control. While the secure store 218 is shown in
FIGURE 2A as being a separate component of the inventive system, It should be
understood that the secure store 218 may exist within the hard drive or flash 220 as seen
In alternative embodiment 201 if FIGURE 2B. Still further, the secure store 218 may exist
as a secure memory within the system on a chip base layer 219 as seen In further
alternative embodiment 202 in FIGURE 2C.

-11 -

PCT/CA2011/05013S

10

15

20

25

30

39

WO 2012/119218

CaA 02829104 2013-09-05

[0046] In terms of kernel resource access control, the agent is configured to
control application access to OS kernel resources and data. The access control
decisions made by the agent are based on, but not limited to, factors such as: OS kernel
integrity, application integrity, application context, and the privileges granted by any given
trusted root authority. An access control decision based on OS Kernel integrity
determines whether the kernel has been modified, been replaced, been added to, or had
portions removed In an unauthorized manner. The access control decision will also
determine whether the secure boot process even occurred. If the OS kernel has been
modified, replaced, added to or portions removed or the secure boot process cannot be
positively verified, this determination would serve to invalidate many of the assumptions
that the agent or an application or a secure application such as a media player would
normally operate under. An access control decision based upon application integrity
determines whether the application that is attempting to access OS kernel resources has
been modified In any way (e.g., to Insert malware into the application or by other
malware) or whether the privileges associated with that application been modified (e.g., to
give It privileges to access system resources that were not authorized by the certifying
authority).

[0047] An access control decision based upon application context determines
whether a given application is functioning in some manner outside the context of that
application. Thus, the agent can make context sensitive access control decisions. For
example, If a media application playing high definition video Is running, then other
applications should not be able to access the frame buffer as this would enable a screen
scraping attack. An access control decision based upon any given trusted root authority
determines application permissions relative to the authority. In other words, the present
invention may support multiple application signing authorities such that the agent may
grant an application signed by a highly trusted authority a greater degree of latitude In
terms of access to system resources than may be granted to an application signed by a
less trusted authority or an application that was not certified at all.

[0048] In terms of the agent's performance of integrity verification, the agent is
configured to dynamically monitor (e.g., in memory while the software IS running) the
Integrity of the kernel, the secure boot components, the agent itself, and all protected
applications and unprotected applications to determine if any of these items have been
modified In any way at any time during the execution of the given application(s) (e.g.,
dynamic tampering which might be implemented using a debugger).

[0049] In terms of the agent's performance of application resource control, the

agent iIs configured to control access to application resources which may include, for
- 19 .

PCT/CA2011/05013S

10

15

20

25

30

39

WO 2012/119218

CaA 02829104 2013-09-05

example, a portion of the application that has been encrypted by the agent, or data files
that are required by the application to execute (e.g., game resource files), or data to
control execution of applications. Such access control decisions are based on factors
such as, but not limited to, the presence of valid license data or the confirmation of the
identity of the device or consumer, either of which are designed to protect applications
from piracy.

[0050] The agent itself may be embodied Iin software and generated by diverse
code portion combinations with a fixed interface. Creation of such variations in code
portions can be accomplished according to known methods, or combinations of such
methods, Including those described Iin United States Patent Nos. 6,594,761, 6,779,114,
6,842,862, or 7,506,177 each issued to Chow et al. or any other suitable known method.

|

Such variations can be termed “diverse agents” or “updated agents.” Diverse agents are
those which have the same functionality, F, but that are structurally and semantically
diverse. The objective of generating and deploying diverse agents Is to prevent an
automated attack -- I.e., an attack developed by a sophisticated attacker that can be
sufficiently automated that it is simple to use by an average consumer and that would be
applicable to each and every agent deployed in some Installed base of devices. Such
diverse agents may be deployed across different instantiations of a device, different types
of devices, devices sold in different geographic regions or by different operators, etc.

[0051] Updated agents are those whereby If an agent, A1, with functionality set
F1, Is deployed In the field and is compromised or attacked in some way, it is desirable to
fix such vulnerability. This may be accomplished by generating an agent, A2, that
Incorporates the functionality F1 but which also incorporates a new functionality designed
to prevent the attack on A1. This Incremental functionality, F2, 1s such that the
functionality of A2 is now F1 + F2. By applying diversity capabilities to A2, it iIs more
difficult for an attacker to isolate the software functions in A2 (e.g., through differential
analysis) which Iimplement the new functionality F2. Updated agents provide a
mechanism to address attacks on devices or agents that are already deployed in the field.
such updated agents could be downloaded by consumers, pushed to the device via a
software update mechanism or pulled to the device by the existing agent. Where such
updates occur, it should be understood that they are accomplished by configuring the
agent software for updates upon identification and analysis of any attempted or actual
successful attack by a security threat. Therefore, the present invention could issue
updates to the agent for attacks that are "in development” as hackers will often post
Information of attacks that are in development but which have not yet succeeded In

reaching the attackers objectives.
- 13 -

PCT/CA2011/05013S

10

15

20

25

30

39

WO 2012/119218

CaA 02829104 2013-09-05

[0052] With regard to FIGURE 3, a more detailed schematic 300 of the dynamic
platform security functionality is shown Iin accordance with the generalized stack
architecture of the present invention as in FIGURE 2. Here, it can be seen clearly, when
compared with prior art FIGURE 1, how the present invention compliments and can be
implemented in conjunction with the known static platform security functionality. As in the
previous FIGURES 2A-2C, the base layer Includes typical SOC 329 components
iIncluding a CPU 330 and ROM 333 within which BIOS 331 resides.

[0053] In terms of the operations shown Iin FIGURE 3, there is a typical secure
boot loader sequence 310 provided as shown. It should be understood that the
embodiment of the present invention could leverage existing secure boot technology. It
should equally be understood that the boot sequence may equally apply to 1 stage or the
many stages there-after. Typically there are 2 boot loading stages 334, 335 In a system
as shown In FIGURE 3. Generally speaking, bottom up validation of secure boot
components occurs as the first component validates the second component before
transferring execution control to the next component. This boot time integrity verification
IS shown by way of dotted lines. Here, the first stage occurs upon device reset, where
ROM code Is hard wired to the device reset address. The ROM (or boot ROM) 333 loads
the next boot stage 334 after verifying that the next boot stage is the intended boot stage.
This verification or authentication is performed by computing a digital signature from the
HDD or flash memory 328. If the digital signature matches the pre-computed value (as
encapsulated in the digital certificate 332 as shown), then the OS boot loader 335 will be
loaded into main memory and executed. If the signature does not match the pre-
computed value at any stage, execution control will not transfer to the next stage and the
device will fail to boot. When the OS boot loader 335 has execution control, the OS boot
loader performs 335 a similar operation of validating the OS image from the HDD or flash
memory 328. Again, If the computed signature matches the expected pre-computed
signature, it will load into memory the OS image and transfer control to the OS Iimage
(l.e., the Linux kernel 325 operating in the Android™ OS 339 as shown). The OS image
will then initialize, and during this process the agent 336 will also be initialized. While the
agent 336 Is Included in the OS image which is digitally signed, it should be understood
that the agent 336 may be updated. This Is because signatures are broken down Into
logical module separation and each module has its own signatures that are checked
during the secure boot process. Therefore, any module may be replaced though the
signature must be valid and trusted cryptographically with a digital signing private key.
[0054] With continued reference to FIGURE 3, the OS kernel 325 is shown as the

Linux kernel modified for the Android™ OS 339. Here, this specific implementation of the
- 14 -

PCT/CA2011/05013S

10

15

20

25

30

39

WO 2012/119218

CaA 02829104 2013-09-05

invention uses the Linux Security Module ("LSM"). As mentioned above, LSM Is a
framework that allows the Linux kernel 325 to support a variety of computer security
models while avoiding favoring any single security implementation. LSM provides hooks
at every point in the Linux kernel 325 where a user-level system call is about to result in
access to an important internal kernel object. LSM can be used to implement a wide
range of security functions (e.9., Mandatory Access Control (MAC), On Access Virus
Checking).

[00535] The agent 326 in accordance with the present invention is also configured
to Iinclude integrity verification (or simply "IV"). The IV function that is embedded In the
agent 326 enables the agent 326 to perform static integrity verification (e.g., on HDD or
on flash memory) and dynamic integrity verification (e.g., in random access memory
(RAM)). 1V 1s implemented by computing a hash value for an application or system
component and then comparing that to a known good value for the hash function. If the
calculated value Is the same as the stored known good value, then the agent assumes
that the component has not been modified by an attacker. However, If the calculated
value Is different than the stored known good value, then the agent assumes that the
component has been modified and can no longer be trusted to perform the functionality
that it was intended to perform or that it should no longer have the same privileges that
were originally assigned to it.

[0056] As shown In FIGURE 3, the agent 326 performs |V checks on a number of
device software components on an ongoing basis. This “integrity monitoring” is done to
detect any unauthorized modification (e.g., tampering) such as the modification,
replacement, removal, or additions of components or sub-components that are critical to
supporting the security objectives for the system.

[0057] Such components monitored via |V by the agent 336 in accordance with
the present invention include: ROM BIOS 331; HDD or device flash memory 328; stage 1
bootloader 334; stage 2 bootloader 335; Linux kernel 325 or portions of the Linux kernel;
system call interface (I/F) 338; agent 336 including the secure store 327 (during both
boot time and run time as indicated, respectfully, by dotted and solid arrows in FIGURE
3); native application 320; Android™ OS 339; native Android™ application 321; JAC 324;
Android™ (Dalvik) virtual machine 323; Android™ application 322; and application &
system provisioning sequence (as further described with regard to FIGURES 4 and 3
below).

[0058] Such integrity monitoring (shown by solid arrows) of native application 1
320 Is lllustrated in FIGURE 3. Here, the agent 336 continuously monitors native

application 1 320 such that integrity is verified when the native application 1 320 attempts
- 15 -

PCT/CA2011/05013S

10

15

20

25

30

39

WO 2012/119218

CaA 02829104 2013-09-05

to access system resources through the system call I/F 338. This occurs through
signature verification 337 whereby the agent 336 implements |V by comparing signature 1
340 to a known good value corresponding to application 1 resources. In particular,
application 1 resources include |V Information and the application signing certificate
stored In a secure store 327. If the signature 1 value is the same as the stored
application signing certificate (i.e., known good value), then the agent 336 assumes that
the native application 1 320 has not been modified by an attacker and that its permissions
or privileges 341 have not been modified. However, if the signature 1 value is different
than the known good value, then the agent 336 assumes that the native application 1 320
has been modified and can no longer be trusted to perform the functionality that it was
intended to perform. This process occurs for all native applications that may be present
up to native application n 321.

[0059] The process isolation block 326 shown In FIGURE 3 will be further
explained with regard to FIGURE 4 where there Is illustrated a runtime boot loading
sequence 400 in accordance with the present invention. In particular, upon device reset
a top down validation (at steps 1, 2, and 3) of secure boot components can be seen. This
validation serves to ensure that the OS that Is loaded onto the device Is the one Intended
by the OEM or operator and that the OS has the intended functionality. Once the agent
gains execution control during initialization (at step 4), the agent will perform IV upon itself
along with the previously executed components of the secure boot loader Including the
boot ROM Iimage, the OS boot loader, and the OS5 image. If the integrity (from steps 1
through 4) of all of these components is confirmed by the agent by using comparisons to
data resident in the agent secure store (at steps 5 though 8}, then the agent assumes that
the OS that iIs Installed on the device Is the Iintended OS and that certain security
functionality that may be performed by the OS has not been modified. However, If the
agent determines that one or more of the components cannot be authenticated, the agent
may take corrective action.

[0060] One possible corrective action taken by the agent is to replace the boot
components with a backup image of the intended boot components, then reset the device
and start the boot up process again. If the agent detects that the system is invalid after a
number of attempts to correct invalid components, then the agent may deny all further
access to critical system resources or application resources. It should be readily
apparent that the number of attempts is a matter of design choice and therefore a
predetermined variable within the intended scope of the present invention. Likewise, the

determination of which system resources may be considered critical may be

- 16 -

PCT/CA2011/05013S

CaA 02829104 2013-09-05

WO 2012/119218 PCT/CA2011/05013S

predetermined based upon the given device usage. As well, other corrective actions are
possible without straying from the intended scope of the present invention.
[0061] It should be understood the preceding detailed description presumes that
an application already exists and is therefore known to the OEM, operator, Internet-based
5 retall interface provider, and, in turn, known to the agent in accordance with the present
iInvention. However, It I1s readily apparent that new applications may come Into being by a
developer. As such, FIGURE 5 illustrates the processing that is applied to an application
(unprotected) submitted by a developer during the application certification process 500.
The agent in accordance with the present invention includes an asset protection tool 514
10 which is a software tool configured to create and update the encrypted application secure
store 512. Here, the asset protection tool 514 stores information to protect the
unprotected application. It should be understood that a variety of tamper resistant
techniques can be applied to the stored information such as, but not limited to, secure
loader and IV, and the use of whitebox cryptography to protect cryptographic secrets at
15 rest (e.g., on disk) and in use (e.g., In-memory).
[0062] With further regard to FIGURE 5, there Is provided an unprotected asset
515 (i.e., new application from a developer) at step 1. Created by the application
developer or development system Is an unsigned enhanced permission container
manifest 510 at step 2. This lists the permissions (A, B, ... etc.) granted to the application
20 by the certifying authority. Moreover, the permissions are mapped to specific set of
kernel system calls. After the unsigned manifest 510 is created, the asset protection tool
514 is configured to generate or use a provided private root of trust key 511 at step 3.
The root of trust may be automatically and randomly generated by the asset protection
tool. The asset protection tool 514 then signs the unsigned application 515 via the asset
25 protection tool 514 at step 4 and places the result in a signed enhanced permission
container manifest that exists within the application secure store $12. Moreover, the
signed version of the enhanced permission container manifest is stored at step 5 in the
application secure store 512 where information specific to the given asset (e.g., code
signature, enhanced permission container manifest, root of trust keys) are placed. The
30 resultant outcome at step 6 IS a signed and protected asset 313 in the form of a fully
provisioned application. Optionally, the unprotected new application may have a secure
loader wrapped around it so as to provide a resulting protected asset with static
tampering resistance and be IV enabled.
[0063] It should further be understood that not all application types may be
39 provisioned for any particular embodiment of the asset protection tool discussed above.

For example, in the present embodiment which is related specifically to the Android™
- 17 -

10

15

20

25

30

39

WO 2012/119218

CaA 02829104 2013-09-05

OS, a typical list of application types that can be provisioned, installed, and subsequently
run on the system implementing the present embodiment of the invention may be limited
to a native OS application, a native Android™ application, and an Android™ application.
Other open OS Implementations may of course be possible beyond the specific
Android™ OS implementation illustrated herein without straying from the intended scope
of the present Invention.

[0064] The permission information created In the provisioning sequence of
FIGURE 5 is further used by the agent during installation and runtime of the given
application being placed onto the device. Moreover, when the given application code
selected from the types of available applications is provisioned the resulting signed
enhanced permission container manifest in the application secure store thereby contains
all the permissions that the application code requires during runtime. The enhanced
permission container manifest specifies the application code signature and the signature
of the container itself so as to prevent tampering of the container or application after the
application code has been signed.

[0065] With regard to FIGURE 6, initial installation 600 of application permissions
1S lllustrated. Here, the signed enhanced permission container manifest 611 shown Is
found within the application secure store 610 that was created during provisioning time in
FIGURE 5. As previously mentioned, the enhanced permission container manifest 611 is
encrypted by the asset protection tool. Accordingly, this facilitates transfer of the
enhanced permission container manifest 611 from the application secure store 610 to the
agent secure store 612. Both the application secure store 610 and the agent secure
store 612 comprise the secure store as generally shown in FIGURE 3.

[0066] Within the enhanced permission container manifest 611 there exists a
permission list (i.e., Permission A, Permission B, ... etc.). The permission list determines
what OS kernel resources can be accessed by the given application code that forms the
application being installed and run. The application code signature Is used by the agent
613 to |V the application to ensure it has not been modified at the time it makes the OS
request for particular kernel permissions, such as "install’ requests. The container
signature Is a reference value for the container itself, and is used by the agent 613 to
ensure the contents of the container have not changed. Once the integrity of the OS and
the application have been verified, the installed application's enhanced permission
container manifest will be stored In the agent secure store 612 for future reference of
other permission requests for that application.

[0067] With further regard to FIGURE 6, the installation sequence includes first

sending at step 1 a request to the OS kernel 614 to install an application pursuant to an
- 18 -

PCT/CA2011/05013S

10

15

20

25

30

39

WO 2012/119218

CaA 02829104 2013-09-05

iInstaller directive from the application code 615. Subsequently, the OS kernel 614
passes along the request to the agent 613 at step 2. The agent 613 validates (via |V as
already described above) the OS kernel 614 at step 3. It should be understood as
previously noted above, that the agent 613 also validates the OS kernel 614 In an
ongoing manner (i.e., as a background process). At step 4, the agent 613 accesses the
application secure store 610 to retrieve the signed enhanced permission container
manifest 611 therefrom. The agent 613 validates at step 5 the application's signed
enhanced permission container manifest through IV using the signed enhanced
permission container manifest 611. The agent 613 at step 6 stores the validated
application’s enhanced permission container manifest into the agent secure store 612 for
future reference. Based upon the step 5 validation operation, the agent 613 allows or
denies the install to the OS kernel 614 at step 7. In turn, the OS Kernel 614 at step 8
passes the permission (allow or deny) to the installer directive that is installing the
application to be Installed to ultimately allow or deny installation of the application code
615.

[0068] As mentioned above, the agent validates the OS kernel in an ongoing
manner as kernel operations are required. This kernel access control 700 Is shown In
FIGURE 7 in terms of continuous runtime system integrity. Here, the sequence of how
the entire system integrity is maintained is shown whenever any application makes an OS
request for kernel services. In FIGURE 7, an installed and running application (i.e., user
application) 710 i1s shown making a request for OS services or resources 711. This
request is passed to the OS kernel 712 and which request is, In turn, passed along to the
agent 713 via the LSM functionality that will ultimately allow or deny the request. In
accordance with the present invention, the criteria used by the agent 713 to allow or deny
the application request may include: system/application integrity, application permissions,
application behavior, security context for other applications that may be running, and
remote commands (element 216, shown previously in regard to FIGURE 2A).

[0069] The agent decision criteria related to system/application integrity includes
whether tampering has been detected to either system or application components.

[0070] The agent decision criteria related to application permissions includes
whether the application has the necessary permissions to make such a request. In the
Android™ O, such permissions are declared in a manifest file that is associated with the
application. Application developers must declare these permissions and it is up to the
consumer to grant or not grant these permissions which may be problematic as

consumers are not typically aware of security implications of their actions.

-19 -

PCT/CA2011/05013S

10

15

20

25

30

39

WO 2012/119218

CaA 02829104 2013-09-05

[0071] The agent decision criteria related to application’'s behavior disregards
whether an application may have permissions to access certain kernel services and
Instead relies upon the application’'s behavior. For example, an application that requests
consumer GPS coordinates every 15 seconds and then attempts to send such
coordinates to a third party via some messaging protocol such as SMS, could potentially
be "spyware.” Such behavior therefore may result in request denial even though the
application may have permissions associated with the kernel service related to GPS
coordinates (i.e., the agent would block access if the application had rights granted to
location data, but not rights granted to SMS data).

[0072] The agent decision criteria related to the security context of any other
applications that may be running also disregards whether an application may have
permission to access certain kernel services and instead looks to whether allowing a
request when another trusted application is running could negatively affect one or more of
these trusted applications. In other words, the agent properly enforces permissions at
run time. For example, the requesting application may try to access certain memory or
drivers to capture high definition video after a trusted high definition video player
application that implements digital rights management has decrypted the video thereby
calling into question the appropriateness of the high definition video data usage by the
requesting application (i.e., the agent may block access to the screen buffer memory,
though allow the playing of the video itself).

[0073] The agent decision criteria related to remote commands involve providing
the agent the ability to support commands from a remote entity (e.g., a service provider)
that could override the applications permissions or privileges. For example, a mobile
operator may wish to disable a mobile device that has been stolen. In this case, the
agent would also base decisions to provide system access on remote commands that
would prevent the device from being used by an unauthorized user of the device. For
example, a mobile operator may wish to disable or limit the access an application or
applications have to network services or other kernel resources in the event that such an
application is causing problems with network reliability or stability (e.g., by generating a
high volume of traffic or connections that cannot be sustained by the network). In this
case, the agent could override the privileges that the application has or prevent the
application from executing at all.

[0074] Further, such commands from the remote command controller may be
used to limit permissions (e.9., reduce privileges, change privileges, or revoke privileges).
Further, such commands from the remote command controller may be used to remove

applications from the device, including terminating the application if currently executing,
- 20 -

PCT/CA2011/05013S

10

15

20

25

30

39

WO 2012/119218

CaA 02829104 2013-09-05

removing the application from memory, or un-installing the application completely.
Overall, it Is important to note that the present invention may not only serve to “Kill’
applications, but may also serve to limit access 1o system resources beyond the access
that is implied Iin the privileges associated with the given application -- e.g., even If an
application has the privilege to send SMS messages, this is not quantified in the
privileges such that when the application sends, for example, 10,000 SMS messages an
hour, the agent could “throttle this back™ based on some “normal behavior’ template
stored Iin the agent secure store or based on remote commands. Still further, the agent
may be used to report anomalous behavior back to the remote entity so that, for example,
a mobile operator or designated third party could make decisions about what to do (e.g.,
an application has made X requests for a system resource over some period of time).
[0075] Using the aforementioned criteria for ongoing runtime system integrity, the
kernel access control 700 shown in FIGURE 7 includes an initial OS request by the user
application 710 at step 1. In turn, the application at step 2 creates a software interrupt or
otherwise creates an event for the OS. In the OS5 kernel 712, the LSM receives the
request 711 (i.e., interrupt/event) and passes the request 711 to the agent 713 at step 3.
The agent 713 Integrity verifies the application 710 and the permissions at step 4 using
the criteria described above. At step 5, the agent 713 validates the user request memory
stack. Thereafter, the agent 713 integrity verifies the OS kernel image in memory at step
6. AS previously mentioned, IV checks are run on an ongoing basis by the agent 713.
This check verifies that the IV process is still running and has not detected any evidence
of tampering. Based upon the system validation process (steps 4, 5, and 6), the agent
713 therefore allows or denies the request, and, at step /7, the allowance or denial of the
request is passed along to the OS kernel 712. In turn, the OS kernel 712 passes along
the allowance or denial of the request at step 8. At such point, the application event
returns control back to the application 710 at step 9 with the decision to allow or deny the
request.

[0076] As In the continuous runtime system integrity of FIGURE 7, it should be
understood that the application must also be validated In an ongoing manner.
Accordingly, there Is shown runtime validation of an application request in FIGURE 8. In
general, an application must not be tampered with in any way or validation here will fall.
The stack diagram 800 in FIGURE 8 Illustrates how the present invention efficiently
provides application integrity monitoring while maintaining system integrity at the same
time. Here, the address spaces for the agent 812, OS kernel 811, and application 810
are shown. As the agent is embedded in the OS kernel, it should be understood that the

agent address space 812 is therefore shared with the OS kernel address space 811.
- 21 -

PCT/CA2011/05013S

10

15

20

WO 2012/119218

CaA 02829104 2013-09-05

Return addresses in the calling stack are data points into integrity verification information
that is contained in the agent. The start of runtime validation (at step 1) of the application
Involves the agent walking the stack of the request for OS service while validating all
return addresses (at steps 2 through 4) and performing integrity verification on the
address range utilizing the call stack signature as described below. VWhen an application
makes a request for any OS5 kernel service, the OS kernel passes along this request of a
kernel service to the agent. This OS kernel is LSM enabled such that the agent is
required to allow or deny the request.

[0077] In accordance with the present invention, runtime call stack signature
calculation is accomplished using the distance (in bytes) between each return address on
the stack to the top of the stack. Table A represents exemplary call stacks for the agent
812, the OS kernel 811, and the application 810.

Call Stack | Owner Stack Frame Element Comments
Signature Filter “Return
Address”
Agent Return Address Current Stack PFosition (must be
Agent Address Space)
12 bytes Agent Variable length stack frame
Agent Return Address Calculate the bytes Inbetween
23 bytes OS Kernel Variable length stack frame
OS Kernel Return Address Calculate the bytes inbetween
44 bytes OS Kernel Variable length stack frame
OS Kernel | Return Address Calculate the bytes Iinbetween
10 Bytes User App Variable length stack frame
User App Return Address Calculates the bytes Inbetween
User App Top of Stack
TABLE A
[00738] The signature from the above example includes an application unigue user

ID randomly assigned during installation and a collection of call stack signature bytes as

seen in Table B.

Application ldentifier (2-8 bytes) | Call Stack Signature (2 — 128 bytes)

TABLE B

- 22 -

PCT/CA2011/05013S

10

15

20

25

30

39

WO 2012/119218

CaA 02829104 2013-09-05

[0079] In terms of the example of TABLE B, the signature of call stack of
"Application ID 12032" would be “12032:12:23:44:10" and used in the integrity verification
check by the agent.

[0080] The depth of the stack is a variable length but not to exceed 128 samples.
Also, the depth of the stack between the OS Kernel and the agent is known and
calculated prior to the application calling the OS kernel services. From this calculation,
the agent may determine that all the return addresses on the call stack are included in the
integrity verification signature range when the application and system components were
provisioned. It should be understood that all the return addresses must be found in the list
of signatures of the signed application and system components, which are stored in the
agent secure store, in order for the agent to allow the OS to service the application.
[0081] As shown In FIGURE 8, there is detailed a runtime call stack signature
validation sequence. Here, the validation sequence begins at step 1. Thereafter, at step
2, the agent examines the stack and determines the return address which identifies the
location of the calling code In the OS5 Kernel address space 811. Based on the calling
code, the agent at step 3 verifies that the caller is legitimate and has recently and
successfully had its integrity verified. There may be several layers of this checking In the
OS Kernel address space 811, as indicated in FIGURE 8. Thereafter, at step 4, a similar
return address determination and validation process is performed as calling code in the
stack appears from the application address space 810. Again, there may be several
layers of this checking In the application address space 810, as shown in FIGURE 8.
[0082] During runtime, it should be understood that application permissions
should be enforced on an ongoing basis as applications are subject to dynamic attacks
(e.g. portions of an application or its associated permissions could be modified during
execution using a debugger). Such application permission enforcement 900 is shown in
FIGURE 9. Here, any request that an application 914 makes to the OS kernel 913 after
installation of the application 914 will be validated using the signed enhanced permission
container manifest 910 that is stored in the agent secure store 911. The agent 912 will
allow or deny the request based on the integrity of the system and the permission
provided In the enhanced permission container 910. The enforcement sequence includes
an application 914 making an OS request at step 1 and, at step 2, the OS kernel 913
validates the request with the agent 912. At step 3, the agent 912 validates the OS
iIntegrity as already described above.

[0083] Step 4 provides that the agent 912 validates the type of OS Kernel request
from the signed enhanced permission container manifest 910. It is important here to note

that, at run-time, the requesting application is only granted access to OS Kernel services
- 23 .

PCT/CA2011/05013S

10

15

WO 2012/119218

CaA 02829104 2013-09-05

that are contained within the signed enhanced permission container manifest 910 which
contains the requested permissions as identified by the application developer prior to
submission of the application to certification. Moreover, this mechanism maintains the
security and integrity of the system, even If the application developer does not correctly
identify all kernel services that their application attempts to access at run time.

[0084] Once the agent 912 validates the type of OS5 Kernel request from the
signed enhanced permission container manifest 910, the agent 912 then passes the allow
or deny decision based on the validation in the steps 3 and 4 to the OS kernel 913 at step
5. Subsequently, the OS kernel 913 passes such allow or deny decision to the
application 914 at step 6 based on the agent decision passed to it.

[00895] The above-described embodiments of the present invention are intended
to be examples only. Alterations, modifications and variations may be effected to the
particular embodiments by those of skill in the art without departing from the scope of the

Invention, which is defined solely by the claims appended hereto.

- 24 -

PCT/CA2011/05013S

10

15

20

25

81787446

CLAIMS:

1. A system for improving security of a device, said device including an
operating system between device hardware and application software said system

comprising:

a secure software agent embedded within an operating system kernel
of an operating system, wherein the secure software agent is integral to the operating

system kernel such that the operating system will not function correctly without the

secure software agent; and

a secure store accessible only by the secure software agent for storing
security information unique to said application software, the security information
being continuously available for use by said secure software agent during runtime to
assure ongoing integrity of said device by monitoring the security information during

runtime to monitor ongoing operational integrity of said device.

2. The system as claimed in Claim 1 wherein said operating system is an

open operating system.

3. The system as claimed in Claim 2 wherein said open operating system

IS a Linux operating system.

4. The system as claimed in Claim 3 wherein said secure software agent

Is compliant with a Linux Security Module.

5. The system as claimed in Claim 3 wherein said secure software agent
Includes software configured to determine a presence of malware within or
modification of said application software based upon said security information unique

to said application software.

6. The system as claimed in Claim 3 wherein said secure software agent
Includes software configured to identify unauthorized use of said application software

based upon said security information unique to said application software.

- 25 _

CA 2829104 2018-05-11

10

15

20

25

81787446

7. The system as claimed in Claim 3 wherein said secure software agent
includes software configured to provide platform access control of said application

software based upon said security information unique to said application software.

8. The system as claimed in Claim 3 wherein said application software is a
media application and secure software agent includes software configured to provide
secure media playback of said application software based upon said security

Information unique to said application software.

9. The system as claimed in Claim 3 wherein said secure software agent
Includes software that is configurable for updates upon identification and analysis of

previously unknown security threats.

10. The system as claimed in Claim 3 wherein said secure software agent
Includes software that Is configurable for updates upon identification and analysis of

an actual successful attack by a security threat or of an attack in development.

11. The system as claimed in Claim 3 wherein said application software is a
media application and secure software agent includes software configured to control

context sensitive access to resources of said Linux kernel.

12. The system as claimed in Claim 11 wherein said control of said context

sensitive access overrides known privileges of said application software.

13. The system as claimed in Claim 12 wherein one instance of said
application software I1s a media player and said control precludes all other instances
of said application software from accessing a media rendering path, including a frame

buffer, used by said media player.

14, The system as claimed in Claim 12 wherein said control precludes
access by said application software to resources of said Linux kernel upon indication

of said Linux kernel being compromised.

. 26 -

CA 2829104 2018-05-11

10

15

20

25

81787446

15. The system as claimed in Claim 12 wherein said control precludes
access by said application software to resources of said operating system kernel
upon indication that said application software Is automatically providing locational

data of said consumer electronic device to an unauthorized remote server.

16. The system as claimed in Claim 3 wherein said secure software agent

includes software configured to verify in an ongoing manner that said operating

system kernel has not been subject to modification.

17. The system as claimed in Claim 16 wherein said secure software agent
further includes software configured to verify in an ongoing manner and after booting

sald operating system kernel that a secure boot process was implemented.

18. The system as claimed in Claim 3 wherein said secure software agent
includes software configured to perform a runtime call stack signature validation

sequence.

19. The system as claimed in Claim 18 wherein said runtime call stack
signature validation sequence includes examining a call stack to determine a return

address identifying a calling code location from an address space,

verifying, based on said calling code location, legitimacy of a caller

corresponding

to said return address, and repeating said examining and verifying from

an application address space.

20. The system as claimed in Claim 3 wherein said secure software agent
includes ability to support commands from a remote entity so as to override

predetermined permissions granted to said application software.

21. The system as claimed in Claim 20 wherein said commands include
disabling a device running said application software upon indication that said device

IS used in an unauthorized manner.

.97

CA 2829104 2018-05-11

10

15

20

29

81787446

22. The system as claimed in Claim 20 wherein saild commands include
limiting operation of said application software running on a device upon indication that
said application software is causing problems with functionality of a network over

which said device Is operating.

23. The system as claimed in Claim 20 wherein said commands include
limiting said predetermined permissions granted to said application software.
24. The system as claimed in Claim 20 wherein said commands include

removing said application software from said device.

25, The system as claimed in Claim 20 wherein saild commands Include

terminating operation of said application software.

20. The system as claimed in Claim 20 wherein said commands include

removing said application software from memory of said device.

27. The system as claimed in Claim 20 wherein said secure software agent

IS configured to report anomalous behavior back to said remote entity.

28. A method of improving security of a device where said device includes

an operating system between device hardware and application software, said method

comprising:

embedding a secure software agent within an operating system kernel ‘
of the operating system, wherein the secure software agent is integral to the
operating system kernel such that the operating system will not function correctly

without the secure software agent; and

providing a secure store that is accessible only by the secure software
agent for storing security information unique to said application software, the security
information being continuously available for use by said secure software agent during

runtime: and

- 28 -

CA 2829104 2018-05-11

10

15

20

81787446

monitoring the security information during runtime to monitor ongoing

operational integrity of said device.

29. The method as claimed in Claim 28 wherein said operating system iIs an

open operating system.

30. The method as claimed in Claim 29 wherein said open operating

system is a Linux operating system.

31. The method as claimed in Claim 30 wherein said secure software agent

iIs compliant with a Linux Security Module.

32. The method as claimed in Claim 31 wherein said method further
iIncludes determining a presence of malware within said application software based

upon said security information unique to said application software.

33. The method as claimed in Claim 31 wherein said method further
includes identifying unauthorized use of said application software based upon said

security information unique to said application software.

34. The method as claimed in Claim 31 wherein said method further
includes providing platform access control of said application software based upon

said security information unigue to said application software.

35. The method as claimed in Claim 31 wherein said application software is
a media application and where said method further includes providing secure media

playback of said application software based upon said security information unigue to

said application software.

36. The method as claimed in Claim 31 wherein said method further
iIncludes updating said secure software agent upon indication of previously unknown

security threats.

.29 .

CA 2829104 2018-05-11

10

15

20

29

81787446

37. The method as claimed in Claim 31 wherein said method further
Includes updating said secure software agent upon indication of an actual successful

attack by a security threat.

38. The method as claimed in Claim 31 wherein said application software is
a media application and where said method further includes limiting or controlling
access to resources of said Linux kernel where such access leads to unauthorized

use of said media application or media played by such media application.

39. The method as claimed in Claim 38 wherein said method further

includes overriding known privileges of said application software.

40. The method as claimed in Claim 38 wherein one instance of said
application software is a media player and where said method further includes
precluding all other instances of said application software from accessing a media

rendering path including a frame buffer used by said media player.

41. The method as claimed in Claim 38 wherein said method precludes
access by said application software to resources of said Linux kernel upon indication

of said Linux kernel being compromised.

42 The method as claimed in Claim 38 wherein said method precludes
access by said application software to resources of said Linux operating system

kernel upon indication that said application software is automatically providing privacy

related data of said consumer electronic device to an unauthorzed remote server.

43. The method as claimed in Claim 42 wherein said privacy related data
iIncludes user-specific data selected from a group consisting of locational data

Indicative of device user location, device user call history, device user email data,
device user photographic data, device user contact book data, and device user

personal data.

- 30 -

CA 2829104 2018-05-11

10

15

20

29

81787446

44 . The method as claimed in Claim 30 wherein said method further verifies
In an ongoing manner that said Linux operating system kernel has not been subject

to modification.

45, The method as claimed in Claim 44 wherein said method further verifies

In an ongoing manner and after booting said Linux kernel that a secure boot process

was implemented.

46. The method as claimed in Claim 31 wherein said secure software agent
iIncludes ability to support commands from a remote entity so as to override

predetermined permissions granted to said application software.

47 . The method as claimed in Claim 46 wherein said commands include
disabling a device running said application software upon indication that said device

IS used in an unhauthornzed manner.

48. The method as claimed in Claim 46 wherein saild commands Include
limiting operation of said application software running on a device upon indication that
sald application software Is causing problems with functionality of a network over

which said device is operating.

49, The method as claimed in Claim 46 wherein saild commands include

limiting sald predetermined permissions granted to said application software.

50. The method as claimed in Claim 46 wherein saild commands include

removing said application software from said device.

51. The method as claimed in Claim 46 wherein said commands include

terminating operation of said application software.

52. The method as claimed in Claim 46 wherein said commands include

removing said application software from memory of said device.

53. The method as claimed in Claim 46 wherein said secure software agent

IS configured to report anomalous behavior back to said remote entity.
- 31 -

CA 2829104 2018-05-11

CA 02829104 2013-09-05

WO 2012/119218

1711

100

/

Native
Application n

Native
Application 1

Privileges 1

Privileges n

Signature 1 Signature n

Signature
Verification

OS Kernel

PCT/CA2011/050135

Scripted
Application
Virtual Machine

(e.g., JVM)

Signature Access Control Process
Verification Framework |solation
o Encrypted/Signead
OS Image
Stage 2
Bootloader -
Hard Drive or
Flash
Stage 1
Bootloader
Secure Encrypted/Signed
Boot < Stage 2 Image
Loader
110
ﬁ S0C
Digital CPU

Certificate

BIOS

FIGURE 1
(Prior Art)

Encrypted/Signead
Stage 1 Image

CA 02829104 2013-09-05

WO 2012/119218 PCT/CA2011/050135

2/11

210a 210b

200 Android Android
\ Application] |Application

211

Android
Virtual Machine
212
224 Native Android
Application JAC

OS Native
Application Android OS

OS Kernel Application Interface Layer (system calls)

223

215
OS Kernel

Agent Remote
(LSM I/F Compllant) COmmandS
Hard Drive or
Flash

21 o
Secure 217
Store

Stage 2
Bootloader
Stage 1
Bootloader

221

222

220

FIGURE 2A

CA 02829104 2013-09-05

WO 2012/119218 PCT/CA2011/050135

3/11

Android Android
Application Application

Android

207
\

Virtual Machine

Native Android
Application JAC
OS Native |
Application Android OS

OS Kernel Application Interface Layer (system calls)

Agent
(LSM I/F Compliant)

Stage 2 590
Bootloader Flash
Secure
Store |

Remote
Commands

Bootloader

ROM BIOS

Stage 1

2138

FIGURE 2B

CA 02829104 2013-09-05

WO 2012/119218 PCT/CA2011/050135

4/11

Android Android
Application Application

Android

202
\

Virtual Machine

Native Android
Application JAC
OS Native |
Application Android OS

OS Kernel Application Interface Layer (system calls)

Agent
(LSM I/F Compliant)

Remote
Commands

Stage 2
Bootloader

Stage 1
Bootloader
Secure

FIGURE 2C

Hard Drive or
Flash

220

213

CA 02829104 2013-09-05

WO 2012/119218 PCT/CA2011/050135

300
\

322

Scripted
Application

341 -
-

323

Virtual Machine
(e.g., JVM)
324
P ST
32

339 ' ys
338 #Signature
Isolation

Signature
Verification

5

326

! e R
| | 27

Secure
Store

335 L

Encrypteld/Signed 28

_ Stage 2
| Bootloader
|
| | Kernelllmage
| =
| |
T Stage 1 |
Secure | Bootloader
|
| |

Hard Drive or
Flash

Enc?ypted/Signed
Boot < Stage 2 Image |
Loader |
310 |
| SOC 1329 |
| |
333 - BIOS |
Certificate |
AAN 330 |
/S
N |
332 331 : |
|
L e e e e e e e e e e e -

Boot Time Integrity Encrypted/Signed

— e — — o . St 1
Verification age 1 Image

Run Time Integrity Verification

FIGURE 3

CA 02829104 2013-09-05

WO 2012/119218 PCT/CA2011/050135

6/11

Device
Reset

400

Device

ROM
Execution

OS
Boot
Loader

OS
Image
Initialization

Agent
Continuous
Runtime
Operation

FIGURE 4

Agent Secure Store

Images of Authorized
Boot Components

CA 02829104 2013-09-05

WO 2012/119218 PCT/CA2011/050135

7111

500 510
\

Unsigned Enhanced Permission 514
Container Manifest

Permission A

Unsigned

Asset

Root of Trust

XX XXXXXXXXXXXXXXX
XX XXXXXXXXXXXXXXX

512

514- Asset
Protection

Tool Specific Information of Asset
(code signature, signed
enhanced permission container
manifest, root of trust keys)

Application Secure Store

Signed &

Frotected 513
Asset -

FIGURE 5

WO 2012/119218

Application
Code

make OS request
for installation

614

allow/deny
permission

ON
Kernel

CA 02829104 2013-09-05

8/11

allow/deny

Make OS request
for installation

613

Agent

®

PCT/CA2011/050135

Application Secure Store

FPermission container

610

get enhanced permission container manifest 61 1

Signed Enhanced Permission
Container Manifest

Permission A
Permission B

permission Application Code Signature
Container Signature

@ get enhanced

permission
container manifest

Store enhanced
permission container

@ manifest
&

Validate application
instaliation

Agent Secure Store

612

FPermission container of all

successfully installed
applications

FIGURE 6

CA 02829104 2013-09-05

WO 2012/119218 PCT/CA2011/050135

9/11

710

User @ @ /
Application

Make OS Allow or Deny

Request Request

700

User Application
Request OS Service

Allow or Deny

Request
Make OS
Request 712
Allow or Deny
Request
O0S OS Request to be
Kernel Authorized from Kernel

713

© ®

Agent

FIGURE 7

WO 2012/119218

CA 02829104 2013-09-05

PCT/CA2011/050135

10/11
800

,

Application
Address Space

®

Saved Reqisters
Parameters
Return Address
Saved Frame Pointer
Local Variables
Saved Reqisters
Parameters
Return Address
Saved Frame Pointer
Local Variables 10

OS Kernel

Address Space

®

Saved Regqisters
Parameters
Return Address
Saved Frame Pointer
Local Variables

Saved Regqisters
Parameters
Return Address
Saved Frame Pointer
Local Variables 811

Agent
Address Space

(Shared with Kernel)

Start
@ Validation

®

Saved Registers

Parameters
Return Address

aved Frame Pointer
L ocal Variables

FIGURE 8

CA 02829104 2013-09-05

WO 2012/119218 PCT/CA2011/050135

11/11

900 \ 910

Signed Enhanced Permission
Container Manifest

Application Sarmission B
ermission
Cotde [¥ ordien

permission

Application Code Signature
Container Signature

914

make OS request
for permission

permission

913

I
|
|
allow/deny |
l
|
|

Added during installation process

Make OS request
for permission

/ 911

Validate application
permission

Agent Secure Store

©

FPermission container of all
applications

FIGURE 9

210a 210b

200 Android Android
\ Application] |Application

211
Androig
Virtual Machine
212

224 Native Android
Application JAC
OS Native | 213
Application Andraid OS

214

223
OS Kernel Application Interface Layer (system calls)

215

Agent Remote
(LSM UF: Compliant) Ommands
Stage 2 216
Bootloader Flash
217

222

Bootloader

Secure
Stage 1 Store

218

ROM BIOS 219

221

	Page 1 - abstract
	Page 2 - abstract
	Page 3 - abstract
	Page 4 - abstract
	Page 5 - description
	Page 6 - description
	Page 7 - description
	Page 8 - description
	Page 9 - description
	Page 10 - description
	Page 11 - description
	Page 12 - description
	Page 13 - description
	Page 14 - description
	Page 15 - description
	Page 16 - description
	Page 17 - description
	Page 18 - description
	Page 19 - description
	Page 20 - description
	Page 21 - description
	Page 22 - description
	Page 23 - description
	Page 24 - description
	Page 25 - description
	Page 26 - description
	Page 27 - description
	Page 28 - description
	Page 29 - description
	Page 30 - description
	Page 31 - claims
	Page 32 - claims
	Page 33 - claims
	Page 34 - claims
	Page 35 - claims
	Page 36 - claims
	Page 37 - claims
	Page 38 - drawings
	Page 39 - drawings
	Page 40 - drawings
	Page 41 - drawings
	Page 42 - drawings
	Page 43 - drawings
	Page 44 - drawings
	Page 45 - drawings
	Page 46 - drawings
	Page 47 - drawings
	Page 48 - drawings
	Page 49 - abstract drawing

