Title: DOUBLE-SIDED TAPE FOR TOUCH SCREEN PANEL HAVING SUPERIOR IMPACT RESISTANCE

Abstract: The present invention relates to a double-sided tape for a touch-screen panel having superior impact resistance, the double-sided tape comprising: a base layer formed by forming an acrylic foam coating layer on the upper surface of a polyester film; adhesion layers formed on the upper and lower surfaces of the base layer; and a release layer formed on the outer surface of the adhesion layers. The double-sided tape for a touch-screen panel having superior impact resistance firmly bonds the touch-screen panel module and the liquid crystal module by being positioned therebetween, and exhibits superior heat-resistance and impact-resistance.
본 발명은 내충격성이 우수한 터치스크린 패널용 압면테이프에 관한 것으로, 더욱 상세하게는 플라스틱 필름의 상
부면에 아크릴 밸포폼 코팅층을 형성하여 이루어진 기재층, 전술한 기재층의 상부면 및 하부면에 형성되는 접착층 및
전술한 접착층의 외표면에 형성되는 이형층으로 이루어진다. 전술한 내충격성이 우수한 터치스크린 패널용 압면테이
프는 터치스크린 패널 모듈과 역정모듈 사이에 위치하여 터치스크린 패널 모듈과 역정모듈을 긴고하게 접착하여, 우
수한 내열성과 내충격성을 나타낸다.
명세서
발명의 명칭: 내충격성이 우수한 터치스크린 패널용 양면테이프
기술분야

[2] 배경기술
[6] 또한, 아크릴 공중합계 접착제를 이용하여 터치스크린 모듈과 액정보울사이의 공간에 부착하려던 양면테이프의 두께가 200 내지 250 마이크로미터로 형성되어야 하는데, 전술한 것처럼 200 마이크로미터 이상의 두께를 갖는 양면테이프를 제조할 경우 중래에 방식대로 아크릴 공중합 접착제를 70 마이크로 미터 이상의 두께로 코팅하게 되면 접착제의 허름현상(전 현상)으로 잔사가 발생하고, 터치스크린 패널 모듈 세트와 액정보울 세트를 오염시키는 문제점이 있었다.

[7] 발명의 상세한 설명
기술적 과제
[9] 본 발명의 다른 목적은 아크릴 발포용 코팅층이 형성되어 우수한 내충격성을
타네일의 내열성 및 제작공정이 향상된 내충격성이 우수한 터치스크린 패널용 양면테이프를 제공하는 것이다.

[10]

과제 해결 수단

[12] 본 발명의 바람직한 특성에 따르면, 상기 기계층은 110 내지 155 마이크로미터의 두께로 이루어지는 것으로 한다.

[13] 본 발명의 더 바람직한 특성에 따르면, 상기 아크릴 발포폼 코팅층은 20 내지 40 마이크로미터의 입자크기를 갖는 아크릴로니트릴 발포체와 흑색안료가 혼합된 아크릴바이퍼로 이루어지는 것으로 한다.

[15] 본 발명의 더욱 더 바람직한 특성에 따르면, 상기 접착층은 50 내지 70 마이크로미터의 두께로 이루어지는 것으로 한다.

발명의 효과

[17] 본 발명에 따른 내충격성이 우수한 터치스크린 패널용 양면테이프는 터치스크린 패널 모듈 및 액정 모듈과의 접지면적이 좁은 상대에서도 탁월한 접착성을 나타낸다.

[18] 또한, 아크릴 발포폼 코팅층이 형성되어 우수한 내충격성을 나타내며, 내열성 및 제작공정이 우수한 효과를 나타낸다.

도면의 간단한 설명

[20] 도 1은 본 발명에 따른 내충격성이 우수한 터치스크린 패널용 양면테이프를 나타낸 분해사시도이다.

발명의 실시를 위한 최선의 형태

[22] 본 발명은 내충격성이 우수한 터치스크린 패널용 양면테이프에 관한 것으로, 더욱 상세하게는 플라스틱 필름의 상부면에 아크릴 발포폼 코팅층을 형성하여 이루어진 기계층, 전술한 기계층의 상부면 및 하부면에 형성되는 접착층 및 전술한 접착층의 외부면에 형성되는 이형중으로 이루어진다.

[23] 전술한 내충격성이 우수한 터치스크린 패널용 양면테이프는 터치스크린 패널 모듈과 액정모듈 사이에 위치하여 터치스크린 패널 모듈과 액정보물
발명의 실시를 위한 형태

이하에는, 본 발명의 바람직한 실시예와 각 성분의 물성을 상세하게 설명하되, 이는 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자가 발명을 읽어하게 실시할 수 있을 정도로 상세하게 설명하기 위한 것이지, 이로 인해 본 발명의 기술적인 사상 및 범주의 한정되는 것을 의미하지는 않는다.

본 발명에 따른 내층격성이 우수한 터치스크린 패널용 양면테이프는 폴리에스터 필름(11)의 상부면에 아크릴 발포폼 코팅층(12)을 형성하여 이루어진 기재층(10), 전술한 기재층(10)의 상부면 및 하부면에 형성되는 접착층(20) 및 전술한 접착층(20)의 외면면에 형성되는 이형층(30)으로 이루어진다.

전술한 기재층(10)은 본 발명에 따른 내층격성이 우수한 터치스크린 패널용 양면테이프의 기재가 되는 층으로, 폴리에스터 필름(11)의 상부면에 아크릴 발포폼 코팅층(12)을 형성하여 이루어지는데, 아크릴이나 유리소재로 이루어진 터치스크린 와노두 패널에 모두 적용하여 내층격성을 나타낼 수 있으며, 본 발명에 따른 내층격성이 우수한 터치스크린 패널용 양면테이프에 우수한 내열성을 부여하고, 흡색인가 혼합 분산되어 백라이트 유닛에서 전달되는 빛이 디스플레이의 트루리에 형성된 프레임 부위로 세어나가는 것을 차단하는 역할을 한다.

전술한 폴리에스터 필름(11)은 10 내지 25 마이크로미터(㎛)의 두께로 형성되며, 아크릴이나 유리소재로 이루어진 터치스크린 와노두 패널에 모두 적용가능하며, 본 발명에 따른 터치스크린 패널용 양면테이프에 우수한 내열성과 제작업성도 부여하여, 가공 조립의 잘못으로 인한 불량 발생시에 손쉽게 양면 테이프를 제거할 후에 제조할 수 있다.

또한, 전술한 아크릴 발포폼 코팅층(12)은 100 내지 130 마이크로미터의 두께로 형성되며, 20 내지 40 마이크로미터의 입자크기를 갖는 아크릴로니트릴 발포제와 흡색인가가 혼합된 아크릴바이너트로 이루어져는데, 전술한 아크릴 발포폼 코팅층(12)이 형성된 기재층(10)은 본 발명에 따른 내층격성이 우수한 터치스크린 패널용 양면테이프에 우수한 내층격성을 부여하여 외부의 충격으로부터 터치스크린 패널 모듈과 역전모듈 간의 탈락현상이 발생하지 않도록 하는 역할을 한다.

이때, 전술한 기재층(10)의 두께가 110 마이크로미터 미만으로 형성되면, 양면테이프의 내열성 및 내층격성이 저하되며, 155 마이크로미터를 초과하게 되면 전술한 접착층(20)이 없게 형성되어야 하기 때문에, 본 발명에 따른
내층 격성이 우수한 터치스크린 패널용 양면테이프의 접착성을 저하되어 터치스크린 패널 모듈과 액정보이 모듈 간의 탈락현상이 발생하며, 제조비용이 증가한다.

[33] 진술한 폴리에스터 천천(11)의 상부면에 아크릴 발포폼 코팅층(12)을 형성할 때는 아크릴 폴리올 또는 아크릴 중합체를 사용하는 것이 바람직하다.

[34] 진술한 접착층(20)은 전술한 기계층(10)의 상부면 및 하부면에 형성되며, 본 발명에 따른 내층격성이 우수한 터치스크린 패널용 양면테이프가 터치스크린 패널 모듈과 액정보이 모듈 사이에 위치하여 터치스크린 패널 모듈과 액정보이모듈을 접착시킬 수 있도록 하는 역할을 한다.

[35] 이때, 진술한 접착층(20)은 아크릴제 접착제(PSA, Pressure Sensitive Adhesive)로 이루어지며, 50 내지 70 마이크로미터의 두께를 갖는데, 우수한 접착성을 나타내어 진술한 기계층(10)이 터치스크린 패널 모듈과 액정보이 모듈 사이에 제거되었을 때, 기계층과 터치스크린 패널 모듈 및 액정보이모듈의 부착면적이 짙은 경우에도 우수한 접착력을 나타내어 터치스크린 패널 모듈과 액정보이모듈을 고고하게 접착하는 역할을 한다.

[36] 진술한 접착층(20)이 50 마이크로미터 미만으로 형성되면 접착성이 저하되며, 70 마이크로미터를 초과하게 되면 접착제 성분이 기계층 밖으로 흘러나오는 현상이 발생하며, 접착제의 잔사물이 증가하여 제작업성이 저하된다.

[37] 진술한 이형층(30)은 진술한 접착층(20)의 외표면에 형성되며, 60 내지 180 마이크로 미터의 두께를 갖는 실리콘 이형처리된 폴리에스터 필름 또는 실리콘 이형처리된 종이 제거법의 이형지로 이루어지는데, 진술한 접착층(20)의 표면이 오염되는 것을 방지하는 역할을 한다.

[38] 진술한 이형층(30)은 본 발명에 따른 내층격성이 우수한 터치스크린 패널용 양면테이프를 터치스크린 패널에 적용하기 전에 양면테이프로부터 제거된다.

[39] 이하에서는, 본 발명에 따른 내층격성이 우수한 터치스크린 패널용 양면테이프의 특성을 실시예를 들어 설명한다.

[40] <실시예 1>

12 마이크로미터의 두께를 나타내는 폴리에스터 필름의 상부면에 30 마이크로미터의 입자크기를 갖는 아크릴로니트릴 발포체와 혼합한 아크릴바인더로 이루어진 128 마이크로미터 두께의 아크릴 발포폼 코팅층이 형성하여 기계층을 제조하고, 진술한 기계층의 상부면 및 하부면에 60 마이크로

미터의 두께를 갖는 접착성 아크릴 접착제를 도포하여 접착층을 형성하고, 양쪽 접착층의 외표면에 실리콘처리된 폴리에스터 필름으로 이루어지며 125
마이크로모티의 두께를 나타내는 이형층을 형성하여 내층격성이 우수한 터치스크린 패널용 양면테이프를 제조하였다.

[46]
[47] <비교에 1>
[48] 75 마이크로모티 두께의 폴리에스터 필름을 단일 기재로 사용하는 3M사의 터치스크린 패널용 양면테이프(9295B)를 구비하였다.

[49]
[50] <비교에 2>
[51] 75 마이크로모티 두께의 폴리에스터 필름을 단일 기재로 사용하는 3M사의 터치스크린 패널용 양면테이프(2034B)를 구비하였다.

[52]
[53] <비교에 3>
[54] 120 마이크로모티 두께의 폴리에스테름 필름을 기재로 사용하는 TESA사의 터치스크린 패널용 양면테이프(62945)를 구비하였다.

[55]
[56] 전술한 실시예 1을 통해 제조된 내층격성이 우수한 터치스크린 양면테이프 및 비교에 1 내지 3을 통해 구비한 터치스크린 패널용 양면테이프의 점착력, 내열성(고온고습 점착력, Cleavage, Folding), Rolling ball tack test, 제작업체 및 내층격성을 측정하여 아래 표 1에 나타내었다.

[57] 단, 점착력은 제조된 각각의 양면테이프의 이형층을 제거하고 고무압착률을 이용하여 2kg의 하중으로 SUS(Steel Us Stainless)판에 부착하고 30분 후에 90° 또는 180°의 각도로 SUS판으로부터 박리 시 측정되는 힘을 나타낸 것이다.

[58] 또한, 고온고습 점착력은 제조된 각각의 양면테이프의 이형층을 제거하고 고무압착률을 이용하여 2kg의 하중으로 SUS(Steel Us Stainless)판에 부착하고 80℃의 온도와 90%의 습도조건에서 72시간 방치한 후에 SUS판으로부터 박리 시 측정되는 힘을 나타낸 것이다.

[59] 또한, Cleavage는 제조된 각각의 양면테이프를 1인치x1인치로 절단한 후에 이형층을 제거하고 아크릴판에 부착한 후에 250g의 추를 양면테이프에 매달아 80℃의 온도에서 추가 멸어지는 시간을 측정하여 나타내었다.

[60] 또한, Folding은 제조된 각각의 양면테이프를 가로 20mmx세로 3mm로 절단한 후에 이형층을 제거하고 폴리카보네이트와 폴리아미드 필름 사이에 위치시키고, 고무압착률을 이용하여 2kg의 하중 및 300mm/min의 조건으로 왕복 1회 압착하여 시험을 제조하고, 제조된 시험을 80℃의 오븐에 투입하여 시편이 폴리카보네이트와 폴리아미드 필름으로부터 박리되는 시간을 측정하여 나타내었다.

[61] 또한, Rolling ball tack은 Rolling ball test 기기를 이용하여 측정하되, 지름이 11mm이며, 무게가 5.6g인 쇠공을 이용하고 23±1℃ 및 50±5%의 상대습도에서
측정하였으며, 경사면의 각도는 21.3°였다.
또한, 제작업성이 제조된 각각의 암면테이프를 가로 2mm × 세로 50mm로 절단한 후에, 절단된 암면테이프의 이형층을 제거하여 폴리카보네이트에 부착하고, 고무압착롤러를 이용하여 2kg의 하중 및 300mm/min의 조건으로 왕복 1회 압착하여 시편을 제조하고, 제조된 시편을 23°C의 온도에서 72시간 방치하고, 70°C의 온도에서 20분간 추가적으로 방치한 후에 손으로 폴리카보네이트로 암면테이프를 박리하면서 폴리카보네이트의 표면에 점착체 잔여부 및 암면테이프가 씻어지는 빈도수를 100회 측정하여 나타내었다.
또한, 내충격성은 ASTM E23 NIST 공인 사르피 펜ائل럼 충격테스트 방법을 이용하여 측정하였다.

<표 1>

<table>
<thead>
<tr>
<th>구분</th>
<th>단위</th>
<th>성사례 1</th>
<th>비교례 1</th>
<th>성사례 2</th>
<th>비교례 2</th>
<th>성사례 3</th>
<th>비교례 3</th>
<th>측정방법</th>
</tr>
</thead>
<tbody>
<tr>
<td>점착력</td>
<td>gf/25mm</td>
<td>2665</td>
<td>2487</td>
<td>1623</td>
<td>1892</td>
<td></td>
<td></td>
<td>ASTM D3330</td>
</tr>
<tr>
<td>고온고습 점착력</td>
<td>gf/25mm</td>
<td>2650</td>
<td>2321</td>
<td>1622</td>
<td>1852</td>
<td></td>
<td></td>
<td>ASTM D3330</td>
</tr>
<tr>
<td>Cleavage</td>
<td>hr</td>
<td>24</td>
<td>10</td>
<td>10</td>
<td>15</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Folding</td>
<td>hr</td>
<td>90</td>
<td>10</td>
<td>10</td>
<td>50</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Rolling ball tack</td>
<td>mm</td>
<td>5</td>
<td>15</td>
<td>5</td>
<td>10</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>제작업성</td>
<td>%</td>
<td>5</td>
<td>10</td>
<td>0</td>
<td>100</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>내충격성</td>
<td>N</td>
<td>0.32</td>
<td>2.12</td>
<td>1.73</td>
<td>0.75</td>
<td></td>
<td></td>
<td>ASTM E23</td>
</tr>
</tbody>
</table>

위에 표 1에 나타낸 것처럼 본 발명의 실시예 1을 통해 제조된 내충격성이 우수한 터치스크린 패널용 암면테이프는 비교례 1 내지 2와 비교했을 때, 점착력과 내열성이 우수하며, 특히, 내충격성이 원동하게 우수한 것을 알 수 있다.
또한, 폴리에틸렌 폼을 기계로 사용한 비교례 3과 비교해도 내충격성이 원동하게 우수한 것을 알 수 있으며, 내충격성뿐만 아니라, 제작업성도 매우 우수한 것을 알 수 있다. 이때, 위 표 1에서 참조로 제작업성의 기준 수치는 점착제의 피착물에 대한 전사율을 가지고 표기한 것이다.
따라서, 본 발명에 따른 내충격성이 우수한 터치스크린 패널용 암면테이프를 터치스크린 패널 모듈과 액정모듈 사이에 위치시켜, 터치스크린 패널 모듈과 액정모듈을 접착하게 되면, 접착면적이 좁은 경우에도 우수한 점착력을 나타낼 뿐만 아니라, 내열성 및 내충격성이 우수하여, 터치스크린에서 발생하는 열이나 외부의 충격으로부터 쉽게 파손되지 않는 효과를 나타낸다.

산업상 이용가능성

터치스크린 패널 모듈과 액정모듈 사이에 위치하여 터치스크린 패널 모듈과 액정모듈을 견고하게 접착하며, 우수한 내열성과 내충격성을 나타내는 암면테이프를 제공한다.
청구범위

[청구항 1] 폴리에스터 필름의 상부면에 아크릴 발포폼 코팅층을 형성하여 이루어진 기재층;
상기 기재층의 상부면 및 하부면에 형성되는 접착층; 및
상기 접착층의 외표면에 형성되는 이형층;으로 이루어지는 것을
특징으로 하는 내층격성이 우수한 터치스크린 페널용 양면테이프.

[청구항 2] 청구항 1에 있어서,
상기 기재층은 110 내지 155 마이크로 미터의 두께로 이루어지는 것을
특징으로 하는 내층격성이 우수한 터치스크린 페널용 양면테이프.

[청구항 3] 청구항 1에 있어서,
상기 아크릴 발포폼 코팅층은 20 내지 40 마이크로미터의
입자크기를 갖는 아크릴로니트릴 발포체와 흙색안료가 혼합된
아크릴바인더로 이루어지는 것을 특징으로 하는 내층격성이
우수한 터치스크린 페널용 양면테이프.

[청구항 4] 청구항 1에 있어서,
상기 접착층은 아크릴계 감압성 접착제로 이루어지는 것을
특징으로 하는 내층격성이 우수한 터치스크린 페널용 양면테이프.

[청구항 5] 청구항 1에 있어서,
상기 접착층은 50 내지 70 마이크로 미터의 두께로 이루어지는 것을
특징으로 하는 내층격성이 우수한 터치스크린 페널용 양면테이프.
A. CLASSIFICATION OF SUBJECT MATTER

C09J 7/02(2006.01)i, C09J 133/04(2006.01)i, G06F 3/041(2006.01)i

According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols)
C09J 7/02; B29D 31/00; G02F 1/13537; G02B 5/00

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched
Korean Utility models and applications for Utility models: IPC as above
Japanese Utility models and applications for Utility models: IPC as above

Electronic data base consulted during the international search (name of data base and, where practicable, search terms used)
eKOMPASS (KIPo internal) & Keywords: acetyl, foam, adhesion, adhesion, polyester, touch panel

C. DOCUMENTS CONSIDERED TO BE RELEVANT

<table>
<thead>
<tr>
<th>Category</th>
<th>Citation of document, with indication, where appropriate, of the relevant passages</th>
<th>Relevant to claim No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>X</td>
<td>JP 2008-250309 A (NITTO DENKO CORP) 16 October 2008 See claims 1,3,4,6,10 and 13, paragraphs [0023],[0035],[0036],[0063],[0081] and [0091]</td>
<td>1-5</td>
</tr>
<tr>
<td>A</td>
<td>JP 06-212130 A (MINNESOTA MINING & MFG. CO.) 02 August 1994 See claims 1-7, figure 4, paragraph [0023]</td>
<td>1-5</td>
</tr>
<tr>
<td>A</td>
<td>JP 08-039700 A (HOWA SENI KOGYO KK) 13 February 1996 See claims 1,2, figure 1</td>
<td>1-5</td>
</tr>
</tbody>
</table>

☐ Further documents are listed in the continuation of Box C. ☒ See patent family annex.

* Special categories of cited documents:
 “A” document defining the general state of the art which is not considered to be of particular relevance
 “E” earlier application or patent but published on or after the international filing date
 “L” document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another citation or other special reason (as specified)
 “O” document referring to an oral disclosure, use, exhibition or other means
 “P” document published prior to the international filing date but later than the priority date claimed

“T” later document published after the international filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the invention
“X” document of particular relevance; the claimed invention cannot be considered novel or cannot be considered to involve an inventive step when the document is taken alone
“Y” document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such documents, each combination being obvious to a person skilled in the art
“&” document member of the same patent family

Date of the actual completion of the international search
25 FEBRUARY 2013 (25.02.2013)

Date of mailing of the international search report
25 FEBRUARY 2013 (25.02.2013)

Name and mailing address of the ISA/KR
Korean Intellectual Property Office
Government Complex-Daejeon, 189 Seonjeong-dong, Daejeon 302-701, Republic of Korea
Facsimile No. 82-42-472-7140

Authorized officer

Telephone No.
<table>
<thead>
<tr>
<th>Patent document cited in search report</th>
<th>Publication date</th>
<th>Patent family member</th>
<th>Publication date</th>
</tr>
</thead>
<tbody>
<tr>
<td>JP 06-212130 A</td>
<td>02.08.1994</td>
<td>CA 2150481 A1</td>
<td>07.07.1994</td>
</tr>
<tr>
<td></td>
<td></td>
<td>DE 69324502 D1</td>
<td>20.05.1999</td>
</tr>
<tr>
<td></td>
<td></td>
<td>DE 69324502 T2</td>
<td>27.04.2000</td>
</tr>
<tr>
<td></td>
<td></td>
<td>EP 0674687 A1</td>
<td>04.10.1995</td>
</tr>
<tr>
<td></td>
<td></td>
<td>US 05656630 A</td>
<td>19.08.1997</td>
</tr>
<tr>
<td></td>
<td></td>
<td>WO 94-14912 A1</td>
<td>07.07.1994</td>
</tr>
</tbody>
</table>
A. 발명이 속하는 기술분야(국제특허분야(IPC))

C09J 7/02(2006.01)i, C09J 133/04(2006.01)i, G06F 3/04(2006.01)i

B. 조사된 문헌

조사된 최소문헌(국제특허분야를 기재):
C09J 7/02; B29D 31/00; G02F 1/13357; G02B 5/00

조사된 기술분야에 속하는 최소문헌 이외의 문헌
한국특허출원공보 및 한국공개실용신안공보: 조사된 최소문헌외에 기재된 IPC
일본특허출원공보 및 일본공개실용신안공보: 조사된 최소문헌외에 기재된 IPC

국제조사에 이용된 전산 데이터베이스(데이터베이스의 명칭 및 검색어(해당하는 경우))
cOMPASS(특허청 내부 검색시스템) & 기워드: 야크릴, 발포, 접착, 접착, 폴리에스테르, 터치패널

C. 관련 문헌

<table>
<thead>
<tr>
<th>카테고리*</th>
<th>인용문헌명 및 관련 구절(해당하는 경우)의 기재</th>
<th>관련 첨부량</th>
</tr>
</thead>
<tbody>
<tr>
<td>X</td>
<td>JP 2008-250309 A (NITTO DENKO CORP) 2008.10.16</td>
<td>1-5</td>
</tr>
<tr>
<td></td>
<td>정규항 1,3,4,5,6,10,13, 제5개번호 [0023],[0035],[0036],[0063],[0081],[0091] 참조</td>
<td></td>
</tr>
<tr>
<td>A</td>
<td>JP 06-212130 A (MINNESOTA MINING & MFG. CO.) 1994.08.02</td>
<td>1-5</td>
</tr>
<tr>
<td></td>
<td>정규항 1-7, 도면4, 단락 [0023] 참조</td>
<td></td>
</tr>
<tr>
<td>A</td>
<td>JP 08-039700 A (HOKA SENI KOJYO KR) 1996.02.13</td>
<td>1-5</td>
</tr>
<tr>
<td></td>
<td>정규항 1,2, 도면 1 참조</td>
<td></td>
</tr>
</tbody>
</table>

- 추가 문헌이 C(계속)에 기재되어 있습니다.
- 대응특허에 관련 별지를 참조하십시오.

* 인용된 문헌의 특별 카테고리:

“A” 특별히 관련이 없는 것으로 보이는 일반적인 기술수준을 경의한 문헌

“E” 국제출원일보다 빠른 출원일 또는 우선일을 가지거나 국제출원일 이후에 공개된 신청일 또는 특히 문헌

“L” 우선권 주장에 의문을 제기하는 문헌 또는 다른 인용문헌의 공개일 또는 다른 특별한 이유(이유를 명시)를 밝히기 위하여 인용된 문헌

“O” 구두 개시, 사용, 접점 또는 기타 수단을 언급하고 있는 문헌

“P” 우선일 이후에 공개되었으나 국제출원일 이전에 공개된 문헌

“T” 국제출원일 또는 우선일 이후에 공개된 문헌으로, 출원과 상관하지 않으나 발명의 기조가 되는 원리나 이론을 이해하기 위해 인용된 문헌

“X” 특별한 관련이 있는 문헌, 해당 문헌 하나만으로 청구권 발명의 신규성 또는 전보성이 없는 것으로 본다.

“Y” 특별한 관련이 있는 문헌, 해당 문헌이 하나 이상의 다른 문헌과 조합하는 경우로 그 조합이 당업자에게 자명한 경우 청구권 발명은 전보성이 없는 것으로 본다.

“&” 동일한 대응특허문헌에 속하는 문헌

국제조사의 실적 완료일
2013년 02월 25일 (25.02.2013)

국제조사보고서 발송일
2013년 02월 25일 (25.02.2013)

ISA/KR의 명칭 및 우편주소
대한민국 특허청
(302-701) 대전광역시 서구 정자로 189, 4동 (문산동, 정부대전정자)
전화번호 82-42-472-7140

식습 PCT/ISA/210 (무 번째 용지) (2009년 7월)
<table>
<thead>
<tr>
<th>국제조사보고서에서 인용된 특허문헌</th>
<th>공개일</th>
<th>대응특허문헌</th>
<th>공개일</th>
</tr>
</thead>
<tbody>
<tr>
<td>JP 2008-250309 A</td>
<td>2008.10.16</td>
<td></td>
<td></td>
</tr>
<tr>
<td>JP 06-212130 A</td>
<td>1994.08.02</td>
<td>CA 2150481 A1</td>
<td>1994.07.07</td>
</tr>
<tr>
<td></td>
<td></td>
<td>DE 69324502 D1</td>
<td>1999.05.20</td>
</tr>
<tr>
<td></td>
<td></td>
<td>DE 69324502 T2</td>
<td>2000.04.27</td>
</tr>
<tr>
<td></td>
<td></td>
<td>EP 0674687 B1</td>
<td>1999.04.14</td>
</tr>
<tr>
<td></td>
<td></td>
<td>JP 3497519 B2</td>
<td>2003.11.28</td>
</tr>
<tr>
<td></td>
<td></td>
<td>US 05658630 A</td>
<td>1997.08.19</td>
</tr>
<tr>
<td></td>
<td></td>
<td>WO 94-14912 A1</td>
<td>1994.07.07</td>
</tr>
<tr>
<td>JP 08-039700 A</td>
<td>1996.02.13</td>
<td>JP 3615570 B2</td>
<td>2005.02.02</td>
</tr>
</tbody>
</table>