

**(12) STANDARD PATENT
(19) AUSTRALIAN PATENT OFFICE**

(11) Application No. AU 2003295784 B2

(54) Title
Composition and method for treating lupus nephritis

(51) International Patent Classification(s)
C12N 1/19 (2006.01) **C12N 15/85** (2006.01)
C07H 21/04 (2006.01) **C12N 15/86** (2006.01)
C07K 14/705 (2006.01) **A61K 38/00** (2006.01)
C12N 1/21 (2006.01)

(21) Application No: **2003295784** (22) Date of Filing: **2003.11.21**

(87) WIPO No: **WO04/047740**

(30) Priority Data

(31) Number (32) Date (33) Country
60/428,065 **2002.11.21** **US**

(43) Publication Date: **2004.06.18**
(43) Publication Journal Date: **2004.07.22**
(44) Accepted Journal Date: **2009.06.11**

(71) Applicant(s)
Wyeth

(72) Inventor(s)
Shojaee, Negin;O'Toole, Margot;Mounts, William M.

(74) Agent / Attorney
Phillips Ormonde Fitzpatrick, Level 22 367 Collins Street, Melbourne, VIC, 3000

(56) Related Art
Uniprot Accession: NoQ9VFS6
WO 2002081731
WO 2004030615
WO 2002092759
WO 2002059260
US 2002/0137077

(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(19) World Intellectual Property Organization International Bureau

(43) International Publication Date
10 June 2004 (10.06.2004)

PCT

(10) International Publication Number
WO 2004/047740 A3

(51) International Patent Classification⁷: C12N 1/19, 1/21, 15/11, 15/85, 15/86, C07K 5/00, 14/00, C07H 21/04

(74) Agent: NIXON PEABODY LLP; SUITE 900 401, 9TH STREET, N.W., Washington, DC 20004-2128 (US).

(21) International Application Number:
PCT/US2003/037317

(22) International Filing Date:
21 November 2003 (21.11.2003)

(25) Filing Language:
English

(26) Publication Language:
English

(30) Priority Data:
60/428,065 21 November 2002 (21.11.2002) US

(63) Related by continuation (CON) or continuation-in-part (CIP) to earlier application:
US 60/428,065 (CIP)
Filed on 21 November 2002 (21.11.2002)

(71) Applicant (for all designated States except US): WYETH [US/US]; 87 Cambridge Park Drive, Cambridge, MA 02140 (US).

(72) Inventors; and

(75) Inventors/Applicants (for US only): O'TOOLE, Margot [US/US]; 353 Albermarle Road, Newton, MA 02460 (US). MOUNTS, William, M. [US/US]; 6 Island Way, Andover, MA 01810 (US). SHOJAEI, Negin [US/US]; 487 James Road #201, Palo Alto, CA 94306 (US).

(81) Designated States (national): AE, AG, AL, AM, AT, AU, AZ, BA, BB, BG, BR, BY, BZ, CA, CH, CN, CO, CR, CU, CZ, DE, DK, DM, DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MA, MD, MG, MK, MN, MW, MX, MZ, NI, NO, NZ, OM, PG, PH, PL, PT, RO, RU, SC, SD, SE, SG, SK, SL, SY, TJ, TM, TN, TR, TT, TZ, UA, UG, US, UZ, VC, VN, YU, ZA, ZM, ZW.

(84) Designated States (regional): ARIPO patent (BW, GH, GM, KE, LS, MW, MZ, SD, SL, SZ, TZ, UG, ZM, ZW), Eurasian patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), European patent (AT, BE, BG, CH, CY, CZ, DE, DK, EE, ES, FI, FR, GB, GR, HU, IE, IT, LU, MC, NL, PT, RO, SE, SI, SK, TR), OAPI patent (BF, BJ, CF, CG, CI, CM, GA, GN, GQ, GW, ML, MR, NE, SN, TD, TG).

Published:

- with international search report
- before the expiration of the time limit for amending the claims and to be republished in the event of receipt of amendments

(88) Date of publication of the international search report:
17 February 2005

For two-letter codes and other abbreviations, refer to the "Guidance Notes on Codes and Abbreviations" appearing at the beginning of each regular issue of the PCT Gazette.

WO 2004/047740 A3

(54) Title: COMPOSITION AND METHOD FOR TREATING LUPUS NEPHRITIS

(57) Abstract: The present invention provides novel isolated BFLP1698 polynucleotides and polypeptides encoded by the BFLP1698 polynucleotides. Also provided are the antibodies that immunospecifically bind to a BFLP1698 polypeptide or any derivative (including fusion derivative), variant, mutant, or fragment of the BFLP1698 polypeptide, polynucleotide or antibody. The invention additionally provides methods in which the BFLP1698 polypeptide, polynucleotide and antibody are utilized in the detection and treatment of a broad range of pathological states, as well as to other uses.

COMPOSITION AND METHOD FOR TREATING LUPUS NEPHRITIS

5

FIELD OF THE INVENTION

The invention relates generally to nucleic acids and polypeptides and more specifically to nucleic acids and polypeptides encoding polypeptides useful for detecting and treating lupus nephritis, as well as for identifying therapeutic agents for treating the same.

10

BACKGROUND OF THE INVENTION

Lupus nephritis is an example of a "classical" auto-immune disease in which the patient's immune system attacks his/her own organs. It has been estimated that 45-75% of lupus patients eventually suffer from some form or other of kidney damage. Lupus varies greatly in severity from mild cases requiring minimal intervention to those in which significant damage occurs to vital organs such as lungs, kidneys, heart and brain, and which ultimately can be fatal. Lupus is predominantly a female disease, with an approximate female to male ratio being 9:1. In North America, it is estimated to affect 1 in 500 females mainly between the age of 20 to 40 years.

There is no known cure for lupus. Treatment is typically directed at controlling the symptoms with the hope of putting the disease into remission. Recently, the antibiotic rapamycin has been demonstrated to be an effective therapy in treating lupus nephritis in a murine model of the disease.

The discussion of documents, acts, materials, devices, articles and the like is included in this specification solely for the purpose of providing a context for the present invention. It is not suggested or represented that any or all of these matters formed part of the prior art base or were common general knowledge in the field relevant to the present invention as it existed before the priority date of each claim of this application.

Throughout the description and claims of the specification, the word "comprise" and variations of the word, such as "comprising" and "comprises", is not intended to exclude other additives, components, integers or steps. Throughout the description and claims of the specification, the word "comprise" and variations of the word, such as "comprising" and "comprises", is not intended to exclude other additives, components, integers or steps.

SUMMARY OF THE INVENTION

The invention is based, in part, upon the discovery of a gene, named BFLP1698, whose expression is increased in kidney tissue in mice with lupus nephritis; however, the expression level of the gene does not decrease markedly in response to treatment with 5 rapamycin. This expression profile indicates that the product of the BFLP1698 gene interacts with rapamycin when this antibiotic is administered to ameliorate the symptoms of lupus nephritis. In the absence of rapamycin, the gene product is free to bring about the diseased state, and its effects can include the activation of genes required to bring about the diseased state. In the presence of rapamycin, the BFLP1698 gene product is inactive and the disease 10 state diminishes. Accordingly, the BFLP1698 protein is useful as a target for identifying agents that, like rapamycin, are useful in treating symptoms of lupus nephritis.

In one aspect, the invention provides an isolated nucleic acid molecule that includes the sequence of a nucleotide sequence encoding a BFLP1698 gene product. In a preferred embodiment, the nucleotide sequence includes the sequence of SEQ ID NO:1, or a fragment, 15 homolog, analog or derivative thereof. The nucleic acid can include, *e.g.*, a nucleic acid sequence encoding a polypeptide at least 70%, *e.g.*, 80%, 85%, 90%, 95%, 98%, or even 99% or more identical to a polypeptide that includes the amino acid sequences of SEQ ID NO:2. The nucleic acid can be, *e.g.*, a genomic DNA fragment, or a cDNA molecule.

Also included in the invention is a vector containing one or more of the nucleic acids 20 described herein, and a cell containing the vectors or nucleic acids described herein.

The invention is also directed to host cells transformed with a vector comprising any of the nucleic acid molecules described above.

In another aspect, the invention includes a pharmaceutical composition that includes a BFLP1698 nucleic acid and a pharmaceutically acceptable carrier or diluent.

25 In a further aspect, the invention includes a substantially purified BFLP1698 polypeptide, *e.g.*, any of the BFLP1698 polypeptides encoded by a BFLP1698 nucleic acid, and fragments, homologs, analogs, and derivatives thereof.

30 In another aspect, the present invention provides a substantially purified polypeptide comprising an amino acid sequence at least 95% identical to the amino acid sequence of SEQ ID NO:2.

In yet another aspect the present invention provides an isolated polypeptide comprising a rapamycin-binding domain of the amino acid sequence of SEQ ID NO:2.

35 Even further, the present invention provides an isolated polypeptide at least 993 amino acids in length comprising at least five contiguous amino acids of SEQ ID NO:2, wherein said polypeptide comprises a rapamycin-binding domain, provided that said polypeptide comprises an amino acid sequence other than SEQ ID NO:21.

Still further, the present invention provides a polypeptide comprising at least five contiguous amino acids of SEQ ID NO:15.

20003295784 25 May 2009

The present invention further provides a fusion polypeptide comprising a rapamycin-binding domain of a polypeptide as described herein.

The invention also includes a pharmaceutical composition that includes a polypeptide as described herein and a pharmaceutically acceptable carrier or diluent.

5 In a still further aspect, the invention provides an antibody that binds specifically to a polypeptide as described herein. The antibody can be, e.g., a monoclonal or polyclonal antibody, and fragments, homologs, analogs, and derivatives thereof. The invention also includes a pharmaceutical composition including antibody to a polypeptide as described herein and a pharmaceutically acceptable carrier or diluent. The invention is also directed to isolated 10 antibodies that bind to an epitope on a polypeptide encoded by any of the nucleic acid molecules described above.

15 The invention also includes kits comprising in one or more containers one or more of a compound that is a BFLP1698 nucleic acid, a BFLP1698 polypeptide and/or an antibody to a BFLP1698 polypeptide. The kit is preferably provided with instructions for use. If desired, the compounds in the kits are provided along with a pharmaceutically acceptable carrier.

20 The invention further provides a method for producing a polypeptide as described herein by providing a cell containing nucleic acid as described herein, e.g., a vector that includes a BFLP1698 nucleic acid, and culturing the cell under conditions sufficient to express the polypeptide encoded by the nucleic acid. The expressed polypeptide is then recovered from the cell. Preferably, the cell produces little or no endogenous BFLP1698 polypeptide. The cell can be, e.g., a prokaryotic cell or eukaryotic cell.

25 The invention is also directed to methods of identifying a polypeptide or nucleic acid as described herein in a sample by contacting the sample with a compound that specifically binds to the polypeptide or nucleic acid, and detecting complex formation, if present.

30 Thus in another aspect, the present invention provides a method of detecting the presence of a nucleic acid molecule as described herein in a biological sample, the method comprising:

contacting the sample with a nucleic acid probe that binds specifically to a said nucleic acid; and

35 identifying the bound probe, if present, thereby detecting the presence of said nucleic acid molecule in said sample.

In a further aspect, the present invention provides a method of detecting the presence of a polypeptide as described herein in a sample, the method comprising:

30 contacting the sample with a compound that selectively binds to said polypeptide under conditions allowing for formation of a complex between said polypeptide and said compound; and

detecting said complex, if present, thereby identifying said polypeptide in said sample.

The invention further provides methods of identifying a compound that modulates the activity of a BFLP1698 polypeptide by contacting a BFLP1698 polypeptide with a compound and determining whether the BFLP1698 polypeptide activity is modified.

5 The invention is also directed to compounds that modulate BFLP1698 polypeptide activity is identified by contacting a BFLP1698 polypeptide with the compound and determining whether the compound modifies activity of the BFLP1698 polypeptide, binds to the BFLP1698 polypeptide, or binds to a nucleic acid molecule encoding a BFLP1698 polypeptide.

10 In another aspect, the invention provides a method of determining the presence of or predisposition of a BFLP1698 -associated disorder in a subject. The method includes providing a sample from the subject and measuring the amount of a polypeptide as described herein in the subject sample. The amount of said polypeptide in the subject sample is then compared to the amount of said polypeptide in a control sample. An alteration in the amount of said polypeptide in the subject protein sample relative to the amount of said polypeptide in the control protein sample indicates the subject has a tissue proliferation-associated condition. A control sample is 15 preferably taken from a matched individual, *i.e.*, an individual of similar age, sex or other general condition but who is not suspected of having a tissue proliferation-associated condition. Alternatively, the control sample may be taken from the subject at a time when the subject is not suspected of having a tissue proliferation-associated disorder. In some embodiments, the BFLP1698 is detecting using an antibody to a polypeptide as described herein.

20 Thus in one aspect, the present invention provides a method for determining the presence of or predisposition to lupus nephritis in a subject, the method comprising:

a) measuring the amount of a polypeptide as described herein in a sample from said subject; and
25 b) comparing the amount of said polypeptide to the amount of nucleic acid present in a control sample from a subject without lupus nephritis,

wherein an increase in the level of said polypeptide as compared to the level of the polypeptide in the control sample indicates the presence or predisposition to lupus nephritis in said subject.

30 In a further aspect, the invention provides a method of determining the presence of or predisposition of a BFLP1698 -associated disorder in a subject. The method includes providing a nucleic acid sample, *e.g.*, RNA or DNA, or both, from the subject and measuring the amount of a nucleic acid as described herein in the subject nucleic acid sample. The amount of said nucleic acid sample in the subject nucleic acid sample is then compared to the amount of a said nucleic acid in a control sample. An alteration in the amount of said nucleic acid in the sample 35 relative to the amount of said in the control sample indicates the subject has a tissue proliferation-associated disorder.

Thus in one aspect, the present invention provides a method for determining the presence of or predisposition to lupus nephritis in a subject, the method comprising:

- a) measuring the amount of a nucleic acid molecule as described herein in a sample from said subject; and
- 5 b) comparing the amount of said nucleic acid in step to the amount of the nucleic acid present in a control sample from a subject without lupus nephritis,

wherein an increase in the level of said nucleic acid in step (a) as compared to the level of the nucleic acid in the control sample indicates the presence of or predisposition to lupus nephritis in said subject.

10 In a still further aspect, the invention provides a method of treating or preventing or delaying a BFLP1698 -associated disorder. The method includes administering to a subject in which such treatment or prevention or delay is desired a nucleic acid as described herein, a polypeptide as described herein, or an antibody to a polypeptide as described herein in an amount sufficient to treat, prevent, or delay a tissue proliferation-associated disorder in the 15 subject. Examples of such disorders include rheumatoid arthritis and multiple sclerosis.

Thus in another aspect, the present invention provides a method of treating lupus nephritis in a subject, the method comprising administering to said subject a therapeutically effective amount of an agent that inhibits activity of a polypeptide as described herein in said subject.

20 The present invention also provides a method for screening for a therapeutic agent for treating an autoimmune disorder, the method comprising:

contacting a test compound with a polypeptide as described herein; and
determining if said test compound binds to said polypeptide as described herein,

25 wherein binding of said test compound to said polypeptide indicates the test compound is a therapeutic agent for an autoimmune disorder.

The present invention further provides a pharmaceutical composition comprising an agent that inhibits activity of a polypeptide as described herein in a subject and a pharmaceutically acceptable carrier.

30 Unless otherwise defined, all technical and scientific terms used herein have the same meaning commonly understood by one of ordinary skill in the art to which this invention belongs. Although methods and materials similar or equivalent to those described herein can be

used in the practice or testing of the present invention, suitable methods and materials are described below. All publications, patent applications, patents, and other references mentioned herein are incorporated by reference in their entirety. In the case of conflict, the present specification, including definitions, will control. In addition, the materials, methods, and examples are illustrative only and not intended to be limiting.

Other features and advantages of the invention will be apparent from the following detailed description and claims.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 is a histogram showing relative levels of gene expression in the mouse ortholog of the human BFLP1698 gene in NZB x NZWF1 kidneys before, during, and after rapamycin treatment, as well as in various control mouse strains and conditions.

DETAILED DESCRIPTION OF THE INVENTION

The BFLP1698 nucleic acid sequences disclosed herein were identified based on changes in expression of the gene in kidneys of a lupus nephritis model mouse as compared to expression of the gene in kidneys from non-diseased mice. More particularly, the gene is expressed at relatively low levels in young mice and mice that do not show symptoms of lupus nephritis. Gene expression is elevated in mice with lupus nephritis, and is lower in mice that have been successfully treated with rapamycin or anti-B7 antibodies. The observation that expression levels return to normal when kidney function is normal indicates that elevated levels are related to, and diagnostic of, disease progression. Blocking the function of these genes may inhibit or retard disease progression. Expression levels can also be used to assess and compare effectiveness of various therapeutic interventions.

Accordingly, the BFLP1698 nucleic acid sequences are useful for detecting the presence of lupus nephritis in a subject. Elevated levels of BFLP01698 transcripts or polypeptides relative to levels in control samples indicate the presence of lupus nephritis in the subject. BFLP1698 nucleic acid sequences can also be used to monitor the effectiveness of treatments for lupus

nephritis: a decrease in expression of BFLP1698 genes relative to levels in diseased treatments demonstrates that the treatment is effective.

The BFLP1698 sequences can additionally be used to identify therapeutic agents for treating or preventing lupus nephritis in a subject. For example, a BFLP1698 polypeptide can be 5 contacted with a test agent. Binding of the BFLP1698 polypeptide to the test agent reveals that the test agent modulates BFLP1698 activity. The BFLP1698-binding agent can be further tested to determine if it acts to promote or inhibit lupus symptoms in a test organism (e.g., a NZB X NZW mouse). Inhibition of lupus symptoms reveals that the agent is useful for treating or preventing lupus nephritis, or symptoms associated with lupus nephritis. Additional utilities are 10 disclosed herein.

A 3652 nucleotide sequence that includes a human BFLP1698 nucleic acid is shown in Table 1 (SEQ ID NO:1). The human sequence was identified as the human ortholog of a murine gene whose expression is increased in a NZB X NZW mouse with lupus nephritis-like symptoms.

15 Nucleotides 1-3486 of the sequence shown in Table 1 encode a polypeptide of 1162 amino acids, whose sequence is shown in Table 2 (SEQ ID NO:2).

Table 1

ATGCCCTTGCCAGGGAGAAGCAAGGAGGATGGGACTAGAAATGCCAGGCTCTCCCAGCATCCAGAA
 20 AGTCCCAGGCTCCAACCTCTCTGGGACAGAGGAAAATTGGCAAGGTTGAAGGTACCCAGCACATTCAAGGATTTCTC
 TCTCAAAAGTCCCATCTCGCTCTATTGTGGTGGAAATCCAGTGAGGTAATGAAGAGAGTGGGGATCTCCATTGCCCC
 CATGAGGAGCTGCTGCTCACTGTGGTGGAGGAAGAGGATGCTGAGGGCTTCTTCCAAGGACCAAAGTGAAGAGGCCA
 GGGCGGGCACGCTCCCCATCAGGCTCGGGCAAGTGGAGCATCGACGCGCGCCATCTGGAGATTGGAGCTG
 AAGAAGAAGCTTCAAAACCCGGGGTGTGTTGAATCGGGAGCGGGCTCTGAGGCACCGGGTGGTGGGGCTGTGATA
 GACCAAGGGCTGATCACGGGCAACCACCTCAAGAAGCAGGGCTGCTCAGGAGCTGTCAGGAAATCAAGGTTTCTG
 25 ACTGGCGTAGACCCCATTCTGGGCCACCAACTCTCAGCCGGAACATGCTCGTGTGGTCTTCTCTGCTCGTTCT
 TTGCCACCTGCTCGGGCTGCTGTGCTTGACCACTGAGAGGIGTCTTGATGAGAGTGTGGGCTTCTCTGCTCGTTCT
 CTGGATGAAACCCCTGTGGCTGGTCCACCTCACCTCCGTCCACCCCTCTCATGTCCTGCTGGTGGACCTGGT
 CTAGAGGATGTGGTCAGGAAGTGCAGCAGGTGCTGTGAGTTATCGGGCCAACCAAAGGCCTGGCACCTGTG
 ATTAGTGCATGGTCCATTGACCTCATGGGCAACTGAGCAGCACGTACTCAGGCCAGCACCAGCGTGTCCCCACGCT
 30 ACTGGCGCTTTAATGAACTGCTACAGCTGTGGATGGGTGTAGGGCCACGCGTACATTAATGGACATCTATGTGAG
 TGCCTCTGGCTCTCATTGGTAGCTGCCAGATGCGTGTGTGGATGCCTTGCTGGATACCTCTGTTCAAGCATCTCCA
 CACTTGACTGGTTGTGGCACATATTGGCTCCTCTTCTGGCACCATCATTGCCGGGTTCTCTCTGTTGGCCTT
 AAGGACTTTGTGTCATGGTGGGCTGGAGGTGGAGCTGGCACTAGTAGTGGTGGAAAGCTCTCTCAGACCCCCCTACA
 35 GACCCCTCCCTGGATCTCTGCCATTGCCAGGAGAAACGGGTGCCAGATTGCCCTAGTTGAGGCTCAGTGTAGGCATCTAGGT
 CACCTGGCCTCCGCCACGGAGATAGCCAGCAGGGAGCTCTGCGAATGTTCCATGATAGCCTGGCAGGGGATCT
 GGAGGCCAGTGGGACCCCTCCCTCAGGCCACGGTCCCTACTGCACTGGCAGCTGGCAGCTGCAACACCTCAA
 40 CTGGGCACTGCTCTGGAGAGCTGGACAAACATGTTGAACCTGGCTGTGCACTGGCAGGCCAGGGCTGGGAGGTGCC
 TACCGCTTGCTGCACTTCTGGTGGACACAGCTATGCCCTGCTCGGTATTACCAACCCAGGGCCTGGCTGTGCCAGAC
 ACCGTGCGTGAGGCTGTGACCGGCTAATCCAGCTGCTGCTGCACTGCAAAACTGGTCATCACCGGGAGGG
 TCTCCTGGGAAGGGTGCTAGGCCGCCACCTCCCGCTTGGTGCCTTTAGATGCGCTCAAAACCATGTT

5 GGAGAGCTGTGGAGAGACGTTACGATTGGAACCGAACCGCCTTCCTGGCAGCACAGCTTGGGCTGCTGTCT
GTCTATACCCGGCTAGCTGTGGACCTGGGCCATCTGCTGAGCCGAGCCCAGGCCCTGAAGAGTTGAGT
TTGGCCACCCAGTTATATGCAGGGCTAGTGGTCAGCCTCTGGCCTCCTGCCCTGGCTTCCGAAGCTGTCTGGCT
CGGGTGCATGCAGGGACATTACAGCCTCCCTCACGGCCCGTTCTGCGCAACTTGGCACTGCTAGTAGGGTGGAA
CAGCAGGGTGGCGAGGCCCTGCAGCCCTAGGGCGCACTTGGGGAATCTGCCCTCAGCCCATCTGCTGACCTGGCT
CCTCTCTGCTACATCTGGAGGAGGAAGTAGCTGAAGCTGCTGCCCTCTCCTGGCCATTGCTCCCTTCTCTGAA
GCCTTATCCCCCTCCAGCTCTGGACTGGTAAGGGCTGGGTCACCGCTTGGCTCTGAGGCTGCATGGA
CCCCCAGGTGTGGCCTGAGCTGTCAACCGCTGCTCACAGACATCCCCAGCTGGGCTCAAGGCTGTCCCTG
CAGCTGCTGGTTGAAGGAGCCTACATCGAGGCAACACAGAACTGTGTTGGTGGCAAGTAGATGGGACAATGAGACT
CTCTCAGTTGTTCACTGCTTGGCTCTGCTCCCTGTTGGACACTAACCGGAGGCACACTGCAGCTGTGCCAGGT
CCTGGAGGGATTGGTCAGTTTCCATGCTGGAGTCATCGGCCGTGGCTAAAGCCACCCAAAGTTGTCAGTCACCGA
AATCAGCAGGAAGTGATCTATAACACCCAGAGCCTCTCAGCCTCTGGTTCACTGCTGCAGTGCCCCAGGGGGCACT
GAATGTGGGAATGCTGGGGGACCCATCTGAGTCCAGAGGCAGCAAAGCAGTGGCAGTGACCTGGTGGAGAGT
GTGTGTCCCGATGCACTGGTGCAGAGCTGGCCTGGCCCCCGAGGAACACGCCCGGCCACCGTGGAGCGGGATCTC
CGCATTGGCCGGCGCTCCCGAACAGCCCCCTGCTTTGAGCTGTTAAAGCTGGTAGCAGCTGCACCCCGAGCCCTG
TGCTACTGTTCCGTGCTGCTCGGGGGCTGCTGGCCGCCCTTGGGCCATTGGGAAGCCCTCGCCACCCGTGACACG
ACCCACTCCCCCTGGCACCTGGAGGCATCTGCACCTTAGTGGCTGTCATGGCTGAGGGAAAGCCTCTGGCTCCGGCC
CTGGGTAATATGCATGAAGTATTAGCCAACCTGGCACCTTTCGAGGGCTGCTGCTGCTCAGTGTCTGGGTTT
CTCGGGGAGGCTGGCCCTTGCCCTAGGAAGTTCATCTTCCAACTCAGAGGGCTGCTCAGTGTCTGGGACTCTCCAGG
GAGGGTGGAGGTGAGGGTGGACCCCATCTGGCTGCTGCCAGTGTCTCCACCGCAACATCGACCGCCTAGGGCTT
TTCTCTGGCCGTTCCAGGCACCTTCACCGTCCACTCTCTCGACAGGGGACGTAGCCCTTTCTGCTCTGGAAAGCC
CAGGGAGGTGAGCAGTGAGAGAGGGAAAGGGACTAACGTGCTCCGGAAAGGGTGGAGGTTCTCTTCTAAAGTCCTTGGT
CTAAAGAGCGCTGTCACTTTTCTCCCCACTTTTTCTAAATAATTTGCAACTTG (SEQ ID NO:1)

25 **Table 2**

MALVPGRSKE DGLWTRNSPGSSQHPESPRLPNPLWDRGKIGKVEGHQHIQDFSQKSHLPSIVVESSEVN ESGDLHLP
 HEELLLLT DGE EEDAE AFFQDQSE EPGAARPHQARQVEHSTQRGHLIRELK KLFKRRRVLN RERRL RHRVVGAVI
 DQGLITRHHLKRAAQELS QEIKAFLTGVDPI LGHQLS AREHARCG LLLRSLP PARA A VLDLH RGVFD E SVRAH LAA
 LDETPVAGPPHLR PPPPSHVPAGGPGL EDVVQEVQQLSE FIRANPKAWAPVISAWSIDLMGQLSSTYSGHQH RVP HA
 30 TGALNELLQLWMGCRATRTLMDIYVQCLSLALIGSCPDACVDALLDT SVQHSPHFDWVAHIGSSFPGTIISRVLSCLL
 KDFCVHGGAGGGAGSSGSSQTFSTDPFGSPAIPAEKRPKIASVVGILGHHLASRHGDSIRRELLRMFHDSLAGGS
 GGRSGDPSI QATVPFLQLQALAVMSPALLGTVS GELVDCLKPPAVLSQLOQHQLQGF PREELDNMLNLA VHLVQSAGAGA
 YRLLQFLVDTAMPASVIT TQGLAVPDTVREACDRLTQLLLLHLQKLVHRRGGSPGEVGVLGPPPPRLV PFLDALKNHV
 35 GELCGETLRLERKRF LWQHQLLGLS VYTRPSCGPEALGHLLS RAR SPEELSLATQLYAGL VVLSG LPLA FRSCL A
 RVHAGTLQPPFTARFLRNLLA LVGWEQQGEGPAALGAHFGESASAHLSDLAPLLLHPPEEEVA EAAASLLAICPF PFS E
 ALSPS QQLLGLV RAGVHRF FASLRLHGPPGVASACQLLT RLSQTS PAGL KAVLQ LLLV EGALH RGNT EFGQV DGD N
 LSVVSASLASAS LDTNRRHTAA VPGPGGIWSV FHAGVIGRGLKPPKFVQSRNQEV IYNTQ SLLV HCCSAPG G
 40 ECGECWGAPL S PEA AKAVAVT LVE SVC PDAAGAELAWPPEEHARATVERD L RIG RRFRE QP LLLF ELLK VAA APP L
 CYCSVLLRG LLA ALLGHWEASRHPDTTHSPWHL EASCTLV AVMAEGSLLPPALGNMHEVFSQ LAPF E VRL LLSVWGF
 LREHGPLPQKFIFQSERGRFIRD FSREGGEGGP HLA VLHS VLHRN IDRLGLFSGRFQAPSPSTLLRQGT (SEQ ID
 NO:2)

BFLP1698-like nucleic acids and polypeptides of the invention (including those shown in Table 1) are referred to herein as “BFLP1698 ” nucleic acids and polypeptides.

45 A BFLP1698 nucleic acid, and the encoded polypeptide, according to the invention are useful in a variety of applications and contexts.

BFLP1698 shows homology to other proteins as shown in the BLAST results described in Table 3. KIAA0169, IMAGE: 3461492, and 3598686, and cDNA: FLJ21639 are all proteins

encoded from partial reading frames (expressed sequence tags (ESTs)) found in genomic DNA. Because BFLP1698 has homology to these proteins, it is also encoded from either an entire open reading frame, or part of a larger open reading frame (EST).

Table 3: Blast Results for KIAA1698

Gene Index/ Identifier	Protein/ Organism	Length (aa)	Identity (%)	Positives (%)	Expect
gi 20408454 ref X P_167747.1 (XM_167747)	similar to KIAA1698 protein [Homo sapiens]	1019	823/993 (82%)	824/993 (82%)	0.0
gi 12697941 dbj B AB21789.1 (AB051485)	KIAA1698 protein [Homo sapiens]	908	770/902 (85%)	770/902 (85%)	0.0
gi 20380408 gb AA H2B025.1 (BC028025)	Similar to KIAA1698 protein [Homo sapiens]	833	705/829 (85%)	705/829 (85%)	0.0
gi 20849521 ref X P_144111.1 (XM_144111)	similar to KIAA1698 protein [Homo sapiens] [Mus musculus]	963	169/229 (73%)	175/229 (75%)	3e-87
gi 21296297 gb EA A08442.1 (AAAB01008879)	agCP2919 (Anopheles gambiae str. PEST)	900	80/292 (27%)	121/292 (41%)	1e-16

5 Table 4 shows a ClustalW alignment of BFLP1698 (SEQ ID NO:2) against the proteins described above in Table 3.

Table 4. ClustalW Analysis of SEO ID NO:2

5	gi 20480454 ref	AYRLL	407
	gi 12697941 dbj	AYRLL	296
	gi 20380408 gb	AYRLL	221
	gi 20849521 ref	QCLSLIGLSCP DAY SFPFGFP AI P GE KRVPKIASAVG IQ TWL S AMETASDG N CCACFMIV	631
	gi 21296297 gb	ALL	284
10	SEQ ID NO:2	670 680 690 700 710 720	
	gi 20480454 ref	--QFLVDTAMPASVITTQGLAVPDTVREACDRLIQ LLL HLQKLVLHRRGGSPGEGVLGPP	608
	gi 12697941 dbj	--QFLVDTAMPASVITTQGLAVPDTVREACDRLIQ LLL HLQKLVLHRRGGSPGEGVLGPP	465
	gi 20380408 gb	--QFLVDTAMPASVITTQGLAVPDTVREACDRLIQ LLL HLQKLVLHRRGGSPGEGVLGPP	354
	gi 20849521 ref	--QFLVDTAMPASVITTQGLAVPDTVREACDRLIQ LLL HLQKLVLHRRGGSPGEGVLGPP	279
	gi 21296297 gb	W Q FLVDTAMPASVITTQGLAVPDTM R EADRLIQ LLL HLQKLVLHRRGGAPGEGVLGPP	691
15	SEQ ID NO:2	730 740 750 760 770 780	
	gi 20480454 ref	PPPRLV P FLDALKNHVGELCGETLRLERK R FLWQHQLLGLLSVYTRPSCG--PEALGHLL	666
	gi 12697941 dbj	PPPRLV P FLDALKNHVGELCGETLRLERK R FLWQHQLLGLLSVYTRPSCG--PEALGHLL	523
	gi 20380408 gb	PPPRLV P FLDALKNHVGELCGETLRLERK R FLWQHQLLGLLSVYTRPSCG--PEALGHLL	412
	gi 20849521 ref	PPPRLV P FLDALKNHVGELCGETLRLERK R FLWQHQLLGLLSVYTRPSCG--PEALGHLL	337
	gi 21296297 gb	SP P LV P FLDALE N HVGELCG K TLRLERK R FLWQHQLLAYS-----	732
25	SEQ ID NO:2	790 800 810 820 830 840	
	gi 20480454 ref	SRARSPEELSLATQL-YAGLVV S LSGLLPLAFRSCLARVHAGTLQPPFTARFLRNALLV	725
	gi 12697941 dbj	SRARSPEELSLATQL-YAGLVV S LSGLLPLAFRSCLARVHAGTLQPPFTARFLRNALLV	582
	gi 20380408 gb	SRARSPEELSLATQL-YAGLVV S LSGLLPLAFRSCLARVHAGTLQPPFTARFLRNALLV	471
	gi 20849521 ref	SRARSPEELSLATQL-YAGLVV S LSGLLPLAFRSCLARVHAGTLQPPFTARFLRNALLV	396
	gi 21296297 gb	-----WFLRNALLV	742
30	SEQ ID NO:2	850 860 870 880 890 900	
	gi 20480454 ref	GWEQQGEGPAALGAHFGESASAHLS D LA P LLLH P EEVA E AA S LLAICCPFPSEALSPS	785
	gi 12697941 dbj	GWEQQGEGPAALGAHFGESASAHLS D LA P LLLH P EEVA E AA S LLAICCPFPSEALSPS	642
	gi 20380408 gb	GWEQQGEGPAALGAHFGESASAHLS D LA P LLLH P EEVA E AA S LLAICCPFPSEALSPS	531
	gi 20849521 ref	GWEQQGEGPAALGAHFGESASAHLS D LA P LLLH P EEVA E AA S LLAICCPFPSEALSPS	456
	gi 21296297 gb	GWEQQG D EGPSALGARFGESASAHLS D LA P LLLH P EEVA E AA S LLAICCPFPSEALSPS	802
35	SEQ ID NO:2	910 920 930 940 950 960	
	gi 20480454 ref	ENANEP C KRVKNERPEPM T DEQHRLGTGSRTV T YKDL T HE T TVRLTECMDLGKSV T GT A	518
	gi 12697941 dbj	QLLGLV R AGVH R FFAS R RLHG P PGV A SACQ L TRL S Q T S-----	836
	gi 20380408 gb	QLLGLV R AGVH R FFAS R RLHG P PGV A SACQ L TRL S Q T S-----	693
	gi 20849521 ref	QLLGLV R AGVH R FFAS R RLHG P PGV A SACQ L TRL S Q T S-----	582
	gi 21296297 gb	QLLGLV R AGVH H FFNS R RLHG P PGV A SACQ L TRL S Q T S-----	507
40	SEQ ID NO:2	970 980 990 1000 1010 1020	
	gi 20480454 ref	EGALH R GNTE L FGQ V DG D NET L S V S A S L S L D T N R R H TA A V P PG G GI W S V H A GV	896
	gi 12697941 dbj	EGALH R GNTE L FGQ V DG D NET L S V S A S L S L D T N R R H TA A V P PG G GI W S V H A GV	753
	gi 20380408 gb	EGALH R GNTE L FGQ V DG D NET L S V S A S L S L D T N R R H TA A V P PG G GI W S V H A GV	642
	gi 20849521 ref	EGALH R GNTE L FGQ V DG D NET L S V S A S L S L D T N R R H TA A V P PG G GI W S V H A GV	567
	gi 21296297 gb	EVALH R GNTE L FG E EV M VG D NET L S V T PLAS L D I N R R H TA A V P PG G GI W S V H A GV	913
45	SEQ ID NO:2	1030 1040 1050 1060 1070 1080	
	gi 20480454 ref	IGRGLK P PKFVQ S RNQ Q EV I YNT Q S L S L V H CC S AP G GT E CG E WG A PI L S P EA A K A V A	956
	gi 12697941 dbj	IGRGLK P PKFVQ S RNQ Q EV I YNT Q S L S L V H CC S AP G GT E CG E WG A PI L S P EA A K A V A	813
	gi 20380408 gb	IGRGLK P PKFVQ S RNQ Q EV I YNT Q S L S L V H CC S AP G GT E CG E WG A PI L S P EA A K A V A	702
	gi 20849521 ref	IGRGLK P PKFVQ S RNQ Q EV I YNT Q S L S L V H CC S AP G GT E CG E WG A PI L S P EA A K A V A	627
	gi 21296297 gb	IGRGLK S PK I V Q SRN H Q E VI Y NT Q S L S L V H CC S AS G SE H K G Y W AP T -----	963
50	SEQ ID NO:2	1090 1100 1110 1120 1130 1140	
	gi 20480454 ref	IGQGP K PSKKAVGP A SE M Q A E S Q A Y F D K P D LL I R N Q O Q G I A N N AS R --AT V L H AG I	683
55	SEQ ID NO:2	1090 1100 1110 1120 1130 1140	
	gi 20480454 ref	VTLV E S V CP D AAGAELAWP P EEHAR A T V ER D L R IG R RF Q PLL F ELL K L V AA P PA L CY	1016

5	gi 20480454 ref	VTLVESVCPDAAGAELAWPPEEHARATVERDLRIGRRFREQPLLFELLKLVAAAPPALCY	873
	gi 12697941 dbj	VTLVESVCPDAAGAELAWPPEEHARATVERDLRIGRRFREQPLLFELLKLVAAAPPALCY	762
	gi 20380408 gb	VTLVESVCPDAAGAELAWPPEEHARATVERDLRIGRRFREQPLLFELLKLVAAAPPALCY	687
	gi 20849521 ref		963
	gi 21296297 gb	LL-LVEMISPEVMYNGLP-NEEDDFIRVIVVERDLRIGRRFREQPLLFELLKLVAAAPPALCY	743
		1150 1160 1170 1180 1190 1200	
10	SEQ ID NO:2	CSVLLRGGLAALLGHWEASRHPDTI-HSPWHLLEASCTLVAVMAEGSLLPPALGNMHEVFS	1075
	gi 20480454 ref	CSVLLRGGLAALLGHWEASRHPDTI-HSPWHLLEASCTLVAVMAEGSLLPPALGNMHEVFS	932
	gi 12697941 dbj	CSVLLRGGLAALLGHWEASRHPDTI-HSPWHLLEASCTLVAVMAEGSLLPPALGNMHEVFS	821
	gi 20380408 gb	CSVLLRGGLAALLGHWEASRHPDTI-HSPWHLLEASCTLVAVMAEGSLLPPALGNMHEVFS	746
	gi 20849521 ref		963
	gi 21296297 gb	CSVLLPAPCSAHPQHWRSKTAETLNGQKTDIYMTTKLILYMPAQLLPPPLSYLHIVLE	803
		1210 1220 1230 1240 1250 1260	
20	SEQ ID NO:2	QLAPFEVE-LLLLSVNGFLREHGPLPKNKFIFQSERGRFIRDFS-REGGEGGPHLAVLHS	1133
	gi 20480454 ref	QLAPFEVE-LLLLSVNGFLREHGPLPKNKFIFQSERGRFIRDFS-REGGEGGPHLAVLHS	990
	gi 12697941 dbj	QLAPFEVE-LLLLSVNGFLREHGPLPKNKFIFQSERGRFIRDFS-REGGEGGPHLAVLHS	879
	gi 20380408 gb	QLAPFEVE-LLLLSVNGFLREHGPLPKNKFIFQSERGRFIRDFS-REGGEGGPHLAVLHS	804
	gi 20849521 ref		963
	gi 21296297 gb	YFDGPEIDAYVKECVENYMKDHVPSFVLEVCDPTGFHWRDPLTSPPPLQYTNELRNTMOK	863
		1270 1280 1290	
30	SEQ ID NO:2	VLHRN-IDRLGLFSGRFQAPSPTLLRQGT-----1162	
	gi 20480454 ref	VLHRN-IDRLGLFSGRFQAPSPTLLRQGT-----1019	
	gi 12697941 dbj	VLHRN-IDRLGLFSGRFQAPSPTLLRQGT-----908	
	gi 20380408 gb	VLHRN-IDRLGLFSGRFQAPSPTLLRQGT-----833	
	gi 20849521 ref		963
	gi 21296297 gb	KETRVGHLYHQMFVGPTELNPSPASMSGQPTQQPLVQG	900

Residues 1-170 of SEQ ID NO:2 are referred to herein as SEQ ID NO:15. The fragment of
 35 SEQ ID NO:16 that includes amino acids 1-27 is referred to herein as SEQ ID NO:21.

BFLP1698 Nucleic Acids

The nucleic acids of the invention include those that encode a BFLP1698 polypeptide or protein. As used herein, the terms polypeptide and protein are interchangeable.

In some embodiments, a BFLP1698 nucleic acid encodes a mature BFLP1698 polypeptide. As used herein, a "mature" form of a polypeptide or protein described herein relates to the product of a naturally occurring polypeptide or precursor form or proprotein. The naturally occurring polypeptide, precursor or proprotein includes, by way of nonlimiting example, the full length gene product, encoded by the corresponding gene. Alternatively, it may be defined as the polypeptide, precursor or proprotein encoded by an open reading frame described herein. The product "mature" form arises, again by way of nonlimiting example, as a result of one or more naturally occurring processing steps that may take place within the cell in which the gene product arises. Examples of such processing steps leading to a "mature" form of a polypeptide or protein

include the cleavage of the N-terminal methionine residue encoded by the initiation codon of an open reading frame, or the proteolytic cleavage of a signal peptide or leader sequence. Thus a mature form arising from a precursor polypeptide or protein that has residues 1 to N, where residue 1 is the N-terminal methionine, would have residues 2 through N remaining after removal 5 of the N-terminal methionine. Alternatively, a mature form arising from a precursor polypeptide or protein having residues 1 to N, in which an N-terminal signal sequence from residue 1 to residue M is cleaved, would have the residues from residue M+1 to residue N remaining. Further as used herein, a “mature” form of a polypeptide or protein may arise from a step of post-translational modification other than a proteolytic cleavage event. Such additional processes 10 include, by way of non-limiting example, glycosylation, myristylation or phosphorylation. In general, a mature polypeptide or protein may result from the operation of only one of these processes, or a combination of any of them.

The invention includes mutant or variant nucleic acids of SEQ ID NO:1, or a fragment thereof, any of whose bases may be changed from the corresponding bases shown in SEQ ID 15 NO:1, while still encoding a protein that maintains at least one of its BFLP1698 -like activities and physiological functions (*i.e.*, modulating angiogenesis, neuronal development). The invention further includes the complement of the nucleic acid sequence of SEQ ID NO:1, including fragments, derivatives, analogs and homologs thereof. The invention additionally includes nucleic acids or nucleic acid fragments, or complements thereto, whose structures 20 include chemical modifications.

One aspect of the invention pertains to isolated nucleic acid molecules that encode BFLP1698 proteins or biologically active portions thereof. Also included are nucleic acid fragments sufficient for use as hybridization probes to identify BFLP1698 -encoding nucleic acids (*e.g.*, BFLP1698 mRNA) and fragments for use as polymerase chain reaction (PCR) 25 primers for the amplification or mutation of BFLP1698 nucleic acid molecules. As used herein, the term “nucleic acid molecule” is intended to include DNA molecules (*e.g.*, cDNA or genomic DNA), RNA molecules (*e.g.*, mRNA), analogs of the DNA or RNA generated using nucleotide analogs, and derivatives, fragments and homologs thereof. The nucleic acid molecule can be single-stranded or double-stranded, but preferably is double-stranded DNA.

"Probes" refer to nucleic acid sequences of variable length, preferably between at least about 10 nucleotides (nt), 100 nt, or as many as about, *e.g.*, 6,000 nt, depending on use. Probes are used in the detection of identical, similar, or complementary nucleic acid sequences. Longer length probes are usually obtained from a natural or recombinant source, are highly specific and 5 much slower to hybridize than oligomers. Probes may be single- or double-stranded and designed to have specificity in PCR, membrane-based hybridization technologies, or ELISA-like technologies.

An "isolated" nucleic acid molecule is one that is separated from other nucleic acid molecules that are present in the natural source of the nucleic acid. Examples of isolated nucleic 10 acid molecules include, but are not limited to, recombinant DNA molecules contained in a vector, recombinant DNA molecules maintained in a heterologous host cell, partially or substantially purified nucleic acid molecules, and synthetic DNA or RNA molecules. Preferably, an "isolated" nucleic acid is free of sequences which naturally flank the nucleic acid (*i.e.*, sequences located at the 5' and 3' ends of the nucleic acid) in the genomic DNA of the organism 15 from which the nucleic acid is derived. For example, in various embodiments, the isolated BFLP1698 nucleic acid molecule can contain less than about 50 kb, 25 kb, 5 kb, 4 kb, 3 kb, 2 kb, 1 kb, 0.5 kb or 0.1 kb of nucleotide sequences which naturally flank the nucleic acid molecule in genomic DNA of the cell from which the nucleic acid is derived. Moreover, an "isolated" nucleic acid molecule, such as a cDNA molecule, can be substantially free of other cellular 20 material or culture medium when produced by recombinant techniques, or of chemical precursors or other chemicals when chemically synthesized.

A nucleic acid molecule of the present invention, *e.g.*, a nucleic acid molecule having the nucleotide sequence of SEQ ID NO:1, or a complement thereof, can be isolated using standard molecular biology techniques and the sequence information provided herein. Using all or a 25 portion of the nucleic acid sequence of SEQ ID NO:1 as a hybridization probe, BFLP1698 nucleic acid sequences can be isolated using standard hybridization and cloning techniques (*e.g.*, as described in Sambrook *et al.*, eds., MOLECULAR CLONING: A LABORATORY MANUAL 2nd Ed., Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY, 1989; and Ausubel, *et al.*, eds., CURRENT PROTOCOLS IN MOLECULAR BIOLOGY, John Wiley & Sons, New York, NY, 1993.)

A nucleic acid of the invention can be amplified using cDNA, mRNA or alternatively, genomic DNA, as a template and appropriate oligonucleotide primers according to standard PCR amplification techniques. The nucleic acid so amplified can be cloned into an appropriate vector and characterized by DNA sequence analysis. Furthermore, oligonucleotides corresponding to 5 BFLP1698 nucleotide sequences can be prepared by standard synthetic techniques, *e.g.*, using an automated DNA synthesizer.

As used herein, the term “oligonucleotide” refers to a series of linked nucleotide residues, which oligonucleotide has a sufficient number of nucleotide bases to be used in a PCR reaction. A short oligonucleotide sequence may be based on, or designed from, a genomic or cDNA 10 sequence and is used to amplify, confirm, or reveal the presence of an identical, similar or complementary DNA or RNA in a particular cell or tissue. Oligonucleotides comprise portions of a nucleic acid sequence having about 10 nt, 50 nt, or 100 nt in length, preferably about 15 nt to 30 nt in length. In one embodiment, an oligonucleotide comprising a nucleic acid molecule less than 100 nt in length would further comprise at least 6 contiguous nucleotides of SEQ ID NO:1, 15 or a complement thereof. Oligonucleotides may be chemically synthesized and may be used as probes.

In another embodiment, an isolated nucleic acid molecule of the invention comprises a nucleic acid molecule that is a complement of the nucleotide sequence shown in SEQ ID NO:1, or a portion of this nucleotide sequence. A nucleic acid molecule that is complementary to the 20 nucleotide sequence shown in SEQ ID NO:1 is one that is sufficiently complementary to the nucleotide sequence shown in SEQ ID NO:1 that it can hydrogen bond with little or no mismatches to the nucleotide sequence shown in SEQ ID NO:1, thereby forming a stable duplex.

As used herein, the term “complementary” refers to Watson-Crick or Hoogsteen base pairing between nucleotide units of a nucleic acid molecule, and the term “binding” means the 25 physical or chemical interaction between two polypeptides or compounds or associated polypeptides or compounds or combinations thereof. Binding includes ionic, non-ionic, Van der Waals, hydrophobic interactions, etc. A physical interaction can be either direct or indirect. Indirect interactions may be through or due to the effects of another polypeptide or compound. Direct binding refers to interactions that do not take place through, or due to, the effect of another 30 polypeptide or compound, but instead are without other substantial chemical intermediates.

Moreover, the nucleic acid molecule of the invention can comprise only a portion of the nucleic acid sequence of SEQ ID NO:1, *e.g.*, a fragment that can be used as a probe or primer, or a fragment encoding a biologically active portion of BFLP1698. Fragments provided herein are defined as sequences of at least 6 (contiguous) nucleic acids or at least 4 (contiguous) amino acids, a length sufficient to allow for specific hybridization in the case of nucleic acids or for specific recognition of an epitope in the case of amino acids, respectively, and are at most some portion less than a full length sequence. Fragments may be derived from any contiguous portion of a nucleic acid or amino acid sequence of choice. Fragments can include as many as 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, or 20 amino acids. Derivatives are nucleic acid sequences or amino acid sequences formed from the native compounds either directly or by modification or partial substitution. Analogs are nucleic acid sequences or amino acid sequences that have a structure similar to, but not identical to, the native compound but differs from it in respect to certain components or side chains. Analogs may be synthetic or from a different evolutionary origin and may have a similar or opposite metabolic activity compared to wild type.

Derivatives and analogs may be full length or other than full length, if the derivative or analog contains a modified nucleic acid or amino acid, as described below. Derivatives or analogs of the nucleic acids or proteins of the invention include, but are not limited to, molecules comprising regions that are substantially homologous to the nucleic acids or proteins of the invention, in various embodiments, by at least about 70%, 80%, 85%, 90%, 95%, 98%, or even 99% identity (with a preferred identity of 80-99%) over a nucleic acid or amino acid sequence of identical size or when compared to an aligned sequence in which the alignment is done by a computer homology program known in the art, or whose encoding nucleic acid is capable of hybridizing to the complement of a sequence encoding the aforementioned proteins under stringent, moderately stringent, or low stringent conditions. An exemplary program is the Gap program (Wisconsin Sequence Analysis Package, Version 8 for UNIX, Genetics Computer Group, University Research Park, Madison, WI) using the default settings, which uses the algorithm of Smith and Waterman.

A “homologous nucleic acid sequence” or “homologous amino acid sequence,” or variations thereof, refer to sequences characterized by a homology at the nucleotide level or amino acid level as discussed above. Homologous nucleotide sequences encode those sequences

coding for isoforms of a BFLP1698 polypeptide. Isoforms can be expressed in different tissues of the same organism as a result of, for example, alternative splicing of RNA. Alternatively, isoforms can be encoded by different genes. In the present invention, homologous nucleotide sequences include nucleotide sequences encoding for a BFLP1698 polypeptide of species other than humans, including, but not limited to, mammals, and thus can include, *e.g.*, mouse, rat, rabbit, dog, cat, cow, horse, and other organisms. Homologous nucleotide sequences also include, but are not limited to, naturally occurring allelic variations and mutations of the nucleotide sequences set forth herein. A homologous nucleotide sequence does not, however, include the nucleotide sequence encoding human BFLP1698 protein. Homologous nucleic acid sequences include those nucleic acid sequences that encode conservative amino acid substitutions (see below) in SEQ ID NO:2, as well as a polypeptide having BFLP1698 activity. Biological activities of the BFLP1698 proteins are described below. A homologous amino acid sequence does not encode the amino acid sequence of a human BFLP1698 polypeptide.

The nucleotide sequence determined from the cloning of the human BFLP1698 gene allows for the generation of probes and primers designed for use in identifying and/or cloning BFLP1698 homologues in other cell types, *e.g.*, from other tissues, as well as BFLP1698 homologues from other mammals. The probe/primer typically comprises a substantially purified oligonucleotide. The oligonucleotide typically comprises a region of nucleotide sequence that hybridizes under stringent conditions to at least about 12, 25, 50, 100, 150, 200, 250, 300, 350 or 400 or more consecutive sense strand nucleotide sequence of SEQ ID NO:1; or an anti-sense strand nucleotide sequence of SEQ ID NO:1; or of a naturally occurring mutant of SEQ ID NO:1.

Probes based on the human BFLP1698 nucleotide sequence can be used to detect transcripts or genomic sequences encoding the same or homologous proteins. In various embodiments, the probe further comprises a label group attached thereto, *e.g.*, the label group can be a radioisotope, a fluorescent compound, an enzyme, or an enzyme co-factor. Such probes can be used as a part of a diagnostic test kit for identifying cells or tissue which misexpress a BFLP1698 protein, such as by measuring a level of a BFLP1698-encoding nucleic acid in a sample of cells from a subject *e.g.*, detecting BFLP1698 mRNA levels or determining whether a genomic BFLP1698 gene has been mutated or deleted.

A "polypeptide having a biologically active portion of BFLP1698 " refers to polypeptides exhibiting activity similar, but not necessarily identical to, an activity of a polypeptide of the present invention, including mature forms, as measured in a particular biological assay, with or without dose dependency. A nucleic acid fragment encoding a "biologically active portion of BFLP1698 " can be prepared by isolating a portion of SEQ ID NO:1 that encodes a polypeptide having a BFLP1698 biological activity (biological activities of the BFLP1698 proteins are described below), expressing the encoded portion of BFLP1698 protein (e.g., by recombinant expression *in vitro*) and assessing the activity of the encoded portion of BFLP1698.

The invention also provides polymorphic forms of BFLP1698 nucleic acid sequences as well as methods of detecting polymorphic sequences in BFLP1698 sequences. The polymorphic forms include genomic sequences corresponding to exons and/or introns associated with BFLP1698.

Individuals carrying polymorphic alleles of the invention may be detected at either the DNA, the RNA, or the protein level using a variety of techniques that are well known in the art. The present methods usually employ pre-characterized polymorphisms. That is, the genotyping location and nature of polymorphic forms present at a site have already been determined. The availability of this information allows sets of probes to be designed for specific identification of the known polymorphic forms.

The genomic DNA used for the diagnosis may be obtained from any nucleated cells of the body, such as those present in peripheral blood, urine, saliva, buccal samples, surgical specimen, and autopsy specimens. The DNA may be used directly or may be amplified enzymatically *in vitro* through use of PCR or other *in vitro* amplification methods such as the ligase chain reaction (LCR), strand displacement amplification (SDA), self-sustained sequence replication (3SR), prior to mutation analysis.

The detection of polymorphisms in specific DNA sequences, can be accomplished by a variety of methods including, but not limited to, restriction-fragment-length-polymorphism detection based on allele-specific restriction-endonuclease cleavage, hybridization with allele-specific oligonucleotide probes, including immobilized oligonucleotides or oligonucleotide arrays, allele-specific PCR, mismatch-repair detection (MRD), binding of MutS protein,

denaturing-gradient gel electrophoresis (DGGE), single-strand-conformation-polymorphism detection, RNAase cleavage at mismatched base-pairs, chemical or enzymatic cleavage of heteroduplex DNA, methods based on allele specific primer extension, genetic bit analysis (GBA), the oligonucleotide-ligation assay (OLA), the allele-specific ligation chain reaction (LCR), gap-LCR, radioactive and/or fluorescent DNA sequencing using standard procedures well known in the art, and peptide nucleic acid (PNA) assays.

BFLP1698 Variants

10 The invention further encompasses nucleic acid molecules that differ from the nucleotide sequences shown in SEQ ID NO:1 due to the degeneracy of the genetic code. These nucleic acids thus encode the same BFLP1698 protein as that encoded by the nucleotide sequence shown in SEQ ID NO:1, *e.g.*, the polypeptide of SEQ ID NO:2. In another embodiment, an isolated nucleic acid molecule of the invention has a nucleotide sequence encoding a protein having an amino acid sequence shown in SEQ ID NO:2.

15 In addition to the human BFLP1698 nucleotide sequence shown in SEQ ID NO:1, it will be appreciated by those skilled in the art that DNA sequence polymorphisms that lead to changes in the amino acid sequences of BFLP1698 may exist within a population (*e.g.*, the human population). Such genetic polymorphism in the BFLP1698 gene may exist among individuals within a population due to natural allelic variation. As used herein, the terms "gene" and 20 "recombinant gene" refer to nucleic acid molecules comprising an open reading frame encoding a BFLP1698 protein, preferably a mammalian BFLP1698 protein. Such natural allelic variations can typically result in 1-5% variance in the nucleotide sequence of the BFLP1698 gene. Any and all such nucleotide variations and resulting amino acid polymorphisms in BFLP1698 that are the result of natural allelic variation and that do not alter the functional activity of BFLP1698 are 25 intended to be within the scope of the invention.

Moreover, nucleic acid molecules encoding BFLP1698 proteins from other species, and thus that have a nucleotide sequence that differs from the human sequence of SEQ ID NO:1 are intended to be within the scope of the invention. Nucleic acid molecules corresponding to natural allelic variants and homologues of the BFLP1698 cDNAs of the invention can be isolated 30 based on their homology to the human BFLP1698 nucleic acids disclosed herein using the human

cDNAs, or a portion thereof, as a hybridization probe according to standard hybridization techniques under stringent hybridization conditions. For example, a soluble human BFLP1698 cDNA can be isolated based on its homology to human membrane-bound BFLP1698. Likewise, a membrane-bound human BFLP1698 cDNA can be isolated based on its homology to soluble 5 human BFLP1698.

Accordingly, in another embodiment, an isolated nucleic acid molecule of the invention is at least 6 nucleotides in length and hybridizes under stringent conditions to the nucleic acid molecule comprising the nucleotide sequence of SEQ ID NO:1. In another embodiment, the nucleic acid is at least 10, 25, 50, 100, 250, 500 or 750 nucleotides in length. In another 10 embodiment, an isolated nucleic acid molecule of the invention hybridizes to the coding region. As used herein, the term "hybridizes under stringent conditions" is intended to describe conditions for hybridization and washing under which nucleotide sequences at least 60% homologous to each other typically remain hybridized to each other.

Homologs (*i.e.*, nucleic acids encoding BFLP1698 proteins derived from species other 15 than human) or other related sequences (*e.g.*, paralogs) can be obtained by low, moderate or high stringency hybridization with all or a portion of the particular human sequence as a probe using methods well known in the art for nucleic acid hybridization and cloning. Thus, the present invention also includes polynucleotides capable of hybridizing under reduced 20 stringency conditions, more preferably stringent conditions, and most preferably highly stringent conditions, to polynucleotides described herein. Examples of stringency conditions are shown in the table below: highly stringent conditions are those that are at least as stringent as, for example, conditions A-F; stringent conditions are at least as stringent as, for example, conditions G-L; and reduced stringency conditions are at least as stringent as, for example, conditions M-R.

25 Table 5. Stringency Conditions

Stringency Condition	Polynucleotide Hybrid	Hybrid Length (bp) ¹	Hybridization Temperature and Buffer ^H	Wash Temperature and Buffer ^H

Stringency Condition	Polynucleotide Hybrid	Hybrid Length (bp) ¹	Hybridization Temperature and Buffer ^H	Wash Temperature and Buffer ^H
A	DNA:DNA	≥50	65°C; 1xSSC -or- 42°C; 1xSSC, 50% formamide	65°C; 0.3xSSC
B	DNA:DNA	<50	T _B *; 1xSSC	T _B *; 1xSSC 67°C; 0.3xSSC
C	DNA:RNA	≥ 50	67°C; 1xSSC -or- 45°C; 1xSSC, 50% formamide	
D	DNA:RNA	<50	T _D *; 1xSSC	T _D *; 1xSSC 70°C; 0.3xSSC
E	RNA:RNA	≥50	70°C; 1xSSC -or- 50°C; 1xSSC, 50% formamide	
F	RNA:RNA	<50	T _F *; 1xSSC	T _F *; 1xSSC 65°C; 1xSSC
G	DNA:DNA	≥50	65°C; 4xSSC -or- 42°C; 4xSSC, 50% formamide	
H	DNA:DNA	<50	T _H *; 4xSSC	T _H *; 4xSSC 67°C; 1xSSC
I	DNA:RNA	≥ 50	67°C; 4xSSC -or- 45°C; 4xSSC, 50% formamide	
J	DNA:RNA	<50	T _J *; 4xSSC	T _J *; 4xSSC 67°C; 1xSSC
K	RNA:RNA	≥ 50	70°C; 4xSSC -or- 50°C; 4xSSC, 50% formamide	
L	RNA:RNA	<50	T _L *; 2xSSC	T _L *; 2xSSC 50°C; 2xSSC
M	DNA:DNA	> 50	50°C; 4xSSC -or- 40°C; 6xSSC, 50% formamide	

Stringency Condition	Polynucleotide Hybrid	Hybrid Length (bp) ¹	Hybridization Temperature and Buffer ^H	Wash Temperature and Buffer ^H
N	DNA:DNA	<50	T _N *; 6xSSC	T _N *; 6xSSC 55°C; 2xSSC
O	DNA:RNA	> 50	55°C; 4xSSC -or- 42°C; 6xSSC, 50% formamide	
P	DNA:RNA	<50	T _P *; 6xSSC	T _P *; 6xSSC 60°C; 2xSSC
Q	RNA:RNA	> 50	60°C; 4xSSC -or- 45°C; 6xSSC, 50% formamide	
R	RNA:RNA	<50	T _R *; 4xSSC	T _R *; 4xSSC

1: The hybrid length is that anticipated for the hybridized region(s) of the hybridizing polynucleotides. When hybridizing a polynucleotide to a target polynucleotide of unknown sequence, the hybrid length is assumed to be that of the hybridizing polynucleotide. When 5 polynucleotides of known sequence are hybridized, the hybrid length can be determined by aligning the sequences of the polynucleotides and identifying the region or regions of optimal sequence complementarity.

10 ^H: SSPE (1xSSPE is 0.15M NaCl, 10mM NaH₂PO₄, and 1.25mM EDTA, pH 7.4) can be substituted for SSC (1xSSC is 0.15M NaCl and 15mM sodium citrate) in the hybridization and wash buffers; washes are performed for 15 minutes after hybridization is complete.

15 T_B* - T_R*: The hybridization temperature for hybrids anticipated to be less than 50 base pairs in length should be 5-10°C less than the melting temperature (T_m) of the hybrid, where T_m is determined according to the following equations. For hybrids less than 18 base pairs in length, T_m(°C) = 2(# of A + T bases) + 4(# of G + C bases). For hybrids between 18 and 49 base pairs in length, T_m(°C) = 81.5 + 16.6(log₁₀Na⁺) + 0.41(%G+C) - (600/N), where N is the number of bases in the hybrid, and Na⁺ is the concentration of sodium ions in the hybridization buffer (Na⁺ for 1xSSC = 0.165 M).

Preferably, each such hybridizing polynucleotide has a length that is at least 25% (more preferably at least 50%, and most preferably at least 75%) of the length of the polynucleotide of the present invention to which it hybridizes, and has at least 60% sequence identity (more preferably, at least 75% identity; most preferably at least 90% or 95% identity) with the 5 polynucleotide of the present invention to which it hybridizes, where sequence identity is determined by comparing the sequences of the hybridizing polynucleotides when aligned so as to maximize overlap and identity while minimizing sequence gaps.

A non-limiting example of stringent hybridization conditions is hybridization in a high salt buffer comprising 6X SSC, 50 mM Tris-HCl (pH 7.5), 1 mM EDTA, 0.02% PVP, 0.02% 10 Ficoll, 0.02% BSA, and 500 mg/ml denatured salmon sperm DNA at 65°C. This hybridization is followed by one or more washes in 0.2X SSC, 0.01% BSA at 50°C. An isolated nucleic acid molecule of the invention that hybridizes under stringent conditions to the sequence of SEQ ID NO:1 corresponds to a naturally occurring nucleic acid molecule. As used herein, a "naturally-occurring" nucleic acid molecule refers to an RNA or DNA molecule having a 15 nucleotide sequence that occurs in nature (e.g., encodes a natural protein).

In a second embodiment, a nucleic acid sequence that is hybridizable to the nucleic acid molecule comprising the nucleotide sequence of SEQ ID NO:1, or fragments, analogs or derivatives thereof, under conditions of moderate stringency is provided. A non-limiting example of moderate stringency hybridization conditions are hybridization in 6X SSC, 5X 20 Denhardt's solution, 0.5% SDS and 100 mg/ml denatured salmon sperm DNA at 55°C, followed by one or more washes in 1X SSC, 0.1% SDS at 37°C.

In a third embodiment, a nucleic acid that is hybridizable to the nucleic acid molecule comprising the nucleotide sequence of SEQ ID NO:1, or fragments, analogs or derivatives thereof, under conditions of low stringency, is provided. A non-limiting example of low 25 stringency hybridization conditions are hybridization in 35% formamide, 5X SSC, 50 mM Tris-HCl (pH 7.5), 5 mM EDTA, 0.02% PVP, 0.02% Ficoll, 0.2% BSA, 100 mg/ml denatured salmon sperm DNA, 10% (wt/vol) dextran sulfate at 40°C, followed by one or more washes in 2X SSC, 25 mM Tris-HCl (pH 7.4), 5 mM EDTA, and 0.1% SDS at 50°C.

30 Conservative mutations

In addition to naturally-occurring allelic variants of the BFLP1698 sequence that may exist in the population, the skilled artisan will further appreciate that changes can be introduced by mutation into the nucleotide sequence of SEQ ID NO:1, thereby leading to changes in the amino acid sequence of the encoded BFLP1698 protein, without altering the functional ability of the BFLP1698 protein. For example, nucleotide substitutions leading to amino acid substitutions at "non-essential" amino acid residues can be made in the sequence of SEQ ID NO:1. A "non-essential" amino acid residue is a residue that can be altered from the wild-type sequence of BFLP1698 without altering the biological activity, whereas an "essential" amino acid residue is required for biological activity. For example, altering amino acid residues that are conserved among the BFLP1698 proteins of the present invention, is likely to result in loss of activity of the BFLP1698 protein.

Another aspect of the invention pertains to nucleic acid molecules encoding BFLP1698 proteins that contain changes in amino acid residues that are not essential for activity. Such BFLP1698 proteins differ in amino acid sequence from SEQ ID NO:2, yet retain biological activity. In one embodiment, the isolated nucleic acid molecule comprises a nucleotide sequence encoding a protein, wherein the protein comprises an amino acid sequence at least about 75% homologous to the amino acid sequence of SEQ ID NO:2. Preferably, the protein encoded by the nucleic acid is at least about 80% homologous to SEQ ID NO:2, more preferably at least about 90%, 95%, 98%, and most preferably at least about 99% homologous to SEQ ID NO:2.

An isolated nucleic acid molecule encoding a BFLP1698 protein homologous to the protein of SEQ ID NO:2 can be created by introducing one or more nucleotide substitutions, additions or deletions into the nucleotide sequence of SEQ ID NO:1, such that one or more amino acid substitutions, additions or deletions are introduced into the encoded protein.

Mutations can be introduced into the nucleotide sequence of SEQ ID NO:1 by standard techniques, such as site-directed mutagenesis and PCR-mediated mutagenesis. Preferably, conservative amino acid substitutions are made at one or more predicted non-essential amino acid residues. A "conservative amino acid substitution" is one in which the amino acid residue is replaced with an amino acid residue having a similar side chain. Families of amino acid residues having similar side chains have been defined in the art. These families include amino acids with basic side chains (*e.g.*, lysine, arginine, histidine), acidic side chains (*e.g.*, aspartic acid, glutamic

acid), uncharged polar side chains (*e.g.*, glycine, asparagine, glutamine, serine, threonine, tyrosine, cysteine), nonpolar side chains (*e.g.*, alanine, valine, leucine, isoleucine, proline, phenylalanine, methionine, tryptophan), beta-branched side chains (*e.g.*, threonine, valine, isoleucine) and aromatic side chains (*e.g.*, tyrosine, phenylalanine, tryptophan, histidine). Thus, 5 a predicted nonessential amino acid residue in BFLP1698 is replaced with another amino acid residue from the same side chain family. Alternatively, in another embodiment, mutations can be introduced randomly along all or part of a BFLP1698 coding sequence, such as by saturation mutagenesis, and the resultant mutants can be screened for BFLP1698 biological activity to identify mutants that retain activity. Following mutagenesis of SEQ ID NO:1 the encoded 10 protein can be expressed by any recombinant technology known in the art and the activity of the protein can be determined.

In one embodiment, a mutant BFLP1698 protein can be assayed for (1) the ability to form protein:protein interactions with other BFLP1698 proteins, other cell-surface proteins, or biologically active portions thereof, (2) complex formation between a mutant BFLP1698 protein 15 and a BFLP1698 receptor; (3) the ability of a mutant BFLP1698 protein to bind to an intracellular target protein or biologically active portion thereof; (*e.g.*, avidin proteins); (4) the ability to bind BFLP1698 protein; or (5) the ability to specifically bind an anti-BFLP1698 protein antibody.

20 Antisense BFLP1698 Nucleic Acids

Another aspect of the invention pertains to isolated antisense nucleic acid molecules that are hybridizable to or complementary to the nucleic acid molecule comprising the nucleotide sequence of SEQ ID NO:1, or fragments, analogs or derivatives thereof. An "antisense" nucleic acid comprises a nucleotide sequence that is complementary to a "sense" nucleic acid encoding a 25 protein, *e.g.*, complementary to the coding strand of a double-stranded cDNA molecule or complementary to an mRNA sequence. In specific aspects, antisense nucleic acid molecules are provided that comprise a sequence complementary to at least about 10, 25, 50, 100, 250 or 500 nucleotides or an entire BFLP1698 coding strand, or to only a portion thereof. Nucleic acid molecules encoding fragments, homologs, derivatives and analogs of a BFLP1698 protein of

SEQ ID NO:2, or antisense nucleic acids complementary to a BFLP1698 nucleic acid sequence of SEQ ID NO:1 are additionally provided.

In one embodiment, an antisense nucleic acid molecule is antisense to a "coding region" of the coding strand of a nucleotide sequence encoding BFLP1698. The term "coding region" 5 refers to the region of the nucleotide sequence comprising codons which are translated into amino acid residues (e.g., the protein coding region of human BFLP1698 corresponds to SEQ ID NO:2). In another embodiment, the antisense nucleic acid molecule is antisense to a "noncoding region" of the coding strand of a nucleotide sequence encoding BFLP1698. The term "noncoding region" refers to 5' and 3' sequences which flank the coding region that are not translated into 10 amino acids (i.e., also referred to as 5' and 3' untranslated regions).

Given the coding strand sequences encoding BFLP1698 disclosed herein (e.g., SEQ ID NO:1), antisense nucleic acids of the invention can be designed according to the rules of Watson and Crick or Hoogsteen base pairing. The antisense nucleic acid molecule can be complementary to the entire coding region of BFLP1698 mRNA, but more preferably is an oligonucleotide that is 15 antisense to only a portion of the coding or noncoding region of BFLP1698 mRNA. For example, the antisense oligonucleotide can be complementary to the region surrounding the translation start site of BFLP1698 mRNA. An antisense oligonucleotide can be, for example, about 5, 10, 15, 20, 25, 30, 35, 40, 45 or 50 nucleotides in length. An antisense nucleic acid of the invention can be constructed using chemical synthesis or enzymatic ligation reactions using 20 procedures known in the art. For example, an antisense nucleic acid (e.g., an antisense oligonucleotide) can be chemically synthesized using naturally occurring nucleotides or variously modified nucleotides designed to increase the biological stability of the molecules or to increase the physical stability of the duplex formed between the antisense and sense nucleic acids, e.g., phosphorothioate derivatives and acridine substituted nucleotides can be used.

25 Examples of modified nucleotides that can be used to generate the antisense nucleic acid include: 5-fluorouracil, 5-bromouracil, 5-chlorouracil, 5-iodouracil, hypoxanthine, xanthine, 4-acetylcytosine, 5-(carboxyhydroxymethyl) uracil, 5-carboxymethylaminomethyl-2-thiouridine, 5-carboxymethylaminomethyluracil, dihydrouracil, beta-D-galactosylqueosine, inosine, N6-isopentenyladenine, 1-methylguanine, 1-methylinosine, 2,2-dimethylguanine, 30 2-methyladenine, 2-methylguanine, 3-methylcytosine, 5-methylcytosine, N6-adenine,

7-methylguanine, 5-methylaminomethyluracil, 5-methoxyaminomethyl-2-thiouracil, beta-D-mannosylqueosine, 5'-methoxycarboxymethyluracil, 5-methoxyuracil, 2-methylthio-N6-isopentenyladenine, uracil-5-oxyacetic acid (v), wybutoxosine, pseudouracil, queosine, 2-thiocytosine, 5-methyl-2-thiouracil, 2-thiouracil, 4-thiouracil, 5-methyluracil, 5 uracil-5-oxyacetic acid methylester, uracil-5-oxyacetic acid (v), 5-methyl-2-thiouracil, 3-(3-amino-3-N-2-carboxypropyl) uracil, (acp3)w, and 2,6-diaminopurine. Alternatively, the antisense nucleic acid can be produced biologically using an expression vector into which a nucleic acid has been subcloned in an antisense orientation (*i.e.*, RNA transcribed from the inserted nucleic acid will be of an antisense orientation to a target nucleic acid of interest, 10 described further in the following subsection).

The antisense nucleic acid molecules of the invention are typically administered to a subject or generated *in situ* such that they hybridize with or bind to cellular mRNA and/or genomic DNA encoding a BFLP1698 protein to thereby inhibit expression of the protein, *e.g.*, by inhibiting transcription and/or translation. The hybridization can be by conventional nucleotide 15 complementarity to form a stable duplex, or, for example, in the case of an antisense nucleic acid molecule that binds to DNA duplexes, through specific interactions in the major groove of the double helix. An example of a route of administration of antisense nucleic acid molecules of the invention includes direct injection at a tissue site. Alternatively, antisense nucleic acid molecules can be modified to target selected cells and then administered systemically. For example, for 20 systemic administration, antisense molecules can be modified such that they specifically bind to receptors or antigens expressed on a selected cell surface, *e.g.*, by linking the antisense nucleic acid molecules to peptides or antibodies that bind to cell surface receptors or antigens. The antisense nucleic acid molecules can also be delivered to cells using the vectors described herein. To achieve sufficient intracellular concentrations of antisense molecules, vector constructs in 25 which the antisense nucleic acid molecule is placed under the control of a strong pol II or pol III promoter are preferred.

In yet another embodiment, the antisense nucleic acid molecule of the invention is an α -anomeric nucleic acid molecule. An α -anomeric nucleic acid molecule forms specific double-stranded hybrids with complementary RNA in which, contrary to the usual β -units, the

strands run parallel to each other. The antisense nucleic acid molecule can also comprise a 2'-o-methylribonucleotide.

Such modifications include, by way of nonlimiting example, modified bases, and nucleic acids whose sugar phosphate backbones are modified or derivatized. These modifications are 5 carried out at least in part to enhance the chemical stability of the modified nucleic acid, such that they may be used, for example, as antisense binding nucleic acids in therapeutic applications in a subject.

BFLP1698 Ribozymes and PNA moieties

10 In still another embodiment, an antisense nucleic acid of the invention is a ribozyme. Ribozymes are catalytic RNA molecules with ribonuclease activity that are capable of cleaving a single-stranded nucleic acid, such as a mRNA, to which they have a complementary region. Thus, ribozymes (*e.g.*, hammerhead ribozymes) can be used to catalytically cleave BFLP1698 mRNA transcripts to thereby inhibit translation of BFLP1698 mRNA. A ribozyme having 15 specificity for a BFLP1698-encoding nucleic acid can be designed based upon the nucleotide sequence of a BFLP1698 DNA disclosed herein (*i.e.*, SEQ ID NO:1). For example, a derivative of a Tetrahymena L-19 IVS RNA can be constructed in which the nucleotide sequence of the active site is complementary to the nucleotide sequence to be cleaved in a BFLP1698-encoding mRNA. Alternatively, BFLP1698 mRNA can be used to select a catalytic RNA having a specific 20 ribonuclease activity from a pool of RNA molecules.

Alternatively, BFLP1698 gene expression can be inhibited by targeting nucleotide sequences complementary to the regulatory region of the BFLP1698 (*e.g.*, the BFLP1698 promoter and/or enhancers) to form triple helical structures that prevent transcription of the BFLP1698 gene in target cells.

25 In various embodiments, the nucleic acids of BFLP1698 can be modified at the base moiety, sugar moiety or phosphate backbone to improve, *e.g.*, the stability, hybridization, or solubility of the molecule. For example, the deoxyribose phosphate backbone of the nucleic acids can be modified to generate peptide nucleic acids. As used herein, the terms "peptide nucleic acids" or "PNAs" refer to nucleic acid mimics, *e.g.*, DNA mimics, in which the 30 deoxyribose phosphate backbone is replaced by a pseudopeptide backbone and only the four

natural nucleobases are retained. The neutral backbone of PNAs has been shown to allow for specific hybridization to DNA and RNA under conditions of low ionic strength. The synthesis of PNA oligomers can be performed using standard solid phase peptide synthesis protocols.

PNAs of BFLP1698 can be used in therapeutic and diagnostic applications. For example, 5 PNAs can be used as antisense or antigene agents for sequence-specific modulation of gene expression by, *e.g.*, inducing transcription or translation arrest or inhibiting replication. PNAs of BFLP1698 can also be used, *e.g.*, in the analysis of single base pair mutations in a gene by, *e.g.*, PNA directed PCR clamping; as artificial restriction enzymes when used in combination with other enzymes, *e.g.*, S1 nucleases; or as probes or primers for DNA sequence and hybridization.

10 In another embodiment, PNAs of BFLP1698 can be modified, *e.g.*, to enhance their stability or cellular uptake, by attaching lipophilic or other helper groups to PNA, by the formation of PNA-DNA chimeras, or by the use of liposomes or other techniques of drug delivery known in the art. For example, PNA-DNA chimeras of BFLP1698 can be generated that may combine the advantageous properties of PNA and DNA.

15 The oligonucleotide may include other appended groups such as peptides (*e.g.*, for targeting host cell receptors *in vivo*), or agents facilitating transport across the cell membrane or the blood-brain barrier. In addition, oligonucleotides can be modified with hybridization triggered cleavage agents or intercalating agents. To this end, the oligonucleotide may be conjugated to another molecule, *e.g.*, a peptide, a hybridization triggered cross-linking agent, a 20 transport agent, a hybridization-triggered cleavage agent, etc.

BFLP1698 Interfering Nucleic Acids

Also provided by the invention is an isolated double-stranded nucleic acid (DNA or RNA) that is capable of mediating specific inhibition of BFLP1698 gene expression. In 25 preferred embodiments, one or both strands of the double-stranded molecule is an RNA molecule. Preferably, each RNA strand has a length from 19-25, particularly from 19-23 nucleotides, more particularly from 20-22 nucleotides, and is capable of mediating BFLP1698 target-specific nucleic acid modifications, particularly RNA interference and/or DNA methylation. The double-stranded BFLP1698 molecule may be double stranded or have an 30 overhang at one or both the 5' and/or 3' terminus. For example, the molecule may have a 3'

overhang. The length of the 3'-overhang can be, e.g., 1-6 nucleotides, 2-5 nucleotides, 3-4 nucleotides, or 2 nucleotides. The length of the overhang may be the same or different for each strand. In one embodiment, dsRNAs are composed of two 21 nucleotide strands that are paired such that 1, 2, or 3 nucleotide overhangs are present on both ends of the double-stranded RNA.

5 The RNA strands preferably have 3'-hydroxyl groups. The 5'-terminus preferably includes a phosphate, diphosphate, triphosphate or hydroxyl group. If desired, the 3'-overhangs may be stabilized against degradation. For example, they may be selected such that they consist of purine nucleotides, particularly adenosine or guanosine nucleotides. Alternatively, pyrimidine nucleotides may be replaced with modified analogues, e.g. substitution of uridine -2 nucleotide
10 3' overhangs by 2'-deoxythymidine is tolerated, and does not affect the efficiency of RNA interference. The RNA molecule may contain at least one modified nucleotide analogue. The nucleotide analogues may be located at positions where the target-specific activity, e.g. the RNAi mediating activity is not substantially affected. The modified nucleotide is preferably present in a region at the 5'-end and/or the 3'-end of the double-stranded RNA molecule. In some
15 embodiments, overhangs are stabilized by incorporating modified nucleotide analogues.

Nucleotide analogues can include sugar- or backbone-modified ribonucleotides. Other suitable nucleotides include a non-naturally occurring nucleobase instead of a naturally occurring nucleobases. For example, analogues can include uridines or cytidines modified at the 5-position, e.g. 5-(2-amino)propyl uridine, 5-bromo uridine; adenosines and guanosines modified
20 at the 8-position, e.g. 8-bromo guanosine; deaza nucleotides, e.g. 7-deaza-adenosine; O- and N-alkylated nucleotides, e.g. N6-methyl adenosine are suitable. In preferred sugar-modified ribonucleotides the 2' OH-group is replaced by a group selected from H, OR, R, halo, SH, SR, NH₂, NHR, NR₂ or CN, wherein R is C₁-C₆ alkyl, alkenyl or alkynyl and halo is F, Cl, Br or I. In a preferred embodiment, where backbone-modified ribonucleotides are used as the phosphoester
25 group connecting to adjacent ribonucleotides, they are replaced by a modified group, e.g. a phosphothioate group. It should be noted that the above modifications may be combined.

The BFLP1698 interfering RNA molecule can be a naturally isolated RNA molecule or can be a synthetic RNA molecule. Preferably, the BFLP1698 interfering RNA molecule is substantially free from contaminants occurring in cell extracts, e.g. from *Drosophila* embryos.

Further, the BFLP1698 interfering RNA molecule is preferably substantially free from any non-target-specific contaminants, particularly non-target-specific RNA molecules e.g. from contaminants occurring in cell extracts.

Isolated double-stranded BFLP1698 interfering molecules can be used for mediating 5 BFLP1698 target-specific nucleic acid modifications, particularly RNAi, in mammalian cells, particularly in human cells.

The sequence of the double-stranded BFLP1698 interfering molecule of the present invention is of sufficient identity to a nucleic acid BFLP1698 target molecule in order to effect target-specific interference of BFLP1698 gene expression and/or DNA methylation. Preferably, 10 the sequence has an identity of at least 50%, particularly of at least 70% to the desired target molecule in the double-stranded portion of the RNA molecule. More preferably, the identity is at least 85% and most preferably 100% in the double-stranded portion of the RNA molecule. The identity of a BFLP1698 double-stranded interfering RNA molecule to a predetermined nucleic acid target molecule, e.g. an BFLP1698 mRNA target molecule with the sequence shown in SEQ 15 ID NO:1, may be determined using the equation: $I = (n/L) \times 100$, wherein I is the identity in percent, n is the number of identical nucleotides in the double-stranded portion of the ds RNA and the target and L is the length of the sequence overlap of the double-stranded portion of the dsRNA and the target.

Alternatively, the identity of the double-stranded RNA molecule relative to the target 20 sequence may also be defined including the 3' overhang, particularly an overhang having a length from 1-3 nucleotides. In this case the sequence identity is preferably at least 50%, more preferably at least 70% and most preferably at least 85% to the target sequence. For example, the nucleotides from the 3' overhang and up to 2 nucleotides from the 5' and/or 3' terminus of the double strand may be modified without significant loss of activity.

25 A double-stranded BFLP1698 RNA molecule may be prepared by a method that includes synthesizing two RNA strands each having a length from 19-25, e.g. from 19-23 nucleotides, wherein said RNA strands are capable of forming a double-stranded RNA molecule, wherein preferably at least one strand has a 3'-overhang from 1-5 nucleotides, and (b) combining the synthesized RNA strands under conditions, wherein a a double-stranded RNA molecule is

formed. The double-stranded RNA molecule is capable of mediating target-specific nucleic acid modifications, particularly RNA interference and/or DNA methylation.

Methods of synthesizing RNA molecules are known in the art. The single-stranded RNAs can also be prepared by enzymatic transcription from synthetic DNA templates or from DNA 5 plasmids isolated from recombinant bacteria. Typically, phage RNA polymerases are used such as T7, T3 or SP6 RNA polymerase.

A further aspect of the present invention relates to a method of mediating BFLP1698-specific nucleic acid modifications, particularly RNA interference and/or DNA methylation in a cell or an organism by contacting the cell or organism with the double-stranded RNA molecule 10 of the invention under conditions wherein target-specific nucleic acid modifications may occur and mediating a target-specific nucleic acid modification effected by the double-stranded RNA towards a BFLP1698 target nucleic acid.

15 **BFLP1698 Polypeptides**

A BFLP1698 polypeptide of the invention includes the BFLP1698-like protein whose sequence is provided in SEQ ID NO:2. The invention also includes a mutant or variant form of the disclosed BFLP1698 polypeptide, or of any of the fragments of the herein disclosed BFLP1698 polypeptide sequences.

20 Thus, a BFLP1698 polypeptide includes one in which any residues may be changed from the corresponding residue shown in SEQ ID NO:2 while still encoding a protein that maintains its BFLP1698-like activities and physiological functions, or a functional fragment thereof. In some embodiments, up to 20% or more of the residues may be so changed in the mutant or variant protein. In some embodiments, the BFLP1698 polypeptide according to the invention is a 25 mature polypeptide.

Rapamycin Binding Domains

To identify regions of a BFLP1698 polypeptide sequence (e.g., a polypeptide including all or a portion of SEQ ID NO:2) containing rapamycin binding domains, the entire coding

sequence, or a fragment of a BFLP1698 polypeptide sequence, is tested for its ability to bind rapamycin. Any technique known in the art for determining binding of a polypeptide to a small molecule can be used. For example, rapamycin can be labeled (*i.e.*, with a non-radioactive label or with a radiolabel (e.g., ^{14}C , ^{32}P , ^3H , or ^{125}I), and mixed with a polypeptide containing some or 5 all of a BFLP1698 polypeptide sequence. The polypeptide optionally includes a moiety that facilitates detection, e.g., the polypeptide can be a fusion polypeptide that includes a BFLP1698 sequence and a non-BFLP1698 polypeptide sequence.

A reagent specific for the polypeptide containing the BFLP1698 polypeptide sequence (e.g., an antibody specific for BFLP1698 or a probe specific for the non-BFLP1698 polypeptide 10 in the case of a fusion polypeptide) is added to the mixture. Complexes that bind to the reagent are isolated, and the presence of label, which reveals the presence of rapamycin, is determined.

In general, a BFLP1698-like variant that preserves BFLP1698-like function includes any 15 variant in which residues at a particular position in the sequence have been substituted by other amino acids, and further include the possibility of inserting an additional residue or residues between two residues of the parent protein as well as the possibility of deleting one or more residues from the parent sequence. Any amino acid substitution, insertion, or deletion is encompassed by the invention. In favorable circumstances, the substitution is a conservative substitution as defined above.

One aspect of the invention pertains to isolated BFLP1698 proteins, and biologically 20 active portions thereof, or derivatives, fragments, analogs or homologs thereof. Fragments can comprise contiguous stretches of SEQ ID NO:2, or interspersed segments of SEQ ID NO:2. Also provided are polypeptide fragments suitable for use as immunogens to raise anti-BFLP1698 antibodies. In one embodiment, native BFLP1698 proteins can be isolated from cells or tissue sources by an appropriate purification scheme using standard protein purification techniques. In 25 another embodiment, BFLP1698 proteins are produced by recombinant DNA techniques. Alternative to recombinant expression, a BFLP1698 protein or polypeptide can be synthesized chemically using standard peptide synthesis techniques.

A "purified" protein or biologically active portion thereof is substantially free of cellular material or other contaminating proteins from the cell or tissue source from which the BFLP1698

protein is derived, or substantially free from chemical precursors or other chemicals when chemically synthesized. The language "substantially free of cellular material" includes preparations of BFLP1698 protein in which the protein is separated from cellular components of the cells from which it is isolated or recombinantly produced. In one embodiment, the language 5 "substantially free of cellular material" includes preparations of BFLP1698 protein having less than about 30% (by dry weight) of non-BFLP1698 protein (also referred to herein as a "contaminating protein"), more preferably less than about 20% of non-BFLP1698 protein, still more preferably less than about 10% of non-BFLP1698 protein, and most preferably less than about 5% non-BFLP1698 protein. When the BFLP1698 protein or biologically active portion 10 thereof is recombinantly produced, it is also preferably substantially free of culture medium, *i.e.*, culture medium represents less than about 20%, more preferably less than about 10%, and most preferably less than about 5% of the volume of the protein preparation.

The language "substantially free of chemical precursors or other chemicals" includes preparations of BFLP1698 protein in which the protein is separated from chemical precursors or 15 other chemicals that are involved in the synthesis of the protein. In one embodiment, the language "substantially free of chemical precursors or other chemicals" includes preparations of BFLP1698 protein having less than about 30% (by dry weight) of chemical precursors or non-BFLP1698 chemicals, more preferably less than about 20% chemical precursors or non-BFLP1698 chemicals, still more preferably less than about 10% chemical precursors or 20 non-BFLP1698 chemicals, and most preferably less than about 5% chemical precursors or non-BFLP1698 chemicals.

Biologically active portions of a BFLP1698 protein include peptides comprising amino acid sequences sufficiently homologous to or derived from the amino acid sequence of the BFLP1698 protein, *e.g.*, the amino acid sequence shown in SEQ ID NO:2 that include fewer 25 amino acids than the full length BFLP1698 proteins, and exhibit at least one activity of a BFLP1698 protein. Typically, biologically active portions comprise a domain or motif with at least one activity of the BFLP1698 protein. A biologically active portion of a BFLP1698 protein can be a polypeptide which is, for example, 10, 25, 50, 100 or more amino acids in length.

A biologically active portion of a BFLP1698 protein of the present invention may contain 30 at least one of the above-identified domains conserved between the BFLP1698 proteins.

Moreover, other biologically active portions, in which other regions of the protein are deleted, can be prepared by recombinant techniques and evaluated for one or more of the functional activities of a native BFLP1698 protein.

In an embodiment, the BFLP1698 protein has an amino acid sequence shown in SEQ ID NO:2. In other embodiments, the BFLP1698 protein is substantially homologous to SEQ ID NO:2 and retains the functional activity of the protein of SEQ ID NO:2, yet differs in amino acid sequence due to natural allelic variation or mutagenesis, as described in detail below. Accordingly, in another embodiment, the BFLP1698 protein is a protein that comprises an amino acid sequence at least about 45% homologous to the amino acid sequence of SEQ ID NO:2 and 10 retains the functional activity of the BFLP1698 proteins of SEQ ID NO:2.

Determining homology between two or more sequences

To determine the percent homology of two amino acid sequences or of two nucleic acid sequences, the sequences are aligned for optimal comparison purposes (e.g., gaps can be 15 introduced in either of the sequences being compared for optimal alignment between the sequences). The amino acid residues or nucleotides at corresponding amino acid positions or nucleotide positions are then compared. When a position in the first sequence is occupied by the same amino acid residue or nucleotide as the corresponding position in the second sequence, then the molecules are homologous at that position (*i.e.*, as used herein amino acid or nucleic acid 20 "homology" is equivalent to amino acid or nucleic acid "identity").

The nucleic acid sequence homology may be determined as the degree of identity between two sequences. The homology may be determined using computer programs known in the art, such as GAP software provided in the GCG program package. Using GCG GAP software with the following settings for nucleic acid sequence comparison: GAP creation penalty of 5.0 and 25 GAP extension penalty of 0.3, the coding region of the analogous nucleic acid sequences referred to above exhibits a degree of identity preferably of at least 70%, 75%, 80%, 85%, 90%, 95%, 98%, or 99%, with the CDS (encoding) part of the DNA sequence shown in SEQ ID NO:1.

The term "sequence identity" refers to the degree to which two polynucleotide or polypeptide sequences are identical on a residue-by-residue basis over a particular region of 30 comparison. The term "percentage of sequence identity" is calculated by comparing two

optimally aligned sequences over that region of comparison, determining the number of positions at which the identical nucleic acid base (*e.g.*, A, T, C, G, U, or I, in the case of nucleic acids) occurs in both sequences to yield the number of matched positions, dividing the number of matched positions by the total number of positions in the region of comparison (*i.e.*, the window size), and multiplying the result by 100 to yield the percentage of sequence identity. The term “substantial identity” as used herein denotes a characteristic of a polynucleotide sequence, wherein the polynucleotide comprises a sequence that has at least 80 percent sequence identity, preferably at least 85 percent identity and often 90 to 95 percent sequence identity, more usually at least 99 percent sequence identity as compared to a reference sequence over a comparison region. The term “percentage of positive residues” is calculated by comparing two optimally aligned sequences over that region of comparison, determining the number of positions at which the identical and conservative amino acid substitutions, as defined above, occur in both sequences to yield the number of matched positions, dividing the number of matched positions by the total number of positions in the region of comparison (*i.e.*, the window size), and multiplying the result by 100 to yield the percentage of positive residues.

Chimeric and fusion proteins

The invention also provides BFLP1698 chimeric or fusion proteins. As used herein, a BFLP1698 “chimeric protein” or “fusion protein” comprises a BFLP1698 polypeptide operatively linked to a non-BFLP1698 polypeptide. A “BFLP1698 polypeptide” refers to a polypeptide having an amino acid sequence corresponding to BFLP1698, whereas a “non-BFLP1698 polypeptide” refers to a polypeptide having an amino acid sequence corresponding to a protein that is not substantially homologous to the BFLP1698 protein, *e.g.*, a protein that is different from the BFLP1698 protein and that is derived from the same or a different organism. Within a BFLP1698 fusion protein the BFLP1698 polypeptide can correspond to all or a portion of a BFLP1698 protein. An example of a BFLP1698 fusion polypeptide is one that includes amino acids 21-230 of SEQ ID NO:2 (*e.g.*, a polypeptide that includes amino acids 1-246 or amino acids 21-246 of SEQ ID NO:2). In one embodiment, a BFLP1698 fusion protein comprises at least one biologically active portion of a BFLP1698 protein. In another embodiment, a BFLP1698 fusion protein comprises at least two biologically active portions of a BFLP1698

protein. Within the fusion protein, the term "operatively linked" is intended to indicate that the BFLP1698 polypeptide and the non-BFLP1698 polypeptide are fused in-frame to each other. The non-BFLP1698 polypeptide can be fused to the N-terminus or C-terminus of the BFLP1698 polypeptide.

5 For example, in one embodiment a BFLP1698 fusion protein comprises a BFLP1698 polypeptide operably linked to either an extracellular domain of a second protein, *i.e.*, non-BFLP1698 protein, or to the transmembrane and intracellular domain of a second protein, *i.e.*, non-BFLP1698 protein. Such fusion proteins can be further utilized in screening assays for compounds that modulate BFLP1698 activity (such assays are described in detail below).

10 In another embodiment, the fusion protein is a GST-BFLP1698 fusion protein in which the BFLP1698 sequences are fused to the C-terminus of the GST (*i.e.*, glutathione S-transferase) sequences. Such fusion proteins can facilitate the purification of recombinant BFLP1698.

15 In another embodiment, the fusion protein is a BFLP1698-immunoglobulin fusion protein in which the BFLP1698 sequences comprising one or more domains are fused to sequences derived from a member of the immunoglobulin protein family.

Inhibition of the BFLP1698 ligand/BFLP1698 interaction can be used therapeutically for both the treatment of proliferative and differentiative disorders, *e.g.*, cancer, modulating (*e.g.*, promoting or inhibiting) cell survival as well as immunomodulatory disorders, autoimmunity, transplantation, and inflammation by alteration of cytokine and chemokine cascade mechanisms. Moreover, the BFLP1698-immunoglobulin fusion proteins of the invention can be used as immunogens to produce anti-BFLP1698 antibodies in a subject, to purify BFLP1698 ligands, and in screening assays to identify molecules that inhibit the interaction of BFLP1698 with a BFLP1698 ligand.

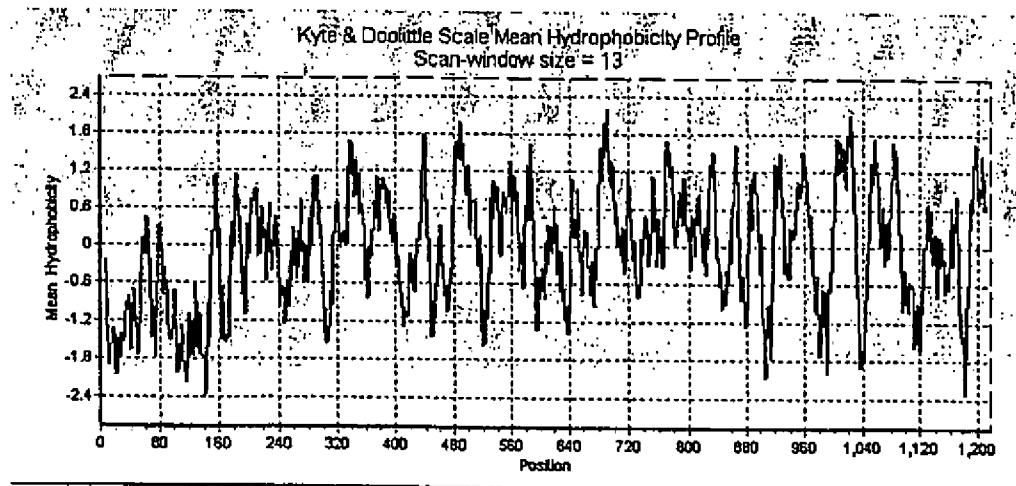
20 A BFLP1698 chimeric or fusion protein of the invention can be produced by standard recombinant DNA techniques. For example, DNA fragments coding for the different polypeptide sequences are ligated together in-frame in accordance with conventional techniques, *e.g.*, by employing blunt-ended or stagger-ended termini for ligation, restriction enzyme digestion to provide for appropriate termini, filling-in of cohesive ends as appropriate, alkaline phosphatase treatment to avoid undesirable joining, and enzymatic ligation. In another embodiment, the fusion gene can be synthesized by conventional techniques including automated

DNA synthesizers. Alternatively, PCR amplification of gene fragments can be carried out using anchor primers that give rise to complementary overhangs between two consecutive gene fragments that can subsequently be annealed and reamplified to generate a chimeric gene sequence. Moreover, many expression vectors are commercially available that already encode a 5 fusion moiety (e.g., a GST polypeptide). A BFLP1698-encoding nucleic acid can be cloned into such an expression vector such that the fusion moiety is linked in-frame to the BFLP1698 protein.

If desired, libraries of fragments of the BFLP1698 protein coding sequence can be used to generate a variegated population of BFLP1698 fragments for screening and subsequent selection 10 of variants of a BFLP1698 protein.

BFLP1698 Antibodies

Also included in the invention are antibodies to BFLP1698 proteins, or fragments of BFLP1698 proteins. The term "antibody" as used herein refers to immunoglobulin molecules 15 and immunologically active portions of immunoglobulin (Ig) molecules, i.e., molecules that contain an antigen binding site that specifically binds (immunoreacts with) an antigen. Such antibodies include, but are not limited to, polyclonal, monoclonal, chimeric, single chain, F_{ab} , $F_{ab'}$ and $F_{(ab')2}$ fragments, and an F_{ab} expression library. In general, an antibody molecule obtained from humans relates to any of the classes IgG, IgM, IgA, IgE and IgD, which differ from one 20 another by the nature of the heavy chain present in the molecule. Certain classes have subclasses as well, such as IgG₁, IgG₂, and others. Furthermore, in humans, the light chain may be a kappa chain or a lambda chain. Reference herein to antibodies includes a reference to all such classes, subclasses and types of human antibody species.


An isolated BFLP1698-related protein of the invention may be intended to serve as an 25 antigen, or a portion or fragment thereof, and additionally can be used as an immunogen to generate antibodies that immunospecifically bind the antigen, using standard techniques for polyclonal and monoclonal antibody preparation. The full-length protein can be used or, alternatively, the invention provides antigenic peptide fragments of the antigen for use as immunogens. An antigenic peptide fragment comprises at least 6 amino acid residues of the 30 amino acid sequence of the full length protein, such as an amino acid sequence shown in SEQ ID

NO:2, and encompasses an epitope thereof such that an antibody raised against the peptide forms a specific immune complex with the full length protein or with any fragment that contains the epitope. Preferably, the antigenic peptide comprises at least 10 amino acid residues, or at least 15 amino acid residues, or at least 20 amino acid residues, or at least 30 amino acid residues.

5 Preferred epitopes encompassed by the antigenic peptide are regions of the protein that are located on its surface; commonly these are hydrophilic regions.

In certain embodiments of the invention, at least one epitope encompassed by the antigenic peptide is a region of BFLP1698-related protein that is located on the surface of the protein, *e.g.*, a hydrophilic region. A hydrophobicity analysis of the human BFLP1698-related protein sequence will indicate which regions of a BFLP1698-related protein are particularly hydrophilic and, therefore, are likely to encode surface residues useful for targeting antibody production. As a means for targeting antibody production, hydropathy plots showing regions of hydrophilicity and hydrophobicity may be generated by any method well known in the art, including, for example, the Kyte Doolittle or the Hopp Woods methods, either with or without 10 Fourier transformation. A Kyte & Doolittle plot was generated for the BFLP1698 protein, and is 15 shown in Table 5 below.

Table 6. Kyte & Doolittle Plot for BFLP1698

The novel nucleic acid encoding the BFLP1698 protein of the invention, or fragments 20 thereof, may further be useful in diagnostic applications, wherein the presence or amount of the

nucleic acid or the protein are to be assessed. These materials are further useful in the generation of antibodies that bind immunospecifically to the novel substances of the invention for use in therapeutic or diagnostic methods. The disclosed BFLP1698 protein has multiple hydrophilic regions, each of which can be used as an immunogen. In one embodiment, a contemplated 5 BFLP1698 epitope is from about amino acids 1 to 60. In another embodiment, a BFLP1698 epitope is from about amino acids 70 to 80. In additional embodiments, BFLP1698 epitopes are from about amino acids 85 to 170, from about amino acids 180 to 190, from about amino acids 210 to 220, from about amino acids 230 to 260, from about amino acids 290 to 310, from about amino acids 350 to 360, from about amino acids 370 to 380, from about amino acids 400 to 430, 10 from about amino acids 450 to 480, from about amino acids 520 to 540, from about amino acids 600 to 620, from about amino acids 630 to 640, from about amino acids 680 to 690, from about amino acids 730 to 740, from about amino acids 850 to 860, from about amino acids 870 to 890, from about amino acids 970 to 1010, from about amino acids 1030 to 1050, from about amino acids 1080 to 1130, from about amino acids 1150 to 1160, and from about amino acids 1180 to 15 1190.

Antibodies that are specific for one or more domains within an antigenic protein, or derivatives, fragments, analogs or homologs thereof, are also provided herein.

A protein of the invention, or a derivative, fragment, analog, homolog or ortholog thereof, may be utilized as an immunogen in the generation of antibodies that immunospecifically bind 20 these protein components.

Various procedures known within the art may be used for the production of polyclonal or monoclonal antibodies directed against a protein of the invention, or against derivatives, fragments, analogs homologs or orthologs thereof. The term "monoclonal antibody" (MAb) or "monoclonal antibody composition", as used herein, refers to a population of antibody molecules 25 that contain only one molecular species of antibody molecule consisting of a unique light chain gene product and a unique heavy chain gene product.

The antibodies directed against the protein antigens of the invention can further comprise humanized antibodies or human antibodies. The humanized forms of antibodies include chimeric immunoglobulins, immunoglobulin chains or fragments thereof (such as Fv, Fab, Fab',

$F(ab')_2$ or other antigen-binding subsequences of antibodies) that are principally comprised of the sequence of a human immunoglobulin, and contain minimal sequence derived from a non-human immunoglobulin.

5 The antibodies can also be human antibodies, e.g., antibody molecules in which essentially the entire sequences of both the light chain and the heavy chain, including the CDRs, arise from human genes. Human monoclonal antibodies can be prepared by the trioma technique; the human B-cell hybridoma technique and the EBV hybridoma technique.

10 Human antibodies can also be produced using phage display libraries, or by introducing human immunoglobulin loci into transgenic animals, e.g., mice in which the endogenous immunoglobulin genes have been partially or completely inactivated. Human antibodies may 15 additionally be produced using transgenic nonhuman animals that are modified so as to produce fully human antibodies rather than the animal's endogenous antibodies in response to challenge by an antigen.

15 The invention also provides single-chain antibodies specific to an antigenic protein of the invention. In addition, methods can be adapted for the construction of F_{ab} expression libraries to allow rapid and effective identification of monoclonal F_{ab} fragments with the desired specificity for a protein or derivatives, fragments, analogs or homologs thereof. Antibody fragments that contain the idiotypes to a protein antigen may be produced by techniques known in the art including, but not limited to: (i) an $F_{(ab')2}$ fragment produced by pepsin digestion of an antibody 20 molecule; (ii) an F_{ab} fragment generated by reducing the disulfide bridges of an $F_{(ab')2}$ fragment; (iii) an F_{ab} fragment generated by the treatment of the antibody molecule with papain and a reducing agent and (iv) F_v fragments.

25 Also provided by the invention are bispecific antibodies. Bispecific antibodies are monoclonal, preferably human or humanized, antibodies that have binding specificities for at least two different antigens. One of the binding specificities is for an antigenic protein of the invention. The second binding target is any other antigen, and advantageously is a cell-surface protein or receptor or receptor subunit.

If desired, antibody variable domains with the desired binding specificities (antibody-antigen combining sites) can be fused to immunoglobulin constant domain sequences. The

fusion preferably is with an immunoglobulin heavy-chain constant domain, comprising at least part of the hinge, CH2, and CH3 regions. It is preferred to have the first heavy-chain constant region (CH1) containing the site necessary for light-chain binding present in at least one of the fusions.

5 Bispecific antibodies can be provided as full length antibodies or antibody fragments (e.g. F(ab')₂ bispecific antibodies).

Also within the invention are antibodies with more than two valencies (such as trispecific antibodies).

10 Exemplary bispecific antibodies bind to two different epitopes, at least one of which originates in the protein antigen of the invention.

The invention also includes heteroconjugate antibodies, which include two covalently joined antibodies.

15 The antibody of the invention can be modified to alter (e.g., enhance or diminish) its function. For example, cysteine residue(s) can be introduced into the Fc region, thereby allowing interchain disulfide bond formation in this region. The invention also includes immunoconjugates that include an antibody conjugated to a cytotoxic agent such as a 20 chemotherapeutic agent, toxin (e.g., an enzymatically active toxin of bacterial, fungal, plant, or animal origin, or fragments thereof), or a radioactive isotope (i.e., a radioconjugate).

Enzymatically active toxins and fragments thereof that can be used include diphtheria A 25 chain, nonbinding active fragments of diphtheria toxin, exotoxin A chain (from *Pseudomonas aeruginosa*), ricin A chain, abrin A chain, modeccin A chain, alpha-sarcin, *Aleurites fordii* proteins, dianthin proteins, *Phytolaca americana* proteins (PAPI, PAPII, and PAP-S), *momordica charantia* inhibitor, curcin, crotin, *sapaonaria officinalis* inhibitor, gelonin, mitogellin, restrictocin, phenomycin, enomycin, and the trichothecenes. A variety of radionuclides are 30 available for the production of radioconjugated antibodies. Examples include ²¹²Bi, ¹³¹I, ¹³¹In, ⁹⁰Y, and ¹⁸⁶Re.

The antibody can be conjugated to a "receptor" (such streptavidin) for utilization in tumor pretargeting wherein the antibody-receptor conjugate is administered to the patient, followed by

removal of unbound conjugate from the circulation using a clearing agent and then administration of a "ligand" (e.g., avidin) that is in turn conjugated to a cytotoxic agent.

BFLP1698 Recombinant Expression Vectors and Host Cells

5 Another aspect of the invention pertains to vectors, preferably expression vectors, containing a nucleic acid encoding a BFLP1698 protein, or derivatives, fragments, analogs or homologs thereof. As used herein, the term "vector" refers to a nucleic acid molecule capable of transporting another nucleic acid to which it has been linked. One type of vector is a "plasmid", which refers to a circular double stranded DNA loop into which additional DNA segments can be
10 ligated. Another type of vector is a viral vector, wherein additional DNA segments can be ligated into the viral genome. Certain vectors are capable of autonomous replication in a host cell into which they are introduced (e.g., bacterial vectors having a bacterial origin of replication and episomal mammalian vectors). Other vectors (e.g., non-episomal mammalian vectors) are integrated into the genome of a host cell upon introduction into the host cell, and thereby are
15 replicated along with the host genomic sequence into which they have integrated. Moreover, certain vectors are capable of directing the expression of genes to which they are operatively-linked. Such vectors are referred to herein as "expression vectors". "Plasmid" and "vector" can be used interchangeably as the plasmid is the most commonly used form of vector. However, the invention is intended to include such other forms of expression vectors, such as viral vectors
20 (e.g., replication defective retroviruses, adenoviruses and adeno-associated viruses), which serve equivalent functions.

Within a recombinant expression vector, "operably-linked" is intended to mean that the nucleotide sequence of interest is linked to the regulatory sequence(s) in a manner that allows for expression of the nucleotide sequence (e.g., in an *in vitro* transcription/translation system or in a
25 host cell when the vector is introduced into the host cell). The term "regulatory sequence" is intended to include promoters, enhancers and other expression control elements (e.g., polyadenylation signals). Regulatory sequences include those that direct constitutive expression of a nucleotide sequence in many types of host cell and those that direct expression of the nucleotide sequence only in certain host cells (e.g., tissue-specific regulatory sequences). The

expression vectors of the invention can be introduced into host cells to thereby produce proteins or peptides, including fusion proteins or peptides, encoded by nucleic acids as described herein (e.g., BFLP1698 proteins, mutant forms of BFLP1698 proteins, fusion proteins, etc.).

5 The recombinant expression vectors of the invention can be designed for expression of BFLP1698 proteins in prokaryotic or eukaryotic cells. For example, BFLP1698 proteins can be expressed in bacterial cells such as *Escherichia coli*, insect cells (using baculovirus expression vectors) yeast cells or mammalian cells. Alternatively, the recombinant expression vector can be transcribed and translated *in vitro*, for example using T7 promoter regulatory sequences and T7 polymerase.

10 In yet another embodiment, a nucleic acid of the invention is expressed in mammalian cells using a mammalian expression vector. Examples of mammalian expression vectors include pCDM8 and pMT2PC. When used in mammalian cells, the expression vector's control functions are often provided by viral regulatory elements. For example, commonly used promoters are derived from polyoma, adenovirus 2, cytomegalovirus, and simian virus 40. For other suitable 15 expression systems for both prokaryotic and eukaryotic cells.

15 In another embodiment, the recombinant mammalian expression vector is capable of directing expression of the nucleic acid preferentially in a particular cell type (e.g., tissue-specific regulatory elements are used to express the nucleic acid). Tissue-specific regulatory elements are known in the art. Non-limiting examples of suitable tissue-specific promoters include the 20 albumin promoter (liver-specific), lymphoid-specific promoters, in particular promoters of T cell receptors and immunoglobulins, neuron-specific promoters (e.g., the neurofilament promoter), pancreas-specific promoters, and mammary gland-specific promoters (e.g., milk whey promoter). Developmentally-regulated promoters are also encompassed, e.g., the murine hox promoters and the α -fetoprotein promoter.

25 The invention further provides a recombinant expression vector comprising a DNA molecule of the invention cloned into the expression vector in an antisense orientation. That is, the DNA molecule is operatively-linked to a regulatory sequence in a manner that allows for expression (by transcription of the DNA molecule) of an RNA molecule that is antisense to BFLP1698 mRNA. Regulatory sequences operatively linked to a nucleic acid cloned in the

antisense orientation can be chosen that direct the continuous expression of the antisense RNA molecule in a variety of cell types, for instance viral promoters and/or enhancers, or regulatory sequences can be chosen that direct constitutive, tissue specific or cell type specific expression of antisense RNA. The antisense expression vector can be in the form of a recombinant plasmid, 5 phagemid or attenuated virus in which antisense nucleic acids are produced under the control of a high efficiency regulatory region, the activity of which can be determined by the cell type into which the vector is introduced.

Another aspect of the invention pertains to host cells into which a recombinant expression vector of the invention has been introduced. The terms "host cell" and "recombinant host cell" 10 are used interchangeably herein. It is understood that such terms refer not only to the particular subject cell but also to the progeny or potential progeny of such a cell. Because certain modifications may occur in succeeding generations due to either mutation or environmental influences, such progeny may not, in fact, be identical to the parent cell, but are still included within the scope of the term as used herein.

15 A host cell can be any prokaryotic or eukaryotic cell. For example, BFLP1698 protein can be expressed in bacterial cells such as *E. coli*, insect cells, yeast or mammalian cells (such as human, Chinese hamster ovary cells (CHO) or COS cells). Other suitable host cells are known to those skilled in the art.

20 A gene that encodes a selectable marker (*e.g.*, resistance to antibiotics) is generally introduced into the host cells along with the gene of interest. Various selectable markers include those that confer resistance to drugs, such as G418, hygromycin and methotrexate. A nucleic acid encoding a selectable marker can be introduced into a host cell on the same vector as that encoding BFLP1698 or can be introduced on a separate vector. Cells stably transfected with the introduced nucleic acid can be identified by drug selection (*e.g.*, cells that have incorporated the 25 selectable marker gene will survive, while the other cells die).

A host cell of the invention, such as a prokaryotic or eukaryotic host cell in culture, can be used to produce (*i.e.*, express) BFLP1698 protein. Accordingly, the invention further provides methods for producing BFLP1698 protein using the host cells of the invention. In one embodiment, the method comprises culturing the host cell of invention (into which a

recombinant expression vector encoding BFLP1698 protein has been introduced) in a suitable medium such that BFLP1698 protein is produced. In another embodiment, the method further comprises isolating BFLP1698 protein from the medium or the host cell.

Transgenic BFLP1698 Animals

5 The host cells of the invention can also be used to produce non-human transgenic animals. For example, in one embodiment, a host cell of the invention is a fertilized oocyte or an embryonic stem cell into which BFLP1698 protein-coding sequences have been introduced. Such host cells can then be used to create non-human transgenic animals in which exogenous BFLP1698 sequences have been introduced into their genome or homologous recombinant 10 animals in which endogenous BFLP1698 sequences have been altered. Such animals are useful for studying the function and/or activity of BFLP1698 protein and for identifying and/or evaluating modulators of BFLP1698 protein activity. As used herein, a "transgenic animal" is a non-human animal, preferably a mammal, more preferably a rodent such as a rat or mouse, in which one or more of the cells of the animal includes a transgene. Other examples of transgenic 15 animals include non-human primates, sheep, dogs, cows, goats, chickens, amphibians, etc. A transgene is exogenous DNA that is integrated into the genome of a cell from which a transgenic animal develops and that remains in the genome of the mature animal, thereby directing the expression of an encoded gene product in one or more cell types or tissues of the transgenic animal. As used herein, a "homologous recombinant animal" is a non-human animal, preferably 20 a mammal, more preferably a mouse, in which an endogenous BFLP1698 gene has been altered by homologous recombination between the endogenous gene and an exogenous DNA molecule introduced into a cell of the animal, *e.g.*, an embryonic cell of the animal, prior to development of the animal.

25 A transgenic animal of the invention can be created by introducing BFLP1698-encoding nucleic acid into the male pronuclei of a fertilized oocyte (*e.g.*, by microinjection, retroviral infection) and allowing the oocyte to develop in a pseudopregnant female foster animal. Sequences including SEQ ID NO:1 can be introduced as a transgene into the genome of a non-human animal. Alternatively, a non-human homologue of the human BFLP1698 gene, such as a mouse BFLP1698 gene, can be isolated based on hybridization to the human BFLP1698

cDNA (described further *supra*) and used as a transgene. Intronic sequences and polyadenylation signals can also be included in the transgene to increase the efficiency of expression of the transgene. A tissue-specific regulatory sequence(s) can be operably-linked to the BFLP1698 transgene to direct expression of BFLP1698 protein to particular cells. Methods for generating 5 transgenic animals via embryo manipulation and microinjection, particularly animals such as mice, have become conventional in the art. Similar methods are used for production of other transgenic animals. A transgenic founder animal can be identified based upon the presence of the BFLP1698 transgene in its genome and/or expression of BFLP1698 mRNA in tissues or cells of the animals. A transgenic founder animal can then be used to breed additional animals carrying 10 the transgene. Moreover, transgenic animals carrying a transgene-encoding BFLP1698 protein can further be bred to other transgenic animals carrying other transgenes.

To create a homologous recombinant animal, a vector is prepared which contains at least a portion of a BFLP1698 gene into which a deletion, addition or substitution has been introduced to thereby alter, *e.g.*, functionally disrupt, the BFLP1698 gene. The BFLP1698 gene can be a 15 human gene (*e.g.*, the DNA of SEQ ID NO:1), but more preferably, is a non-human homologue of a human BFLP1698 gene. For example, a mouse homologue of human BFLP1698 gene of SEQ ID NO:1 can be used to construct a homologous recombination vector suitable for altering an endogenous BFLP1698 gene in the mouse genome. In one embodiment, the vector is designed such that, upon homologous recombination, the endogenous BFLP1698 gene is 20 functionally disrupted (*i.e.*, no longer encodes a functional protein; also referred to as a "knock out" vector).

Alternatively, the vector can be designed such that, upon homologous recombination, the endogenous BFLP1698 gene is mutated or otherwise altered but still encodes functional protein (e.g., the upstream regulatory region can be altered to thereby alter the expression of the 25 endogenous BFLP1698 protein). In the homologous recombination vector, the altered portion of the BFLP1698 gene is flanked at its 5'- and 3'-termini by additional nucleic acid of the BFLP1698 gene to allow for homologous recombination to occur between the exogenous BFLP1698 gene carried by the vector and an endogenous BFLP1698 gene in an embryonic stem cell. The additional flanking BFLP1698 nucleic acid is of sufficient length for successful

homologous recombination with the endogenous gene. Typically, several kilobases of flanking DNA (both at the 5'- and 3'-termini) are included in the vector. The vector is then introduced into an embryonic stem cell line (*e.g.*, by electroporation) and cells in which the introduced BFLP1698 gene has homologously-recombined with the endogenous BFLP1698 gene are

5 selected.

The selected cells are then injected into a blastocyst of an animal (*e.g.*, a mouse) to form aggregation chimeras. A chimeric embryo can then be implanted into a suitable pseudopregnant female foster animal and the embryo brought to term. Progeny harboring the homologously-recombined DNA in their germ cells can be used to breed animals in which all cells of the animal

10 contain the homologously-recombined DNA by germline transmission of the transgene.

In another embodiment, transgenic non-humans animals can be produced that contain selected systems that allow for regulated expression of the transgene. One example of such a system is the cre/loxP recombinase system of bacteriophage P1. For a description of the cre/loxP recombinase system. Another example of a recombinase system is the FLP recombinase system of *Saccharomyces cerevisiae*. If a cre/loxP recombinase system is used to regulate expression of the transgene, animals containing transgenes encoding both the Cre recombinase and a selected protein are required. Such animals can be provided through the construction of "double" transgenic animals, *e.g.*, by mating two transgenic animals, one containing a transgene encoding a selected protein and the other containing a transgene encoding a recombinase.

20 Clones of the non-human transgenic animals described herein can also be produced according to the methods described in the art. In brief, a cell (*e.g.*, a somatic cell) from the transgenic animal can be isolated and induced to exit the growth cycle and enter G₀ phase. The quiescent cell can then be fused, *e.g.*, through the use of electrical pulses, to an enucleated oocyte from an animal of the same species from which the quiescent cell is isolated. The reconstructed oocyte is then cultured such that it develops to morula or blastocyst and then transferred to pseudopregnant female foster animal. The offspring borne of this female foster animal will be a clone of the animal from which the cell (*e.g.*, the somatic cell) is isolated.

Methods of Detecting BFLP1698 Nucleic Acids and Diagnosing Lupus Nephritis

Reagents that detect BFLP1698 nucleic acids and/or polypeptides can be used to detect levels of BFLP1698 RNA and/or proteins sequences in a sample. Because elevated levels of BFLP1698 RNA are found in animals with lupus nephritis, detection of enhanced levels of BFLP1698 RNA and/or BFLP1698 polypeptides indicates the presence or predisposition to lupus 5 in the subject. In addition, lowered levels of BFLP1698 RNA in treated lupus subjects as compared to untreated lupus indicates a return to a non-lupus state. Thus, the efficacy of lupus treatment can be monitored by comparing BFLP1698 RNA or protein levels in a sample from a treated population to samples in a diseased but untreated sample, (or a sample from an individual that has been treated for a shorter period of time).

10 Levels of BFLP1698 RNA can be assessed by comparing levels in a test cell population, from a subject whose lupus status is unknown, to levels in a reference cell population whose lupus status is known. Thus, the test cell population will typically include at least one cell that is capable of expressing a BFLP1698 gene. By "capable of expressing" is meant that the gene is present in an intact form in the cell and can be expressed. Expression of the BFLP1698 sequence 15 is then detected, if present, and, preferably, measured using methods known in the art. For example, the BFLP1698 sequences disclosed herein can be used to construct probes for detecting BFLP1698 RNA sequences in, *e.g.*, northern blot hybridization analyses or methods which specifically, and, preferably, quantitatively amplify BFLP1698 specific nucleic acid sequences. Alternatively, the sequences can be used to construct primers for specifically amplifying the 20 BFLP1698 sequences in, *e.g.*, amplification-based detection methods such as reverse-transcription based polymerase chain reaction.

BFLP1698 expression can be also measured at the protein level, *i.e.*, by measuring the levels of BFLP1698 polypeptides. Such methods are well known in the art and include, *e.g.*, immunoassays based on antibodies to proteins encoded by the genes.

25 Expression of sequences in test and control populations of cells can be compared using any art-recognized method for comparing expression of nucleic acid sequences. Whether or not comparison of the gene expression profile in the test cell population to the reference cell population reveals the presence, or degree, of the measured parameter depends on the composition of the reference cell population. For example, if the reference cell population is 30 composed of cells from a lupus free subject, a similar gene expression level in the test cell

population and a reference cell population indicates the test cell population is from a lupus free subject.. Conversely, if the reference cell population is made up of cells from a diseased subject, a similar gene expression profile between the test cell population and the reference cell population indicates the test cell population is from a subject with lupus.

5 In various embodiments, a BFLP1698 sequence in a test cell population is considered comparable in expression level to the expression level of the ADIPO sequence in the reference cell population if its expression level varies within a factor of 2.0, 1.5, or 1.0 fold to the level of the BFLP1698 transcript in the reference cell population. In various embodiments, a BFLP1698 sequence in a test cell population can be considered altered in levels of expression if its
10 expression level varies from the reference cell population by more than 1.0, 1.5, 2.0 or more fold from the expression level of the corresponding BFLP1698 sequence in the reference cell population.

15 If desired, comparison of differentially expressed sequences between a test cell population and a reference cell population can be done with respect to a control nucleic acid whose expression is independent of the parameter or condition being measured. Expression levels of the control nucleic acid in the test and reference nucleic acid can be used to normalize signal levels in the compared populations. Suitable control nucleic acids can readily be determined by one of ordinary skill in the art.

20 In some embodiments, the test cell population is compared to multiple reference cell populations. Each of the multiple reference populations may differ in the known parameter. Thus, a test cell population may be compared to a first reference cell population from a subject known to have lupus, as well as a second reference population known to not have lupus.

The test cell population that is exposed can be any number of cells, *i.e.*, one or more cells, and can be provided *in vitro*, *in vivo*, or *ex vivo*.

25 Preferably, cells in the reference cell population are derived from a tissue type as similar as possible to test cell, *e.g.*, renal tissue. In some embodiments, the control cell is derived from the same subject as the test cell. In other embodiments, the reference cell population is derived

from a plurality of cells from multiple subjects. For example, the reference cell population can be a database of expression patterns from previously tested cells.

The subject is preferably a mammal. The mammal can be, *e.g.*, a human, non-human primate, mouse, rat, dog, cat, horse, or cow.

5 Pharmaceutical Compositions

The BFLP1698 nucleic acid molecules, BFLP1698 proteins, and anti-BFLP1698 antibodies (also referred to herein as "active compounds") of the invention, and derivatives, fragments, analogs and homologs thereof, can be incorporated into pharmaceutical compositions suitable for administration. Such compositions typically comprise the nucleic acid molecule, 10 protein, or antibody and a pharmaceutically acceptable carrier. As used herein, "pharmaceutically acceptable carrier" is intended to include any and all solvents, dispersion media, coatings, antibacterial and antifungal agents, isotonic and absorption delaying agents, and the like, compatible with pharmaceutical administration. Suitable carriers are described in the most recent edition of Remington's Pharmaceutical Sciences, a standard reference text in the 15 field, which is incorporated herein by reference. Preferred examples of such carriers or diluents include, but are not limited to, water, saline, Ringer's solutions, dextrose solution, and 5% human serum albumin. Liposomes and non-aqueous vehicles such as fixed oils may also be used. The use of such media and agents for pharmaceutically active substances is well known in the art. Except insofar as any conventional media or agent is incompatible with the active 20 compound, use thereof in the compositions is contemplated. Supplementary active compounds can also be incorporated into the compositions.

A pharmaceutical composition of the invention is formulated to be compatible with its intended route of administration. Examples of routes of administration include parenteral, *e.g.*, intravenous, intradermal, subcutaneous, oral (*e.g.*, inhalation), transdermal (*i.e.*, topical), 25 transmucosal, and rectal administration.

Pharmaceutical compositions suitable for injectable use include sterile aqueous solutions (where water soluble) or dispersions and sterile powders for the extemporaneous preparation of sterile injectable solutions or dispersion.

Dosage unit form as used herein refers to physically discrete units suited as unitary dosages for the subject to be treated; each unit containing a predetermined quantity of active compound calculated to produce the desired therapeutic effect in association with the required pharmaceutical carrier. The specification for the dosage unit forms of the invention are dictated by and directly dependent on the unique characteristics of the active compound and the particular therapeutic effect to be achieved, and the limitations inherent in the art of compounding such an active compound for the treatment of individuals.

Sustained-release preparations can be prepared. Suitable examples of sustained-release preparations include semipermeable matrices of solid hydrophobic polymers containing the antibody, which matrices are in the form of shaped articles, e.g., films, or microcapsules. Examples of sustained-release matrices include polyesters, hydrogels (for example, poly(2-hydroxyethyl-methacrylate), or poly(vinylalcohol)), polylactides, copolymers of L-glutamic acid and γ ethyl-L-glutamate, non-degradable ethylene-vinyl acetate, degradable lactic acid-glycolic acid copolymers such as the LUPRON DEPOT TM (injectable microspheres composed of lactic acid-glycolic acid copolymer and leuprolide acetate), and poly-D-(-)-3-hydroxybutyric acid. While polymers such as ethylene-vinyl acetate and lactic acid-glycolic acid enable release of molecules for over 100 days, certain hydrogels release proteins for shorter time periods.

The pharmaceutical compositions can be included in a container, pack, or dispenser together with instructions for administration.

20 **Screening and Detection Methods**

The isolated nucleic acid molecules of the invention can be used to express BFLP1698 protein (e.g., via a recombinant expression vector in a host cell in gene therapy applications), to detect BFLP1698 mRNA (e.g., in a biological sample) or a genetic lesion in a BFLP1698 gene, and to modulate BFLP1698 activity, as described further, below. In addition, the BFLP1698 proteins can be used to screen drugs or compounds that modulate the BFLP1698 protein activity or expression as well as to treat disorders characterized by insufficient or excessive production of BFLP1698 protein or production of BFLP1698 protein forms that have decreased or aberrant activity compared to BFLP1698 wild-type protein. In addition, the anti-BFLP1698 antibodies of

the invention can be used to detect and isolate BFLP1698 proteins and modulate BFLP1698 activity. For example, BFLP1698 activity includes T-cell or NK cell growth and differentiation, antibody production, and tumor growth.

5 The invention further pertains to novel agents identified by the screening assays described herein and uses thereof for treatments as described, *supra*.

Screening Assays

10 The invention provides a method (also referred to herein as a "screening assay") for identifying modulators, *i.e.*, candidate or test compounds or agents (*e.g.*, peptides, peptidomimetics, small molecules or other drugs) that bind to BFLP1698 proteins or have a stimulatory or inhibitory effect on, *e.g.*, BFLP1698 protein expression or BFLP1698 protein activity. The invention also includes compounds identified in the screening assays described herein.

15 In one embodiment, the screening assays are used to identify therapeutic agents for treating autoimmune diseases. The autoimmune disease can be, *e.g.*, lupus, including lupus nephritis.

20 In one embodiment, the invention provides assays for screening candidate or test compounds which bind to or modulate the activity of the membrane-bound form of a BFLP1698 protein or polypeptide or biologically-active portion thereof. The test compounds of the invention can be obtained using any of the numerous approaches in combinatorial library methods known in the art, including: biological libraries; spatially addressable parallel solid phase or solution phase libraries; synthetic library methods requiring deconvolution; the "one-bead one-compound" library method; and synthetic library methods using affinity chromatography selection. The biological library approach is limited to peptide libraries, while the other four approaches are applicable to peptide, non-peptide oligomer or small molecule 25 libraries of compounds.

A "small molecule" as used herein, is meant to refer to a composition that has a molecular weight of less than about 5 kD and most preferably less than about 4 kD. Small molecules can be, *e.g.*, rapamycin, nucleic acids, peptides, polypeptides, peptidomimetics, carbohydrates, lipids

or other organic or inorganic molecules. Libraries of chemical and/or biological mixtures, such as fungal, bacterial, or algal extracts, are known in the art and can be screened with any of the assays of the invention. The libraries of compounds may be presented in solution, or on beads, on chips, bacteria, spores, plasmids or on phage

5 In one embodiment, an assay is a cell-based assay in which a cell which expresses a membrane-bound form of BFLP1698 protein, or a biologically-active portion thereof, on the cell surface is contacted with a test compound and the ability of the test compound to bind to a BFLP1698 protein determined. The cell, for example, can be of mammalian origin or a yeast cell. Determining the ability of the test compound to bind to the BFLP1698 protein can be
10 accomplished, for example, by coupling the test compound with a radioisotope or enzymatic label such that binding of the test compound to the BFLP1698 protein or biologically-active portion thereof can be determined by detecting the labeled compound in a complex. For example, test compounds can be labeled with ^{125}I , ^{35}S , ^{14}C , or ^3H , either directly or indirectly, and the radioisotope detected by direct counting of radioemission or by scintillation counting.
15 Alternatively, test compounds can be enzymatically-labeled with, for example, horseradish peroxidase, alkaline phosphatase, or luciferase, and the enzymatic label detected by determination of conversion of an appropriate substrate to product. In one embodiment, the assay comprises contacting a cell which expresses a membrane-bound form of BFLP1698 protein, or a biologically-active portion thereof, on the cell surface with a known compound
20 which binds BFLP1698 to form an assay mixture, contacting the assay mixture with a test compound, and determining the ability of the test compound to interact with a BFLP1698 protein, wherein determining the ability of the test compound to interact with a BFLP1698 protein comprises determining the ability of the test compound to preferentially bind to BFLP1698 protein or a biologically-active portion thereof as compared to the known compound.
25 In another embodiment, an assay is a cell-based assay comprising contacting a cell expressing a membrane-bound form of BFLP1698 protein, or a biologically-active portion thereof, on the cell surface with a test compound and determining the ability of the test compound to modulate (*e.g.*, stimulate or inhibit) the activity of the BFLP1698 protein or biologically-active portion thereof. Determining the ability of the test compound to modulate the

activity of BFLP1698 or a biologically-active portion thereof can be accomplished, for example, by determining the ability of the BFLP1698 protein to bind to or interact with a BFLP1698 target molecule. As used herein, a "target molecule" is a molecule with which a BFLP1698 protein binds or interacts in nature, for example, a molecule on the surface of a cell which expresses a 5 BFLP1698 interacting protein, a molecule on the surface of a second cell, a molecule in the extracellular milieu, a molecule associated with the internal surface of a cell membrane or a cytoplasmic molecule. A BFLP1698 target molecule can be a non-BFLP1698 molecule or a BFLP1698 protein or polypeptide of the invention. In one embodiment, a BFLP1698 target molecule is a component of a signal transduction pathway that facilitates transduction of an 10 extracellular signal (*e.g.* a signal generated by binding of a compound to a membrane-bound BFLP1698 molecule) through the cell membrane and into the cell. The target, for example, can be a second intercellular protein that has catalytic activity or a protein that facilitates the association of downstream signaling molecules with BFLP1698.

15 Determining the ability of the BFLP1698 protein to bind to or interact with a BFLP1698 target molecule can be accomplished by one of the methods described above for determining direct binding. In one embodiment, determining the ability of the BFLP1698 protein to bind to or interact with a BFLP1698 target molecule can be accomplished by determining the activity of the target molecule. For example, the activity of the target molecule can be determined by detecting induction of a cellular second messenger of the target (*i.e.* intracellular Ca^{2+} , diacylglycerol, IP_3 , etc.), detecting catalytic/enzymatic activity of the target an appropriate substrate, detecting the induction of a reporter gene (comprising a BFLP1698-responsive regulatory element operatively linked to a nucleic acid encoding a detectable marker, *e.g.*, luciferase), or detecting a cellular response, for example, cell survival, cellular differentiation, or cell proliferation.

20 In yet another embodiment, an assay of the invention is a cell-free assay comprising contacting a BFLP1698 protein or biologically-active portion thereof with a test compound and determining the ability of the test compound to bind to the BFLP1698 protein or biologically-active portion thereof. Binding of the test compound to the BFLP1698 protein can be determined either directly or indirectly as described above. In one such embodiment, the assay comprises 25 contacting the BFLP1698 protein or biologically-active portion thereof with a known compound

which binds BFLP1698 to form an assay mixture, contacting the assay mixture with a test compound, and determining the ability of the test compound to interact with a BFLP1698 protein, wherein determining the ability of the test compound to interact with a BFLP1698 protein comprises determining the ability of the test compound to preferentially bind to BFLP1698 or a biologically-active portion thereof as compared to the known compound.

5 In still another embodiment, an assay is a cell-free assay comprising contacting BFLP1698 protein or a biologically-active portion thereof with a test compound and determining the ability of the test compound to modulate (*e.g.* stimulate or inhibit) the activity of the BFLP1698 protein or a biologically-active portion thereof. Determining the ability of the test compound to modulate the activity of BFLP1698 can be accomplished, for example, by 10 determining the ability of the BFLP1698 protein to bind to a BFLP1698 target molecule by one of the methods described above for determining direct binding. In an alternative embodiment, determining the ability of the test compound to modulate the activity of BFLP1698 protein can be accomplished by determining the ability of the BFLP1698 protein further modulate a 15 BFLP1698 target molecule. For example, the catalytic/enzymatic activity of the target molecule on an appropriate substrate can be determined as described above.

In yet another embodiment, the cell-free assay comprises contacting the BFLP1698 protein or a biologically-active portion thereof with a known compound which binds BFLP1698 protein to form an assay mixture, contacting the assay mixture with a test compound, and 20 determining the ability of the test compound to interact with a BFLP1698 protein, wherein determining the ability of the test compound to interact with a BFLP1698 protein comprises determining the ability of the BFLP1698 protein to preferentially bind to or modulate the activity of a BFLP1698 target molecule.

25 The cell-free assays of the invention are amenable for use with both the soluble form or the membrane-bound form of BFLP1698 protein. In the case of cell-free assays comprising the membrane-bound form of BFLP1698 protein, it may be desirable to utilize a solubilizing agent such that the membrane-bound form of BFLP1698 protein is maintained in solution. Examples of such solubilizing agents include non-ionic detergents such as n-octylglucoside, n-dodecylglucoside, n-dodecylmaltoside, octanoyl-N-methylglucamide,

decanoyl-N-methylglucamide, Triton® X-100, Triton® X-114, Thesit®, Isotridecypoly(ethylene glycol ether)_n, N-dodecyl--N,N-dimethyl-3-ammonio-1-propane sulfonate, 3-(3-cholamidopropyl) dimethylamminiol-1-propane sulfonate (CHAPS), or 3-(3-cholamidopropyl)dimethylamminiol-2-hydroxy-1-propane sulfonate (CHAPSO).

5 In more than one embodiment of the above assay methods of the invention, it may be desirable to immobilize either BFLP1698 protein or its target molecule to facilitate separation of complexed from uncomplexed forms of one or both of the proteins, as well as to accommodate automation of the assay. Binding of a test compound to BFLP1698 protein, or interaction of BFLP1698 protein with a target molecule in the presence and absence of a candidate compound, 10 can be accomplished in any vessel suitable for containing the reactants. Examples of such vessels include microtiter plates, test tubes, and micro-centrifuge tubes. In one embodiment, a fusion protein can be provided that adds a domain that allows one or both of the proteins to be bound to a matrix. For example, GST-BFLP1698 fusion proteins or GST-target fusion proteins can be adsorbed onto glutathione sepharose beads (Sigma Chemical, St. Louis, MO) or 15 glutathione derivatized microtiter plates, that are then combined with the test compound or the test compound and either the non-adsorbed target protein or BFLP1698 protein, and the mixture is incubated under conditions conducive to complex formation (*e.g.*, at physiological conditions for salt and pH). Following incubation, the beads or microtiter plate wells are washed to remove 20 any unbound components, the matrix immobilized in the case of beads, complex determined either directly or indirectly, for example, as described, *supra*. Alternatively, the complexes can be dissociated from the matrix, and the level of BFLP1698 protein binding or activity determined using standard techniques.

Other techniques for immobilizing proteins on matrices can also be used in the screening assays of the invention. For example, either the BFLP1698 protein or its target molecule can be 25 immobilized utilizing conjugation of biotin and streptavidin. Biotinylated BFLP1698 protein or target molecules can be prepared from biotin-NHS (N-hydroxy-succinimide) using techniques well-known within the art (*e.g.*, biotinylation kit, Pierce Chemicals, Rockford, Ill.), and immobilized in the wells of streptavidin-coated 96 well plates (Pierce Chemical). Alternatively, antibodies reactive with BFLP1698 protein or target molecules, but which do not interfere with

binding of the BFLP1698 protein to its target molecule, can be derivatized to the wells of the plate, and unbound target or BFLP1698 protein trapped in the wells by antibody conjugation. Methods for detecting such complexes, in addition to those described above for the GST-immobilized complexes, include immunodetection of complexes using antibodies reactive 5 with the BFLP1698 protein or target molecule, as well as enzyme-linked assays that rely on detecting an enzymatic activity associated with the BFLP1698 protein or target molecule.

In another embodiment, modulators of BFLP1698 protein expression are identified in a method wherein a cell is contacted with a candidate compound and the expression of BFLP1698 mRNA or protein in the cell is determined. The level of expression of BFLP1698 mRNA or 10 protein in the presence of the candidate compound is compared to the level of expression of BFLP1698 mRNA or protein in the absence of the candidate compound. The candidate compound can then be identified as a modulator of BFLP1698 mRNA or protein expression based upon this comparison. For example, when expression of BFLP1698 mRNA or protein is greater (*i.e.*, statistically significantly greater) in the presence of the candidate compound than in 15 its absence, the candidate compound is identified as a stimulator of BFLP1698 mRNA or protein expression. Alternatively, when expression of BFLP1698 mRNA or protein is less (statistically significantly less) in the presence of the candidate compound than in its absence, the candidate compound is identified as an inhibitor of BFLP1698 mRNA or protein expression. The level of BFLP1698 mRNA or protein expression in the cells can be determined by methods described 20 herein for detecting BFLP1698 mRNA or protein.

In yet another aspect of the invention, the BFLP1698 proteins can be used as "bait proteins" in a two-hybrid assay or three hybrid assay, to identify other proteins that bind to or interact with BFLP1698 ("BFLP1698-binding proteins" or "BFLP1698-bp") and modulate BFLP1698 activity. Such BFLP1698 -binding proteins are also likely to be involved in the 25 propagation of signals by the BFLP1698 proteins as, for example, upstream or downstream elements of the BFLP1698 pathway.

The two-hybrid system is based on the modular nature of most transcription factors, which consist of separable DNA-binding and activation domains. Briefly, the assay utilizes two different DNA constructs. In one construct, the gene that codes for BFLP1698 is fused to a gene

encoding the DNA binding domain of a known transcription factor (*e.g.*, GAL-4). In the other construct, a DNA sequence, from a library of DNA sequences, that encodes an unidentified protein ("prey" or "sample") is fused to a gene that codes for the activation domain of the known transcription factor. If the "bait" and the "prey" proteins are able to interact, *in vivo*, forming a 5 BFLP1698-dependent complex, the DNA-binding and activation domains of the transcription factor are brought into close proximity. This proximity allows transcription of a reporter gene (*e.g.*, LacZ) that is operably linked to a transcriptional regulatory site responsive to the transcription factor. Expression of the reporter gene can be detected and cell colonies containing the functional transcription factor can be isolated and used to obtain the cloned gene that encodes 10 the protein which interacts with BFLP1698.

The invention further pertains to novel agents identified by the aforementioned screening assays and uses thereof for treatments as described herein.

The invention will be illustrated in the following non-limiting examples.

15 **Example 1. Expression patterns of murine BFLP1698 sequence in disease-free, lupus nephritis simulated disease, and rapamycin-treated diseased mice**

The expression of murine BFLP1698 sequences were examined in mice that developed lupus nephritis-like symptoms in the NZB X NZW murine model. Expression in diseased mice was compared to expression of the sequences in non-diseased mice of varying ages, and in mice 20 whose lupus nephritis-like symptoms diminished following treatment with rapamycin or anti-B7 antibodies.

Mice were obtained from Jackson Laboratories at 6 to 8 weeks of age and aged on site. Data were obtained from kidneys of mice and harvested at the indicated time point: C57BL/6 female mice at 8, and 32 weeks, F1(NZBxNZW) female mice 12, 25, and 42 weeks, mice treated with rapamycin at 42 and 55 weeks, mice treated with antibodies to B7.1 and B7.2 at 52 weeks. 25 Each group contained three mice.

Rapamycin treated mice received 5 mg/kg rapamycin subcutaneous injection 3 times per week for 8 weeks starting at 29 weeks of age. Control mice received injections of vehicle (methyl

cellulose) on the same schedule. Effectiveness of therapy was determined by normalization of proteinuria and kidney histology (data not shown). Gene expression analysis was preformed on mice sacrificed at the end of the treatment course (36 weeks of age, data not shown), and at 42 weeks (6 weeks after treatment) and 55 weeks (20 weeks after treatment).

5 Mice treated with anti-B7 received 200 μ g of anti-B7.1 (1G10F9 monoclonal) and 200 μ g of anti-B7.2 (GL1 monoclonal) by intra-peritoneal injections 3 times per week for two weeks starting at 29 weeks of age. Gene expression analysis was performed 21 weeks after treatment.

RNA isolation and hybridization to oligonucleotide arrays

10 Kidneys from both male and female mice were collected and snap frozen for RNA isolation. One half each kidney was used. A longitudinal section of the left kidney and a cross section of the right kidney was used in for each individual animal.

15 Snap frozen mouse kidney tissue was homogenized using homogenizer suspended in RLT buffer plus 2ME for 30 to 45 seconds. Total RNA was prepared using the Qiagen Midi Kit following the manufacturer's protocol. RNA was suspended in DEPC treated H₂O and quantified by OD 280.

cDNA was synthesized from 5 μ g of total RNA using the Superscript Kit (BRL). cDNA was purified using phenol:chloroform:isoamyl alcohol (25:24:1) with a Phage lock gel tube following the Phage lock protocol. Supernant was collected and cleaned up using EtOH. Sample was resuspended in DEPC treated H₂O.

20 In vitro T7 polymerase driven transcription reactions for synthesis and biotin labeling of antisense cRNA. Qiagen RNeasy spin column purification used to purify the cRNA. GeneChip hybridization mixtures contained 15 μ g fragmented cRNA, 0.5mg/ml acetylated BSA, 0.1mg/ml herring sperm DNA, in 1X MES buffer in a total volume of 200 μ l as per manufacturers instructions. Reaction mixtures were hybridized for 16hr at 45 °C to Affymetrix Mu11KsubA and Mu11KsubB oligonucleotide arrays. The hybridization mixtures were removed and the arrays were washed and stained with Streptavidin R-phycoerthrin (Molecular Probes) using GeneChip Fluidics Station 400 and scanned with a Hewlett Packard GeneArray Scanner

following manufactures instructions. Fluorescent data was collected and converted to gene specific difference average using MicroArray Suite software.

Analysis of Oligonucleotide Array Data

An eleven member standard curve, comprised of gene fragments derived from cloned bacterial and bacteriophage sequences were spiked into each hybridization mixture at concentrations ranging from 0.5pM to 150pM representing RNA frequencies of approximately 3.3 to 1000 parts per million (ppm). The biotinylated standard curve fragments were synthesized by T7-polymerase driven IVT reactions from plasmid-based templates. The spiked biotinylated RNA fragments serve both as an internal standard to assess chip sensitivity and as standard curve 10 to convert measured fluorescent difference averages from individual genes into RNA frequencies in ppm as described by Hill et al.

Gene expression frequencies from each individual mouse kidney were measured and the expression data subjected to statistical analysis. Frequency values determined from individual measurements for a given group of mice were averaged. Genes whose frequencies differed 15 significantly between C57Bl6 kidneys at 12 and 32 weeks of age were classified as changing as a result of the normal aging process, and not due to a disease process.

Expression frequencies in young (disease-free), old (diseased), and effectively treated old (disease-free) F1(NZBxNZW) mice and C57BL6 control mice of oligonucleotide sequence identified on the Affymetrix Murine 11K chip by the qualifier aa002653_s_at are shown. This 20 sequence represents an unknown mouse gene.

The results are shown in FIG. 1. Shown is a histogram showing gene expression levels in kidneys from the indicated mice. Expression levels of BFLP1698 do not vary significantly between C57BL/6 kidneys at 12 weeks of age and kidney at 32 weeks of age, indicating that expression levels do not increase with age in kidneys of non-diseased mice. In (NXBxNZW)F1 25 kidneys, the gene is expressed at normal levels prior to disease onset (12 weeks of age). As the mice age and disease progresses, increasing expression levels are observed at 25 weeks, 36 weeks (data not shown for 36 weeks), and 42 weeks. By 55 weeks of age, the mice have died due to kidney failure. Mice treated with rapamycin for 8 weeks with treatment starting at 29 weeks of age, remain healthy past 55 weeks of age. Kidneys of mice that have received effective

therapy (either rapamycin therapy or anti-B7 therapy) express normal levels of BFLP1698, and these normal levels persist in asymptomatic kidney 20 weeks after cessation of rapamycin therapy and 15 weeks after cessation of anti-B7 therapy. The observation that expression levels return to normal when kidney function is normal indicates that elevated levels are related to, and diagnostic of, disease progression. Blocking the function of these genes may inhibit or retard disease progression. Expression levels may also be used to assess and compare effectiveness of various therapeutic interventions.

Example 2. A variant of the human BFLP1698 polypeptide sequence shown in Table 2

10 A polypeptide sequence varying by one amino acid from the BFLP1698 amino acid sequence presented in Table 2 is shown below. For the sequence shown, the F at position 97 of the BFLP1698 sequence shown in Table 2 has been replaced by an L, which is shown in bold font.

15 MALVPGRSKEDGLWTRNSPGSSQHPESPRLPNPLWDRGKIGKVEGHQHIQDFSQKSHPSTIVVESSEVNEESGDLHLP
HEELLLTDGEEEDAEAFQDQSEEPGAARPHQARQVEHSTQRGHLEIRELKKKLFKRRRVLNRERRRLRHRVVGAVI
DQGLITRHHLKKRAAQELSQEIKAFLTGVDPILGHQLSAREHARCGLLLRSLPPARAAVLDHRLRGVFD**E**SVRAHLAA
LDETPVAGPPHLRPPPSHV~~PAGGPGL~~EDVVQEVQQVLSEFIRANPKAWAPVISAWSIDLMGQLSSTYSGQHQRVPH
TGALNELLQLWMGCRATRTLMDIYVQCL~~S~~ALIGSCP~~D~~ACVDALLDTSVQHSPHFDWVVAHIGSSFP**G**TIIISRVLSCGL
KDFCVHGGAGGGAGSSGSSSSQTPSTDPFGSPAIPAEKRPKIASVVGILGH~~L~~ASRHGDSIRRELLRMFHDSL~~AGGS~~
GGRSGDPSLQATVPFLLQLAVMS~~PA~~LLGTVSGELVDC~~L~~KPPAVLSQLQHQH~~L~~QGF~~P~~REELDNMLNLA~~V~~H~~L~~V~~S~~QASGAGA
YRLLQFLVDTAMPASVIT~~T~~QGLAVPD~~T~~VREACDRLIQLLLLH~~L~~QKLV~~H~~H~~R~~GGSP~~G~~EGVLG~~P~~PPPPR~~L~~V~~F~~LD~~A~~LN~~H~~V
GELCGETLRLERKRF~~L~~WQHQLLGLLSVYTRPSCGPEALGH~~L~~LSRARSPEELSLATQLYAGLVV~~S~~LSG~~L~~PLAFR~~S~~CLA
RVHAGTLQ~~P~~PF~~T~~ARFLRN~~L~~ALLVGWEQQGGE~~G~~PAALGAH~~F~~GESASAHLSD~~L~~AP~~L~~LH~~P~~EEEV~~A~~AAASLLAICPF~~P~~SE
20 ALSPSQLLGLV~~R~~AGV~~H~~RF~~F~~AS~~L~~RLHG~~P~~PG~~V~~ASACQ~~L~~TRL~~S~~Q~~T~~SPAGL~~K~~AVLQ~~L~~LLVE~~G~~ALH~~R~~GNTE~~L~~F~~G~~GGQV~~D~~GD~~N~~ET
LSVVSASLASAS~~L~~LD~~N~~RRHTAAVPG~~G~~GIWSVF~~H~~AGV~~I~~GRGLKPPK~~F~~V~~Q~~SRNQQ~~E~~VIYNTQ~~S~~LLS~~L~~LV~~H~~CC~~S~~AP~~G~~GT
25 ECGECWGAP~~I~~LSPEAAKAVAVT~~I~~LVESVCPDAA~~G~~AE~~L~~AWP~~P~~EE~~H~~ARATVER~~D~~RIGRRF~~E~~Q~~P~~LLF~~E~~LLK~~L~~VAA~~P~~AL
CYCSVLLRG~~L~~LA~~A~~LLGHWEASRHPDT~~H~~SPW~~H~~LEAS~~C~~TLVAVMAEGS~~L~~LP~~P~~ALGNMHEV~~F~~SQLAP~~F~~EV~~R~~LLL~~S~~V~~W~~GF
LREHGPLPQKF~~I~~Q~~S~~ERGRF~~I~~RDF~~S~~REG~~G~~EG~~G~~PH~~L~~AVL~~H~~SV~~L~~HRN~~I~~DRL~~G~~LFSGRFQ~~A~~P~~S~~P~~S~~TL~~R~~Q~~G~~T (SEQ ID
NO : 3)

30

Example 3. A variant of the human BFLP1698 polypeptide sequence shown in Table 2

35 A polypeptide sequence varying by one amino acid from the BFLP1698 amino acid sequence presented in Table 2 is shown below. For the sequence shown, the Q at position 192 of the BFLP1698 sequence shown in Table 2 has been replaced by a N, which is shown in bold font.

MALVPGRSKEDGLWTRNSPGSSQHPESPRLPNPLWDRGKIGKVEGHQHIQDFSQKSHPSTIVVESSEVNEESGDLHLP
HEELLLTDGEEEDAEAFFQDQSEEPGAARPHQARQVEHSTQRGHLEIRELKKKLFKRRRVLNRERRRLRHRVVGAVI
DQGLITRHHLKKRAAQELSQEIKAFLTGVDPILGHQLSAREHARCGLLLRSLPPARAAVLDHRLRGVFD**E**SVRAHLAA
LDETPVAGPPHLRPPPSHV~~PAGGPGL~~EDVVQEVQQVLSEFIRANPKAWAPVISAWSIDLMGQLSSTYSGQHQRVPH
TGALNELLQLWMGCRATRTLMDIYVQCL~~S~~ALIGSCP~~D~~ACVDALLDTSVQHSPHFDWVVAHIGSSFP**G**TIIISRVLSCGL

5 KDFCVHGGAGGGAGSSGGSSQTPSTDPPGSPAIPAEKRVPKIASVVGILGHLASRHGDSIRRELLRMFHDSLAGGS
 GGRSGDPSLQATPVFLLQLAVMSPALLGTVSGELVDCLKPPAVLSQLQQHLQGFPREELDNMLNLAHVLSQASGAGA
 YRLLQFLVDTAMPASVITTOGLAVPDTVREACDRILQLLLLHLQKLVHRRGGSPGEVGVLGPPPPRVLVFLDALKNHV
 10 GELCGETLRLERKRFWQHQQLLGLLSVYTRPSCGPEALGHLLSRARSPEELS LATQLYAGLVSLSGLLPLAFRSCLA
 RVHAGTLQPPFTARFLRNALLVGWEQQGEGPAALGAHGESASAHLSDLAPLLLHPEEEVAEEAASLLAICCPFPSE
 ALSPSQLLGLVRAVHRRFFASLRLHGPPGVASACQLLTRLSQTSAGLKAVLQLLVEGALHRGNTELFGGQVDGDNET
 LSVVSASLASASLLDTNRRHTAAVPGPGGIWSVFHAGVIGRGLKPPKFVQSRNQQEVINYNTQSLLSLLVHCCSAPGGT
 15 ECGECWGA PILSPEAAKAVAVT LVE SVPDAAGAE LAW PPEE HARATVERD L RIG RRFREQP L LFELLKLVAAAPPAL
 CYCSVLLRGLLAALLGHWEASRHPDTTHSPWHL EAS CTLVAVMAEGSLLP ALGNMHEVFSQ LAPF EVR LLLLSVWGF
 LREHGPLPQKFIFQSERGRFIRDFSREGGGEGGPHIAVLHSVHLRNIDRLGLFSGRFQAPSPSTLLRQGT (SEQ ID
 NO: 4)

Example 4. A variant of the human BFLP1698 polypeptide sequence shown in Table 2

15 A polypeptide sequence varying by one amino acid from the BFLP1698 amino acid sequence presented in Table 2 is shown below. For the sequence shown, the S at position 288 of the BFLP1698 sequence shown in Table 2 has been replaced by an G, which is shown in bold font.

20 MALVPGRSKEDGLWTRNSPGSSQHPESPRLPNPLWDRGKIGKVEGHQHIQDFSQKSHLPSIVVESSEVNEESGDLHLP
 HEELLLTDGEEEDAEAFFQDQSEEPGAARPHQARQVEHSTQRGHLEIRELKKKLFKRRRVLNRRRLRHRVVGAVI
 DQGLITRHHLKRAAQELSQEIKAFLTGVDPILGHQQLSAREHARCGLLLLRLPPARAAVLDHHLRGVFDESVRAHLAA
 LDETPVAGPPHLRPPPSHVPAGGPGLEDVVQEVQVLSEFIRANPKAWAPVIGASIDLMGQLSSTYSGQHQRVPHA
 25 TGALNELLQLWMGCRATRTLMDIYVQCLISALIGSCPDACV DALLDTSVQHSPHFDWVVAHIGSSFPGTIIISRVLSCGL
 KDFCVHGGAGGGAGSSGGSSQTPSTDPPGSPAIPAEKRVPKIASVVGILGHLASRHGDSIRRELLRMFHDSLAGGS
 GGRSGDPSLQATPVFLLQLAVMSPALLGTVSGELVDCLKPPAVLSQLQQHLQGFPREELDNMLNLAHVLSQASGAGA
 YRLLQFLVDTAMPASVITTOGLAVPDTVREACDRILQLLLLHLQKLVHRRGGSPGEVGVLGPPPPRVLVFLDALKNHV
 30 GELCGETLRLERKRFWQHQQLLGLLSVYTRPSCGPEALGHLLSRARSPEELS LATQLYAGLVSLSGLLPLAFRSCLA
 RVHAGTLQPPFTARFLRNALLVGWEQQGEGPAALGAHGESASAHLSDLAPLLLHPEEEVAEEAASLLAICCPFPSE
 ALSPSQLLGLVRAVHRRFFASLRLHGPPGVASACQLLTRLSQTSAGLKAVLQLLVEGALHRGNTELFGGQVDGDNET
 LSVVSASLASASLLDTNRRHTAAVPGPGGIWSVFHAGVIGRGLKPPKFVQSRNQQEVINYNTQSLLSLLVHCCSAPGGT
 35 ECGECWGA PILSPEAAKAVAVT LVE SVPDAAGAE LAW PPEE HARATVERD L RIG RRFREQP L LFELLKLVAAAPPAL
 CYCSVLLRGLLAALLGHWEASRHPDTTHSPWHL EAS CTLVAVMAEGSLLP ALGNMHEVFSQ LAPF EVR LLLLSVWGF
 LREHGPLPQKFIFQSERGRFIRDFSREGGGEGGPHIAVLHSVHLRNIDRLGLFSGRFQAPSPSTLLRQGT (SEQ ID
 NO: 5)

Example 5. A variant of the human BFLP1698 polypeptide sequence shown in Table 2

40 A polypeptide sequence varying by one amino acid from the BFLP1698 amino acid sequence presented in Table 2 is shown below. For the sequence shown, the H at position 365 of the BFLP1698 sequence shown in Table 2 has been replaced by an R, which is shown in bold font.

MALVPGRSKEDGLWTRNSPGSSQHPESPRLPNPLWDRGKIGKVEGHQHIQDFSQKSHLPSIVVESSEVNEESGDLHLP
 HEELLLTDGEEEDAEAFFQDQSEEPGAARPHQARQVEHSTQRGHLEIRELKKKLFKRRRVLNRRRLRHRVVGAVI
 DQGLITRHHLKRAAQELSQEIKAFLTGVDPILGHQQLSAREHARCGLLLLRLPPARAAVLDHHLRGVFDESVRAHLAA
 LDETPVAGPPHLRPPPSHVPAGGPGLEDVVQEVQVLSEFIRANPKAWAPVIGASIDLMGQLSSTYSGQHQRVPHA

5 TGALNELLQLWMGCRATRTLMDIYVQCLISALIGSCPDACVDALLDTSVQHSPRFDWVVAHIGSSFPGTIISRVLSCLG
 KDFCVHGGAGGGAGSSGGSSQTPSTDPFPGSPAIPAEKRVPKIASVVGILGHLASRHGDSIRRELLRMFHDSLAGGS
 GGRSGDPSLQATVPFLQLAVMSPALLGTVSGELVDCLKPPAVLSQLQQHLOGFPREELDNMLNLAHVHLVSQASGAGA
 YRLQFLVDTAMPASVITTCGLAVPDVREACDRLIQQLLLHLQKLVHHRGGSPGEGVLGPPPPRLVFPLDALKNV
 10 GELCGETLRLERKRFWLQHQLLGLLSVYTRPSCGPEALGHLLSARSPEELSLATQLYAGLVVSLSGLLPLAFRSCLA
 RVHAGTLQPPFTARFLRNALLVGWEQQGEGPAALGAHFGESASAHLSDLAPLLHPEEEVAEEAASLLAICCPFPSE
 ALSPSQLLGLVRAVHRRFFASLRLHGPPGVASACQLLRLSQTSPAGLKAVLQLLVEGALHRGNTELFGGQVDGDN
 LSVVSASLASASLLDTNRRHTAAVPGPGGIWSVHAGVIGRGLKPPKFVQSRNQQEVINYNTQSLLSLVHCCSAPGGT
 ECGECWGAPELSPPEAKAVAVTLVEVCVDAAAGELAWPPEEHARATVERDLRIGRRFREQPLLFELLKLVAAP
 15 CYCSVLLRGLLAALLGHWEASRHPDTTHSPWHLAESCTLVAVMAEGSLLPPALGNMHEVFSQLAPFEVRLLLSVWGF
 LREHGPLPQKFIQSERGRFIRDFSREGGEGGPHIAVLHSLVRNIDRLGLFSGRFQAPSPSTLLRQGT (SEQ ID
 NO: 6)

Example 6. A variant of the human BFLP1698 polypeptide sequence shown in Table 2

15 A polypeptide sequence varying by one amino acid from the BFLP1698 amino acid
 sequence presented in Table 2 is shown below. For the sequence shown, the V at position 481 of
 the BFLP1698 sequence shown in Table 2 has been replaced by an M, which is shown in bold
 font.

20 MALVPGRSKEDGLWTRNSPGSSQHPESPRLPNPLWDRGKIGKVEGHQHIQDFSQKSHLPSIVVESSEVNEESGDLHLP
 HEELLLTDGEEEDAEAFFQDQSEEPGAARPHHQARQVEHSTQRGHLEIRELKKKLFKRRRVLNRRRLRHRVVGAVI
 DQGLITRHHLKRAAQELSQEIKAFLTGVDPLIGHQLSAREHARCGLLLLRSLPPARAAVLDHLLRGVFDESVRAH
 25 LDETPVAGPPHILRPPPSHVPAGGPGLEDVVQEVQQLSEFIRANPKAWAPVISAWSIDLMGQLSSTYSGQHQRVP
 TGALNELLQLWMGCRATRTLMDIYVQCLISALIGSCPDACVDALLDTSVQHSPRFDWVVAHIGSSFPGTIISRVLSCLG
 KDFCVHGGAGGGAGSSGGSSQTPSTDPFPGSPAIPAEKRVPKIASVVGILGHLASRHGDSIRRELLRMFHDSLAGGS
 GGRSGDPSLQATVPFLQLAVMSPALLGTVSGELVDCLKPPAVLSQLQQHLOGFPREELDNMLNLAHVHLVSQASGAGA
 YRLQFLVDTAMPASVITTCGLAVPDVREACDRLIQQLLLHLQKLVHHRGGSPGEGVLGPPPPRLVFPLDALKNV
 30 GELCGETLRLERKRFWLQHQLLGLLSVYTRPSCGPEALGHLLSARSPEELSLATQLYAGLVVSLSGLLPLAFRSCLA
 RVHAGTLQPPFTARFLRNALLVGWEQQGEGPAALGAHFGESASAHLSDLAPLLHPEEEVAEEAASLLAICCPFPSE
 ALSPSQLLGLVRAVHRRFFASLRLHGPPGVASACQLLRLSQTSPAGLKAVLQLLVEGALHRGNTELFGGQVDGDN
 LSVVSASLASASLLDTNRRHTAAVPGPGGIWSVHAGVIGRGLKPPKFVQSRNQQEVINYNTQSLLSLVHCCSAPGGT
 ECGECWGAPELSPPEAKAVAVTLVEVCVDAAAGELAWPPEEHARATVERDLRIGRRFREQPLLFELLKLVAAP
 35 CYCSVLLRGLLAALLGHWEASRHPDTTHSPWHLAESCTLVAVMAEGSLLPPALGNMHEVFSQLAPFEVRLLLSVWGF
 LREHGPLPQKFIQSERGRFIRDFSREGGEGGPHIAVLHSLVRNIDRLGLFSGRFQAPSPSTLLRQGT (SEQ ID
 NO: 7)

35

Example 7. A variant of the human BFLP1698 polypeptide sequence shown in Table 2

A polypeptide sequence varying by one amino acid from the BFLP1698 amino acid
 sequence presented in Table 2 is shown below. For the sequence shown, the T at position 556 of
 the BFLP1698 sequence shown in Table 2 has been replaced by a Y, which is shown in bold font.

40 MALVPGRSKEDGLWTRNSPGSSQHPESPRLPNPLWDRGKIGKVEGHQHIQDFSQKSHLPSIVVESSEVNEESGDLHLP
 HEELLLTDGEEEDAEAFFQDQSEEPGAARPHHQARQVEHSTQRGHLEIRELKKKLFKRRRVLNRRRLRHRVVGAVI
 DQGLITRHHLKRAAQELSQEIKAFLTGVDPLIGHQLSAREHARCGLLLLRSLPPARAAVLDHLLRGVFDESVRAH
 45 LDETPVAGPPHILRPPPSHVPAGGPGLEDVVQEVQQLSEFIRANPKAWAPVISAWSIDLMGQLSSTYSGQHQRVP
 TGALNELLQLWMGCRATRTLMDIYVQCLISALIGSCPDACVDALLDTSVQHSPRFDWVVAHIGSSFPGTIISRVLSCLG
 KDFCVHGGAGGGAGSSGGSSQTPSTDPFPGSPAIPAEKRVPKIASVVGILGHLASRHGDSIRRELLRMFHDSLAGGS

5 GGRSGDPSLQATVPFLQLQAVMSPALLGTVSGELVDCLKKPAVSQLQQHQHLQGFPREELDNMLNLAHVHLVSQASGAGA
YRLLQFLVVDYAMPASVITTQGLAVPDTVREACDRLIQLLLLHLQKLVHHRGGSPGEGVLGPPPPRVPFLDAKNHV
GELCGETLRLERKRFWLQHQQLLGLSVYTRPSCGPEALGHLLSRARSPEELSLATQLYAGLVVSLSGLLPLAFRSCL
RVHAGTLQPPFTARFLRNALLVGWEQQGEGPAALGAHGEASAHLSDLAPLLLHPPEEEVAEAAASLLAICCPFPSE
ALSPSQLLGLVRAVGHVRFPASLRLHGGPPGVASACQLLTRLSQSTSAGLKVQLLVEGALHRGNTELFGGQVQDGNET
LSVVSASLASASLLDNTNRHTAAVPGPGGIWSVPHAGVIGRLKKPFVQSRNQQEVYINTQSLLSLLVHCCSAPPGGT
ECGECWGAPILSPEAAKAVTLLVESCPDAAGAEALWPPEEHARATVERDLRIGRRFREQPQLLFELKLVAAAAPPAL
CYCSVLLRGLIAALLGHWEASRHPDTTHSPWLEASCTLVAVMAEGSLLPAGLNMHEVFSQALPFEVRLLLLLSVWGF
LREHGPLPQKFIFQSERGRFIRDFSREGGEGGGPHLAVLHSVLHNRNIDRLGLFSGRFQAPSPSTLLRQGT (SEQ ID
10 NO: 8)

Example 8. A variant of the human BFLP1698 polypeptide sequence shown in Table 2

15 A polypeptide sequence varying by one amino acid from the BFLP1698 amino acid sequence presented in Table 2 is shown below. For the sequence shown, the G at position 663 of the BFLP1698 sequence shown in Table 2 has been replaced by a P, which is shown in bold font.

MALVPGRSKEDGLWTRNSPGSSQHPESPRLPNPLWDRGKIGKVEGHQHIQDFSQKSHLPSIVVESSEVNNEESGDLHLP
 HEELLLLTGDGEEDAEAFFQDQSEEPGAARPHHQARQVEHSTQRGHLEIRELKKKLFLKRRRVLNRERRRLRHRRVVGAVI
 DQGLITRHHLKRAAQELSQEIKAFLTGVDPLGHQLSAREHARCGLLLRLSLPPARAVALDHLRGFDESVRAHLAA
 LDETPVAGPPHLRPPPSHVAGGPGLEDVVQEVQQLSEFIRANPKAWAPVISAWSIDLGMQLSSTYSGQHQRVP
 20 TGALNELLQLWLMGRATRTLMDIYVQCLSLIGSCPACVDALLDTTSVQHSPHFWDVVAHIGSSFPGTII
 SRLVSCGL KDFCVRHGGAGGGAGSSGSSSQTPTSDPFPGSPAI
 PAPEKRVPKIASVVGILGHLSRHSRHDGSIRRELLRMFHDSSLAGGS
 GGRSGDPSLQATVFPFLQLQAVMSPALLTGTVSGELVDCLKPPAVLSQLQHQGLQGP
 PREELENDMLNLAHLVLSQASGAGA
 YRLLQFLVDTAMPASVITTQGLAVPDTVREACDRLIQLLNLHQLKLVHRRGGSP
 GEGLVGLGPPPPRVLVFPFLDALKNHV
 25 GELCGETLRLERKRFLWQHQLLGLS
 VYTRPSCGPEALPHLSSRARSPEELSLATQLYALGVLSLGLLPLAFRSR
 RVHAGTLQPPFTARFLRNALLVGWEQOGGE
 GPAALGAHFGESASAHLSDLAPLLLHP
 PEEVAEAAASLLAICCPFPSE
 ALSPSQLLGLVRAFGVHRRFFASLRLHG
 PPGV
 ASACQLLTRLSQTS
 PAGLKAVLQLLVE
 GALHRGNTEL
 FGGQV
 DGDNET
 LS
 VVSASLASAS
 LLDTNRRHTAAVPG
 PGGIWSV
 FHAGV
 IGRGLKPP
 FV
 QSRNQ
 QEV
 VY
 NT
 QSL
 L
 S
 LLV
 VHCC
 SAP
 PG
 GT
 EC
 GEC
 CWG
 A
 PILS
 SPE
 A
 KAV
 A
 V
 T
 L
 V
 E
 S
 V
 C
 P
 D
 A
 A
 G
 A
 E
 L
 A
 W
 P
 P
 E
 E
 H
 A
 R
 A
 T
 V
 E
 R
 D
 L
 R
 I
 G
 R
 R
 F
 R
 E
 Q
 P
 L
 L
 F
 E
 L
 L
 K
 V
 A
 A
 P
 P
 A
 L
 CYCSV
 L
 L
 R
 G
 L
 I
 A
 A
 L
 L
 G
 H
 W
 E
 A
 S
 R
 H
 P
 D
 T
 H
 S
 P
 W
 H
 E
 A
 S
 C
 T
 L
 V
 A
 V
 M
 A
 E
 G
 S
 L
 L
 P
 A
 L
 G
 N
 M
 H
 E
 V
 F
 S
 Q
 L
 A
 P
 F
 E
 V
 R
 L
 L
 L
 S
 V
 W
 G
 F
 L
 R
 E
 H
 G
 L
 P
 Q
 K
 F
 I
 F
 Q
 S
 E
 R
 G
 R
 F
 I
 R
 D
 F
 S
 R
 E
 G
 G
 G
 E
 G
 G
 P
 H
 L
 A
 V
 L
 H
 S
 V
 L
 H
 R
 N
 I
 D
 R
 L
 G
 F
 S
 G
 R
 F
 Q
 A
 P
 S
 P
 S
 T
 L
 R
 Q
 G
 T
 (SEQ ID
 NO: 9)

Example 9. A variant of the human BFLP1698 polypeptide sequence shown in Table 2.

35 A polypeptide sequence varying by one amino acid from the BFLP1698 amino acid sequence presented in Table 2 is shown below. For the sequence shown, the E at position 733 of the BFLP1698 sequence shown in Table 2 has been replaced by a D, which is shown in bold font.

MALVPGRSKEDGLWTRNSPGSSQHPESPRLPNPLWDRGKIGKVEGHQHTQDFSQKSHPSPVSVESSEVNEESGDLHLP
 HEELLLLTGEEEDAEAFFQDQSEEPGAARPHHQARQVEHSTORGHLEIRELKPKLFLKRRRVLNRERRRLRHRVVGAVI
 40 DQGLJTRHHLKRAQEISQEIKAFITGVDPILGHQLSAREHARCGLLLRLSLPSPARAVIDLHRLGVFDESVRALHAA
 LDETPVAGPPHLRPPPSHVPGAGPGLEDDVQEVQVLSEFIRANPKAWAPVISAWSIDLMGQLSSTYSGQHQRVPH
 TGALNELLQLWMCRAHTLMDIYVQCLSLIGSCPDAVCDALLDTSVQHSPHFWDWVVAHIGSSFPTIISRVLSCGL
 KDFCVHGGGGGGAGSSGGSSSQTPSTDPFPGSPAIPAEKRVPKIASVVGILGHLSRHDGSIRRELRLRMFHDSSLAGGS
 45 GGRSGDPLSQATVPLLQIUMVSPALLGTVSGELWDCLKPPAVLSQLQHQLGQGPREELDNMLNLAHLVQSAGAGA
 YRLLQFLVDTAMPASVITTOGLAVPDTVREACDRLIQLLNLHQLKLVHHRGGSPGEGVGLGPFPPLRVLFIDLALKHV
 GELCGETLRLERKRFWLQHQHQLLGLSVDTRPSCGPEALGHLLSRARSPEELS LATQLYAGLVLVSLSGLPLAFLRSCLA
 RVHAGTLQPPFTARFLRNALLVGWEQGGDGPAAALGAHFGESASAHLSDLAPLLLHPEEEVAEEAASLLAICPFPE

5 ALSPSQLLGLVRAGVHRRFFASLRLHGPPGVASACQLLTRLSQTSAGLKAVLQLLVEGALHRGNTELFGGQVDGDNET
 LSVVSASLASASLLDTNRRHTAAVPGPGGIWSVHFAGVIGRGLKPPKFVQSRNQQEVINYNTQSLLSLVHCCSAPGGT
 ECGECWGAPILSPEAAKAVAVTLVESVCPDAAGAE LAW PPEEHARATVERDLRIGRRFREQPOLLFELLKLVAAAPPAL
 CYCSVLLRGLLAALLGHWEASRHPDTTHSPWHLAESCTLVAVMAEGSLLPPALGNMHEVFSQLAPFEVRLLLLGVWGF
 LREHGPLPKFIFQSERGRFIRDFSREGGGEGGPHAVLHSVLHNRNIDRLGLFSGRFQAPSPSTLLRQGT (SEQ ID
 NO: 10)

Example 10. A variant of the human BFLP1698 polypeptide sequence shown in Table 2

10 A polypeptide sequence varying by one amino acid from the BFLP1698 amino acid
 sequence presented in Table 2 is shown below. For the sequence shown, the T at position 858 of
 the BFLP1698 sequence shown in Table 2 has been replaced by a A, which is shown in bold font.

15 MALVGRSKEDGLWTRNSPGSSQHPESPRLPNPLWDRGKIGKVEGHQHIQDFSQKSHPISIVVESSEVNEESGDLHLP
 HEELLLLTGEEEDAEAFFQDOSEEPGAARPHHQARQVEHSTQRGHLEIRELKKKLFKRRRVLNRERRRLRHRVVGAVI
 DQGLITRHHLKRAAQELSQEIKAFLTGVDPILGHQLSAREHARCGLLLRSLPPARAALVDHLRGVFDESVRAHAA
 LDETPVAGPPHLRPPPSHVPGPGLEDVVQEVQVLSFIRANPKAWAPVISAWSIDLMGQLSSTYSGQHQRVPHA
 TGALNELLQLWMGCRATRTLMEDIYVQCLSALIGSCPDACVDAALLTDSVQHSPHFDWVVAHIGSSFPGTIIISRVLSCGL
 KDFCVHGGAGGGAGSSGGSSQTPSTDPFGSPAIPAEKRPV рKIASVVGILGHLASRHGDSIRRELLRMFHDSSLAGGS
 20 GGRSGDPSLQATVPFLLQLAVMSPALLGTVSGELVDCLKPPAVLSQLQQHQLQGFPREELDNMLNLAHVHLVSQASGAGA
 YRLLQFLVDTAMPASVITTOQGLAVPDTREACDRIIQLLLLHLQKLVHHRGGS PGEGVLP PPPPRLVFLDALKNV
 GELCGETLRLERKFLWQHQLLGLLSVYTRPSCGPEALGHLLSARSPEELSLATQLYAGLVVSLSGLLPLAFRSCLA
 RVHAGTLQPPFTARFLRNALLVGWEQQGEGPAAALGAHFGESASAHLSDLAPLLLHPEEEVAEEAASLLAICPFPS
 25 ALSPSQLLGLVRAGVHRRFFASLRLHGPPGVASACQLLTRLSQTSAGLKAVLQLLVEGALHRGNTELFGGQVDGDNEA
 LSVVSASLASASLLDTNRRHTAAVPGPGGIWSVHFAGVIGRGLKPPKFVQSRNQQEVINYNTQSLLSLVHCCSAPGGT
 ECGECWGAPILSPEAAKAVAVTLVESVCPDAAGAE LAW PPEEHARATVERDLRIGRRFREQPOLLFELLKLVAAAPPAL
 CYCSVLLRGLLAALLGHWEASRHPDTTHSPWHLAESCTLVAVMAEGSLLPPALGNMHEVFSQLAPFEVRLLLLGVWGF
 LREHGPLPKFIFQSERGRFIRDFSREGGGEGGPHAVLHSVLHNRNIDRLGLFSGRFQAPSPSTLLRQGT (SEQ ID
 NO: 11)

Example 11. A variant of the human BFLP1698 polypeptide sequence shown in Table 2

30 A polypeptide sequence varying by one amino acid from the BFLP1698 amino acid
 sequence presented in Table 2 is shown below. For the sequence shown, the W at position 974 of
 the BFLP1698 sequence shown in Table 2 has been replaced by a H, which is shown in bold
 font.

35 MALVGRSKEDGLWTRNSPGSSQHPESPRLPNPLWDRGKIGKVEGHQHIQDFSQKSHPISIVVESSEVNEESGDLHLP
 HEELLLLTGEEEDAEAFFQDOSEEPGAARPHHQARQVEHSTQRGHLEIRELKKKLFKRRRVLNRERRRLRHRVVGAVI
 DQGLITRHHLKRAAQELSQEIKAFLTGVDPILGHQLSAREHARCGLLLRSLPPARAALVDHLRGVFDESVRAHAA
 LDETPVAGPPHLRPPPSHVPGPGLEDVVQEVQVLSFIRANPKAWAPVISAWSIDLMGQLSSTYSGQHQRVPHA
 TGALNELLQLWMGCRATRTLMEDIYVQCLSALIGSCPDACVDAALLTDSVQHSPHFDWVVAHIGSSFPGTIIISRVLSCGL
 KDFCVHGGAGGGAGSSGGSSQTPSTDPFGSPAIPAEKRPV рKIASVVGILGHLASRHGDSIRRELLRMFHDSSLAGGS
 40 GGRSGDPSLQATVPFLLQLAVMSPALLGTVSGELVDCLKPPAVLSQLQQHQLQGFPREELDNMLNLAHVHLVSQASGAGA
 YRLLQFLVDTAMPASVITTOQGLAVPDTREACDRIIQLLLLHLQKLVHHRGGS PGEGVLP PPPPRLVFLDALKNV
 GELCGETLRLERKFLWQHQLLGLLSVYTRPSCGPEALGHLLSARSPEELSLATQLYAGLVVSLSGLLPLAFRSCLA
 RVHAGTLQPPFTARFLRNALLVGWEQQGEGPAAALGAHFGESASAHLSDLAPLLLHPEEEVAEEAASLLAICPFPS
 45 -ALSPSQLLGLVRAGVHRRFFASLRLHGPPGVASACQLLTRLSQTSAGLKAVLQLLVEGALHRGNTELFGGQVDGDNET
 LSVVSASLASASLLDTNRRHTAAVPGPGGIWSVHFAGVIGRGLKPPKFVQSRNQQEVINYNTQSLLSLVHCCSAPGGT
 ECGECWGAPILSPEAAKAVAVTLVESVCPDAAGAE LAW PPEEHARATVERDLRIGRRFREQPOLLFELLKLVAAAPPAL

CYCSVLLRGLLAALLGHWEASRHPDTTHSPWHEASCTLVAVMAEGSLLPPALGNMHEVFSQLAPFEVRLLLLWVGF
LREHGPLPKFIFQSERGRFIRDFSREGGEGGPHLAVLHSVLHRNIDRLGLFSGRFQAPSPSTLLRQGT (SEQ ID
NO: 12)

5 **Example 12. A variant of the human BFLP1698 polypeptide sequence shown in Table 2**

A polypeptide sequence varying by one amino acid from the BFLP1698 amino acid sequence presented in Table 2 is shown below. For the sequence shown, the P at position 1038 of the BFLP1698 sequence shown in Table 2 has been replaced by a T, which is shown in bold font.

10 MALVPGRSKEDGLWTRNSPGSSQHPESPRLPNPLWDRGKIGKVEGHQHIQDFSQKSHPISIVVESSEVNEESGDLHLP
HEELLLTDGEEEDAEAFFQDQSEEPGAARPHQARQVEHSTQRGHLEIRELKKKLFKRRRVLNRRRLRHRVVGAVI
DQGLITRHHHLKKRAAQELSQEIKAFLTGVDPILGHQLSAREHARCGLLLRLSPPARAAVLDHLRGVFDESVRAHLAA
LDETPVAGPPHLRPPPSHVPGAGPGLEDVVQEQQVQLSEFIRANPKAWAPVISAWSIDLIMGQLSSTYSGQHQRVPFA
TGALNELLQLWMGCRATRTLMDIYVQCLSLALIGSCPACVDALLDTSVQHSPHFDWVVAHIGSSFPGTIIISRVLSCLG
15 KDFCVHGGAGGGAGSSGGSSQTPSTDPFGSPAIPAEKRVPKIASVVGILGHLASRHGDSIRRELLRMFHDSLLAGGS
GGRSGDPSLQATVPFLQLAVMSPALLGTVSGELVDCLKPPAVLSQLQQHQLQGFPREELDNMLNLAHVHLVQSAGAGA
YRLLQFLVDTAMPASVITVQGLAVPDVREACDRLLIQLLLLHLQKLVHHRGGSPGEVVLGPPPPRVLVFLDALKNHV
GELCGETLRLERKRFWQHQLLGLLSVYTRPSCGPEALGHLLSRAARSPEELSLATQLYAGLVVSLSGLLPLAFRSCLA
RVHAGTLQPPFTARFLRNALLVGEQQGEGPAALGAHFGESASAHLSDLAPLLLHPEEEVAEEAASLLAICPFPSE
20 ALSPSQLLGLVRAVHRRFFASLRLHGGPGVASACQILTRLSQTSPAGLKAVLQLLVEGALHRCNTLFGGQVGDNET
LSVVSASLASASLLDTNRRHTAAVPGPGIWSVFHAGVIGRGLKPPKFVQSRNQQEVINYNTQSLLSLLVHCCSAPGGT
ECGECWGAPILSPEAAKAVAVTLEVSVCDAAGAEIAPPEEEHARATVERDLRIGRRFREQPLLFELLKLVAAAPPAL
25 CYCSVLLRGLLAALLGHWEASRHTDTTHSPWHEASCTLVAVMAEGSLLPPALGNMHEVFSQLAPFEVRLLLLWVGF
LREHGPLPKFIFQSERGRFIRDFSREGGEGGPHLAVLHSVLHRNIDRLGLFSGRFQAPSPSTLLRQGT (SEQ ID
NO: 13)

Example 13. A variant of the human BFLP1698 polypeptide sequence shown in Table 2

A polypeptide sequence varying by one amino acid from the BFLP1698 amino acid sequence presented in Table 2 is shown below. For the sequence shown, the I at position 1139 of the BFLP1698 sequence shown in Table 2 has been replaced by a L, which is shown in bold font.

30 MALVPGRSKEDGLWTRNSPGSSQHPESPRLPNPLWDRGKIGKVEGHQHIQDFSQKSHPISIVVESSEVNEESGDLHLP
HEELLLTDGEEEDAEAFFQDQSEEPGAARPHQARQVEHSTQRGHLEIRELKKKLFKRRRVLNRRRLRHRVVGAVI
DQGLITRHHHLKKRAAQELSQEIKAFLTGVDPILGHQLSAREHARCGLLLRLSPPARAAVLDHLRGVFDESVRAHLAA
LDETPVAGPPHLRPPPSHVPGAGPGLEDVVQEQQVQLSEFIRANPKAWAPVISAWSIDLIMGQLSSTYSGQHQRVPFA
TGALNELLQLWMGCRATRTLMDIYVQCLSLALIGSCPACVDALLDTSVQHSPHFDWVVAHIGSSFPGTIIISRVLSCLG
35 KDFCVHGGAGGGAGSSGGSSQTPSTDPFGSPAIPAEKRVPKIASVVGILGHLASRHGDSIRRELLRMFHDSLLAGGS
GGRSGDPSLQATVPFLQLAVMSPALLGTVSGELVDCLKPPAVLSQLQQHQLQGFPREELDNMLNLAHVHLVQSAGAGA
YRLLQFLVDTAMPASVITVQGLAVPDVREACDRLLIQLLLLHLQKLVHHRGGSPGEVVLGPPPPRVLVFLDALKNHV
GELCGETLRLERKRFWQHQLLGLLSVYTRPSCGPEALGHLLSRAARSPEELSLATQLYAGLVVSLSGLLPLAFRSCLA
RVHAGTLQPPFTARFLRNALLVGEQQGEGPAALGAHFGESASAHLSDLAPLLLHPEEEVAEEAASLLAICPFPSE
40 ALSPSQLLGLVRAVHRRFFASLRLHGGPGVASACQILTRLSQTSPAGLKAVLQLLVEGALHRCNTLFGGQVGDNET
LSVVSASLASASLLDTNRRHTAAVPGPGIWSVFHAGVIGRGLKPPKFVQSRNQQEVINYNTQSLLSLLVHCCSAPGGT
ECGECWGAPILSPEAAKAVAVTLEVSVCDAAGAEIAPPEEEHARATVERDLRIGRRFREQPLLFELLKLVAAAPPAL
CYCSVLLRGLLAALLGHWEASRHTDTTHSPWHEASCTLVAVMAEGSLLPPALGNMHEVFSQLAPFEVRLLLLWVGF

2003295784 19 Aug 2005

WO 2004/047740

PCT/US2003/037317

LREHGPLPQKIFIFQSERGRFIRDFSREGGEGGPHLAVLHSVLHRNLDRLGLFSGRFQAPSPSTLLRQGT (SEQ ID NO:14)

OTHER EMBODIMENTS

While the invention has been described in conjunction with the detailed description thereof, the foregoing description is intended to illustrate and not limit the scope of the invention, which is defined by the scope of the appended claims. Other aspects, advantages, and 5 modifications are within the scope of the following claims.

The Claims Defining The Invention Are As Follows:

1. An isolated nucleic acid molecule encoding a polypeptide comprising an amino acid sequence at least 95% identical to the amino acid sequence of SEQ ID NO:2.
5
2. The isolated nucleic acid molecule of claim 1, wherein said nucleic acid molecule encodes a polypeptide that binds rapamycin.
3. The isolated nucleic acid molecule of claim 1, wherein said nucleic acid
10 molecule encodes a polypeptide at least 98% identical to the amino acid sequence of SEQ ID NO:2.
4. The nucleic acid molecule of claim 1, wherein said molecule hybridizes under stringent conditions to a nucleic acid sequence complementary to a nucleic acid molecule
15 comprising nucleotides 1-3486 of SEQ ID NO:1.
5. The isolated nucleic acid molecule of claim 1, wherein said nucleic acid molecule encodes a polypeptide comprising the amino acid sequence of SEQ ID NO:2.
- 20 6. The isolated nucleic acid molecule of claim 1, wherein said nucleic acid molecule comprises nucleotides 1-3486 of SEQ ID NO:1.
7. A vector comprising the nucleic acid molecule of any one of claims 1 to 6.
- 25 8. A cell including the vector of claim 7.
9. A substantially purified polypeptide comprising an amino acid sequence at least 95% identical to the amino acid sequence of SEQ ID NO:2.
- 30 10. The polypeptide of claim 9, wherein said polypeptide binds rapamycin.
11. The polypeptide of claim 9, wherein the amino acid sequence of said polypeptide is at least 98% identical to the amino acid sequence of SEQ ID NO:2.
12. The polypeptide of claim 9, wherein the amino acid sequence of said
35 polypeptide is at least 99% identical to the amino acid sequence of SEQ ID NO:2.

25 May 2009
20003295784

13. The polypeptide of claim 9, wherein the amino acid sequence of said polypeptide comprises the amino acid sequence of SEQ ID NO:2.
14. The polypeptide of claim 9, wherein the amino acid sequence of said polypeptide consists of the amino acid sequence of SEQ ID NO:2.
15. A fusion polypeptide comprising the polypeptide of claim 9 operably linked to a non-BFLP1698 polypeptide.
- 10 16. The fusion polypeptide of claim 15, wherein said non-BFLP1698 polypeptide comprises at least one member selected from the group consisting of an Fc region of an immunoglobulin molecules or a FLAG epitope, a HIS tag, and a MYC tag.
- 15 17. A fusion polypeptide comprising a rapamycin-binding domain of a polypeptide of claim 9.
18. The fusion polypeptide of claim 17, wherein the rapamycin-binding domain is operably linked to a non-BFLP1698 polypeptide, wherein said non-BFLP1698 polypeptide comprises at least one member selected from the group consisting of an Fc region of an immunoglobulin molecules or a FLAG epitope, a HIS tag, and a MYC tag.
- 20 19. A pharmaceutical composition comprising the fusion polypeptide of claim 17 and a pharmaceutically acceptable carrier.
14. 20. An antibody that binds selectively to the polypeptide of any one of claims 9 to 14.
- 25 21. The antibody of claim 20, wherein said antibody inhibits binding of a polypeptide of claim 9 to rapamycin.
- 30 22. The antibody of claim 20, wherein said antibody is a polyclonal antibody.
23. The antibody of claim 20, wherein said antibody is a monoclonal antibody.
24. The monoclonal antibody of claim 23, wherein said monoclonal antibody is selected from the group consisting of a murine monoclonal antibody, and a humanized monoclonal antibody.

w:\Mark.Wickham\1700000-7699999\749801\749801 clean spec1 226309.doc

25. A method of producing a polypeptide of claim 9, said method comprising culturing a cell including the nucleic acid molecule of any one of claims 1 to 6 under conditions allowing for expression of said polypeptide encoded by said nucleic acid molecule.

5

26. A method of detecting the presence of a nucleic acid molecule of claim 1 in a biological sample, the method comprising:

contacting the sample with a nucleic acid probe that binds specifically to said nucleic acid; and

10 identifying the bound probe, if present,

thereby detecting the presence of said nucleic acid molecule in said sample.

27. A method of detecting the presence of a polypeptide of claim 9 in a sample, the method comprising:

15 contacting the sample with a compound that selectively binds to said

polypeptide under conditions allowing for formation of a complex between said polypeptide and said compound; and detecting said complex, if present, thereby identifying said polypeptide in said sample.

28. The method of claim 27, wherein said compound is rapamycin.

20 29. The method of claim 27, wherein said compound is an antibody to the polypeptide of claim 9.

30. A method for determining the presence of or predisposition to lupus nephritis in a subject, the method comprising:

25 a) measuring the amount of a nucleic acid molecule of claim 1 in a sample from said subject; and

b) comparing the amount of said nucleic acid in step to the amount of the nucleic acid present in a control sample from a subject without lupus nephritis,

30 wherein an increase in the level of said nucleic acid in step (a) as compared to the level of the nucleic acid in the control sample indicates the presence of or predisposition to lupus nephritis in said subject.

31. The method of claim 30, wherein said subject is a human.

25 May 2009

20003295784

32. A method for determining the presence of or predisposition to lupus nephritis in a subject, the method comprising:

- a) measuring the amount of a polypeptide of claim 9 in a sample from said subject; and
- 5 b) comparing the amount of said polypeptide to the amount of the nucleic acid present in a control sample from a subject without lupus nephritis, wherein an increase in the level of said polypeptide as compared to the level of the polypeptide in the control sample indicates the presence of or predisposition to lupus nephritis in said subject.

10 33. The method of claim 32, wherein said subject is a human.

34. A method for screening for a therapeutic agent for treating an autoimmune disorder, the method comprising:

- 15 contacting a test compound with a polypeptide of claim 9; and determining if said test compound binds to said polypeptide, wherein binding of said test compound to said polypeptide indicates the test compound is a therapeutic agent for an autoimmune disorder.

20 35. The method of claim 34, wherein said immune disorder is an autoimmune disorder.

36. The method of claim 35, wherein said autoimmune disorder is lupus.

25 37. The method of claim 35, wherein said autoimmune disorder is lupus nephritis.

38. The method of claim 34, wherein said polypeptide is provided in a cell-free extract.

30 39. The method of claim 34, wherein said polypeptide is provided in a cell.

40. A method of treating lupus nephritis in a subject, the method comprising administering to said subject a therapeutically effective amount of an agent that inhibits activity of a polypeptide of claim 9 in said subject.

35 41. The method of claim 40, wherein said subject is a human.

25 May 2009

20003295784

42. The method of claim 40 or claim 41, wherein said agent is an antibody to the polypeptide of claim 9.

5 43. The pharmaceutical composition comprising an agent that inhibits activity of a polypeptide of claim 9 in a subject and a pharmaceutically acceptable carrier, wherein said agent is an antibody to the polypeptide of claim 9.

10 44. A polypeptide prepared by the method of claim 25.

15 45. An isolated nucleic acid according to claim 1 substantially as hereinbefore described with reference to the Examples and/or Figure and/or Sequence Listing.

46. A polypeptide according to claim 9 substantially as hereinbefore described with reference to the Examples and/or Figure and/or Sequence Listing.

20 47. A fusion polypeptide according to claim 17 substantially as hereinbefore described with reference to the Examples and/or Figure and/or Sequence Listing.

48. A method according to any one of claims 26, 27, 30, 32, 34 or 40, substantially as hereinbefore described with reference to the Examples and/or Figure and/or Sequence Listing.

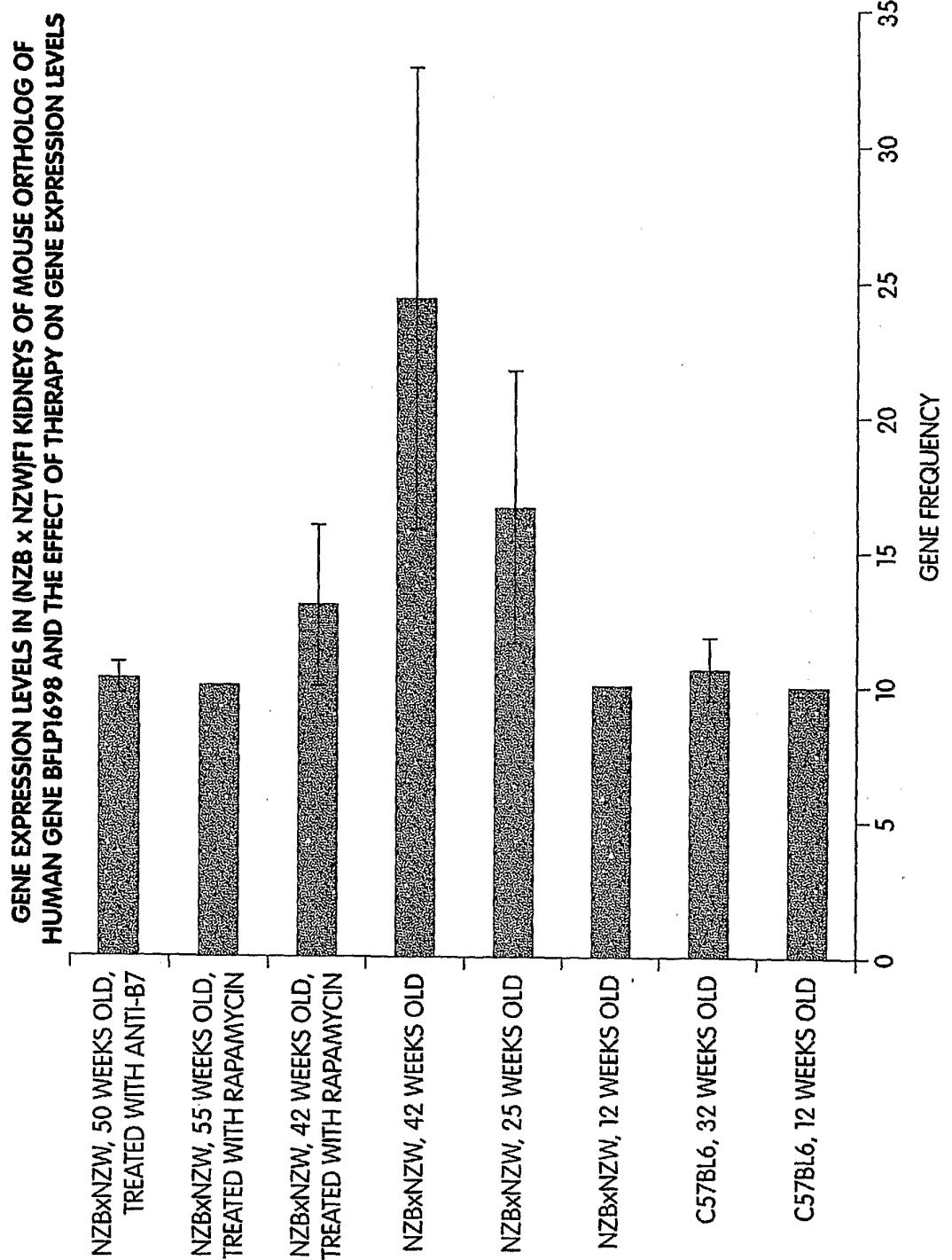


Fig. 1

SUBSTITUTE SHEET (RULE 26)

2003295784 19 Aug 2005

SEQUENCE LISTING

<110> Wyeth
 O'Toole, Margot
 Mounts, William M
 Shojaee, Negin

 <120> COMPOSITION AND METHOD FOR TREATING LUPUS NEPHRITIS

 <130> 031896-091000

 <140> US 10/718,834
 <141> 2003-11-21

 <150> US 60/428,065
 <151> 2002-11-21

 <160> 21

 <170> PatentIn version 3.3

 <210> 1
 <211> 3652
 <212> DNA
 <213> Homo sapiens

 <400> 1
 atggcccttg tgccagggag aagcaaggag gatgggcttt ggactagaaa tagcccaggc 60
 tcctcccagc atccagaaaag tcccaggctg cccaaacccctc tctgggacag aggaaaaatt 120
 ggcaaggttg aaggtcacca gcacattcag gatttctctc aaaagtccca tctgccgtct 180
 attgtggtgg aatccagtga ggtgaatgaa gagagtgggg atctccattt gccccatgag 240
 gagctgctgc tgctcaactga tggtgaggaa gaggatgctg aggcccttctt ccaagaccaa 300
 agtgaagagc caggggcggc acgtccccat catcaggctc ggcaagtggc gcattcgacg 360
 cagcgcggcc atctggagat tcgggagctg aagaagaagc tgttcaaacg ccggcgggtg 420
 ttgaatcgaa agcggcgctc gaggcaccgg gtggtcgggg ctgtgataga ccaaggggctg 480
 atcacgcggc accacctcaa gaagcgggct gctcaggagc tgtcccagga aatcaaggct 540
 tttctgactg gcgttagaccc cattctggc caccaactct cagcccgaaa acatgctcgc 600
 tgtggtcttc tcctgctccg ttctttgcca cctgctcggg ctgctgtgt tgaccacttg 660
 agaggtgtct ttgatgagag tgtccgggac cacctggctg ccctggatga aaccctgtg 720
 gctggtccac ctcacacctcg tccacacctca ccctctcatg tccctgctgg tggacctgg 780
 ctagaggatg tggttcagga agtgcagcag gtgctgtctg agtttatccg ggccaaccca 840
 aaggcctggg cacctgtat tagtgcattgg tccattgacc tcatggggca actgagcagc 900
 acgtactcag gccagcacca gcgtgttccc cacgctactg gcgctctaa tgaactgcta 960
 cagctgtggc tgggtttag ggccacgcgt acattaatgg acatctatgt gcagtgcctc 1020
 tcggctctca ttggtagctg cccagatgcg tgtgtggatg ccttgctggc tacctctgtt 1080

19 Aug 2005
2003295784

cagcattctc	cacactttga	ctgggttgtg	gcacatattg	gctcctcttt	tcctggcacc	1140
atcatttccc	gggttctctc	ctgtggcctt	aaggactttt	gtgtccatgg	tggggctgga	1200
ggtggagctg	gcagtagtgg	tggaagctct	tctcagaccc	cctctacaga	cccctccct	1260
ggatctcctg	ccattcctgc	ggagaaaacgg	gtgcccaga	ttgcctcagt	tgttaggcac	1320
ctaggtcacc	tggcctcccc	ccacggagat	agcatccgac	gggagctcct	gogaatgttc	1380
catgatagcc	tggcaggggg	atctggaggc	cgcagtgggg	accctccct	tcagggccacg	1440
gttccgttcc	tactgcagct	ggcagtcatg	tcaccagctt	tgctggcac	tgtctctgga	1500
gagcttgtgg	attgcctcaa	gccccagct	gtgctgagcc	agctgcagca	acaccttcaa	1560
ggatcccccc	gagaggagct	ggacaacatg	ttgaacctgg	ctgtgcacct	ggtgagccag	1620
gcctctgggg	caggtgccta	ccgcttgctg	cagttcctgg	tggacacagc	tatgcctgct	1680
tcggtcatta	ccacccaggg	cctggctgtg	ccagacacccg	tgcgtgaggc	ttgtgaccgg	1740
ctaattccagc	tgctgctgct	gcacactgcaa	aaactggttc	atcaccgggg	agggtctcct	1800
gggaaagggg	tgcttaggccc	gccccacct	ccccgcttgg	tgcccttttt	agatgcgcctc	1860
aaaaaccatg	ttggagagct	gtgtggagag	acgttacgat	tggaacggaa	gogcttcctc	1920
tggcagcacc	agctcttggg	cctgctgtct	gtctataaccc	ggcctagctg	tggacctgag	1980
gccttggcc	atctgctgag	ccgagcccga	agccctgaag	agttgagttt	ggccacccag	2040
ttatatgcag	ggctagtgg	cagcctctct	ggcctcctgc	ccctggcttt	ccgaagctgt	2100
ctggctcggg	tgcatgcagg	gacattacag	cctcccttca	cggcccggtt	cctgcgcac	2160
ttggcactgc	tagtagggtg	ggaacagcag	ggtggcgagg	gccctgcagc	cctagggcgt	2220
cactttgggg	aatctgcctc	agcccatctg	tctgacctgg	ctcctctcct	gctacatcct	2280
gaggaggaag	tagctgaagc	tgctgcctct	ctcctggcca	tttgcctt	tccttctgaa	2340
gccttatccc	cctcccagct	cctggactg	gtaagggctg	gggtgcacccg	cttctttgcc	2400
tctctgaggc	tgcatggacc	cccaggtgtg	gcctcagcct	gtcagcttct	cacccgcctg	2460
tctcagacat	ccccagctgg	gctcaaggct	gtcctgcagc	tgctgggtga	aggagccta	2520
catcgaggca	acacagaact	gtttggtggg	caagtagatg	gggacaatga	gactctctca	2580
gttgtttcag	cttctttggc	ttctgcctcc	ctgttggaca	ctaaccggag	gcacactgca	2640
gctgtgccag	gtcctggagg	gatttggta	gtttccatg	ctggagtcat	cgcccggtgc	2700
ttaaagccac	ccaagttgt	ccagtcacga	aatcagcagg	aagtgatcta	taacacccag	2760
agcctcctca	gcctcctgg	tcactgctgc	agtccccag	ggggcactga	atgtggggaa	2820
tgctgggggg	cacccatctt	gagtccagag	gcagccaaag	cagtggcagt	gaccttggtg	2880
gagagtgtgt	gtcccgatgc	agctggtgca	gagctggcct	ggccccccga	ggaacacgccc	2940

19 Aug 2005
2003295784

cggggccaccg	tggagcggga	tctccgcatt	ggccggcgct	tccgcgaaca	gcccctgctc	3000
ttttagctgt	taaagctggt	agcagctgca	cccccagccc	tgtgctactg	ttccgtgctg	3060
cttcgggggc	tgctggccgc	cctcttgggc	cattgggaag	cctctcgcca	ccctgacacg	3120
acccactccc	cctggcacct	ggaggcatcc	tgcaccttag	tggctgtcat	ggctgaggga	3180
agcctcctgc	ctccggccct	gggtaatatg	catgaagtat	ttagccaaact	ggcacctttc	3240
gaggtgcgtc	tgctgtgtct	cagtgtctgg	ggttttctcc	gggagcatgg	gcccttgcct	3300
cagaagttca	tcttccaatc	agagcggggt	cgcttcattc	gggacttctc	cagggagggt	3360
ggaggtgagg	gtggacccca	tctggctgtg	ctgcacagtg	tcctccacccg	caacatcgac	3420
cgcctaggtc	ttttctctgg	ccgtttccag	gcaccttcac	cgtccactct	cttcgacag	3480
gggacgttagc	ctttcttgc	tctggaagcc	cagggaggtt	gagcagttag	agagggaaagg	3540
gactaacgtg	ctccggaagg	gtggaggttt	ctcttctaag	tccttggtct	aaagagcgct	3600
gtcaactttt	tctctccac	ttttttttt	ctaaataaaa	tttgccaaact	tg	3652

<210> 2
 <211> 1162
 <212> PRT
 <213> Homo sapiens

 <400> 2

Met Ala Leu Val Pro Gly Arg Ser Lys Glu Asp Gly Leu Trp Thr Arg
 1 5 10 15

Asn Ser Pro Gly Ser Ser Gln His Pro Glu Ser Pro Arg Leu Pro Asn
 20 25 30

Pro Leu Trp Asp Arg Gly Lys Ile Gly Lys Val Glu Gly His Gln His
 35 40 45

Ile Gln Asp Phe Ser Gln Lys Ser His Leu Pro Ser Ile Val Val Glu
 50 55 60

Ser Ser Glu Val Asn Glu Glu Ser Gly Asp Leu His Leu Pro His Glu
 65 70 75 80

Glu Leu Leu Leu Thr Asp Gly Glu Glu Glu Asp Ala Glu Ala Phe
 85 90 95

Phe Gln Asp Gln Ser Glu Glu Pro Gly Ala Ala Arg Pro His His Gln
 100 105 110

Ala Arg Gln Val Glu His Ser Thr Gln Arg Gly His Leu Glu Ile Arg
 115 120 125

Glu Leu Lys Lys Lys Leu Phe Lys Arg Arg Arg Val Leu Asn Arg Glu
 130 135 140

Arg Arg Leu Arg His Arg Val Val Gly Ala Val Ile Asp Gln Gly Leu
 145 150 155 160

2003295784 19 Aug 2005

Ile Thr Arg His His Leu Lys Lys Arg Ala Ala Gln Glu Leu Ser Gln
 165 170 175
 Glu Ile Lys Ala Phe Leu Thr Gly Val Asp Pro Ile Leu Gly His Gln
 180 185 190
 Leu Ser Ala Arg Glu His Ala Arg Cys Gly Leu Leu Leu Arg Ser
 195 200 205
 Leu Pro Pro Ala Arg Ala Ala Val Leu Asp His Leu Arg Gly Val Phe
 210 215 220
 Asp Glu Ser Val Arg Ala His Leu Ala Ala Leu Asp Glu Thr Pro Val
 225 230 235 240
 Ala Gly Pro Pro His Leu Arg Pro Pro Pro Ser His Val Pro Ala
 245 250 255
 Gly Gly Pro Gly Leu Glu Asp Val Val Gln Glu Val Gln Gln Val Leu
 260 265 270
 Ser Glu Phe Ile Arg Ala Asn Pro Lys Ala Trp Ala Pro Val Ile Ser
 275 280 285
 Ala Trp Ser Ile Asp Leu Met Gly Gln Leu Ser Ser Thr Tyr Ser Gly
 290 295 300
 Gln His Gln Arg Val Pro His Ala Thr Gly Ala Leu Asn Glu Leu Leu
 305 310 315 320
 Gln Leu Trp Met Gly Cys Arg Ala Thr Arg Thr Leu Met Asp Ile Tyr
 325 330 335
 Val Gln Cys Leu Ser Ala Leu Ile Gly Ser Cys Pro Asp Ala Cys Val
 340 345 350
 Asp Ala Leu Leu Asp Thr Ser Val Gln His Ser Pro His Phe Asp Trp
 355 360 365
 Val Val Ala His Ile Gly Ser Ser Phe Pro Gly Thr Ile Ile Ser Arg
 370 375 380
 Val Leu Ser Cys Gly Leu Lys Asp Phe Cys Val His Gly Gly Ala Gly
 385 390 395 400
 Gly Gly Ala Gly Ser Ser Gly Gly Ser Ser Ser Gln Thr Pro Ser Thr
 405 410 415
 Asp Pro Phe Pro Gly Ser Pro Ala Ile Pro Ala Glu Lys Arg Val Pro
 420 425 430
 Lys Ile Ala Ser Val Val Gly Ile Leu Gly His Leu Ala Ser Arg His
 435 440 445
 Gly Asp Ser Ile Arg Arg Glu Leu Leu Arg Met Phe His Asp Ser Leu
 450 455 460
 Ala Gly Gly Ser Gly Gly Arg Ser Gly Asp Pro Ser Leu Gln Ala Thr
 465 470 475 480
 Val Pro Phe Leu Leu Gln Leu Ala Val Met Ser Pro Ala Leu Leu Gly

19 Aug 2005
2003295784

485 490 495

Thr Val Ser Gly Glu Leu Val Asp Cys Leu Lys Pro Pro Ala Val Leu
500 505 510Ser Gln Leu Gln Gln His Leu Gln Gly Phe Pro Arg Glu Glu Leu Asp
515 520 525Asn Met Leu Asn Leu Ala Val His Leu Val Ser Gln Ala Ser Gly Ala
530 535 540Gly Ala Tyr Arg Leu Leu Gln Phe Leu Val Asp Thr Ala Met Pro Ala
545 550 555 560Ser Val Ile Thr Thr Gln Gly Leu Ala Val Pro Asp Thr Val Arg Glu
565 570 575Ala Cys Asp Arg Leu Ile Gln Leu Leu Leu Leu His Leu Gln Lys Leu
580 585 590Val His His Arg Gly Gly Ser Pro Gly Glu Gly Val Leu Gly Pro Pro
595 600 605Pro Pro Pro Arg Leu Val Pro Phe Leu Asp Ala Leu Lys Asn His Val
610 615 620Gly Glu Leu Cys Gly Glu Thr Leu Arg Leu Glu Arg Lys Arg Phe Leu
625 630 635 640Trp Gln His Gln Leu Leu Gly Leu Leu Ser Val Tyr Thr Arg Pro Ser
645 650 655Cys Gly Pro Glu Ala Leu Gly His Leu Leu Ser Arg Ala Arg Ser Pro
660 665 670Glu Glu Leu Ser Leu Ala Thr Gln Leu Tyr Ala Gly Leu Val Val Ser
675 680 685Leu Ser Gly Leu Leu Pro Leu Ala Phe Arg Ser Cys Leu Ala Arg Val
690 695 700His Ala Gly Thr Leu Gln Pro Pro Phe Thr Ala Arg Phe Leu Arg Asn
705 710 715 720Leu Ala Leu Leu Val Gly Trp Glu Gln Gln Gly Glu Gly Pro Ala
725 730 735Ala Leu Gly Ala His Phe Gly Glu Ser Ala Ser Ala His Leu Ser Asp
740 745 750Leu Ala Pro Leu Leu Leu His Pro Glu Glu Glu Val Ala Glu Ala Ala
755 760 765Ala Ser Leu Leu Ala Ile Cys Pro Phe Pro Ser Glu Ala Leu Ser Pro
770 775 780Ser Gln Leu Leu Gly Leu Val Arg Ala Gly Val His Arg Phe Phe Ala
785 790 795 800Ser Leu Arg Leu His Gly Pro Pro Gly Val Ala Ser Ala Cys Gln Leu
805 810 815

2003295784 19 Aug 2005
 Leu Thr Arg Leu Ser Gln Thr Ser Pro Ala Gly Leu Lys Ala Val Leu
 820 825 830
 Gln Leu Leu Val Glu Gly Ala Leu His Arg Gly Asn Thr Glu Leu Phe
 835 840 845
 Gly Gly Gln Val Asp Gly Asp Asn Glu Thr Leu Ser Val Val Ser Ala
 850 855 860
 Ser Leu Ala Ser Ala Ser Leu Leu Asp Thr Asn Arg Arg His Thr Ala
 865 870 875 880
 Ala Val Pro Gly Pro Gly Gly Ile Trp Ser Val Phe His Ala Gly Val
 885 890 895
 Ile Gly Arg Gly Leu Lys Pro Pro Lys Phe Val Gln Ser Arg Asn Gln
 900 905 910
 Gln Glu Val Ile Tyr Asn Thr Gln Ser Leu Leu Ser Leu Leu Val His
 915 920 925
 Cys Cys Ser Ala Pro Gly Gly Thr Glu Cys Gly Glu Cys Trp Gly Ala
 930 935 940
 Pro Ile Leu Ser Pro Glu Ala Ala Lys Ala Val Ala Val Thr Leu Val
 945 950 955 960
 Glu Ser Val Cys Pro Asp Ala Ala Gly Ala Glu Leu Ala Trp Pro Pro
 965 970 975
 Glu Glu His Ala Arg Ala Thr Val Glu Arg Asp Leu Arg Ile Gly Arg
 980 985 990
 Arg Phe Arg Glu Gln Pro Leu Leu Phe Glu Leu Leu Lys Leu Val Ala
 995 1000 1005
 Ala Ala Pro Pro Ala Leu Cys Tyr Cys Ser Val Leu Leu Arg Gly
 1010 1015 1020
 Leu Leu Ala Ala Leu Leu Gly His Trp Glu Ala Ser Arg His Pro
 1025 1030 1035
 Asp Thr Thr His Ser Pro Trp His Leu Glu Ala Ser Cys Thr Leu
 1040 1045 1050
 Val Ala Val Met Ala Glu Gly Ser Leu Leu Pro Pro Ala Leu Gly
 1055 1060 1065
 Asn Met His Glu Val Phe Ser Gln Leu Ala Pro Phe Glu Val Arg
 1070 1075 1080
 Leu Leu Leu Leu Ser Val Trp Gly Phe Leu Arg Glu His Gly Pro
 1085 1090 1095
 Leu Pro Gln Lys Phe Ile Phe Gln Ser Glu Arg Gly Arg Phe Ile
 1100 1105 1110
 Arg Asp Phe Ser Arg Glu Gly Gly Glu Gly Gly Pro His Leu
 1115 1120 1125
 Ala Val Leu His Ser Val Leu His Arg Asn Ile Asp Arg Leu Gly
 1130 1135 1140

2003295784 19 Aug 2005

Leu Phe Ser Gly Arg Phe Gln Ala Pro Ser Pro Ser Thr Leu Leu
 1145 1150 1155

Arg Gln Gly Thr
 1160

<210> 3
 <211> 1162
 <212> PRT
 <213> Artificial

<220>
 <223> A variant of the human BFLP1698 polypeptide

<400> 3

Met Ala Leu Val Pro Gly Arg Ser Lys Glu Asp Gly Leu Trp Thr Arg
 1 5 10 15

Asn Ser Pro Gly Ser Ser Gln His Pro Glu Ser Pro Arg Leu Pro Asn
 20 25 30

Pro Leu Trp Asp Arg Gly Lys Ile Gly Lys Val Glu Gly His Gln His
 35 40 45

Ile Gln Asp Phe Ser Gln Lys Ser His Leu Pro Ser Ile Val Val Glu
 50 55 60

Ser Ser Glu Val Asn Glu Glu Ser Gly Asp Leu His Leu Pro His Glu
 65 70 75 80

Glu Leu Leu Leu Leu Thr Asp Gly Glu Glu Asp Ala Glu Ala Phe
 85 90 95

Leu Gln Asp Gln Ser Glu Glu Pro Gly Ala Ala Arg Pro His His Gln
 100 105 110

Ala Arg Gln Val Glu His Ser Thr Gln Arg Gly His Leu Glu Ile Arg
 115 120 125

Glu Leu Lys Lys Lys Leu Phe Lys Arg Arg Arg Val Leu Asn Arg Glu
 130 135 140

Arg Arg Leu Arg His Arg Val Val Gly Ala Val Ile Asp Gln Gly Leu
 145 150 155 160

Ile Thr Arg His His Leu Lys Lys Arg Ala Ala Gln Glu Leu Ser Gln
 165 170 175

Glu Ile Lys Ala Phe Leu Thr Gly Val Asp Pro Ile Leu Gly His Gln
 180 185 190

Leu Ser Ala Arg Glu His Ala Arg Cys Gly Leu Leu Leu Arg Ser
 195 200 205

Leu Pro Pro Ala Arg Ala Ala Val Leu Asp His Leu Arg Gly Val Phe
 210 215 220

Asp Glu Ser Val Arg Ala His Leu Ala Ala Leu Asp Glu Thr Pro Val
 225 230 235 240

2003295784 19 Aug 2005

Ala Gly Pro Pro His Leu Arg Pro Pro Pro Pro Ser His Val Pro Ala
 245 250 255

Gly Gly Pro Gly Leu Glu Asp Val Val Gln Glu Val Gln Gln Val Leu
 260 265 270

Ser Glu Phe Ile Arg Ala Asn Pro Lys Ala Trp Ala Pro Val Ile Ser
 275 280 285

Ala Trp Ser Ile Asp Leu Met Gly Gln Leu Ser Ser Thr Tyr Ser Gly
 290 295 300

Gln His Gln Arg Val Pro His Ala Thr Gly Ala Leu Asn Glu Leu Leu
 305 310 315 320

Gln Leu Trp Met Gly Cys Arg Ala Thr Arg Thr Leu Met Asp Ile Tyr
 325 330 335

Val Gln Cys Leu Ser Ala Leu Ile Gly Ser Cys Pro Asp Ala Cys Val
 340 345 350

Asp Ala Leu Leu Asp Thr Ser Val Gln His Ser Pro His Phe Asp Trp
 355 360 365

Val Val Ala His Ile Gly Ser Ser Phe Pro Gly Thr Ile Ile Ser Arg
 370 375 380

Val Leu Ser Cys Gly Leu Lys Asp Phe Cys Val His Gly Gly Ala Gly
 385 390 395 400

Gly Gly Ala Gly Ser Ser Gly Gly Ser Ser Ser Gln Thr Pro Ser Thr
 405 410 415

Asp Pro Phe Pro Gly Ser Pro Ala Ile Pro Ala Glu Lys Arg Val Pro
 420 425 430

Lys Ile Ala Ser Val Val Gly Ile Leu Gly His Leu Ala Ser Arg His
 435 440 445

Gly Asp Ser Ile Arg Arg Glu Leu Leu Arg Met Phe His Asp Ser Leu
 450 455 460

Ala Gly Gly Ser Gly Gly Arg Ser Gly Asp Pro Ser Leu Gln Ala Thr
 465 470 475 480

Val Pro Phe Leu Leu Gln Leu Ala Val Met Ser Pro Ala Leu Leu Gly
 485 490 495

Thr Val Ser Gly Glu Leu Val Asp Cys Leu Lys Pro Pro Ala Val Leu
 500 505 510

Ser Gln Leu Gln Gln His Leu Gln Gly Phe Pro Arg Glu Glu Leu Asp
 515 520 525

Asn Met Leu Asn Leu Ala Val His Leu Val Ser Gln Ala Ser Gly Ala
 530 535 540

Gly Ala Tyr Arg Leu Leu Gln Phe Leu Val Asp Thr Ala Met Pro Ala
 545 550 555 560

Ser Val Ile Thr Thr Gln Gly Leu Ala Val Pro Asp Thr Val Arg Glu

2003295784 19 Aug 2005

	565	570	575
Ala Cys Asp Arg Leu Ile Gln Leu Leu Leu His Leu Gln Lys Leu			
580	585	590	
Val His His Arg Gly Gly Ser Pro Gly Glu Gly Val Leu Gly Pro Pro			
595	600	605	
Pro Pro Pro Arg Leu Val Pro Phe Leu Asp Ala Leu Lys Asn His Val			
610	615	620	
Gly Glu Leu Cys Gly Glu Thr Leu Arg Leu Glu Arg Lys Arg Phe Leu			
625	630	635	640
Trp Gln His Gln Leu Leu Gly Leu Leu Ser Val Tyr Thr Arg Pro Ser			
645	650	655	
Cys Gly Pro Glu Ala Leu Gly His Leu Leu Ser Arg Ala Arg Ser Pro			
660	665	670	
Glu Glu Leu Ser Leu Ala Thr Gln Leu Tyr Ala Gly Leu Val Val Ser			
675	680	685	
Leu Ser Gly Leu Leu Pro Leu Ala Phe Arg Ser Cys Leu Ala Arg Val			
690	695	700	
His Ala Gly Thr Leu Gln Pro Pro Phe Thr Ala Arg Phe Leu Arg Asn			
705	710	715	720
Leu Ala Leu Leu Val Gly Trp Glu Gln Gln Gly Glu Gly Pro Ala			
725	730	735	
Ala Leu Gly Ala His Phe Gly Glu Ser Ala Ser Ala His Leu Ser Asp			
740	745	750	
Leu Ala Pro Leu Leu Leu His Pro Glu Glu Glu Val Ala Glu Ala Ala			
755	760	765	
Ala Ser Leu Leu Ala Ile Cys Pro Phe Pro Ser Glu Ala Leu Ser Pro			
770	775	780	
Ser Gln Leu Leu Gly Leu Val Arg Ala Gly Val His Arg Phe Phe Ala			
785	790	795	800
Ser Leu Arg Leu His Gly Pro Pro Gly Val Ala Ser Ala Cys Gln Leu			
805	810	815	
Leu Thr Arg Leu Ser Gln Thr Ser Pro Ala Gly Leu Lys Ala Val Leu			
820	825	830	
Gln Leu Leu Val Glu Gly Ala Leu His Arg Gly Asn Thr Glu Leu Phe			
835	840	845	
Gly Gly Gln Val Asp Gly Asp Asn Glu Thr Leu Ser Val Val Ser Ala			
850	855	860	
Ser Leu Ala Ser Ala Ser Leu Leu Asp Thr Asn Arg Arg His Thr Ala			
865	870	875	880
Ala Val Pro Gly Pro Gly Ile Trp Ser Val Phe His Ala Gly Val			
885	890	895	

2003295784 19 Aug 2005
 Ile Gly Arg Gly Leu Lys Pro Pro Lys Phe Val Gln Ser Arg Asn Gln
 900 905 910
 Gln Glu Val Ile Tyr Asn Thr Gln Ser Leu Leu Ser Leu Leu Val His
 915 920 925
 Cys Cys Ser Ala Pro Gly Gly Thr Glu Cys Gly Glu Cys Trp Gly Ala
 930 935 940
 Pro Ile Leu Ser Pro Glu Ala Ala Lys Ala Val Ala Val Thr Leu Val
 945 950 955 960
 Glu Ser Val Cys Pro Asp Ala Ala Gly Ala Glu Leu Ala Trp Pro Pro
 965 970 975
 Glu Glu His Ala Arg Ala Thr Val Glu Arg Asp Leu Arg Ile Gly Arg
 980 985 990
 Arg Phe Arg Glu Gln Pro Leu Leu Phe Glu Leu Leu Lys Leu Val Ala
 995 1000 1005
 Ala Ala Pro Pro Ala Leu Cys Tyr Cys Ser Val Leu Leu Arg Gly
 1010 1015 1020
 Leu Leu Ala Ala Leu Leu Gly His Trp Glu Ala Ser Arg His Pro
 1025 1030 1035
 Asp Thr Thr His Ser Pro Trp His Leu Glu Ala Ser Cys Thr Leu
 1040 1045 1050
 Val Ala Val Met Ala Glu Gly Ser Leu Leu Pro Pro Ala Leu Gly
 1055 1060 1065
 Asn Met His Glu Val Phe Ser Gln Leu Ala Pro Phe Glu Val Arg
 1070 1075 1080
 Leu Leu Leu Leu Ser Val Trp Gly Phe Leu Arg Glu His Gly Pro
 1085 1090 1095
 Leu Pro Gln Lys Phe Ile Phe Gln Ser Glu Arg Gly Arg Phe Ile
 1100 1105 1110
 Arg Asp Phe Ser Arg Glu Gly Gly Glu Gly Gly Pro His Leu
 1115 1120 1125
 Ala Val Leu His Ser Val Leu His Arg Asn Ile Asp Arg Leu Gly
 1130 1135 1140
 Leu Phe Ser Gly Arg Phe Gln Ala Pro Ser Pro Ser Thr Leu Leu
 1145 1150 1155
 Arg Gln Gly Thr
 1160

<210> 4
 <211> 1162
 <212> PRT
 <213> Artificial

<220>
 <223> A variant of the human BFLP1698 polypeptide

2003295784 19 Aug 2005

<400> 4

Met Ala Leu Val Pro Gly Arg Ser Lys Glu Asp Gly Leu Trp Thr Arg
 1 5 10 15

Asn Ser Pro Gly Ser Ser Gln His Pro Glu Ser Pro Arg Leu Pro Asn
 20 25 30

Pro Leu Trp Asp Arg Gly Lys Ile Gly Lys Val Glu Gly His Gln His
 35 40 45

Ile Gln Asp Phe Ser Gln Lys Ser His Leu Pro Ser Ile Val Val Glu
 50 55 60

Ser Ser Glu Val Asn Glu Glu Ser Gly Asp Leu His Leu Pro His Glu
 65 70 75 80

Glu Leu Leu Leu Leu Thr Asp Gly Glu Glu Asp Ala Glu Ala Phe
 85 90 95

Phe Gln Asp Gln Ser Glu Glu Pro Gly Ala Ala Arg Pro His His Gln
 100 105 110

Ala Arg Gln Val Glu His Ser Thr Gln Arg Gly His Leu Glu Ile Arg
 115 120 125

Glu Leu Lys Lys Leu Phe Lys Arg Arg Arg Val Leu Asn Arg Glu
 130 135 140

Arg Arg Leu Arg His Arg Val Val Gly Ala Val Ile Asp Gln Gly Leu
 145 150 155 160

Ile Thr Arg His His Leu Lys Lys Arg Ala Ala Gln Glu Leu Ser Gln
 165 170 175

Glu Ile Lys Ala Phe Leu Thr Gly Val Asp Pro Ile Leu Gly His Asn
 180 185 190

Leu Ser Ala Arg Glu His Ala Arg Cys Gly Leu Leu Leu Arg Ser
 195 200 205

Leu Pro Pro Ala Arg Ala Ala Val Leu Asp His Leu Arg Gly Val Phe
 210 215 220

Asp Glu Ser Val Arg Ala His Leu Ala Ala Leu Asp Glu Thr Pro Val
 225 230 235 240

Ala Gly Pro Pro His Leu Arg Pro Pro Pro Pro Ser His Val Pro Ala
 245 250 255

Gly Gly Pro Gly Leu Glu Asp Val Val Gln Glu Val Gln Gln Val Leu
 260 265 270

Ser Glu Phe Ile Arg Ala Asn Pro Lys Ala Trp Ala Pro Val Ile Ser
 275 280 285

Ala Trp Ser Ile Asp Leu Met Gly Gln Leu Ser Ser Thr Tyr Ser Gly
 290 295 300

Gln His Gln Arg Val Pro His Ala Thr Gly Ala Leu Asn Glu Leu Leu
 305 310 315 320

2003295784 19 Aug 2005

Gln Leu Trp Met Gly Cys Arg Ala Thr Arg Thr Leu Met Asp Ile Tyr
 325 330 335
 Val Gln Cys Leu Ser Ala Leu Ile Gly Ser Cys Pro Asp Ala Cys Val
 340 345 350
 Asp Ala Leu Leu Asp Thr Ser Val Gln His Ser Pro His Phe Asp Trp
 355 360 365
 Val Val Ala His Ile Gly Ser Ser Phe Pro Gly Thr Ile Ile Ser Arg
 370 375 380
 Val Leu Ser Cys Gly Leu Lys Asp Phe Cys Val His Gly Gly Ala Gly
 385 390 395 400
 Gly Gly Ala Gly Ser Ser Gly Gly Ser Ser Ser Gln Thr Pro Ser Thr
 405 410 415
 Asp Pro Phe Pro Gly Ser Pro Ala Ile Pro Ala Glu Lys Arg Val Pro
 420 425 430
 Lys Ile Ala Ser Val Val Gly Ile Leu Gly His Leu Ala Ser Arg His
 435 440 445
 Gly Asp Ser Ile Arg Arg Glu Leu Leu Arg Met Phe His Asp Ser Leu
 450 455 460
 Ala Gly Gly Ser Gly Gly Arg Ser Gly Asp Pro Ser Leu Gln Ala Thr
 465 470 475 480
 Val Pro Phe Leu Leu Gln Leu Ala Val Met Ser Pro Ala Leu Leu Gly
 485 490 495
 Thr Val Ser Gly Glu Leu Val Asp Cys Leu Lys Pro Pro Ala Val Leu
 500 505 510
 Ser Gln Leu Gln Gln His Leu Gln Gly Phe Pro Arg Glu Glu Leu Asp
 515 520 525
 Asn Met Leu Asn Leu Ala Val His Leu Val Ser Gln Ala Ser Gly Ala
 530 535 540
 Gly Ala Tyr Arg Leu Leu Gln Phe Leu Val Asp Thr Ala Met Pro Ala
 545 550 555 560
 Ser Val Ile Thr Thr Gln Gly Leu Ala Val Pro Asp Thr Val Arg Glu
 565 570 575
 Ala Cys Asp Arg Leu Ile Gln Leu Leu Leu His Leu Gln Lys Leu
 580 585 590
 Val His His Arg Gly Gly Ser Pro Gly Glu Gly Val Leu Gly Pro Pro
 595 600 605
 Pro Pro Pro Arg Leu Val Pro Phe Leu Asp Ala Leu Lys Asn His Val
 610 615 620
 Gly Glu Leu Cys Gly Glu Thr Leu Arg Leu Glu Arg Lys Arg Phe Leu
 625 630 635 640
 Trp Gln His Gln Leu Leu Gly Leu Leu Ser Val Tyr Thr Arg Pro Ser

2003295784 19 Aug 2005

	645	650	655
Cys Gly Pro Glu Ala Leu Gly His	Leu	Leu Ser Arg Ala Arg Ser Pro	
660	665	670	
Glu Glu Leu Ser Leu Ala Thr Gln	Leu	Tyr Ala Gly Leu Val Val Ser	
675	680	685	
Leu Ser Gly Leu Leu Pro Leu Ala Phe Arg Ser Cys	Leu Ala Arg Val		
690	695	700	
His Ala Gly Thr Leu Gln Pro Pro Phe Thr Ala Arg Phe	Leu Arg Asn		
705	710	715	720
Leu Ala Leu Leu Val Gly Trp Glu Gln Gln Gly Gly Glu	Pro Ala		
725	730	735	
Ala Leu Gly Ala His Phe Gly Glu Ser Ala Ser Ala His	Leu Ser Asp		
740	745	750	
Leu Ala Pro Leu Leu Leu His Pro Glu Glu Glu Val Ala	Glu Ala Ala		
755	760	765	
Ala Ser Leu Leu Ala Ile Cys Pro Phe Pro Ser Glu Ala	Leu Ser Pro		
770	775	780	
Ser Gln Leu Leu Gly Leu Val Arg Ala Gly Val His Arg	Phe Ala		
785	790	795	800
Ser Leu Arg Leu His Gly Pro Pro Gly Val Ala Ser Ala	Cys Gln Leu		
805	810	815	
Leu Thr Arg Leu Ser Gln Thr Ser Pro Ala Gly Leu Lys	Ala Val Leu		
820	825	830	
Gln Leu Leu Val Glu Gly Ala Leu His Arg Gly Asn Thr	Glu Leu Phe		
835	840	845	
Gly Gly Gln Val Asp Gly Asp Asn Glu Thr Leu Ser Val	Val Ser Ala		
850	855	860	
Ser Leu Ala Ser Ala Ser Leu Leu Asp Thr Asn Arg Arg	His Thr Ala		
865	870	875	880
Ala Val Pro Gly Pro Gly Gly Ile Trp Ser Val Phe His	Ala Gly Val		
885	890	895	
Ile Gly Arg Gly Leu Lys Pro Pro Lys Phe Val Gln Ser	Arg Asn Gln		
900	905	910	
Gln Glu Val Ile Tyr Asn Thr Gln Ser Leu Leu Ser Leu	Leu Val His		
915	920	925	
Cys Cys Ser Ala Pro Gly Gly Thr Glu Cys Gly Glu Cys	Trp Gly Ala		
930	935	940	
Pro Ile Leu Ser Pro Glu Ala Ala Lys Ala Val Ala Val	Thr Leu Val		
945	950	955	960
Glu Ser Val Cys Pro Asp Ala Ala Gly Ala Glu Leu Ala	Trp Pro Pro		
965	970	975	

2003295784 19 Aug 2005

Glu Glu His Ala Arg Ala Thr Val Glu Arg Asp Leu Arg Ile Gly Arg
 980 985 990
 Arg Phe Arg Glu Gln Pro Leu Leu Phe Glu Leu Leu Lys Leu Val Ala
 995 1000 1005
 Ala Ala Pro Pro Ala Leu Cys Tyr Cys Ser Val Leu Leu Arg Gly
 1010 1015 1020
 Leu Leu Ala Ala Leu Leu Gly His Trp Glu Ala Ser Arg His Pro
 1025 1030 1035
 Asp Thr Thr His Ser Pro Trp His Leu Glu Ala Ser Cys Thr Leu
 1040 1045 1050
 Val Ala Val Met Ala Glu Gly Ser Leu Leu Pro Pro Ala Leu Gly
 1055 1060 1065
 Asn Met His Glu Val Phe Ser Gln Leu Ala Pro Phe Glu Val Arg
 1070 1075 1080
 Leu Leu Leu Leu Ser Val Trp Gly Phe Leu Arg Glu His Gly Pro
 1085 1090 1095
 Leu Pro Gln Lys Phe Ile Phe Gln Ser Glu Arg Gly Arg Phe Ile
 1100 1105 1110
 Arg Asp Phe Ser Arg Glu Gly Gly Gly Glu Gly Gly Pro His Leu
 1115 1120 1125
 Ala Val Leu His Ser Val Leu His Arg Asn Ile Asp Arg Leu Gly
 1130 1135 1140
 Leu Phe Ser Gly Arg Phe Gln Ala Pro Ser Pro Ser Thr Leu Leu
 1145 1150 1155
 Arg Gln Gly Thr
 1160

<210> 5
 <211> 1162
 <212> PRT
 <213> Artificial

<220>
 <223> A variant of the human BFLP1698 polypeptide

<400> 5

Met Ala Leu Val Pro Gly Arg Ser Lys Glu Asp Gly Leu Trp Thr Arg
 1 5 10 15
 Asn Ser Pro Gly Ser Ser Gln His Pro Glu Ser Pro Arg Leu Pro Asn
 20 25 30
 Pro Leu Trp Asp Arg Gly Lys Ile Gly Lys Val Glu Gly His Gln His
 35 40 45
 Ile Gln Asp Phe Ser Gln Lys Ser His Leu Pro Ser Ile Val Val Glu
 50 55 60

2003295784 19 Aug 2005

Ser Ser Glu Val Asn Glu Glu Ser Gly Asp Leu His Leu Pro His Glu
 65 70 75 80
 Glu Leu Leu Leu Leu Thr Asp Gly Glu Glu Asp Ala Glu Ala Phe
 85 90 95
 Phe Gln Asp Gln Ser Glu Glu Pro Gly Ala Ala Arg Pro His His Gln
 100 105 110
 Ala Arg Gln Val Glu His Ser Thr Gln Arg Gly His Leu Glu Ile Arg
 115 120 125
 Glu Leu Lys Lys Lys Leu Phe Lys Arg Arg Arg Val Leu Asn Arg Glu
 130 135 140
 Arg Arg Leu Arg His Arg Val Val Gly Ala Val Ile Asp Gln Gly Leu
 145 150 155 160
 Ile Thr Arg His His Leu Lys Lys Arg Ala Ala Gln Glu Leu Ser Gln
 165 170 175
 Glu Ile Lys Ala Phe Leu Thr Gly Val Asp Pro Ile Leu Gly His Gln
 180 185 190
 Leu Ser Ala Arg Glu His Ala Arg Cys Gly Leu Leu Leu Arg Ser
 195 200 205
 Leu Pro Pro Ala Arg Ala Ala Val Leu Asp His Leu Arg Gly Val Phe
 210 215 220
 Asp Glu Ser Val Arg Ala His Leu Ala Ala Leu Asp Glu Thr Pro Val
 225 230 235 240
 Ala Gly Pro Pro His Leu Arg Pro Pro Pro Ser His Val Pro Ala
 245 250 255
 Gly Gly Pro Gly Leu Glu Asp Val Val Gln Glu Val Gln Val Leu
 260 265 270
 Ser Glu Phe Ile Arg Ala Asn Pro Lys Ala Trp Ala Pro Val Ile Gly
 275 280 285
 Ala Trp Ser Ile Asp Leu Met Gly Gln Leu Ser Ser Thr Tyr Ser Gly
 290 295 300
 Gln His Gln Arg Val Pro His Ala Thr Gly Ala Leu Asn Glu Leu Leu
 305 310 315 320
 Gln Leu Trp Met Gly Cys Arg Ala Thr Arg Thr Leu Met Asp Ile Tyr
 325 330 335
 Val Gln Cys Leu Ser Ala Leu Ile Gly Ser Cys Pro Asp Ala Cys Val
 340 345 350
 Asp Ala Leu Leu Asp Thr Ser Val Gln His Ser Pro His Phe Asp Trp
 355 360 365
 Val Val Ala His Ile Gly Ser Ser Phe Pro Gly Thr Ile Ile Ser Arg
 370 375 380
 Val Leu Ser Cys Gly Leu Lys Asp Phe Cys Val His Gly Gly Ala Gly
 385 390 395 400

2003295784 19 Aug 2005

Gly Gly Ala Gly Ser Ser Gly Gly Ser Ser Ser Gln Thr Pro Ser Thr
 405 410 415

Asp Pro Phe Pro Gly Ser Pro Ala Ile Pro Ala Glu Lys Arg Val Pro
 420 425 430

Lys Ile Ala Ser Val Val Gly Ile Leu Gly His Leu Ala Ser Arg His
 435 440 445

Gly Asp Ser Ile Arg Arg Glu Leu Leu Arg Met Phe His Asp Ser Leu
 450 455 460

Ala Gly Gly Ser Gly Gly Arg Ser Gly Asp Pro Ser Leu Gln Ala Thr
 465 470 475 480

Val Pro Phe Leu Leu Gln Leu Ala Val Met Ser Pro Ala Leu Leu Gly
 485 490 495

Thr Val Ser Gly Glu Leu Val Asp Cys Leu Lys Pro Pro Ala Val Leu
 500 505 510

Ser Gln Leu Gln Gln His Leu Gln Gly Phe Pro Arg Glu Glu Leu Asp
 515 520 525

Asn Met Leu Asn Leu Ala Val His Leu Val Ser Gln Ala Ser Gly Ala
 530 535 540

Gly Ala Tyr Arg Leu Leu Gln Phe Leu Val Asp Thr Ala Met Pro Ala
 545 550 555 560

Ser Val Ile Thr Thr Gln Gly Leu Ala Val Pro Asp Thr Val Arg Glu
 565 570 575

Ala Cys Asp Arg Leu Ile Gln Leu Leu Leu Leu His Leu Gln Lys Leu
 580 585 590

Val His His Arg Gly Gly Ser Pro Gly Glu Gly Val Leu Gly Pro Pro
 595 600 605

Pro Pro Pro Arg Leu Val Pro Phe Leu Asp Ala Leu Lys Asn His Val
 610 615 620

Gly Glu Leu Cys Gly Glu Thr Leu Arg Leu Glu Arg Lys Arg Phe Leu
 625 630 635 640

Trp Gln His Gln Leu Leu Gly Leu Leu Ser Val Tyr Thr Arg Pro Ser
 645 650 655

Cys Gly Pro Glu Ala Leu Gly His Leu Leu Ser Arg Ala Arg Ser Pro
 660 665 670

Glu Glu Leu Ser Leu Ala Thr Gln Leu Tyr Ala Gly Leu Val Val Ser
 675 680 685

Leu Ser Gly Leu Leu Pro Leu Ala Phe Arg Ser Cys Leu Ala Arg Val
 690 695 700

His Ala Gly Thr Leu Gln Pro Pro Phe Thr Ala Arg Phe Leu Arg Asn
 705 710 715 720

Leu Ala Leu Leu Val Gly Trp Glu Gln Gln Gly Glu Gly Pro Ala

2003295784 19 Aug 2005

	725	730	735
Ala Leu Gly Ala His Phe Gly Glu Ser Ala Ser Ala His Leu Ser Asp			
740	745	750	
Leu Ala Pro Leu Leu Leu His Pro Glu Glu Glu Val Ala Glu Ala Ala			
755	760	765	
Ala Ser Leu Leu Ala Ile Cys Pro Phe Pro Ser Glu Ala Leu Ser Pro			
770	775	780	
Ser Gln Leu Leu Gly Leu Val Arg Ala Gly Val His Arg Phe Phe Ala			
785	790	795	800
Ser Leu Arg Leu His Gly Pro Pro Gly Val Ala Ser Ala Cys Gln Leu			
805	810	815	
Leu Thr Arg Leu Ser Gln Thr Ser Pro Ala Gly Leu Lys Ala Val Leu			
820	825	830	
Gln Leu Leu Val Glu Gly Ala Leu His Arg Gly Asn Thr Glu Leu Phe			
835	840	845	
Gly Gly Gln Val Asp Gly Asp Asn Glu Thr Leu Ser Val Val Ser Ala			
850	855	860	
Ser Leu Ala Ser Ala Ser Leu Leu Asp Thr Asn Arg Arg His Thr Ala			
865	870	875	880
Ala Val Pro Gly Pro Gly Gly Ile Trp Ser Val Phe His Ala Gly Val			
885	890	895	
Ile Gly Arg Gly Leu Lys Pro Pro Lys Phe Val Gln Ser Arg Asn Gln			
900	905	910	
Gln Glu Val Ile Tyr Asn Thr Gln Ser Leu Leu Ser Leu Leu Val His			
915	920	925	
Cys Cys Ser Ala Pro Gly Gly Thr Glu Cys Gly Glu Cys Trp Gly Ala			
930	935	940	
Pro Ile Leu Ser Pro Glu Ala Ala Lys Ala Val Ala Val Thr Leu Val			
945	950	955	960
Glu Ser Val Cys Pro Asp Ala Ala Gly Ala Glu Leu Ala Trp Pro Pro			
965	970	975	
Glu Glu His Ala Arg Ala Thr Val Glu Arg Asp Leu Arg Ile Gly Arg			
980	985	990	
Arg Phe Arg Glu Gln Pro Leu Leu Phe Glu Leu Leu Lys Leu Val Ala			
995	1000	1005	
Ala Ala Pro Pro Ala Leu Cys Tyr Cys Ser Val Leu Leu Arg Gly			
1010	1015	1020	
Leu Leu Ala Ala Leu Leu Gly His Trp Glu Ala Ser Arg His Pro			
1025	1030	1035	
Asp Thr Thr His Ser Pro Trp His Leu Glu Ala Ser Cys Thr Leu			
1040	1045	1050	

2003295784 19 Aug 2005

Val	Ala	Val	Met	Ala	Glu	Gly	Ser	Leu	Leu	Pro	Pro	Ala	Leu	Gly
1055					1060							1065		
Asn	Met	His	Glu	Val	Phe	Ser	Gln	Leu	Ala	Pro	Phe	Glu	Val	Arg
1070					1075							1080		
Leu	Leu	Leu	Leu	Ser	Val	Trp	Gly	Phe	Leu	Arg	Glu	His	Gly	Pro
1085					1090						1095			
Leu	Pro	Gln	Lys	Phe	Ile	Phe	Gln	Ser	Glu	Arg	Gly	Arg	Phe	Ile
1100					1105						1110			
Arg	Asp	Phe	Ser	Arg	Glu	Gly	Gly	Gly	Gly	Gly	Pro	His	Leu	
1115					1120						1125			
Ala	Val	Leu	His	Ser	Val	Leu	His	Arg	Asn	Ile	Asp	Arg	Leu	Gly
1130					1135						1140			
Leu	Phe	Ser	Gly	Arg	Phe	Gln	Ala	Pro	Ser	Pro	Ser	Thr	Leu	Leu
1145					1150						1155			
Arg	Gln	Gly	Thr											
1160														

<210> 6
 <211> 1162
 <212> PRT
 <213> Artificial

<220>
 <223> A variant of the human BFLP1698 polypeptide

<400> 6

Met	Ala	Leu	Val	Pro	Gly	Arg	Ser	Lys	Glu	Asp	Gly	Leu	Trp	Thr	Arg
1								10					15		
Asn	Ser	Pro	Gly	Ser	Ser	Gln	His	Pro	Glu	Ser	Pro	Arg	Leu	Pro	Asn
								20					30		
Pro	Leu	Trp	Asp	Arg	Gly	Ile	Gly	Lys	Val	Glu	Gly	His	Gln	His	
								35					45		
Ile	Gln	Asp	Phe	Ser	Gln	Lys	Ser	His	Leu	Pro	Ser	Ile	Val	Val	Glu
								50					60		
Ser	Ser	Glu	Val	Asn	Glu	Glu	Ser	Gly	Asp	Leu	His	Leu	Pro	His	Glu
								65					80		
Glu	Leu	Leu	Leu	Leu	Thr	Asp	Gly	Glu	Glu	Glu	Asp	Ala	Glu	Ala	Phe
								85					95		
Phe	Gln	Asp	Gln	Ser	Glu	Glu	Pro	Gly	Ala	Ala	Arg	Pro	His	His	Gln
								100					110		
Ala	Arg	Gln	Val	Glu	His	Ser	Thr	Gln	Arg	Gly	His	Leu	Glu	Ile	Arg
								115					125		
Glu	Leu	Lys	Lys	Lys	Leu	Phe	Lys	Arg	Arg	Arg	Val	Leu	Asn	Arg	Glu
								130					140		

2003295784 19 Aug 2005

Arg Arg Leu Arg His Arg Val Val Gly Ala Val Ile Asp Gln Gly Leu
 145 150 155 160
 Ile Thr Arg His His Leu Lys Lys Arg Ala Ala Gln Glu Leu Ser Gln
 165 170 175
 Glu Ile Lys Ala Phe Leu Thr Gly Val Asp Pro Ile Leu Gly His Gln
 180 185 190
 Leu Ser Ala Arg Glu His Ala Arg Cys Gly Leu Leu Leu Arg Ser
 195 200 205
 Leu Pro Pro Ala Arg Ala Ala Val Leu Asp His Leu Arg Gly Val Phe
 210 215 220
 Asp Glu Ser Val Arg Ala His Leu Ala Ala Leu Asp Glu Thr Pro Val
 225 230 235 240
 Ala Gly Pro Pro His Leu Arg Pro Pro Pro Ser His Val Pro Ala
 245 250 255
 Gly Gly Pro Gly Leu Glu Asp Val Val Gln Glu Val Gln Gln Val Leu
 260 265 270
 Ser Glu Phe Ile Arg Ala Asn Pro Lys Ala Trp Ala Pro Val Ile Ser
 275 280 285
 Ala Trp Ser Ile Asp Leu Met Gly Gln Leu Ser Ser Thr Tyr Ser Gly
 290 295 300
 Gln His Gln Arg Val Pro His Ala Thr Gly Ala Leu Asn Glu Leu Leu
 305 310 315 320
 Gln Leu Trp Met Gly Cys Arg Ala Thr Arg Thr Leu Met Asp Ile Tyr
 325 330 335
 Val Gln Cys Leu Ser Ala Leu Ile Gly Ser Cys Pro Asp Ala Cys Val
 340 345 350
 Asp Ala Leu Leu Asp Thr Ser Val Gln His Ser Pro Arg Phe Asp Trp
 355 360 365
 Val Val Ala His Ile Gly Ser Ser Phe Pro Gly Thr Ile Ile Ser Arg
 370 375 380
 Val Leu Ser Cys Gly Leu Lys Asp Phe Cys Val His Gly Gly Ala Gly
 385 390 395 400
 Gly Gly Ala Gly Ser Ser Gly Gly Ser Ser Ser Gln Thr Pro Ser Thr
 405 410 415
 Asp Pro Phe Pro Gly Ser Pro Ala Ile Pro Ala Glu Lys Arg Val Pro
 420 425 430
 Lys Ile Ala Ser Val Val Gly Ile Leu Gly His Leu Ala Ser Arg His
 435 440 445
 Gly Asp Ser Ile Arg Arg Glu Leu Leu Arg Met Phe His Asp Ser Leu
 450 455 460
 Ala Gly Gly Ser Gly Gly Arg Ser Gly Asp Pro Ser Leu Gln Ala Thr
 465 470 475 480

2003295784 19 Aug 2005

Val Pro Phe Leu Leu Gln Leu Ala Val Met Ser Pro Ala Leu Leu Gly
 485 490 495

 Thr Val Ser Gly Glu Leu Val Asp Cys Leu Lys Pro Pro Ala Val Leu
 500 505 510

 Ser Gln Leu Gln Gln His Leu Gln Gly Phe Pro Arg Glu Glu Leu Asp
 515 520 525

 Asn Met Leu Asn Leu Ala Val His Leu Val Ser Gln Ala Ser Gly Ala
 530 535 540

 Gly Ala Tyr Arg Leu Leu Gln Phe Leu Val Asp Thr Ala Met Pro Ala
 545 550 555 560

 Ser Val Ile Thr Thr Gln Gly Leu Ala Val Pro Asp Thr Val Arg Glu
 565 570 575

 Ala Cys Asp Arg Leu Ile Gln Leu Leu Leu His Leu Gln Lys Leu
 580 585 590

 Val His His Arg Gly Gly Ser Pro Gly Glu Gly Val Leu Gly Pro Pro
 595 600 605

 Pro Pro Pro Arg Leu Val Pro Phe Leu Asp Ala Leu Lys Asn His Val
 610 615 620

 Gly Glu Leu Cys Gly Glu Thr Leu Arg Leu Glu Arg Lys Arg Phe Leu
 625 630 635 640

 Trp Gln His Gln Leu Leu Gly Leu Leu Ser Val Tyr Thr Arg Pro Ser
 645 650 655

 Cys Gly Pro Glu Ala Leu Gly His Leu Leu Ser Arg Ala Arg Ser Pro
 660 665 670

 Glu Glu Leu Ser Leu Ala Thr Gln Leu Tyr Ala Gly Leu Val Val Ser
 675 680 685

 Leu Ser Gly Leu Leu Pro Leu Ala Phe Arg Ser Cys Leu Ala Arg Val
 690 695 700

 His Ala Gly Thr Leu Gln Pro Pro Phe Thr Ala Arg Phe Leu Arg Asn
 705 710 715 720

 Leu Ala Leu Leu Val Gly Trp Glu Gln Gln Gly Glu Gly Pro Ala
 725 730 735

 Ala Leu Gly Ala His Phe Gly Glu Ser Ala Ser Ala His Leu Ser Asp
 740 745 750

 Leu Ala Pro Leu Leu Leu His Pro Glu Glu Glu Val Ala Glu Ala Ala
 755 760 765

 Ala Ser Leu Leu Ala Ile Cys Pro Phe Pro Ser Glu Ala Leu Ser Pro
 770 775 780

 Ser Gln Leu Leu Gly Leu Val Arg Ala Gly Val His Arg Phe Phe Ala
 785 790 795 800

 Ser Leu Arg Leu His Gly Pro Pro Gly Val Ala Ser Ala Cys Gln Leu

2003295784 19 Aug 2005

	805	810	815
Leu Thr Arg Leu Ser Gln Thr Ser Pro Ala Gly Leu Lys Ala Val Leu			
820	825	830	
Gln Leu Leu Val Glu Gly Ala Leu His Arg Gly Asn Thr Glu Leu Phe			
835	840	845	
Gly Gly Gln Val Asp Gly Asp Asn Glu Thr Leu Ser Val Val Ser Ala			
850	855	860	
Ser Leu Ala Ser Ala Ser Leu Leu Asp Thr Asn Arg Arg His Thr Ala			
865	870	875	880
Ala Val Pro Gly Pro Gly Gly Ile Trp Ser Val Phe His Ala Gly Val			
885	890	895	
Ile Gly Arg Gly Leu Lys Pro Pro Lys Phe Val Gln Ser Arg Asn Gln			
900	905	910	
Gln Glu Val Ile Tyr Asn Thr Gln Ser Leu Leu Ser Leu Leu Val His			
915	920	925	
Cys Cys Ser Ala Pro Gly Gly Thr Glu Cys Gly Glu Cys Trp Gly Ala			
930	935	940	
Pro Ile Leu Ser Pro Glu Ala Ala Lys Ala Val Ala Val Thr Leu Val			
945	950	955	960
Glu Ser Val Cys Pro Asp Ala Ala Gly Ala Glu Leu Ala Trp Pro Pro			
965	970	975	
Glu Glu His Ala Arg Ala Thr Val Glu Arg Asp Leu Arg Ile Gly Arg			
980	985	990	
Arg Phe Arg Glu Gln Pro Leu Leu Phe Glu Leu Leu Lys Leu Val Ala			
995	1000	1005	
Ala Ala Pro Pro Ala Leu Cys Tyr Cys Ser Val Leu Leu Arg Gly			
1010	1015	1020	
Leu Leu Ala Ala Leu Leu Gly His Trp Glu Ala Ser Arg His Pro			
1025	1030	1035	
Asp Thr Thr His Ser Pro Trp His Leu Glu Ala Ser Cys Thr Leu			
1040	1045	1050	
Val Ala Val Met Ala Glu Gly Ser Leu Leu Pro Pro Ala Leu Gly			
1055	1060	1065	
Asn Met His Glu Val Phe Ser Gln Leu Ala Pro Phe Glu Val Arg			
1070	1075	1080	
Leu Leu Leu Leu Ser Val Trp Gly Phe Leu Arg Glu His Gly Pro			
1085	1090	1095	
Leu Pro Gln Lys Phe Ile Phe Gln Ser Glu Arg Gly Arg Phe Ile			
1100	1105	1110	
Arg Asp Phe Ser Arg Glu Gly Gly Gly Glu Gly Gly Pro His Leu			
1115	1120	1125	

19 Aug 2005

2003295784

Ala Val Leu His Ser Val Leu His Arg Asn Ile Asp Arg Leu Gly
 1130 1135 1140
 Leu Phe Ser Gly Arg Phe Gln Ala Pro Ser Pro Ser Thr Leu Leu
 1145 1150 1155
 Arg Gln Gly Thr
 1160

<210> 7
 <211> 1162
 <212> PRT
 <213> Artificial
 <220>
 <223> A variant of the human BFLP1698 polypeptide

<400> 7

Met Ala Leu Val Pro Gly Arg Ser Lys Glu Asp Gly Leu Trp Thr Arg
 1 5 10 15
 Asn Ser Pro Gly Ser Ser Gln His Pro Glu Ser Pro Arg Leu Pro Asn
 20 25 30
 Pro Leu Trp Asp Arg Gly Lys Ile Gly Lys Val Glu Gly His Gln His
 35 40 45
 Ile Gln Asp Phe Ser Gln Lys Ser His Leu Pro Ser Ile Val Val Glu
 50 55 60
 Ser Ser Glu Val Asn Glu Glu Ser Gly Asp Leu His Leu Pro His Glu
 65 70 75 80
 Glu Leu Leu Leu Thr Asp Gly Glu Glu Asp Ala Glu Ala Phe
 85 90 95
 Phe Gln Asp Gln Ser Glu Glu Pro Gly Ala Ala Arg Pro His His Gln
 100 105 110
 Ala Arg Gln Val Glu His Ser Thr Gln Arg Gly His Leu Glu Ile Arg
 115 120 125
 Glu Leu Lys Lys Lys Leu Phe Lys Arg Arg Arg Val Leu Asn Arg Glu
 130 135 140
 Arg Arg Leu Arg His Arg Val Val Gly Ala Val Ile Asp Gln Gly Leu
 145 150 155 160
 Ile Thr Arg His His Leu Lys Lys Arg Ala Ala Gln Glu Leu Ser Gln
 165 170 175
 Glu Ile Lys Ala Phe Leu Thr Gly Val Asp Pro Ile Leu Gly His Gln
 180 185 190
 Leu Ser Ala Arg Glu His Ala Arg Cys Gly Leu Leu Leu Arg Ser
 195 200 205
 Leu Pro Pro Ala Arg Ala Ala Val Leu Asp His Leu Arg Gly Val Phe
 210 215 220

2003295784 19 Aug 2005

Asp Glu Ser Val Arg Ala His Leu Ala Ala Leu Asp Glu Thr Pro Val
 225 230 235 240
 Ala Gly Pro Pro His Leu Arg Pro Pro Pro Ser His Val Pro Ala
 245 250 255
 Gly Gly Pro Gly Leu Glu Asp Val Val Gln Glu Val Gln Gln Val Leu
 260 265 270
 Ser Glu Phe Ile Arg Ala Asn Pro Lys Ala Trp Ala Pro Val Ile Ser
 275 280 285
 Ala Trp Ser Ile Asp Leu Met Gly Gln Leu Ser Ser Thr Tyr Ser Gly
 290 295 300
 Gln His Gln Arg Val Pro His Ala Thr Gly Ala Leu Asn Glu Leu Leu
 305 310 315 320
 Gln Leu Trp Met Gly Cys Arg Ala Thr Arg Thr Leu Met Asp Ile Tyr
 325 330 335
 Val Gln Cys Leu Ser Ala Leu Ile Gly Ser Cys Pro Asp Ala Cys Val
 340 345 350
 Asp Ala Leu Leu Asp Thr Ser Val Gln His Ser Pro His Phe Asp Trp
 355 360 365
 Val Val Ala His Ile Gly Ser Ser Phe Pro Gly Thr Ile Ile Ser Arg
 370 375 380
 Val Leu Ser Cys Gly Leu Lys Asp Phe Cys Val His Gly Gly Ala Gly
 385 390 395 400
 Gly Gly Ala Gly Ser Ser Gly Gly Ser Ser Ser Gln Thr Pro Ser Thr
 405 410 415
 Asp Pro Phe Pro Gly Ser Pro Ala Ile Pro Ala Glu Lys Arg Val Pro
 420 425 430
 Lys Ile Ala Ser Val Val Gly Ile Leu Gly His Leu Ala Ser Arg His
 435 440 445
 Gly Asp Ser Ile Arg Arg Glu Leu Leu Arg Met Phe His Asp Ser Leu
 450 455 460
 Ala Gly Gly Ser Gly Gly Arg Ser Gly Asp Pro Ser Leu Gln Ala Thr
 465 470 475 480
 Met Pro Phe Leu Leu Gln Leu Ala Val Met Ser Pro Ala Leu Leu Gly
 485 490 495
 Thr Val Ser Gly Glu Leu Val Asp Cys Leu Lys Pro Pro Ala Val Leu
 500 505 510
 Ser Gln Leu Gln Gln His Leu Gln Gly Phe Pro Arg Glu Glu Leu Asp
 515 520 525
 Asn Met Leu Asn Leu Ala Val His Leu Val Ser Gln Ala Ser Gly Ala
 530 535 540
 Gly Ala Tyr Arg Leu Leu Gln Phe Leu Val Asp Thr Ala Met Pro Ala
 545 550 555 560

2003295784 19 Aug 2005

Ser Val Ile Thr Thr Gln Gly Leu Ala Val Pro Asp Thr Val Arg Glu
 565 570 575
 Ala Cys Asp Arg Leu Ile Gln Leu Leu Leu His Leu Gln Lys Leu
 580 585 590
 Val His His Arg Gly Gly Ser Pro Gly Glu Gly Val Leu Gly Pro Pro
 595 600 605
 Pro Pro Pro Arg Leu Val Pro Phe Leu Asp Ala Leu Lys Asn His Val
 610 615 620
 Gly Glu Leu Cys Gly Glu Thr Leu Arg Leu Glu Arg Lys Arg Phe Leu
 625 630 635 640
 Trp Gln His Gln Leu Leu Gly Leu Leu Ser Val Tyr Thr Arg Pro Ser
 645 650 655
 Cys Gly Pro Glu Ala Leu Gly His Leu Leu Ser Arg Ala Arg Ser Pro
 660 665 670
 Glu Glu Leu Ser Leu Ala Thr Gln Leu Tyr Ala Gly Leu Val Val Ser
 675 680 685
 Leu Ser Gly Leu Leu Pro Leu Ala Phe Arg Ser Cys Leu Ala Arg Val
 690 695 700
 His Ala Gly Thr Leu Gln Pro Pro Phe Thr Ala Arg Phe Leu Arg Asn
 705 710 715 720
 Leu Ala Leu Leu Val Gly Trp Glu Gln Gln Gly Glu Gly Pro Ala
 725 730 735
 Ala Leu Gly Ala His Phe Gly Glu Ser Ala Ser Ala His Leu Ser Asp
 740 745 750
 Leu Ala Pro Leu Leu Leu His Pro Glu Glu Glu Val Ala Glu Ala Ala
 755 760 765
 Ala Ser Leu Leu Ala Ile Cys Pro Phe Pro Ser Glu Ala Leu Ser Pro
 770 775 780
 Ser Gln Leu Leu Gly Leu Val Arg Ala Gly Val His Arg Phe Phe Ala
 785 790 795 800
 Ser Leu Arg Leu His Gly Pro Pro Gly Val Ala Ser Ala Cys Gln Leu
 805 810 815
 Leu Thr Arg Leu Ser Gln Thr Ser Pro Ala Gly Leu Lys Ala Val Leu
 820 825 830
 Gln Leu Leu Val Glu Gly Ala Leu His Arg Gly Asn Thr Glu Leu Phe
 835 840 845
 Gly Gly Gln Val Asp Gly Asp Asn Glu Thr Leu Ser Val Val Ser Ala
 850 855 860
 Ser Leu Ala Ser Ala Ser Leu Leu Asp Thr Asn Arg Arg His Thr Ala
 865 870 875 880
 Ala Val Pro Gly Pro Gly Gly Ile Trp Ser Val Phe His Ala Gly Val

2003295784 19 Aug 2005

	885	890	895
Ile Gly Arg Gly Leu Lys Pro Pro Lys Phe Val Gln Ser Arg Asn Gln			
900	905	910	
Gln Glu Val Ile Tyr Asn Thr Gln Ser Leu Leu Ser Leu Leu Val His			
915	920	925	
Cys Cys Ser Ala Pro Gly Gly Thr Glu Cys Gly Glu Cys Trp Gly Ala			
930	935	940	
Pro Ile Leu Ser Pro Glu Ala Ala Lys Ala Val Ala Val Thr Leu Val			
945	950	955	960
Glu Ser Val Cys Pro Asp Ala Ala Gly Ala Glu Leu Ala Trp Pro Pro			
965	970	975	
Glu Glu His Ala Arg Ala Thr Val Glu Arg Asp Leu Arg Ile Gly Arg			
980	985	990	
Arg Phe Arg Glu Gln Pro Leu Leu Phe Glu Leu Leu Lys Leu Val Ala			
995	1000	1005	
Ala Ala Pro Pro Ala Leu Cys Tyr Cys Ser Val Leu Leu Arg Gly			
1010	1015	1020	
Leu Leu Ala Ala Leu Leu Gly His Trp Glu Ala Ser Arg His Pro			
1025	1030	1035	
Asp Thr Thr His Ser Pro Trp His Leu Glu Ala Ser Cys Thr Leu			
1040	1045	1050	
Val Ala Val Met Ala Glu Gly Ser Leu Leu Pro Pro Ala Leu Gly			
1055	1060	1065	
Asn Met His Glu Val Phe Ser Gln Leu Ala Pro Phe Glu Val Arg			
1070	1075	1080	
Leu Leu Leu Leu Ser Val Trp Gly Phe Leu Arg Glu His Gly Pro			
1085	1090	1095	
Leu Pro Gln Lys Phe Ile Phe Gln Ser Glu Arg Gly Arg Phe Ile			
1100	1105	1110	
Arg Asp Phe Ser Arg Glu Gly Gly Glu Gly Gly Pro His Leu			
1115	1120	1125	
Ala Val Leu His Ser Val Leu His Arg Asn Ile Asp Arg Leu Gly			
1130	1135	1140	
Leu Phe Ser Gly Arg Phe Gln Ala Pro Ser Pro Ser Thr Leu Leu			
1145	1150	1155	
Arg Gln Gly Thr			
1160			

<210> 8
 <211> 1162
 <212> PRT
 <213> Artificial

19 Aug 2005
2003295784

<220>
 <223> A variant of the human BFLP1698 polypeptide
 <400> 8

Met Ala Leu Val Pro Gly Arg Ser Lys Glu Asp Gly Leu Trp Thr Arg
 1 5 10 15

Asn Ser Pro Gly Ser Ser Gln His Pro Glu Ser Pro Arg Leu Pro Asn
 20 25 30

Pro Leu Trp Asp Arg Gly Lys Ile Gly Lys Val Glu Gly His Gln His
 35 40 45

Ile Gln Asp Phe Ser Gln Lys Ser His Leu Pro Ser Ile Val Val Glu
 50 55 60

Ser Ser Glu Val Asn Glu Glu Ser Gly Asp Leu His Leu Pro His Glu
 65 70 75 80

Glu Leu Leu Leu Leu Thr Asp Gly Glu Glu Asp Ala Glu Ala Phe
 85 90 95

Phe Gln Asp Gln Ser Glu Glu Pro Gly Ala Ala Arg Pro His His Gln
 100 105 110

Ala Arg Gln Val Glu His Ser Thr Gln Arg Gly His Leu Glu Ile Arg
 115 120 125

Glu Leu Lys Lys Lys Leu Phe Lys Arg Arg Arg Val Leu Asn Arg Glu
 130 135 140

Arg Arg Leu Arg His Arg Val Val Gly Ala Val Ile Asp Gln Gly Leu
 145 150 155 160

Ile Thr Arg His His Leu Lys Lys Arg Ala Ala Gln Glu Leu Ser Gln
 165 170 175

Glu Ile Lys Ala Phe Leu Thr Gly Val Asp Pro Ile Leu Gly His Gln
 180 185 190

Leu Ser Ala Arg Glu His Ala Arg Cys Gly Leu Leu Leu Arg Ser
 195 200 205

Leu Pro Pro Ala Arg Ala Ala Val Leu Asp His Leu Arg Gly Val Phe
 210 215 220

Asp Glu Ser Val Arg Ala His Leu Ala Ala Leu Asp Glu Thr Pro Val
 225 230 235 240

Ala Gly Pro Pro His Leu Arg Pro Pro Pro Pro Ser His Val Pro Ala
 245 250 255

Gly Gly Pro Gly Leu Glu Asp Val Val Gln Glu Val Gln Gln Val Leu
 260 265 270

Ser Glu Phe Ile Arg Ala Asn Pro Lys Ala Trp Ala Pro Val Ile Ser
 275 280 285

Ala Trp Ser Ile Asp Leu Met Gly Gln Leu Ser Ser Thr Tyr Ser Gly
 290 295 300

2003295784 19 Aug 2005

Gln His Gln Arg Val Pro His Ala Thr Gly Ala Leu Asn Glu Leu Leu
 305 310 315 320
 Gln Leu Trp Met Gly Cys Arg Ala Thr Arg Thr Leu Met Asp Ile Tyr
 325 330 335
 Val Gln Cys Leu Ser Ala Leu Ile Gly Ser Cys Pro Asp Ala Cys Val
 340 345 350
 Asp Ala Leu Leu Asp Thr Ser Val Gln His Ser Pro His Phe Asp Trp
 355 360 365
 Val Val Ala His Ile Gly Ser Ser Phe Pro Gly Thr Ile Ile Ser Arg
 370 375 380
 Val Leu Ser Cys Gly Leu Lys Asp Phe Cys Val His Gly Gly Ala Gly
 385 390 395 400
 Gly Gly Ala Gly Ser Ser Gly Gly Ser Ser Ser Gln Thr Pro Ser Thr
 405 410 415
 Asp Pro Phe Pro Gly Ser Pro Ala Ile Pro Ala Glu Lys Arg Val Pro
 420 425 430
 Lys Ile Ala Ser Val Val Gly Ile Leu Gly His Leu Ala Ser Arg His
 435 440 445
 Gly Asp Ser Ile Arg Arg Glu Leu Leu Arg Met Phe His Asp Ser Leu
 450 455 460
 Ala Gly Gly Ser Gly Gly Arg Ser Gly Asp Pro Ser Leu Gln Ala Thr
 465 470 475 480
 Val Pro Phe Leu Leu Gln Leu Ala Val Met Ser Pro Ala Leu Leu Gly
 485 490 495
 Thr Val Ser Gly Glu Leu Val Asp Cys Leu Lys Pro Pro Ala Val Leu
 500 505 510
 Ser Gln Leu Gln Gln His Leu Gln Gly Phe Pro Arg Glu Glu Leu Asp
 515 520 525
 Asn Met Leu Asn Leu Ala Val His Leu Val Ser Gln Ala Ser Gly Ala
 530 535 540
 Gly Ala Tyr Arg Leu Leu Gln Phe Leu Val Asp Tyr Ala Met Pro Ala
 545 550 555 560
 Ser Val Ile Thr Thr Gln Gly Leu Ala Val Pro Asp Thr Val Arg Glu
 565 570 575
 Ala Cys Asp Arg Leu Ile Gln Leu Leu Leu His Leu Gln Lys Leu
 580 585 590
 Val His His Arg Gly Gly Ser Pro Gly Glu Gly Val Leu Gly Pro Pro
 595 600 605
 Pro Pro Pro Arg Leu Val Pro Phe Leu Asp Ala Leu Lys Asn His Val
 610 615 620
 Gly Glu Leu Cys Gly Glu Thr Leu Arg Leu Glu Arg Lys Arg Phe Leu
 625 630 635 640

2003295784 19 Aug 2005

Trp Gln His Gln Leu Leu Gly Leu Leu Ser Val Tyr Thr Arg Pro Ser
 645 650 655
 Cys Gly Pro Glu Ala Leu Gly His Leu Leu Ser Arg Ala Arg Ser Pro
 660 665 670
 Glu Glu Leu Ser Leu Ala Thr Gln Leu Tyr Ala Gly Leu Val Val Ser
 675 680 685
 Leu Ser Gly Leu Leu Pro Leu Ala Phe Arg Ser Cys Leu Ala Arg Val
 690 695 700
 His Ala Gly Thr Leu Gln Pro Pro Phe Thr Ala Arg Phe Leu Arg Asn
 705 710 715 720
 Leu Ala Leu Leu Val Gly Trp Glu Gln Gln Gly Gly Glu Gly Pro Ala
 725 730 735
 Ala Leu Gly Ala His Phe Gly Glu Ser Ala Ser Ala His Leu Ser Asp
 740 745 750
 Leu Ala Pro Leu Leu Leu His Pro Glu Glu Glu Val Ala Glu Ala Ala
 755 760 765
 Ala Ser Leu Leu Ala Ile Cys Pro Phe Pro Ser Glu Ala Leu Ser Pro
 770 775 780
 Ser Gln Leu Leu Gly Leu Val Arg Ala Gly Val His Arg Phe Phe Ala
 785 790 795 800
 Ser Leu Arg Leu His Gly Pro Pro Gly Val Ala Ser Ala Cys Gln Leu
 805 810 815
 Leu Thr Arg Leu Ser Gln Thr Ser Pro Ala Gly Leu Lys Ala Val Leu
 820 825 830
 Gln Leu Leu Val Glu Gly Ala Leu His Arg Gly Asn Thr Glu Leu Phe
 835 840 845
 Gly Gly Gln Val Asp Gly Asp Asn Glu Thr Leu Ser Val Val Ser Ala
 850 855 860
 Ser Leu Ala Ser Ala Ser Leu Leu Asp Thr Asn Arg Arg His Thr Ala
 865 870 875 880
 Ala Val Pro Gly Pro Gly Gly Ile Trp Ser Val Phe His Ala Gly Val
 885 890 895
 Ile Gly Arg Gly Leu Lys Pro Pro Lys Phe Val Gln Ser Arg Asn Gln
 900 905 910
 Gln Glu Val Ile Tyr Asn Thr Gln Ser Leu Leu Ser Leu Leu Val His
 915 920 925
 Cys Cys Ser Ala Pro Gly Gly Thr Glu Cys Gly Glu Cys Trp Gly Ala
 930 935 940
 Pro Ile Leu Ser Pro Glu Ala Ala Lys Ala Val Ala Val Thr Leu Val
 945 950 955 960
 Glu Ser Val Cys Pro Asp Ala Ala Gly Ala Glu Leu Ala Trp Pro Pro

2003295784 19 Aug 2005

965 970 975

Glu Glu His Ala Arg Ala Thr Val Glu Arg Asp Leu Arg Ile Gly Arg
 980 985 990

Arg Phe Arg Glu Gln Pro Leu Leu Phe Glu Leu Leu Lys Leu Val Ala
 995 1000 1005

Ala Ala Pro Pro Ala Leu Cys Tyr Cys Ser Val Leu Leu Arg Gly
 1010 1015 1020

Leu Leu Ala Ala Leu Leu Gly His Trp Glu Ala Ser Arg His Pro
 1025 1030 1035

Asp Thr Thr His Ser Pro Trp His Leu Glu Ala Ser Cys Thr Leu
 1040 1045 1050

Val Ala Val Met Ala Glu Gly Ser Leu Leu Pro Pro Ala Leu Gly
 1055 1060 1065

Asn Met His Glu Val Phe Ser Gln Leu Ala Pro Phe Glu Val Arg
 1070 1075 1080

Leu Leu Leu Leu Ser Val Trp Gly Phe Leu Arg Glu His Gly Pro
 1085 1090 1095

Leu Pro Gln Lys Phe Ile Phe Gln Ser Glu Arg Gly Arg Phe Ile
 1100 1105 1110

Arg Asp Phe Ser Arg Glu Gly Gly Gly Glu Gly Gly Pro His Leu
 1115 1120 1125

Ala Val Leu His Ser Val Leu His Arg Asn Ile Asp Arg Leu Gly
 1130 1135 1140

Leu Phe Ser Gly Arg Phe Gln Ala Pro Ser Pro Ser Thr Leu Leu
 1145 1150 1155

Arg Gln Gly Thr
 1160

<210> 9

<211> 1162

<212> PRT

<213> Artificial

<220>

<223> A variant of the human BFLP1698 polypeptide

<400> 9

Met Ala Leu Val Pro Gly Arg Ser Lys Glu Asp Gly Leu Trp Thr Arg
 1 5 10 15

Asn Ser Pro Gly Ser Ser Gln His Pro Glu Ser Pro Arg Leu Pro Asn
 20 25 30

Pro Leu Trp Asp Arg Gly Lys Ile Gly Lys Val Glu Gly His Gln His
 35 40 45

Ile Gln Asp Phe Ser Gln Lys Ser His Leu Pro Ser Ile Val Val Glu

2003295784 19 Aug 2005

	50	55	60	
Ser Ser Glu Val Asn Glu Glu Ser Gly Asp Leu His Leu Pro His Glu				
65	70	75	80	
Glu Leu Leu Leu Leu Thr Asp Gly Glu Glu Glu Asp Ala Glu Ala Phe				
85	90	95		
Phe Gln Asp Gln Ser Glu Glu Pro Gly Ala Ala Arg Pro His His Gln				
100	105	110		
Ala Arg Gln Val Glu His Ser Thr Gln Arg Gly His Leu Glu Ile Arg				
115	120	125		
Glu Leu Lys Lys Lys Leu Phe Lys Arg Arg Arg Val Leu Asn Arg Glu				
130	135	140		
Arg Arg Leu Arg His Arg Val Val Gly Ala Val Ile Asp Gln Gly Leu				
145	150	155	160	
Ile Thr Arg His His Leu Lys Lys Arg Ala Ala Gln Glu Leu Ser Gln				
165	170	175		
Glu Ile Lys Ala Phe Leu Thr Gly Val Asp Pro Ile Leu Gly His Gln				
180	185	190		
Leu Ser Ala Arg Glu His Ala Arg Cys Gly Leu Leu Leu Arg Ser				
195	200	205		
Leu Pro Pro Ala Arg Ala Ala Val Leu Asp His Leu Arg Gly Val Phe				
210	215	220		
Asp Glu Ser Val Arg Ala His Leu Ala Ala Leu Asp Glu Thr Pro Val				
225	230	235	240	
Ala Gly Pro Pro His Leu Arg Pro Pro Pro Ser His Val Pro Ala				
245	250	255		
Gly Gly Pro Gly Leu Glu Asp Val Val Gln Glu Val Gln Gln Val Leu				
260	265	270		
Ser Glu Phe Ile Arg Ala Asn Pro Lys Ala Trp Ala Pro Val Ile Ser				
275	280	285		
Ala Trp Ser Ile Asp Leu Met Gly Gln Leu Ser Ser Thr Tyr Ser Gly				
290	295	300		
Gln His Gln Arg Val Pro His Ala Thr Gly Ala Leu Asn Glu Leu Leu				
305	310	315	320	
Gln Leu Trp Met Gly Cys Arg Ala Thr Arg Thr Leu Met Asp Ile Tyr				
325	330	335		
Val Gln Cys Leu Ser Ala Leu Ile Gly Ser Cys Pro Asp Ala Cys Val				
340	345	350		
Asp Ala Leu Leu Asp Thr Ser Val Gln His Ser Pro His Phe Asp Trp				
355	360	365		
Val Val Ala His Ile Gly Ser Ser Phe Pro Gly Thr Ile Ile Ser Arg				
370	375	380		

2003295784 19 Aug 2005

Val Leu Ser Cys Gly Leu Lys Asp Phe Cys Val His Gly Gly Ala Gly
 385 390 395 400
 Gly Gly Ala Gly Ser Ser Gly Ser Ser Ser Gln Thr Pro Ser Thr
 405 410 415
 Asp Pro Phe Pro Gly Ser Pro Ala Ile Pro Ala Glu Lys Arg Val Pro
 420 425 430
 Lys Ile Ala Ser Val Val Gly Ile Leu Gly His Leu Ala Ser Arg His
 435 440 445
 Gly Asp Ser Ile Arg Arg Glu Leu Leu Arg Met Phe His Asp Ser Leu
 450 455 460
 Ala Gly Gly Ser Gly Gly Arg Ser Gly Asp Pro Ser Leu Gln Ala Thr
 465 470 475 480
 Val Pro Phe Leu Leu Gln Leu Ala Val Met Ser Pro Ala Leu Leu Gly
 485 490 495
 Thr Val Ser Gly Glu Leu Val Asp Cys Leu Lys Pro Pro Ala Val Leu
 500 505 510
 Ser Gln Leu Gln Gln His Leu Gln Gly Phe Pro Arg Glu Glu Leu Asp
 515 520 525
 Asn Met Leu Asn Leu Ala Val His Leu Val Ser Gln Ala Ser Gly Ala
 530 535 540
 Gly Ala Tyr Arg Leu Leu Gln Phe Leu Val Asp Thr Ala Met Pro Ala
 545 550 555 560
 Ser Val Ile Thr Thr Gln Gly Leu Ala Val Pro Asp Thr Val Arg Glu
 565 570 575
 Ala Cys Asp Arg Leu Ile Gln Leu Leu Leu His Leu Gln Lys Leu
 580 585 590
 Val His His Arg Gly Gly Ser Pro Gly Glu Gly Val Leu Gly Pro Pro
 595 600 605
 Pro Pro Pro Arg Leu Val Pro Phe Leu Asp Ala Leu Lys Asn His Val
 610 615 620
 Gly Glu Leu Cys Gly Glu Thr Leu Arg Leu Glu Arg Lys Arg Phe Leu
 625 630 635 640
 Trp Gln His Gln Leu Leu Gly Leu Leu Ser Val Tyr Thr Arg Pro Ser
 645 650 655
 Cys Gly Pro Glu Ala Leu Pro His Leu Leu Ser Arg Ala Arg Ser Pro
 660 665 670
 Glu Glu Leu Ser Leu Ala Thr Gln Leu Tyr Ala Gly Leu Val Val Ser
 675 680 685
 Leu Ser Gly Leu Leu Pro Leu Ala Phe Arg Ser Cys Leu Ala Arg Val
 690 695 700
 His Ala Gly Thr Leu Gln Pro Pro Phe Thr Ala Arg Phe Leu Arg Asn
 705 710 715 720

2003295784 19 Aug 2005

Leu Ala Leu Leu Val Gly Trp Glu Gln Gln Gly Gly Glu Gly Pro Ala
 725 730 735
 Ala Leu Gly Ala His Phe Gly Glu Ser Ala Ser Ala His Leu Ser Asp
 740 745 750
 Leu Ala Pro Leu Leu Leu His Pro Glu Glu Glu Val Ala Glu Ala Ala
 755 760 765
 Ala Ser Leu Leu Ala Ile Cys Pro Phe Pro Ser Glu Ala Leu Ser Pro
 770 775 780
 Ser Gln Leu Leu Gly Leu Val Arg Ala Gly Val His Arg Phe Phe Ala
 785 790 795 800
 Ser Leu Arg Leu His Gly Pro Pro Gly Val Ala Ser Ala Cys Gln Leu
 805 810 815
 Leu Thr Arg Leu Ser Gln Thr Ser Pro Ala Gly Leu Lys Ala Val Leu
 820 825 830
 Gln Leu Leu Val Glu Gly Ala Leu His Arg Gly Asn Thr Glu Leu Phe
 835 840 845
 Gly Gly Gln Val Asp Gly Asp Asn Glu Thr Leu Ser Val Val Ser Ala
 850 855 860
 Ser Leu Ala Ser Ala Ser Leu Leu Asp Thr Asn Arg Arg His Thr Ala
 865 870 875 880
 Ala Val Pro Gly Pro Gly Gly Ile Trp Ser Val Phe His Ala Gly Val
 885 890 895
 Ile Gly Arg Gly Leu Lys Pro Pro Lys Phe Val Gln Ser Arg Asn Gln
 900 905 910
 Gln Glu Val Ile Tyr Asn Thr Gln Ser Leu Leu Ser Leu Leu Val His
 915 920 925
 Cys Cys Ser Ala Pro Gly Gly Thr Glu Cys Gly Glu Cys Trp Gly Ala
 930 935 940
 Pro Ile Leu Ser Pro Glu Ala Ala Lys Ala Val Ala Val Thr Leu Val
 945 950 955 960
 Glu Ser Val Cys Pro Asp Ala Ala Gly Ala Glu Leu Ala Trp Pro Pro
 965 970 975
 Glu Glu His Ala Arg Ala Thr Val Glu Arg Asp Leu Arg Ile Gly Arg
 980 985 990
 Arg Phe Arg Glu Gln Pro Leu Leu Phe Glu Leu Leu Lys Leu Val Ala
 995 1000 1005
 Ala Ala Pro Pro Ala Leu Cys Tyr Cys Ser Val Leu Leu Arg Gly
 1010 1015 1020
 Leu Leu Ala Ala Leu Leu Gly His Trp Glu Ala Ser Arg His Pro
 1025 1030 1035
 Asp Thr Thr His Ser Pro Trp His Leu Glu Ala Ser Cys Thr Leu

2003295784 19 Aug 2005

1040	1045	1050
Val Ala Val Met Ala Glu Gly Ser Leu Leu Pro Pro Ala Leu Gly		
1055	1060	1065
Asn Met His Glu Val Phe Ser Gln Leu Ala Pro Phe Glu Val Arg		
1070	1075	1080
Leu Leu Leu Leu Ser Val Trp Gly Phe Leu Arg Glu His Gly Pro		
1085	1090	1095
Leu Pro Gln Lys Phe Ile Phe Gln Ser Glu Arg Gly Arg Phe Ile		
1100	1105	1110
Arg Asp Phe Ser Arg Glu Gly Gly Glu Gly Pro His Leu		
1115	1120	1125
Ala Val Leu His Ser Val Leu His Arg Asn Ile Asp Arg Leu Gly		
1130	1135	1140
Leu Phe Ser Gly Arg Phe Gln Ala Pro Ser Pro Ser Thr Leu Leu		
1145	1150	1155
Arg Gln Gly Thr		
1160		

<210> 10
 <211> 1162
 <212> PRT
 <213> Artificial

<220>
 <223> A variant of the human BFLP1698 polypeptide

<400> 10

Met Ala Leu Val Pro Gly Arg Ser Lys Glu Asp Gly Leu Trp Thr Arg
 1 5 10 15

Asn Ser Pro Gly Ser Ser Gln His Pro Glu Ser Pro Arg Leu Pro Asn
 20 25 30

Pro Leu Trp Asp Arg Gly Lys Ile Gly Lys Val Glu Gly His Gln His
 35 40 45

Ile Gln Asp Phe Ser Gln Lys Ser His Leu Pro Ser Ile Val Val Glu
 50 55 60

Ser Ser Glu Val Asn Glu Glu Ser Gly Asp Leu His Leu Pro His Glu
 65 70 75 80

Glu Leu Leu Leu Leu Thr Asp Gly Glu Glu Asp Ala Glu Ala Phe
 85 90 95

Phe Gln Asp Gln Ser Glu Glu Pro Gly Ala Ala Arg Pro His His Gln
 100 105 110

Ala Arg Gln Val Glu His Ser Thr Gln Arg Gly His Leu Glu Ile Arg
 115 120 125

Glu Leu Lys Lys Lys Leu Phe Lys Arg Arg Arg Val Leu Asn Arg Glu

19 Aug 2005
2003295784

	130	135	140
Arg Arg Leu Arg His Arg Val Val Gly Ala Val Ile Asp Gln Gly Leu			
145	150	155	160
Ile Thr Arg His His Leu Lys Lys Arg Ala Ala Gln Glu Leu Ser Gln			
165	170	175	
Glu Ile Lys Ala Phe Leu Thr Gly Val Asp Pro Ile Leu Gly His Gln			
180	185	190	
Leu Ser Ala Arg Glu His Ala Arg Cys Gly Leu Leu Leu Arg Ser			
195	200	205	
Leu Pro Pro Ala Arg Ala Ala Val Leu Asp His Leu Arg Gly Val Phe			
210	215	220	
Asp Glu Ser Val Arg Ala His Leu Ala Ala Leu Asp Glu Thr Pro Val			
225	230	235	240
Ala Gly Pro Pro His Leu Arg Pro Pro Pro Ser His Val Pro Ala			
245	250	255	
Gly Gly Pro Gly Leu Glu Asp Val Val Gln Glu Val Gln Gln Val Leu			
260	265	270	
Ser Glu Phe Ile Arg Ala Asn Pro Lys Ala Trp Ala Pro Val Ile Ser			
275	280	285	
Ala Trp Ser Ile Asp Leu Met Gly Gln Leu Ser Ser Thr Tyr Ser Gly			
290	295	300	
Gln His Gln Arg Val Pro His Ala Thr Gly Ala Leu Asn Glu Leu Leu			
305	310	315	320
Gln Leu Trp Met Gly Cys Arg Ala Thr Arg Thr Leu Met Asp Ile Tyr			
325	330	335	
Val Gln Cys Leu Ser Ala Leu Ile Gly Ser Cys Pro Asp Ala Cys Val			
340	345	350	
Asp Ala Leu Leu Asp Thr Ser Val Gln His Ser Pro His Phe Asp Trp			
355	360	365	
Val Val Ala His Ile Gly Ser Ser Phe Pro Gly Thr Ile Ile Ser Arg			
370	375	380	
Val Leu Ser Cys Gly Leu Lys Asp Phe Cys Val His Gly Gly Ala Gly			
385	390	395	400
Gly Gly Ala Gly Ser Ser Gly Gly Ser Ser Ser Gln Thr Pro Ser Thr			
405	410	415	
Asp Pro Phe Pro Gly Ser Pro Ala Ile Pro Ala Glu Lys Arg Val Pro			
420	425	430	
Lys Ile Ala Ser Val Val Gly Ile Leu Gly His Leu Ala Ser Arg His			
435	440	445	
Gly Asp Ser Ile Arg Arg Glu Leu Leu Arg Met Phe His Asp Ser Leu			
450	455	460	

2003295784 19 Aug 2005

Ala Gly Gly Ser Gly Gly Arg Ser Gly Asp Pro Ser Leu Gln Ala Thr
 465 470 475 480
 Val Pro Phe Leu Leu Gln Leu Ala Val Met Ser Pro Ala Leu Leu Gly
 485 490 495
 Thr Val Ser Gly Glu Leu Val Asp Cys Leu Lys Pro Pro Ala Val Leu
 500 505 510
 Ser Gln Leu Gln Gln His Leu Gln Gly Phe Pro Arg Glu Glu Leu Asp
 515 520 525
 Asn Met Leu Asn Leu Ala Val His Leu Val Ser Gln Ala Ser Gly Ala
 530 535 540
 Gly Ala Tyr Arg Leu Leu Gln Phe Leu Val Asp Thr Ala Met Pro Ala
 545 550 555 560
 Ser Val Ile Thr Thr Gln Gly Leu Ala Val Pro Asp Thr Val Arg Glu
 565 570 575
 Ala Cys Asp Arg Leu Ile Gln Leu Leu Leu His Leu Gln Lys Leu
 580 585 590
 Val His His Arg Gly Gly Ser Pro Gly Glu Gly Val Leu Gly Pro Pro
 595 600 605
 Pro Pro Pro Arg Leu Val Pro Phe Leu Asp Ala Leu Lys Asn His Val
 610 615 620
 Gly Glu Leu Cys Gly Glu Thr Leu Arg Leu Glu Arg Lys Arg Phe Leu
 625 630 635 640
 Trp Gln His Gln Leu Leu Gly Leu Leu Ser Val Tyr Thr Arg Pro Ser
 645 650 655
 Cys Gly Pro Glu Ala Leu Gly His Leu Leu Ser Arg Ala Arg Ser Pro
 660 665 670
 Glu Glu Leu Ser Leu Ala Thr Gln Leu Tyr Ala Gly Leu Val Val Ser
 675 680 685
 Leu Ser Gly Leu Leu Pro Leu Ala Phe Arg Ser Cys Leu Ala Arg Val
 690 695 700
 His Ala Gly Thr Leu Gln Pro Pro Phe Thr Ala Arg Phe Leu Arg Asn
 705 710 715 720
 Leu Ala Leu Leu Val Gly Trp Glu Gln Gln Gly Gly Asp Gly Pro Ala
 725 730 735
 Ala Leu Gly Ala His Phe Gly Glu Ser Ala Ser Ala His Leu Ser Asp
 740 745 750
 Leu Ala Pro Leu Leu Leu His Pro Glu Glu Glu Val Ala Glu Ala Ala
 755 760 765
 Ala Ser Leu Leu Ala Ile Cys Pro Phe Pro Ser Glu Ala Leu Ser Pro
 770 775 780
 Ser Gln Leu Leu Gly Leu Val Arg Ala Gly Val His Arg Phe Phe Ala
 785 790 795 800

2003295784 19 Aug 2005

Ser Leu Arg Leu His Gly Pro Pro Gly Val Ala Ser Ala Cys Gln Leu
 805 810 815
 Leu Thr Arg Leu Ser Gln Thr Ser Pro Ala Gly Leu Lys Ala Val Leu
 820 825 830
 Gln Leu Leu Val Glu Gly Ala Leu His Arg Gly Asn Thr Glu Leu Phe
 835 840 845
 Gly Gly Gln Val Asp Gly Asp Asn Glu Thr Leu Ser Val Val Ser Ala
 850 855 860
 Ser Leu Ala Ser Ala Ser Leu Leu Asp Thr Asn Arg Arg His Thr Ala
 865 870 875 880
 Ala Val Pro Gly Pro Gly Gly Ile Trp Ser Val Phe His Ala Gly Val
 885 890 895
 Ile Gly Arg Gly Leu Lys Pro Pro Lys Phe Val Gln Ser Arg Asn Gln
 900 905 910
 Gln Glu Val Ile Tyr Asn Thr Gln Ser Leu Leu Ser Leu Leu Val His
 915 920 925
 Cys Cys Ser Ala Pro Gly Gly Thr Glu Cys Gly Glu Cys Trp Gly Ala
 930 935 940
 Pro Ile Leu Ser Pro Glu Ala Ala Lys Ala Val Ala Val Thr Leu Val
 945 950 955 960
 Glu Ser Val Cys Pro Asp Ala Ala Gly Ala Glu Leu Ala Trp Pro Pro
 965 970 975
 Glu Glu His Ala Arg Ala Thr Val Glu Arg Asp Leu Arg Ile Gly Arg
 980 985 990
 Arg Phe Arg Glu Gln Pro Leu Leu Phe Glu Leu Leu Lys Leu Val Ala
 995 1000 1005
 Ala Ala Pro Pro Ala Leu Cys Tyr Cys Ser Val Leu Leu Arg Gly
 1010 1015 1020
 Leu Leu Ala Ala Leu Leu Gly His Trp Glu Ala Ser Arg His Pro
 1025 1030 1035
 Asp Thr Thr His Ser Pro Trp His Leu Glu Ala Ser Cys Thr Leu
 1040 1045 1050
 Val Ala Val Met Ala Glu Gly Ser Leu Leu Pro Pro Ala Leu Gly
 1055 1060 1065
 Asn Met His Glu Val Phe Ser Gln Leu Ala Pro Phe Glu Val Arg
 1070 1075 1080
 Leu Leu Leu Leu Ser Val Trp Gly Phe Leu Arg Glu His Gly Pro
 1085 1090 1095
 Leu Pro Gln Lys Phe Ile Phe Gln Ser Glu Arg Gly Arg Phe Ile
 1100 1105 1110
 Arg Asp Phe Ser Arg Glu Gly Gly Glu Gly Gly Pro His Leu

19 Aug 2005

2003295784

1115	1120	1125
Ala Val Leu His Ser Val Leu His Arg Asn Ile Asp Arg	Leu Gly	
1130	1135	1140

Leu Phe Ser Gly Arg Phe Gln Ala Pro Ser Pro Ser Thr	Leu Leu	
1145	1150	1155

Arg Gln Gly Thr		
1160		

<210> 11		
<211> 1162		
<212> PRT		
<213> Artificial		

<220>		
<223> A variant of the human BFLP1698 polypeptide		

<400> 11		
----------	--	--

Met Ala Leu Val Pro Gly Arg Ser Lys Glu Asp Gly Leu Trp Thr Arg		
1	5	10
		15

Asn Ser Pro Gly Ser Ser Gln His Pro Glu Ser Pro Arg Leu Pro Asn		
20	25	30

Pro Leu Trp Asp Arg Gly Lys Ile Gly Lys Val Glu Gly His Gln His		
35	40	45

Ile Gln Asp Phe Ser Gln Lys Ser His Leu Pro Ser Ile Val Val Glu		
50	55	60

Ser Ser Glu Val Asn Glu Glu Ser Gly Asp Leu His Leu Pro His Glu		
65	70	75
		80

Glu Leu Leu Leu Leu Thr Asp Gly Glu Glu Asp Ala Glu Ala Phe		
85	90	95

Phe Gln Asp Gln Ser Glu Glu Pro Gly Ala Ala Arg Pro His His Gln		
100	105	110

Ala Arg Gln Val Glu His Ser Thr Gln Arg Gly His Leu Glu Ile Arg		
115	120	125

Glu Leu Lys Lys Lys Leu Phe Lys Arg Arg Arg Val Leu Asn Arg Glu		
130	135	140

Arg Arg Leu Arg His Arg Val Val Gly Ala Val Ile Asp Gln Gly Leu		
145	150	155
		160

Ile Thr Arg His His Leu Lys Lys Arg Ala Ala Gln Glu Leu Ser Gln		
165	170	175

Glu Ile Lys Ala Phe Leu Thr Gly Val Asp Pro Ile Leu Gly His Gln		
180	185	190

Leu Ser Ala Arg Glu His Ala Arg Cys Gly Leu Leu Leu Arg Ser		
195	200	205

Leu Pro Pro Ala Arg Ala Ala Val Leu Asp His Leu Arg Gly Val Phe		
---	--	--

2003295784 19 Aug 2005

210	215	220
Asp Glu Ser Val Arg Ala His Leu Ala Ala Leu Asp Glu Thr Pro Val		
225	230	235
Ala Gly Pro Pro His Leu Arg Pro Pro Pro Pro Ser His Val Pro Ala		
245	250	255
Gly Gly Pro Gly Leu Glu Asp Val Val Gln Glu Val Gln Gln Val Leu		
260	265	270
Ser Glu Phe Ile Arg Ala Asn Pro Lys Ala Trp Ala Pro Val Ile Ser		
275	280	285
Ala Trp Ser Ile Asp Leu Met Gly Gln Leu Ser Ser Thr Tyr Ser Gly		
290	295	300
Gln His Gln Arg Val Pro His Ala Thr Gly Ala Leu Asn Glu Leu Leu		
305	310	315
Gln Leu Trp Met Gly Cys Arg Ala Thr Arg Thr Leu Met Asp Ile Tyr		
325	330	335
Val Gln Cys Leu Ser Ala Leu Ile Gly Ser Cys Pro Asp Ala Cys Val		
340	345	350
Asp Ala Leu Leu Asp Thr Ser Val Gln His Ser Pro His Phe Asp Trp		
355	360	365
Val Val Ala His Ile Gly Ser Ser Phe Pro Gly Thr Ile Ile Ser Arg		
370	375	380
Val Leu Ser Cys Gly Leu Lys Asp Phe Cys Val His Gly Gly Ala Gly		
385	390	395
Gly Gly Ala Gly Ser Ser Gly Gly Ser Ser Ser Gln Thr Pro Ser Thr		
405	410	415
Asp Pro Phe Pro Gly Ser Pro Ala Ile Pro Ala Glu Lys Arg Val Pro		
420	425	430
Lys Ile Ala Ser Val Val Gly Ile Leu Gly His Leu Ala Ser Arg His		
435	440	445
Gly Asp Ser Ile Arg Arg Glu Leu Leu Arg Met Phe His Asp Ser Leu		
450	455	460
Ala Gly Gly Ser Gly Gly Arg Ser Gly Asp Pro Ser Leu Gln Ala Thr		
465	470	475
Val Pro Phe Leu Leu Gln Leu Ala Val Met Ser Pro Ala Leu Leu Gly		
485	490	495
Thr Val Ser Gly Glu Leu Val Asp Cys Leu Lys Pro Pro Ala Val Leu		
500	505	510
Ser Gln Leu Gln Gln His Leu Gln Gly Phe Pro Arg Glu Glu Leu Asp		
515	520	525
Asn Met Leu Asn Leu Ala Val His Leu Val Ser Gln Ala Ser Gly Ala		
530	535	540

2003295784 19 Aug 2005

Gly Ala Tyr Arg Leu Leu Gln Phe Leu Val Asp Thr Ala Met Pro Ala
 545 550 555 560
 Ser Val Ile Thr Thr Gln Gly Leu Ala Val Pro Asp Thr Val Arg Glu
 565 570 575
 Ala Cys Asp Arg Leu Ile Gln Leu Leu Leu His Leu Gln Lys Leu
 580 585 590
 Val His His Arg Gly Gly Ser Pro Gly Glu Gly Val Leu Gly Pro Pro
 595 600 605
 Pro Pro Pro Arg Leu Val Pro Phe Leu Asp Ala Leu Lys Asn His Val
 610 615 620
 Gly Glu Leu Cys Gly Glu Thr Leu Arg Leu Glu Arg Lys Arg Phe Leu
 625 630 635 640
 Trp Gln His Gln Leu Leu Gly Leu Leu Ser Val Tyr Thr Arg Pro Ser
 645 650 655
 Cys Gly Pro Glu Ala Leu Gly His Leu Leu Ser Arg Ala Arg Ser Pro
 660 665 670
 Glu Glu Leu Ser Leu Ala Thr Gln Leu Tyr Ala Gly Leu Val Val Ser
 675 680 685
 Leu Ser Gly Leu Leu Pro Leu Ala Phe Arg Ser Cys Leu Ala Arg Val
 690 695 700
 His Ala Gly Thr Leu Gln Pro Pro Phe Thr Ala Arg Phe Leu Arg Asn
 705 710 715 720
 Leu Ala Leu Leu Val Gly Trp Glu Gln Gln Gly Glu Gly Pro Ala
 725 730 735
 Ala Leu Gly Ala His Phe Gly Glu Ser Ala Ser Ala His Leu Ser Asp
 740 745 750
 Leu Ala Pro Leu Leu Leu His Pro Glu Glu Glu Val Ala Glu Ala Ala
 755 760 765
 Ala Ser Leu Leu Ala Ile Cys Pro Phe Pro Ser Glu Ala Leu Ser Pro
 770 775 780
 Ser Gln Leu Leu Gly Leu Val Arg Ala Gly Val His Arg Phe Phe Ala
 785 790 795 800
 Ser Leu Arg Leu His Gly Pro Pro Gly Val Ala Ser Ala Cys Gln Leu
 805 810 815
 Leu Thr Arg Leu Ser Gln Thr Ser Pro Ala Gly Leu Lys Ala Val Leu
 820 825 830
 Gln Leu Leu Val Glu Gly Ala Leu His Arg Gly Asn Thr Glu Leu Phe
 835 840 845
 Gly Gly Gln Val Asp Gly Asp Asn Glu Ala Leu Ser Val Val Ser Ala
 850 855 860
 Ser Leu Ala Ser Ala Ser Leu Leu Asp Thr Asn Arg Arg His Thr Ala
 865 870 875 880

2003295784 19 Aug 2005

Ala Val Pro Gly Pro Gly Gly Ile Trp Ser Val Phe His Ala Gly Val
 885 890 895
 Ile Gly Arg Gly Leu Lys Pro Pro Lys Phe Val Gln Ser Arg Asn Gln
 900 905 910
 Gln Glu Val Ile Tyr Asn Thr Gln Ser Leu Leu Ser Leu Leu Val His
 915 920 925
 Cys Cys Ser Ala Pro Gly Gly Thr Glu Cys Gly Glu Cys Trp Gly Ala
 930 935 940
 Pro Ile Leu Ser Pro Glu Ala Ala Lys Ala Val Ala Val Thr Leu Val
 945 950 955 960
 Glu Ser Val Cys Pro Asp Ala Ala Gly Ala Glu Leu Ala Trp Pro Pro
 965 970 975
 Glu Glu His Ala Arg Ala Thr Val Glu Arg Asp Leu Arg Ile Gly Arg
 980 985 990
 Arg Phe Arg Glu Gln Pro Leu Leu Phe Glu Leu Leu Lys Leu Val Ala
 995 1000 1005
 Ala Ala Pro Pro Ala Leu Cys Tyr Cys Ser Val Leu Leu Arg Gly
 1010 1015 1020
 Leu Leu Ala Ala Leu Leu Gly His Trp Glu Ala Ser Arg His Pro
 1025 1030 1035
 Asp Thr Thr His Ser Pro Trp His Leu Glu Ala Ser Cys Thr Leu
 1040 1045 1050
 Val Ala Val Met Ala Glu Gly Ser Leu Leu Pro Pro Ala Leu Gly
 1055 1060 1065
 Asn Met His Glu Val Phe Ser Gln Leu Ala Pro Phe Glu Val Arg
 1070 1075 1080
 Leu Leu Leu Leu Ser Val Trp Gly Phe Leu Arg Glu His Gly Pro
 1085 1090 1095
 Leu Pro Gln Lys Phe Ile Phe Gln Ser Glu Arg Gly Arg Phe Ile
 1100 1105 1110
 Arg Asp Phe Ser Arg Glu Gly Gly Gly Glu Gly Gly Pro His Leu
 1115 1120 1125
 Ala Val Leu His Ser Val Leu His Arg Asn Ile Asp Arg Leu Gly
 1130 1135 1140
 Leu Phe Ser Gly Arg Phe Gln Ala Pro Ser Pro Ser Thr Leu Leu
 1145 1150 1155
 Arg Gln Gly Thr
 1160

<210> 12
 <211> 1162
 <212> PRT

2003295784 19 Aug 2005

<213> Artificial

<220>

<223> A variant of the human BFLP1698 polypeptide

<400> 12

Met	Ala	Leu	Val	Pro	Gly	Arg	Ser	Lys	Glu	Asp	Gly	Leu	Trp	Thr	Arg
1															15

5

10

Asn	Ser	Pro	Gly	Ser	Ser	Gln	His	Pro	Glu	Ser	Pro	Arg	Leu	Pro	Asn
															30

20

25

Pro	Leu	Trp	Asp	Arg	Gly	Lys	Ile	Gly	Lys	Val	Glu	Gly	His	Gln	His
															45

35

40

Ile	Gln	Asp	Phe	Ser	Gln	Lys	Ser	His	Leu	Pro	Ser	Ile	Val	Val	Glu
															60

50

55

Ser	Ser	Glu	Val	Asn	Glu	Glu	Ser	Gly	Asp	Leu	His	Leu	Pro	His	Glu
															80

65

70

75

Glu	Leu	Leu	Leu	Leu	Thr	Asp	Gly	Glu	Glu	Asp	Ala	Glu	Ala	Phe	
															95

85

90

95

Phe	Gln	Asp	Gln	Ser	Glu	Glu	Pro	Gly	Ala	Ala	Arg	Pro	His	His	Gln
															110

100

105

110

Ala	Arg	Gln	Val	Glu	His	Ser	Thr	Gln	Arg	Gly	His	Leu	Glu	Ile	Arg
															125.

115

120

125.

Glu	Leu	Lys	Lys	Leu	Phe	Lys	Arg	Arg	Arg	Val	Leu	Asn	Arg	Glu	
															140

130

135

140

Arg	Arg	Leu	Arg	His	Arg	Val	Val	Gly	Ala	Val	Ile	Asp	Gln	Gly	Leu
															160

145

150

155

Ile	Thr	Arg	His	His	Leu	Lys	Lys	Arg	Ala	Ala	Gln	Glu	Leu	Ser	Gln
															175

165

170

175

Glu	Ile	Lys	Ala	Phe	Leu	Thr	Gly	Val	Asp	Pro	Ile	Leu	Gly	His	Gln
															190

180

185

190

Leu	Ser	Ala	Arg	Glu	His	Ala	Arg	Cys	Gly	Leu	Leu	Leu	Arg	Ser	
															205

195

200

205

Leu	Pro	Pro	Ala	Arg	Ala	Ala	Val	Leu	Asp	His	Leu	Arg	Gly	Val	Phe
															220

210

215

220

Asp	Glu	Ser	Val	Arg	Ala	His	Leu	Ala	Ala	Leu	Asp	Glu	Thr	Pro	Val
															240

225

230

235

240

Ala	Gly	Pro	Pro	His	Leu	Arg	Pro	Pro	Pro	Pro	Ser	His	Val	Pro	Ala
															255

245

250

255

Gly	Gly	Pro	Gly	Leu	Glu	Asp	Val	Val	Gln	Glu	Val	Gln	Gln	Val	Leu
															270

260

265

270

Ser	Glu	Phe	Ile	Arg	Ala	Asn	Pro	Lys	Ala	Trp	Ala	Pro	Val	Ile	Ser
															285

275

280

285

Ala	Trp	Ser	Ile	Asp	Leu	Met	Gly	Gln	Leu	Ser	Ser	Thr	Tyr	Ser	Gly
-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----

19 Aug 2005
2003295784

290	295	300	
Gln His Gln Arg Val Pro His Ala Thr Gly Ala Leu Asn Glu Leu Leu			
305	310	315	320
Gln Leu Trp Met Gly Cys Arg Ala Thr Arg Thr Leu Met Asp Ile Tyr			
325	330	335	
Val Gln Cys Leu Ser Ala Leu Ile Gly Ser Cys Pro Asp Ala Cys Val			
340	345	350	
Asp Ala Leu Leu Asp Thr Ser Val Gln His Ser Pro His Phe Asp Trp			
355	360	365	
Val Val Ala His Ile Gly Ser Ser Phe Pro Gly Thr Ile Ile Ser Arg			
370	375	380	
Val Leu Ser Cys Gly Leu Lys Asp Phe Cys Val His Gly Gly Ala Gly			
385	390	395	400
Gly Gly Ala Gly Ser Ser Gly Gly Ser Ser Gln Thr Pro Ser Thr			
405	410	415	
Asp Pro Phe Pro Gly Ser Pro Ala Ile Pro Ala Glu Lys Arg Val Pro			
420	425	430	
Lys Ile Ala Ser Val Val Gly Ile Leu Gly His Leu Ala Ser Arg His			
435	440	445	
Gly Asp Ser Ile Arg Arg Glu Leu Leu Arg Met Phe His Asp Ser Leu			
450	455	460	
Ala Gly Gly Ser Gly Gly Arg Ser Gly Asp Pro Ser Leu Gln Ala Thr			
465	470	475	480
Val Pro Phe Leu Leu Gln Leu Ala Val Met Ser Pro Ala Leu Leu Gly			
485	490	495	
Thr Val Ser Gly Glu Leu Val Asp Cys Leu Lys Pro Pro Ala Val Leu			
500	505	510	
Ser Gln Leu Gln Gln His Leu Gln Gly Phe Pro Arg Glu Glu Leu Asp			
515	520	525	
Asn Met Leu Asn Leu Ala Val His Leu Val Ser Gln Ala Ser Gly Ala			
530	535	540	
Gly Ala Tyr Arg Leu Leu Gln Phe Leu Val Asp Thr Ala Met Pro Ala			
545	550	555	560
Ser Val Ile Thr Thr Gln Gly Leu Ala Val Pro Asp Thr Val Arg Glu			
565	570	575	
Ala Cys Asp Arg Leu Ile Gln Leu Leu Leu His Leu Gln Lys Leu			
580	585	590	
Val His His Arg Gly Gly Ser Pro Gly Glu Gly Val Leu Gly Pro Pro			
595	600	605	
Pro Pro Pro Arg Leu Val Pro Phe Leu Asp Ala Leu Lys Asn His Val			
610	615	620	

2003295784 19 Aug 2005

Gly Glu Leu Cys Gly Glu Thr Leu Arg Leu Glu Arg Lys Arg Phe Leu
 625 630 635 640

Trp Gln His Gln Leu Leu Gly Leu Leu Ser Val Tyr Thr Arg Pro Ser
 645 650 655

Cys Gly Pro Glu Ala Leu Gly His Leu Leu Ser Arg Ala Arg Ser Pro
 660 665 670

Glu Glu Leu Ser Leu Ala Thr Gln Leu Tyr Ala Gly Leu Val Val Ser
 675 680 685

Leu Ser Gly Leu Leu Pro Leu Ala Phe Arg Ser Cys Leu Ala Arg Val
 690 695 700

His Ala Gly Thr Leu Gln Pro Pro Phe Thr Ala Arg Phe Leu Arg Asn
 705 710 715 720

Leu Ala Leu Leu Val Gly Trp Glu Gln Gln Gly Glu Gly Pro Ala
 725 730 735

Ala Leu Gly Ala His Phe Gly Glu Ser Ala Ser Ala His Leu Ser Asp
 740 745 750

Leu Ala Pro Leu Leu Leu His Pro Glu Glu Glu Val Ala Glu Ala Ala
 755 760 765

Ala Ser Leu Leu Ala Ile Cys Pro Phe Pro Ser Glu Ala Leu Ser Pro
 770 775 780

Ser Gln Leu Leu Gly Leu Val Arg Ala Gly Val His Arg Phe Phe Ala
 785 790 795 800

Ser Leu Arg Leu His Gly Pro Pro Gly Val Ala Ser Ala Cys Gln Leu
 805 810 815

Leu Thr Arg Leu Ser Gln Thr Ser Pro Ala Gly Leu Lys Ala Val Leu
 820 825 830

Gln Leu Leu Val Glu Gly Ala Leu His Arg Gly Asn Thr Glu Leu Phe
 835 840 845

Gly Gly Gln Val Asp Gly Asp Asn Glu Thr Leu Ser Val Val Ser Ala
 850 855 860

Ser Leu Ala Ser Ala Ser Leu Leu Asp Thr Asn Arg Arg His Thr Ala
 865 870 875 880

Ala Val Pro Gly Pro Gly Ile Trp Ser Val Phe His Ala Gly Val
 885 890 895

Ile Gly Arg Gly Leu Lys Pro Pro Lys Phe Val Gln Ser Arg Asn Gln
 900 905 910

Gln Glu Val Ile Tyr Asn Thr Gln Ser Leu Leu Ser Leu Leu Val His
 915 920 925

Cys Cys Ser Ala Pro Gly Gly Thr Glu Cys Gly Glu Cys Trp Gly Ala
 930 935 940

Pro Ile Leu Ser Pro Glu Ala Ala Lys Ala Val Ala Val Thr Leu Val
 945 950 955 960

2003295784 19 Aug 2005
 Glu Ser Val Cys Pro Asp Ala Ala Gly Ala Glu Leu Ala His Pro Pro
 965 970 975
 Glu Glu His Ala Arg Ala Thr Val Glu Arg Asp Leu Arg Ile Gly Arg
 980 985 990
 Arg Phe Arg Glu Gln Pro Leu Leu Phe Glu Leu Leu Lys Leu Val Ala
 995 1000 1005
 Ala Ala Pro Pro Ala Leu Cys Tyr Cys Ser Val Leu Leu Arg Gly
 1010 1015 1020
 Leu Leu Ala Ala Leu Leu Gly His Trp Glu Ala Ser Arg His Pro
 1025 1030 1035
 Asp Thr Thr His Ser Pro Trp His Leu Glu Ala Ser Cys Thr Leu
 1040 1045 1050
 Val Ala Val Met Ala Glu Gly Ser Leu Leu Pro Pro Ala Leu Gly
 1055 1060 1065
 Asn Met His Glu Val Phe Ser Gln Leu Ala Pro Phe Glu Val Arg
 1070 1075 1080
 Leu Leu Leu Leu Ser Val Trp Gly Phe Leu Arg Glu His Gly Pro
 1085 1090 1095
 Leu Pro Gln Lys Phe Ile Phe Gln Ser Glu Arg Gly Arg Phe Ile
 1100 1105 1110
 Arg Asp Phe Ser Arg Glu Gly Gly Gly Glu Gly Gly Pro His Leu
 1115 1120 1125
 Ala Val Leu His Ser Val Leu His Arg Asn Ile Asp Arg Leu Gly
 1130 1135 1140
 Leu Phe Ser Gly Arg Phe Gln Ala Pro Ser Pro Ser Thr Leu Leu
 1145 1150 1155
 Arg Gln Gly Thr
 1160

 <210> 13
 <211> 1162
 <212> PRT
 <213> Artificial

 <220>
 <223> A variant of the human BFLP1698 polypeptide

 <400> 13

 Met Ala Leu Val Pro Gly Arg Ser Lys Glu Asp Gly Leu Trp Thr Arg
 1 5 10 15

 Asn Ser Pro Gly Ser Ser Gln His Pro Glu Ser Pro Arg Leu Pro Asn
 20 25 30

 Pro Leu Trp Asp Arg Gly Lys Ile Gly Lys Val Glu Gly His Gln His
 35 40 45

2003295784 19 Aug 2005

Ile Gln Asp Phe Ser Gln Lys Ser His Leu Pro Ser Ile Val Val Glu
 50 55 60
 Ser Ser Glu Val Asn Glu Glu Ser Gly Asp Leu His Leu Pro His Glu
 65 70 75 80
 Glu Leu Leu Leu Leu Thr Asp Gly Glu Glu Asp Ala Glu Ala Phe
 85 90 95
 Phe Gln Asp Gln Ser Glu Glu Pro Gly Ala Ala Arg Pro His His Gln
 100 105 110
 Ala Arg Gln Val Glu His Ser Thr Gln Arg Gly His Leu Glu Ile Arg
 115 120 125
 Glu Leu Lys Lys Lys Leu Phe Lys Arg Arg Arg Val Leu Asn Arg Glu
 130 135 140
 Arg Arg Leu Arg His Arg Val Val Gly Ala Val Ile Asp Gln Gly Leu
 145 150 155 160
 Ile Thr Arg His His Leu Lys Lys Arg Ala Ala Gln Glu Leu Ser Gln
 165 170 175
 Glu Ile Lys Ala Phe Leu Thr Gly Val Asp Pro Ile Leu Gly His Gln
 180 185 190
 Leu Ser Ala Arg Glu His Ala Arg Cys Gly Leu Leu Leu Arg Ser
 195 200 205
 Leu Pro Pro Ala Arg Ala Ala Val Leu Asp His Leu Arg Gly Val Phe
 210 215 220
 Asp Glu Ser Val Arg Ala His Leu Ala Ala Leu Asp Glu Thr Pro Val
 225 230 235 240
 Ala Gly Pro Pro His Leu Arg Pro Pro Pro Pro Ser His Val Pro Ala
 245 250 255
 Gly Gly Pro Gly Leu Glu Asp Val Val Gln Glu Val Gln Gln Val Leu
 260 265 270
 Ser Glu Phe Ile Arg Ala Asn Pro Lys Ala Trp Ala Pro Val Ile Ser
 275 280 285
 Ala Trp Ser Ile Asp Leu Met Gly Gln Leu Ser Ser Thr Tyr Ser Gly
 290 295 300
 Gln His Gln Arg Val Pro His Ala Thr Gly Ala Leu Asn Glu Leu Leu
 305 310 315 320
 Gln Leu Trp Met Gly Cys Arg Ala Thr Arg Thr Leu Met Asp Ile Tyr
 325 330 335
 Val Gln Cys Leu Ser Ala Leu Ile Gly Ser Cys Pro Asp Ala Cys Val
 340 345 350
 Asp Ala Leu Leu Asp Thr Ser Val Gln His Ser Pro His Phe Asp Trp
 355 360 365
 Val Val Ala His Ile Gly Ser Ser Phe Pro Gly Thr Ile Ile Ser Arg

2003295784 19 Aug 2005

370	375	380	
Val Leu Ser Cys Gly Leu Lys Asp Phe Cys Val His Gly Gly Ala Gly			
385	390	395	400
Gly Gly Ala Gly Ser Ser Gly Ser Ser Ser Gln Thr Pro Ser Thr			
405	410	415	
Asp Pro Phe Pro Gly Ser Pro Ala Ile Pro Ala Glu Lys Arg Val Pro			
420	425	430	
Lys Ile Ala Ser Val Val Gly Ile Leu Gly His Leu Ala Ser Arg His			
435	440	445	
Gly Asp Ser Ile Arg Arg Glu Leu Leu Arg Met Phe His Asp Ser Leu			
450	455	460	
Ala Gly Gly Ser Gly Gly Arg Ser Gly Asp Pro Ser Leu Gln Ala Thr			
465	470	475	480
Val Pro Phe Leu Leu Gln Leu Ala Val Met Ser Pro Ala Leu Leu Gly			
485	490	495	
Thr Val Ser Gly Glu Leu Val Asp Cys Leu Lys Pro Pro Ala Val Leu			
500	505	510	
Ser Gln Leu Gln Gln His Leu Gln Gly Phe Pro Arg Glu Glu Leu Asp			
515	520	525	
Asn Met Leu Asn Leu Ala Val His Leu Val Ser Gln Ala Ser Gly Ala			
530	535	540	
Gly Ala Tyr Arg Leu Leu Gln Phe Leu Val Asp Thr Ala Met Pro Ala			
545	550	555	560
Ser Val Ile Thr Thr Gln Gly Leu Ala Val Pro Asp Thr Val Arg Glu			
565	570	575	
Ala Cys Asp Arg Leu Ile Gln Leu Leu Leu His Leu Gln Lys Leu			
580	585	590	
Val His His Arg Gly Gly Ser Pro Gly Glu Gly Val Leu Gly Pro Pro			
595	600	605	
Pro Pro Pro Arg Leu Val Pro Phe Leu Asp Ala Leu Lys Asn His Val			
610	615	620	
Gly Glu Leu Cys Gly Glu Thr Leu Arg Leu Glu Arg Lys Arg Phe Leu			
625	630	635	640
Trp Gln His Gln Leu Leu Gly Leu Leu Ser Val Tyr Thr Arg Pro Ser			
645	650	655	
Cys Gly Pro Glu Ala Leu Gly His Leu Leu Ser Arg Ala Arg Ser Pro			
660	665	670	
Glu Glu Leu Ser Leu Ala Thr Gln Leu Tyr Ala Gly Leu Val Val Ser			
675	680	685	
Leu Ser Gly Leu Leu Pro Leu Ala Phe Arg Ser Cys Leu Ala Arg Val			
690	695	700	

2003295784 19 Aug 2005
 His Ala Gly Thr Leu Gln Pro Pro Phe Thr Ala Arg Phe Leu Arg Asn
 705 710 715 720
 Leu Ala Leu Leu Val Gly Trp Glu Gln Gln Gly Gly Glu Gly Pro Ala
 725 730 735
 Ala Leu Gly Ala His Phe Gly Glu Ser Ala Ser Ala His Leu Ser Asp
 740 745 750
 Leu Ala Pro Leu Leu Leu His Pro Glu Glu Glu Val Ala Glu Ala Ala
 755 760 765
 Ala Ser Leu Leu Ala Ile Cys Pro Phe Pro Ser Glu Ala Leu Ser Pro
 770 775 780
 Ser Gln Leu Leu Gly Leu Val Arg Ala Gly Val His Arg Phe Phe Ala
 785 790 795 800
 Ser Leu Arg Leu His Gly Pro Pro Gly Val Ala Ser Ala Cys Gln Leu
 805 810 815
 Leu Thr Arg Leu Ser Gln Thr Ser Pro Ala Gly Leu Lys Ala Val Leu
 820 825 830
 Gln Leu Leu Val Glu Gly Ala Leu His Arg Gly Asn Thr Glu Leu Phe
 835 840 845
 Gly Gly Gln Val Asp Gly Asp Asn Glu Thr Leu Ser Val Val Ser Ala
 850 855 860
 Ser Leu Ala Ser Ala Ser Leu Leu Asp Thr Asn Arg Arg His Thr Ala
 865 870 875 880
 Ala Val Pro Gly Pro Gly Gly Ile Trp Ser Val Phe His Ala Gly Val
 885 890 895
 Ile Gly Arg Gly Leu Lys Pro Pro Lys Phe Val Gln Ser Arg Asn Gln
 900 905 910
 Gln Glu Val Ile Tyr Asn Thr Gln Ser Leu Leu Ser Leu Leu Val His
 915 920 925
 Cys Cys Ser Ala Pro Gly Gly Thr Glu Cys Gly Glu Cys Trp Gly Ala
 930 935 940
 Pro Ile Leu Ser Pro Glu Ala Ala Lys Ala Val Ala Val Thr Leu Val
 945 950 955 960
 Glu Ser Val Cys Pro Asp Ala Ala Gly Ala Glu Leu Ala Trp Pro Pro
 965 970 975
 Glu Glu His Ala Arg Ala Thr Val Glu Arg Asp Leu Arg Ile Gly Arg
 980 985 990
 Arg Phe Arg Glu Gln Pro Leu Leu Phe Glu Leu Leu Lys Leu Val Ala
 995 1000 1005
 Ala Ala Pro Pro Ala Leu Cys Tyr Cys Ser Val Leu Leu Arg Gly
 1010 1015 1020
 Leu Leu Ala Ala Leu Leu Gly His Trp Glu Ala Ser Arg His Thr
 1025 1030 1035

2003295784 19 Aug 2005

Asp Thr Thr His Ser Pro Trp His Leu Glu Ala Ser Cys Thr Leu
 1040 1045 1050
 Val Ala Val Met Ala Glu Gly Ser Leu Leu Pro Pro Ala Leu Gly
 1055 1060 1065
 Asn Met His Glu Val Phe Ser Gln Leu Ala Pro Phe Glu Val Arg
 1070 1075 1080
 Leu Leu Leu Leu Ser Val Trp Gly Phe Leu Arg Glu His Gly Pro
 1085 1090 1095
 Leu Pro Gln Lys Phe Ile Phe Gln Ser Glu Arg Gly Arg Phe Ile
 1100 1105 1110
 Arg Asp Phe Ser Arg Glu Gly Gly Glu Gly Pro His Leu
 1115 1120 1125
 Ala Val Leu His Ser Val Leu His Arg Asn Ile Asp Arg Leu Gly
 1130 1135 1140
 Leu Phe Ser Gly Arg Phe Gln Ala Pro Ser Pro Ser Thr Leu Leu
 1145 1150 1155
 Arg Gln Gly Thr
 1160

<210> 14
 <211> 1162
 <212> PRT
 <213> Artificial

<220>
 <223> A variant of the human BFLP1698 polypeptide

<400> 14

Met Ala Leu Val Pro Gly Arg Ser Lys Glu Asp Gly Leu Trp Thr Arg
 1 5 10 15

Asn Ser Pro Gly Ser Ser Gln His Pro Glu Ser Pro Arg Leu Pro Asn
 20 25 30

Pro Leu Trp Asp Arg Gly Lys Ile Gly Lys Val Glu Gly His Gln His
 35 40 45

Ile Gln Asp Phe Ser Gln Lys Ser His Leu Pro Ser Ile Val Val Glu
 50 55 60

Ser Ser Glu Val Asn Glu Glu Ser Gly Asp Leu His Leu Pro His Glu
 65 70 75 80

Glu Leu Leu Leu Leu Thr Asp Gly Glu Glu Asp Ala Glu Ala Phe
 85 90 95

Phe Gln Asp Gln Ser Glu Glu Pro Gly Ala Ala Arg Pro His His Gln
 100 105 110

Ala Arg Gln Val Glu His Ser Thr Gln Arg Gly His Leu Glu Ile Arg
 115 120 125

2003295784 19 Aug 2005

Glu Leu Lys Lys Lys Leu Phe Lys Arg Arg Arg Val Leu Asn Arg Glu
 130 135 140
 Arg Arg Leu Arg His Arg Val Val Gly Ala Val Ile Asp Gln Gly Leu
 145 150 155 160
 Ile Thr Arg His His Leu Lys Lys Arg Ala Ala Gln Glu Leu Ser Gln
 165 170 175
 Glu Ile Lys Ala Phe Leu Thr Gly Val Asp Pro Ile Leu Gly His Gln
 180 185 190
 Leu Ser Ala Arg Glu His Ala Arg Cys Gly Leu Leu Leu Arg Ser
 195 200 205
 Leu Pro Pro Ala Arg Ala Ala Val Leu Asp His Leu Arg Gly Val Phe
 210 215 220
 Asp Glu Ser Val Arg Ala His Leu Ala Ala Leu Asp Glu Thr Pro Val
 225 230 235 240
 Ala Gly Pro Pro His Leu Arg Pro Pro Pro Ser His Val Pro Ala
 245 250 255
 Gly Gly Pro Gly Leu Glu Asp Val Val Gln Glu Val Gln Val Leu
 260 265 270
 Ser Glu Phe Ile Arg Ala Asn Pro Lys Ala Trp Ala Pro Val Ile Ser
 275 280 285
 Ala Trp Ser Ile Asp Leu Met Gly Gln Leu Ser Ser Thr Tyr Ser Gly
 290 295 300
 Gln His Gln Arg Val Pro His Ala Thr Gly Ala Leu Asn Glu Leu Leu
 305 310 315 320
 Gln Leu Trp Met Gly Cys Arg Ala Thr Arg Thr Leu Met Asp Ile Tyr
 325 330 335
 Val Gln Cys Leu Ser Ala Leu Ile Gly Ser Cys Pro Asp Ala Cys Val
 340 345 350
 Asp Ala Leu Leu Asp Thr Ser Val Gln His Ser Pro His Phe Asp Trp
 355 360 365
 Val Val Ala His Ile Gly Ser Ser Phe Pro Gly Thr Ile Ile Ser Arg
 370 375 380
 Val Leu Ser Cys Gly Leu Lys Asp Phe Cys Val His Gly Gly Ala Gly
 385 390 395 400
 Gly Gly Ala Gly Ser Ser Gly Gly Ser Ser Ser Gln Thr Pro Ser Thr
 405 410 415
 Asp Pro Phe Pro Gly Ser Pro Ala Ile Pro Ala Glu Lys Arg Val Pro
 420 425 430
 Lys Ile Ala Ser Val Val Gly Ile Leu Gly His Leu Ala Ser Arg His
 435 440 445
 Gly Asp Ser Ile Arg Arg Glu Leu Leu Arg Met Phe His Asp Ser Leu

2003295784 19 Aug 2005

450	455	460
Ala Gly Gly Ser Gly Gly Arg Ser Gly Asp Pro Ser Leu Gln Ala Thr		
465	470	475
Val Pro Phe Leu Leu Gln Leu Ala Val Met Ser Pro Ala Leu Leu Gly		
485	490	495
Thr Val Ser Gly Glu Leu Val Asp Cys Leu Lys Pro Pro Ala Val Leu		
500	505	510
Ser Gln Leu Gln Gln His Leu Gln Gly Phe Pro Arg Glu Glu Leu Asp		
515	520	525
Asn Met Leu Asn Leu Ala Val His Leu Val Ser Gln Ala Ser Gly Ala		
530	535	540
Gly Ala Tyr Arg Leu Leu Gln Phe Leu Val Asp Thr Ala Met Pro Ala		
545	550	555
Ser Val Ile Thr Thr Gln Gly Leu Ala Val Pro Asp Thr Val Arg Glu		
565	570	575
Ala Cys Asp Arg Leu Ile Gln Leu Leu Leu His Leu Gln Lys Leu		
580	585	590
Val His His Arg Gly Gly Ser Pro Gly Glu Gly Val Leu Gly Pro Pro		
595	600	605
Pro Pro Pro Arg Leu Val Pro Phe Leu Asp Ala Leu Lys Asn His Val		
610	615	620
Gly Glu Leu Cys Gly Glu Thr Leu Arg Leu Glu Arg Lys Arg Phe Leu		
625	630	635
640		
Trp Gln His Gln Leu Leu Gly Leu Leu Ser Val Tyr Thr Arg Pro Ser		
645	650	655
Cys Gly Pro Glu Ala Leu Gly His Leu Leu Ser Arg Ala Arg Ser Pro		
660	665	670
Glu Glu Leu Ser Leu Ala Thr Gln Leu Tyr Ala Gly Leu Val Val Ser		
675	680	685
Leu Ser Gly Leu Leu Pro Leu Ala Phe Arg Ser Cys Leu Ala Arg Val		
690	695	700
His Ala Gly Thr Leu Gln Pro Pro Phe Thr Ala Arg Phe Leu Arg Asn		
705	710	715
720		
Leu Ala Leu Leu Val Gly Trp Glu Gln Gln Gly Glu Gly Pro Ala		
725	730	735
Ala Leu Gly Ala His Phe Gly Glu Ser Ala Ser Ala His Leu Ser Asp		
740	745	750
Leu Ala Pro Leu Leu His Pro Glu Glu Glu Val Ala Glu Ala Ala		
755	760	765
Ala Ser Leu Leu Ala Ile Cys Pro Phe Pro Ser Glu Ala Leu Ser Pro		
770	775	780

2003295784 19 Aug 2005

Ser Gln Leu Leu Gly Leu Val Arg Ala Gly Val His Arg Phe Phe Ala
 785 790 795 800
 Ser Leu Arg Leu His Gly Pro Pro Gly Val Ala Ser Ala Cys Gln Leu
 805 810 815
 Leu Thr Arg Leu Ser Gln Thr Ser Pro Ala Gly Leu Lys Ala Val Leu
 820 825 830
 Gln Leu Leu Val Glu Gly Ala Leu His Arg Gly Asn Thr Glu Leu Phe
 835 840 845
 Gly Gly Gln Val Asp Gly Asp Asn Glu Thr Leu Ser Val Val Ser Ala
 850 855 860
 Ser Leu Ala Ser Ala Ser Leu Leu Asp Thr Asn Arg Arg His Thr Ala
 865 870 875 880
 Ala Val Pro Gly Pro Gly Gly Ile Trp Ser Val Phe His Ala Gly Val
 885 890 895
 Ile Gly Arg Gly Leu Lys Pro Pro Lys Phe Val Gln Ser Arg Asn Gln
 900 905 910
 Gln Glu Val Ile Tyr Asn Thr Gln Ser Leu Leu Ser Leu Leu Val His
 915 920 925
 Cys Cys Ser Ala Pro Gly Gly Thr Glu Cys Gly Glu Cys Trp Gly Ala
 930 935 940
 Pro Ile Leu Ser Pro Glu Ala Ala Lys Ala Val Ala Val Thr Leu Val
 945 950 955 960
 Glu Ser Val Cys Pro Asp Ala Ala Gly Ala Glu Leu Ala Trp Pro Pro
 965 970 975
 Glu Glu His Ala Arg Ala Thr Val Glu Arg Asp Leu Arg Ile Gly Arg
 980 985 990
 Arg Phe Arg Glu Gln Pro Leu Leu Phe Glu Leu Leu Lys Leu Val Ala
 995 1000 1005
 Ala Ala Pro Pro Ala Leu Cys Tyr Cys Ser Val Leu Leu Arg Gly
 1010 1015 1020
 Leu Leu Ala Ala Leu Leu Gly His Trp Glu Ala Ser Arg His Thr
 1025 1030 1035
 Asp Thr Thr His Ser Pro Trp His Leu Glu Ala Ser Cys Thr Leu
 1040 1045 1050
 Val Ala Val Met Ala Glu Gly Ser Leu Leu Pro Pro Ala Leu Gly
 1055 1060 1065
 Asn Met His Glu Val Phe Ser Gln Leu Ala Pro Phe Glu Val Arg
 1070 1075 1080
 Leu Leu Leu Leu Ser Val Trp Gly Phe Leu Arg Glu His Gly Pro
 1085 1090 1095
 Leu Pro Gln Lys Phe Ile Phe Gln Ser Glu Arg Gly Arg Phe Ile
 1100 1105 1110

2003295784 19 Aug 2005

Arg Asp Phe Ser Arg Glu Gly Gly Gly Glu Gly Gly Pro His Leu
 1115 1120 1125

Ala Val Leu His Ser Val Leu His Arg Asn Leu Asp Arg Leu Gly
 1130 1135 1140

Leu Phe Ser Gly Arg Phe Gln Ala Pro Ser Pro Ser Thr Leu Leu
 1145 1150 1155

Arg Gln Gly Thr
 1160

<210> 15
 <211> 170
 <212> PRT
 <213> Homo sapiens

<400> 15

Met Ala Leu Val Pro Gly Arg Ser Lys Glu Asp Gly Leu Trp Thr Arg
 1 5 10 15

Asn Ser Pro Gly Ser Ser Gln His Pro Glu Ser Pro Arg Leu Pro Asn
 20 25 30

Pro Leu Trp Asp Arg Gly Lys Ile Gly Lys Val Glu Gly His Gln His
 35 40 45

Ile Gln Asp Phe Ser Gln Lys Ser His Leu Pro Ser Ile Val Val Glu
 50 55 60

Ser Ser Glu Val Asn Glu Glu Ser Gly Asp Leu His Leu Pro His Glu
 65 70 75 80

Glu Leu Leu Leu Leu Thr Asp Gly Glu Glu Asp Ala Glu Ala Phe
 85 90 95

Phe Gln Asp Gln Ser Glu Glu Pro Gly Ala Ala Arg Pro His His Gln
 100 105 110

Ala Arg Gln Val Glu His Ser Thr Gln Arg Gly His Leu Glu Ile Arg
 115 120 125

Glu Leu Lys Lys Lys Leu Phe Lys Arg Arg Arg Val Leu Asn Arg Glu
 130 135 140

Arg Arg Leu Arg His Arg Val Val Gly Ala Val Ile Asp Gln Gly Leu
 145 150 155 160

Ile Thr Arg His His Leu Lys Lys Arg Ala
 165 170

<210> 16
 <211> 1019
 <212> PRT
 <213> Homo sapiens

<400> 16

2003295784 19 Aug 2005

Met Ser Ala Leu Cys Asp Pro Pro Gly Ala Pro Gly Pro Pro Gly Pro
 1 5 10 15

Ala Pro Ala Thr His Gly Pro Ala Pro Leu Ser Ala Gln Glu Leu Ser
 20 25 30

Gln Glu Ile Lys Ala Phe Leu Thr Gly Val Asp Pro Ile Leu Gly His
 35 40 45

Gln Leu Ser Ala Arg Glu His Ala Arg Cys Gly Leu Leu Leu Leu Arg
 50 55 60

Ser Leu Pro Pro Ala Arg Ala Ala Val Leu Asp His Leu Arg Gly Val
 65 70 75 80

Phe Asp Glu Ser Val Arg Ala His Leu Ala Ala Leu Asp Glu Thr Pro
 85 90 95

Val Ala Gly Pro Pro His Leu Arg Pro Pro Pro Pro Ser His Val Pro
 100 105 110

Ala Gly Gly Pro Gly Leu Glu Asp Val Val Gln Glu Val Gln Gln Val
 115 120 125

Leu Ser Glu Phe Ile Arg Ala Asn Pro Lys Ala Trp Ala Pro Val Ile
 130 135 140

Ser Ala Trp Ser Ile Asp Leu Met Gly Gln Leu Ser Ser Thr Tyr Ser
 145 150 155 160

Gly Gln His Gln Arg Val Pro His Ala Thr Gly Ala Leu Asn Glu Leu
 165 170 175

Leu Gln Leu Trp Met Gly Cys Arg Ala Thr Arg Thr Leu Met Asp Ile
 180 185 190

Tyr Val Gln Cys Leu Ser Ala Leu Ile Gly Ser Cys Pro Asp Ala Cys
 195 200 205

Val Asp Ala Leu Leu Asp Thr Ser Val Gln His Ser Pro His Phe Asp
 210 215 220

Trp Val Val Ala His Ile Gly Ser Ser Phe Pro Gly Thr Ile Ile Ser
 225 230 235 240

Arg Val Leu Ser Cys Gly Leu Lys Asp Phe Cys Val His Gly Gly Ala
 245 250 255

Gly Gly Gly Ala Gly Ser Ser Gly Gly Ser Ser Ser Gln Thr Pro Ser
 260 265 270

Thr Asp Pro Phe Pro Gly Ser Pro Ala Ile Pro Ala Glu Lys Arg Val
 275 280 285

Pro Lys Ile Ala Ser Val Val Gly Ile Leu Gly His Leu Ala Ser Arg
 290 295 300

His Gly Asp Ser Ile Arg Arg Glu Leu Leu Arg Met Phe His Asp Ser
 305 310 315 320

Leu Ala Gly Gly Ser Gly Gly Arg Ser Gly Asp Pro Ser Leu Gln Ala
 325 330 335

2003295784 19 Aug 2005

Thr Val Pro Phe Leu Leu Gln Leu Ala Val Met Ser Pro Ala Leu Leu
 340 345 350
 Gly Thr Val Ser Gly Glu Leu Val Asp Cys Leu Lys Pro Pro Ala Val
 355 360 365
 Leu Ser Gln Leu Gln Gln His Leu Gln Gly Phe Pro Arg Glu Glu Leu
 370 375 380
 Asp Asn Met Leu Asn Leu Ala Val His Leu Val Ser Gln Ala Ser Gly
 385 390 395 400
 Ala Gly Ala Tyr Arg Leu Leu Gln Phe Leu Val Asp Thr Ala Met Pro
 405 410 415
 Ala Ser Val Ile Thr Thr Gln Gly Leu Ala Val Pro Asp Thr Val Arg
 420 425 430
 Glu Ala Cys Asp Arg Leu Ile Gln Leu Leu Leu His Leu Gln Lys
 435 440 445
 Leu Val His His Arg Gly Gly Ser Pro Gly Glu Gly Val Leu Gly Pro
 450 455 460
 Pro Pro Pro Pro Arg Leu Val Pro Phe Leu Asp Ala Leu Lys Asn His
 465 470 475 480
 Val Gly Glu Leu Cys Gly Glu Thr Leu Arg Leu Glu Arg Lys Arg Phe
 485 490 495
 Leu Trp Gln His Gln Leu Leu Gly Leu Leu Ser Val Tyr Thr Arg Pro
 500 505 510
 Ser Cys Gly Pro Glu Ala Leu Gly His Leu Leu Ser Arg Ala Arg Ser
 515 520 525
 Pro Glu Glu Leu Ser Leu Ala Thr Gln Leu Tyr Ala Gly Leu Val Val
 530 535 540
 Ser Leu Ser Gly Leu Leu Pro Leu Ala Phe Arg Ser Cys Leu Ala Arg
 545 550 555 560
 Val His Ala Gly Thr Leu Gln Pro Pro Phe Thr Ala Arg Phe Leu Arg
 565 570 575
 Asn Leu Ala Leu Leu Val Gly Trp Glu Gln Gln Gly Glu Gly Pro
 580 585 590
 Ala Ala Leu Gly Ala His Phe Gly Glu Ser Ala Ser Ala His Leu Ser
 595 600 605
 Asp Leu Ala Pro Leu Leu Leu His Pro Glu Glu Glu Val Ala Glu Ala
 610 615 620
 Ala Ala Ser Leu Leu Ala Ile Cys Pro Phe Pro Ser Glu Ala Leu Ser
 625 630 635 640
 Pro Ser Gln Leu Leu Gly Leu Val Arg Ala Gly Val His Arg Phe Phe
 645 650 655
 Ala Ser Leu Arg Leu His Gly Pro Pro Gly Val Ala Ser Ala Cys Gln

2003295784 19 Aug 2005

	660	665	670
Leu Leu Thr Arg Leu Ser Gln Thr Ser Pro Ala Gly Leu Lys Ala Val			
675	680	685	
Leu Gln Leu Leu Val Glu Gly Ala Leu His Arg Gly Asn Thr Glu Leu			
690	695	700	
Phe Gly Gly Gln Val Asp Gly Asp Asn Glu Thr Leu Ser Val Val Ser			
705	710	715	720
Ala Ser Leu Ala Ser Ala Ser Leu Leu Asp Thr Asn Arg Arg His Thr			
725	730	735	
Ala Ala Val Pro Gly Pro Gly Gly Ile Trp Ser Val Phe His Ala Gly			
740	745	750	
Val Ile Gly Arg Gly Leu Lys Pro Pro Lys Phe Val Gln Ser Arg Asn			
755	760	765	
Gln Gln Glu Val Ile Tyr Asn Thr Gln Ser Leu Leu Ser Leu Leu Val			
770	775	780	
His Cys Cys Ser Ala Pro Gly Gly Thr Glu Cys Gly Glu Cys Trp Gly			
785	790	795	800
Ala Pro Ile Leu Ser Pro Glu Ala Ala Lys Ala Val Ala Val Thr Leu			
805	810	815	
Val Glu Ser Val Cys Pro Asp Ala Ala Gly Ala Glu Leu Ala Trp Pro			
820	825	830	
Pro Glu Glu His Ala Arg Ala Thr Val Glu Arg Asp Leu Arg Ile Gly			
835	840	845	
Arg Arg Phe Arg Glu Gln Pro Leu Leu Phe Glu Leu Leu Lys Leu Val			
850	855	860	
Ala Ala Ala Pro Pro Ala Leu Cys Tyr Cys Ser Val Leu Leu Arg Gly			
865	870	875	880
Leu Leu Ala Ala Leu Leu Gly His Trp Glu Ala Ser Arg His Pro Asp			
885	890	895	
Thr Thr His Ser Pro Trp His Leu Glu Ala Ser Cys Thr Leu Val Ala			
900	905	910	
Val Met Ala Glu Gly Ser Leu Leu Pro Pro Ala Leu Gly Asn Met His			
915	920	925	
Glu Val Phe Ser Gln Leu Ala Pro Phe Glu Val Arg Leu Leu Leu Leu			
930	935	940	
Ser Val Trp Gly Phe Leu Arg Glu His Gly Pro Leu Pro Gln Lys Phe			
945	950	955	960
Ile Phe Gln Ser Glu Arg Gly Arg Phe Ile Arg Asp Phe Ser Arg Glu			
965	970	975	
Gly Gly Gly Glu Gly Gly Pro His Leu Ala Val Leu His Ser Val Leu			
980	985	990	

2003295784 19 Aug 2005

His Arg Asn Ile Asp Arg Leu Gly Leu Phe Ser Gly Arg Phe Gln Ala
 995 1000 1005

Pro Ser Pro Ser Thr Leu Leu Arg Gln Gly Thr
 1010 1015

<210> 17
 <211> 908
 <212> PRT
 <213> Homo sapiens

<400> 17

Pro Ala Gly Gly Pro Gly Leu Glu Asp Val Val Gln Glu Val Gln Gln
 1 5 10 15

Val Leu Ser Glu Phe Ile Arg Ala Asn Pro Lys Ala Trp Ala Pro Val
 20 25 30

Ile Ser Ala Trp Ser Ile Asp Leu Met Gly Gln Leu Ser Ser Thr Tyr
 35 40 45

Ser Gly Gln His Gln Arg Val Pro His Ala Thr Gly Ala Leu Asn Glu
 50 55 60

Leu Leu Gln Leu Trp Met Gly Cys Arg Ala Thr Arg Thr Leu Met Asp
 65 70 75 80

Ile Tyr Val Gln Cys Leu Ser Ala Leu Ile Gly Ser Cys Pro Asp Ala
 85 90 95

Cys Val Asp Ala Leu Leu Asp Thr Ser Val Gln His Ser Pro His Phe
 100 105 110

Asp Trp Val Val Ala His Ile Gly Ser Ser Phe Pro Gly Thr Ile Ile
 115 120 125

Ser Arg Val Leu Ser Cys Gly Leu Lys Asp Phe Cys Val His Gly Gly
 130 135 140

Ala Gly Gly Ala Gly Ser Ser Gly Gly Ser Ser Ser Gln Thr Pro
 145 150 155 160

Ser Thr Asp Pro Phe Pro Gly Ser Pro Ala Ile Pro Ala Glu Lys Arg
 165 170 175

Val Pro Lys Ile Ala Ser Val Val Gly Ile Leu Gly His Leu Ala Ser
 180 185 190

Arg His Gly Asp Ser Ile Arg Arg Glu Leu Leu Arg Met Phe His Asp
 195 200 205

Ser Leu Ala Gly Gly Ser Gly Gly Arg Ser Gly Asp Pro Ser Leu Gln
 210 215 220

Ala Thr Val Pro Phe Leu Leu Gln Leu Ala Val Met Ser Pro Ala Leu
 225 230 235 240

Leu Gly Thr Val Ser Gly Glu Leu Val Asp Cys Leu Lys Pro Pro Ala
 245 250 255

2003295784 19 Aug 2005

Val Leu Ser Gln Leu Gln Gln His Leu Gln Gly Phe Pro Arg Glu Glu
 260 265 270

 Leu Asp Asn Met Leu Asn Leu Ala Val His Leu Val Ser Gln Ala Ser
 275 280 285

 Gly Ala Gly Ala Tyr Arg Leu Leu Gln Phe Leu Val Asp Thr Ala Met
 290 295 300

 Pro Ala Ser Val Ile Thr Thr Gln Gly Leu Ala Val Pro Asp Thr Val
 305 310 315 320

 Arg Glu Ala Cys Asp Arg Leu Ile Gln Leu Leu Leu His Leu Gln
 325 330 335

 Lys Leu Val His His Arg Gly Gly Ser Pro Gly Glu Gly Val Leu Gly
 340 345 350

 Pro Pro Pro Pro Pro Arg Leu Val Pro Phe Leu Asp Ala Leu Lys Asn
 355 360 365

 His Val Gly Glu Leu Cys Gly Glu Thr Leu Arg Leu Glu Arg Lys Arg
 370 375 380

 Phe Leu Trp Gln His Gln Leu Leu Gly Leu Leu Ser Val Tyr Thr Arg
 385 390 395 400

 Pro Ser Cys Gly Pro Glu Ala Leu Gly His Leu Leu Ser Arg Ala Arg
 405 410 415

 Ser Pro Glu Glu Leu Ser Leu Ala Thr Gln Leu Tyr Ala Gly Leu Val
 420 425 430

 Val Ser Leu Ser Gly Leu Leu Pro Leu Ala Phe Arg Ser Cys Leu Ala
 435 440 445

 Arg Val His Ala Gly Thr Leu Gln Pro Pro Phe Thr Ala Arg Phe Leu
 450 455 460

 Arg Asn Leu Ala Leu Leu Val Gly Trp Glu Gln Gln Gly Glu Gly
 465 470 475 480

 Pro Ala Ala Leu Gly Ala His Phe Gly Glu Ser Ala Ser Ala His Leu
 485 490 495

 Ser Asp Leu Ala Pro Leu Leu His Pro Glu Glu Glu Val Ala Glu
 500 505 510

 Ala Ala Ala Ser Leu Leu Ala Ile Cys Pro Phe Pro Ser Glu Ala Leu
 515 520 525

 Ser Pro Ser Gln Leu Leu Gly Leu Val Arg Ala Gly Val His Arg Phe
 530 535 540

 Phe Ala Ser Leu Arg Leu His Gly Pro Pro Gly Val Ala Ser Ala Cys
 545 550 555 560

 Gln Leu Leu Thr Arg Leu Ser Gln Thr Ser Pro Ala Gly Leu Lys Ala
 565 570 575

 Val Leu Gln Leu Leu Val Glu Gly Ala Leu His Arg Gly Asn Thr Glu
 580 585 590

2003295784 19 Aug 2005

Leu Phe Gly Gly Gln Val Asp Gly Asp Asn Glu Thr Leu Ser Val Val
 595 600 605
 Ser Ala Ser Leu Ala Ser Ala Ser Leu Leu Asp Thr Asn Arg Arg His
 610 615 620
 Thr Ala Ala Val Pro Gly Pro Gly Gly Ile Trp Ser Val Phe His Ala
 625 630 635 640
 Gly Val Ile Gly Arg Gly Leu Lys Pro Pro Lys Phe Val Gln Ser Arg
 645 650 655
 Asn Gln Gln Glu Val Ile Tyr Asn Thr Gln Ser Leu Leu Ser Leu Leu
 660 665 670
 Val His Cys Cys Ser Ala Pro Gly Gly Thr Glu Cys Gly Glu Cys Trp
 675 680 685
 Gly Ala Pro Ile Leu Ser Pro Glu Ala Ala Lys Ala Val Ala Val Thr
 690 695 700
 Leu Val Glu Ser Val Cys Pro Asp Ala Ala Gly Ala Glu Leu Ala Trp
 705 710 715 720
 Pro Pro Glu Glu His Ala Arg Ala Thr Val Glu Arg Asp Leu Arg Ile
 725 730 735
 Gly Arg Arg Phe Arg Glu Gln Pro Leu Leu Phe Glu Leu Leu Lys Leu
 740 745 750
 Val Ala Ala Ala Pro Pro Ala Leu Cys Tyr Cys Ser Val Leu Leu Arg
 755 760 765
 Gly Leu Leu Ala Ala Leu Leu Gly His Trp Glu Ala Ser Arg His Pro
 770 775 780
 Asp Thr Thr His Ser Pro Trp His Leu Glu Ala Ser Cys Thr Leu Val
 785 790 795 800
 Ala Val Met Ala Glu Gly Ser Leu Leu Pro Pro Ala Leu Gly Asn Met
 805 810 815
 His Glu Val Phe Ser Gln Leu Ala Pro Phe Glu Val Arg Leu Leu Leu
 820 825 830
 Leu Ser Val Trp Gly Phe Leu Arg Glu His Gly Pro Leu Pro Gln Lys
 835 840 845
 Phe Ile Phe Gln Ser Glu Arg Gly Arg Phe Ile Arg Asp Phe Ser Arg
 850 855 860
 Glu Gly Gly Glu Gly Gly Pro His Leu Ala Val Leu His Ser Val
 865 870 875 880
 Leu His Arg Asn Ile Asp Arg Leu Gly Leu Phe Ser Gly Arg Phe Gln
 885 890 895
 Ala Pro Ser Pro Ser Thr Leu Leu Arg Gln Gly Thr
 900 905

2003295784 19 Aug 2005

<210> 18
 <211> 833
 <212> PRT
 <213> Homo sapiens
 <400> 18

Pro Arg Val Arg Asp Ile Tyr Val Gln Cys Leu Ser Ala Leu Ile Gly
 1 5 10 15

Ser Cys Pro Asp Ala Cys Val Asp Ala Leu Leu Asp Thr Ser Val Gln
 20 25 30

His Ser Pro His Phe Asp Trp Val Val Ala His Ile Gly Ser Ser Phe
 35 40 45

Pro Gly Thr Ile Ile Ser Arg Val Leu Ser Cys Gly Leu Lys Asp Phe
 50 55 60

Cys Val His Gly Gly Ala Gly Gly Ala Gly Ser Ser Gly Gly Ser
 65 70 75 80

Ser Ser Gln Thr Pro Ser Thr Asp Pro Phe Pro Gly Ser Pro Ala Ile
 85 90 95

Pro Ala Glu Lys Arg Val Pro Lys Ile Ala Ser Val Val Gly Ile Leu
 100 105 110

Gly His Leu Ala Ser Arg His Gly Asp Ser Ile Arg Arg Glu Leu Leu
 115 120 125

Arg Met Phe His Asp Ser Leu Ala Gly Gly Ser Gly Gly Arg Ser Gly
 130 135 140

Asp Pro Ser Leu Gln Ala Thr Val Pro Phe Leu Leu Gln Leu Ala Val
 145 150 155 160

Met Ser Pro Ala Leu Leu Gly Thr Val Ser Gly Glu Leu Val Asp Cys
 165 170 175

Leu Lys Pro Pro Ala Val Leu Ser Gln Leu Gln Gln His Leu Gln Gly
 180 185 190

Phe Pro Arg Glu Glu Leu Asp Asn Met Leu Asn Leu Ala Val His Leu
 195 200 205

Val Ser Gln Ala Ser Gly Ala Gly Ala Tyr Arg Leu Leu Gln Phe Leu
 210 215 220

Val Asp Thr Ala Met Pro Ala Ser Val Ile Thr Thr Gln Gly Leu Ala
 225 230 235 240

Val Pro Asp Thr Val Arg Glu Ala Cys Asp Arg Leu Ile Gln Leu Leu
 245 250 255

Leu Leu His Leu Gln Lys Leu Val His His Arg Gly Gly Ser Pro Gly
 260 265 270

Glu Gly Val Leu Gly Pro Pro Pro Pro Arg Leu Val Pro Phe Leu
 275 280 285

Asp Ala Leu Lys Asn His Val Gly Glu Leu Cys Gly Glu Thr Leu Arg

2003295784 19 Aug 2005

	290	295	300												
Leu	Glu	Arg	Lys	Arg	Phe	Leu	Trp	Gln	His	Gln	Leu	Leu	Gly	Leu	Leu
305					310			315			320				
Ser	Val	Tyr	Thr	Arg	Pro	Ser	Cys	Gly	Pro	Glu	Ala	Leu	Gly	His	Leu
					325			330			335				
Leu	Ser	Arg	Ala	Arg	Ser	Pro	Glu	Glu	Leu	Ser	Leu	Ala	Thr	Gln	Leu
					340			345			350				
Tyr	Ala	Gly	Leu	Val	Val	Ser	Leu	Ser	Gly	Leu	Leu	Pro	Leu	Ala	Phe
					355			360			365				
Arg	Ser	Cys	Leu	Ala	Arg	Val	His	Ala	Gly	Thr	Leu	Gln	Pro	Pro	Phe
					370			375			380				
Thr	Ala	Arg	Phe	Leu	Arg	Asn	Leu	Ala	Leu	Leu	Val	Gly	Trp	Glu	Gln
					385			390			395			400	
Gln	Gly	Gly	Glu	Gly	Pro	Ala	Ala	Leu	Gly	Ala	His	Phe	Gly	Glu	Ser
					405			410			415				
Ala	Ser	Ala	His	Leu	Ser	Asp	Leu	Ala	Pro	Leu	Leu	Leu	His	Pro	Glu
					420			425			430				
Glu	Glu	Val	Ala	Glu	Ala	Ala	Ser	Leu	Leu	Ala	Ile	Cys	Pro	Phe	
					435			440			445				
Pro	Ser	Glu	Ala	Leu	Ser	Pro	Ser	Gln	Leu	Leu	Gly	Leu	Val	Arg	Ala
					450			455			460				
Gly	Val	His	Arg	Phe	Phe	Ala	Ser	Leu	Arg	Leu	His	Gly	Pro	Pro	Gly
					465			470			475			480	
Val	Ala	Ser	Ala	Cys	Gln	Leu	Leu	Thr	Arg	Leu	Ser	Gln	Thr	Ser	Pro
					485			490			495				
Ala	Gly	Leu	Lys	Ala	Val	Leu	Gln	Leu	Leu	Val	Glu	Gly	Ala	Leu	His
					500			505			510				
Arg	Gly	Asn	Thr	Glu	Leu	Phe	Gly	Gly	Gln	Val	Asp	Gly	Asp	Asn	Glu
					515			520			525				
Thr	Leu	Ser	Val	Val	Ser	Ala	Ser	Leu	Ala	Ser	Leu	Leu	Asp		
					530			535			540				
Thr	Asn	Arg	Arg	His	Thr	Ala	Ala	Val	Pro	Gly	Pro	Gly	Gly	Ile	Trp
					545			550			555			560	
Ser	Val	Phe	His	Ala	Gly	Val	Ile	Gly	Arg	Gly	Leu	Lys	Pro	Pro	Lys
					565			570			575				
Phe	Val	Gln	Ser	Arg	Asn	Gln	Gln	Glu	Val	Ile	Tyr	Asn	Thr	Gln	Ser
					580			585			590				
Leu	Leu	Ser	Leu	Leu	Val	His	Cys	Cys	Ser	Ala	Pro	Gly	Gly	Thr	Glu
					595			600			605				
Cys	Gly	Glu	Cys	Trp	Gly	Ala	Pro	Ile	Leu	Ser	Pro	Glu	Ala	Ala	Lys
					610			615			620				

2003295784 19 Aug 2005

Ala Val Ala Val Thr Leu Val Glu Ser Val Cys Pro Asp Ala Ala Gly
 625 630 635 640
 Ala Glu Leu Ala Trp Pro Pro Glu Glu His Ala Arg Ala Thr Val Glu
 645 650 655
 Arg Asp Leu Arg Ile Gly Arg Arg Phe Arg Glu Gln Pro Leu Leu Phe
 660 665 670
 Glu Leu Leu Lys Leu Val Ala Ala Pro Pro Ala Leu Cys Tyr Cys
 675 680 685
 Ser Val Leu Leu Arg Gly Leu Leu Ala Ala Leu Leu Gly His Trp Glu
 690 695 700
 Ala Ser Arg His Pro Asp Thr Thr His Ser Pro Trp His Leu Glu Ala
 705 710 715 720
 Ser Cys Thr Leu Val Ala Val Met Ala Glu Gly Ser Leu Leu Pro Pro
 725 730 735
 Ala Leu Gly Asn Met His Glu Val Phe Ser Gln Leu Ala Pro Phe Glu
 740 745 750
 Val Arg Leu Leu Leu Ser Val Trp Gly Phe Leu Arg Glu His Gly
 755 760 765
 Pro Leu Pro Gln Lys Phe Ile Phe Gln Ser Glu Arg Gly Arg Phe Ile
 770 775 780
 Arg Asp Phe Ser Arg Glu Gly Gly Glu Gly Gly Pro His Leu Ala
 785 790 795 800
 Val Leu His Ser Val Leu His Arg Asn Ile Asp Arg Leu Gly Leu Phe
 805 810 815
 Ser Gly Arg Phe Gln Ala Pro Ser Pro Ser Thr Leu Leu Arg Gln Gly
 820 825 830

Thr

<210> 19
 <211> 963
 <212> PRT
 <213> Mus musculus

<400> 19

Met Ile Leu Met Ile Thr Leu Phe Thr Thr Ala Thr Phe Leu Val Leu
 1 5 10 15
 Gly Val Ser Val Trp Val Leu Ile Lys Glu Ile Leu Thr Val His Val
 20 25 30
 Pro Pro Pro Ile Pro Gln Arg Val Lys Phe His Met Leu His Tyr Phe
 35 40 45
 Phe Gln Leu Thr Ile Ala Leu Gly Asn Val Leu Glu Lys Met Lys Ile
 50 55 60

2003295784 19 Aug 2005

Cys Pro Met Pro Arg Phe Phe Cys Phe Ile Gln Asp Leu Leu Val Ser
 65 70 75 80
 Lys Asn Asn Phe Gly Val Leu Val Lys Asn Met His Phe Gly Thr Ile
 85 90 95
 Pro Val Arg Leu Phe Gln Pro Lys Ala Thr Ser Ser Gly Pro Arg Lys
 100 105 110
 Gly Ile Ile Phe Tyr His Gly Gly Gly Val Phe Gly Ser Leu Asp
 115 120 125
 Ser Tyr His Asn Thr Cys Ser Tyr Leu Ala His Glu Thr Asp Ser Val
 130 135 140
 Val Met Ala Val Gly Tyr Arg Lys Leu Pro Asp His His His Pro Thr
 145 150 155 160
 Ala Tyr His Asp Cys Leu Asn Ala Thr Val His Phe Leu Lys Glu Leu
 165 170 175
 Lys Thr Tyr Gly Val Asp Pro Ala Arg Val Val Val Ser Gly Glu Ser
 180 185 190
 Ile Gly Ala Gly Ala Ala Ala Ile Ile Ala Gln Val Val Leu Ala Arg
 195 200 205
 Lys Asp Leu Pro Gln Phe Arg Ala Gln Val Leu Ile Asn Pro Val Val
 210 215 220
 Gln Gly Val Asn Phe Gln Leu Pro Ser Tyr Gln Gln Tyr Ser Asp Val
 225 230 235 240
 Pro Phe Leu Ser Arg Lys Phe Leu Met Thr Cys Ala Cys Lys Tyr Leu
 245 250 255
 Ala Ile Asp Gln Ser Trp Lys Asp Ala Met Leu Lys Gly Thr Phe Ile
 260 265 270
 Pro Pro Asp His Trp Lys Lys Tyr Ala Lys Trp Leu Ser Ser Asp Asn
 275 280 285
 Ile Pro Gln Arg Phe Lys Ser Gln Gly Arg Gln Pro Glu Phe Pro Gly
 290 295 300
 Pro Phe Asn Glu Ser Ala Tyr Leu Glu Thr Asn His Ile Phe Ser Leu
 305 310 315 320
 Glu Thr Ser Pro Leu Leu Ala Asp Asp Lys Ile Ile Ala Gln Leu Pro
 325 330 335
 Glu Thr Phe Leu Val Ser Ser Glu Tyr Asp Val Leu Arg Asp Asp Thr
 340 345 350
 Leu Leu Tyr Lys Lys Arg Leu Glu Glu Gln Gly Val Pro Val Thr Trp
 355 360 365
 Leu Trp Val Gly Leu Pro Asp Val Arg Val Val Pro Leu Ser Gln Gly
 370 375 380
 Pro Arg Ala Pro Gly Pro Pro Gly Pro Ala Pro Ala Thr His Gly Pro
 385 390 395 400

2003295784 19 Aug 2005

Val Pro Leu Ser Ala Gln Glu Leu Ser Gln Glu Ile Lys Ala Phe Leu
 405 410 415
 Thr Gly Val Asp Pro Ile Leu Gly His Gln Leu Ser Ala Arg Glu His
 420 425 430
 Ala Gln Cys Gly Leu Leu Leu Arg Ser Leu Pro Pro Ala Gln Ala
 435 440 445
 Ala Val Leu Asp His Leu Arg Gly Val Phe Asp Glu Ser Val Gln Ala
 450 455 460
 His Leu Ala Ala Leu Glu Glu Ser Pro Val Ala Gly Pro Pro His Leu
 465 470 475 480
 Arg Pro Pro Ser Pro Ser His Val Pro Thr Gly Gly Pro Gly Leu Glu
 485 490 495
 Asp Val Val His Glu Val Gln Gln Val Leu Cys Glu Phe Ile Arg Ala
 500 505 510
 Asn Pro Lys Val Trp Ala Pro Val Ile Ser Ala Trp Ser Ile Asp Leu
 515 520 525
 Met Gly Gln Leu Ser Ser Thr Tyr Ser Gly Gln His Gln Arg Val Pro
 530 535 540
 His Ala Thr Gly Ser Arg Asn Glu Leu Leu Gln Leu Trp Met Ser Cys
 545 550 555 560
 Arg Asp Thr Arg Thr Leu Met Asp Ile Tyr Val Gln Cys Leu Ser Ala
 565 570 575
 Leu Ile Gly Ser Cys Pro Asp Ala Tyr Ser Phe Pro Gly Phe Pro Ala
 580 585 590
 Ile Pro Gly Glu Lys Arg Val Pro Lys Ile Ala Ser Ala Val Gly Ile
 595 600 605
 Gln Val Thr Trp Leu Ser Ala Met Glu Thr Ala Ser Asp Gly Asn Cys
 610 615 620
 Cys Ala Cys Phe Met Ile Val Trp Gln Arg Phe Leu Val Asp Thr Ala
 625 630 635 640
 Met Pro Ala Ala Val Ile Thr Thr Gln Gly Leu Ala Val Pro Asp Thr
 645 650 655
 Met Arg Glu Ala Tyr Asp Arg Leu Ile Gln Leu Leu Leu His Leu
 660 665 670
 Gln Lys Leu Val His His Arg Gly Gly Ala Pro Gly Glu Gly Val Leu
 675 680 685
 Gly Pro Pro Ser Pro Pro Leu Pro Val Pro Phe Leu Asp Ala Leu Arg
 690 695 700
 Asn His Val Gly Glu Leu Cys Gly Lys Thr Leu Arg Leu Glu Arg Lys
 705 710 715 720
 Arg Phe Leu Trp Gln His Gln Leu Leu Ala Tyr Ser Trp Phe Leu Arg

2003295784 19 Aug 2005

725 730 735

Lys Leu Ala Leu Leu Val Gly Trp Glu Gln Gln Gly Asp Glu Gly Pro
 740 745 750

Ser Ala Leu Gly Ala Arg Phe Gly Glu Ser Ala Ser Ala His Leu Ser
 755 760 765

Asp Leu Ala Pro Leu Leu Leu His Pro Glu Glu Glu Val Ala Glu Ala
 770 775 780

Ala Ala Ser Leu Leu Ala Val Cys Pro Phe Pro Ser Glu Ala Leu Ser
 785 790 795 800

Pro Ser Gln Leu Leu Gly Leu Val Arg Ala Gly Val His His Phe Phe
 805 810 815

Asn Ser Leu Arg Leu His Gly Pro Pro Gly Val Ala Ser Ala Ser Gln
 820 825 830

Leu Leu Thr Arg Leu Ser Gln Thr Ser Pro Ala Gly Leu Lys Ala Val
 835 840 845

Leu Gln Leu Leu Val Glu Val Ala Leu His Arg Gly Asn Thr Glu Leu
 850 855 860

Phe Gly Glu Glu Met Val Gly Asp Asn Glu Thr Leu Ser Ile Val Ser
 865 870 875 880

Thr Pro Leu Ala Ser Ala Ser Leu Leu Asp Ile Asn Arg Arg His Thr
 885 890 895

Ala Ala Val Pro Gly Pro Gly Gly Ile Trp Ser Val Phe His Ala Gly
 900 905 910

Val Ile Gly Arg Gly Leu Lys Ser Pro Lys Ile Val Gln Ser Arg Asn
 915 920 925

His Gln Glu Val Ile Tyr Asn Thr Gln Ser Leu Ile Ser Leu Leu Val
 930 935 940

His Cys Cys Ser Ala Ser Gly Ser Ser Glu His Lys Gly Tyr Trp Gly
 945 950 955 960

Ala Pro Thr

<210> 20
 <211> 900
 <212> PRT
 <213> Anopheles gambiae

<400> 20

Lys Asn Leu Pro Asp Pro Ser Val Asp Asp Glu Ala Val Gln Glu Ile
 1 5 10 15

His Glu Ala Leu Glu Arg Leu Val Thr Val Gly Pro Thr Ala Trp Cys
 20 25 30

Pro Val Ile Ser Ser Trp Cys Leu Lys Leu Leu Gly Glu Val Cys Lys

2003295784 19 Aug 2005

35

40

45

Lys His Cys Arg Arg Arg Pro Pro Asp Ile Arg Gly Ala Cys Asn Leu
 50 55 60

Trp Leu Gly Cys Ser Ala Ile Arg Tyr Leu Leu Ser Leu Ser Ala Leu
 65 70 75 80

Cys Phe Glu Lys Leu Asp Gln Arg Glu Met Asp Glu Cys Ile Asn Glu
 85 90 95

Met Leu Val Ile Tyr Gly Thr His Thr Pro Phe Phe Asp Trp Val Val
 100 105 110

Ala Arg Leu Gly Gly Cys Phe Pro Leu Arg Val Met Ser Ser Met Leu
 115 120 125

Ser Met Gly Val Ala Arg Phe Thr Gly Asp Phe Asp Gln Pro Ser Glu
 130 135 140

Ser Glu Val Glu Val Leu Ser Tyr Leu Gly Leu Ala His Glu Ser Asp
 145 150 155 160

Leu Arg Lys Ala Leu Lys Ser Thr Leu Glu His Val Ala Ser Tyr Lys
 165 170 175

Gln Pro Ile Pro Tyr Leu Leu Met Leu Ala Lys Ala Ser Glu Thr Ile
 180 185 190

Ser Gln Ala Leu Val Ala Val Phe Leu Glu Leu His Asp Glu Asn Arg
 195 200 205

Leu Pro Thr Leu Thr Val Leu Pro Lys Asn Trp Pro Ala Asn Ile Gly
 210 215 220

Leu Pro Tyr Val Leu His Thr Val Ala Gly Leu Leu Leu Lys Met Lys
 225 230 235 240

Lys His Ala Ile Arg Val Thr Leu Ile Leu Ala Lys Met Ser Thr Gln
 245 250 255

His Ser Trp Cys Gln Glu Leu Leu Glu Met Met Phe Ile Glu Leu Glu
 260 265 270

Thr Leu Val Leu Asp Lys His Thr Ala Ala Leu Leu Glu Asp Ile Ile
 275 280 285

Arg Asp Gly Met Arg Glu Met Leu Trp Asn Ser Cys Thr Ser Asp Val
 290 295 300

Pro Tyr Leu Gln Gln Val Ala Val Arg Leu Ile Leu Leu Ala Ser Phe
 305 310 315 320

Lys Ser Asn Ser Val Phe His Gln Thr Ile Val Tyr Leu Leu Ser Val
 325 330 335

Ser Glu Pro Ala Leu Ala Val Ser Thr Lys Pro His Leu Asn Ala Leu
 340 345 350

Val Arg Val Leu Gly Gly Pro His Gly Thr Val Asp Val Pro Lys Val
 355 360 365

2003295784 19 Aug 2005

66/67

Lys Pro Ala Phe Glu Thr Ala Phe Glu Lys Ile Leu Ile Ser Pro Cys
370 375 380

Lys Arg Val Glu Cys Trp Asn Ile Leu His Asn Leu Val Glu Leu Leu
385 390 395 400

Lys Leu Glu Arg Thr Ala Ile Leu Gly Ser Thr Leu Arg Lys Val Asn
405 410 415

Cys Thr Gly Met Met His Glu Leu Leu Asp Arg Val Leu Lys Ile Trp
420 425 430

Glu Asn Phe Met Ser Arg Glu Arg Gln Asp Asp Thr Gln Gly Gly Gly
435 440 445

Cys Thr Val Arg Ala Thr Gln Glu Val Gln Glu Asn Ala Asn Glu Pro
450 455 460

Gly Lys Arg Val Lys Asn Glu Arg Pro Glu Pro Met Glu Thr Asp Glu
465 470 475 480

Gln His Arg Leu Gly Thr Gly Ser Arg Thr Val Thr Tyr Lys Asp Leu
485 490 495

Ile His Glu Thr Val Arg Leu Ile Glu Cys Met Asp Leu Gly Lys Ser
500 505 510

Val Thr Ile Gly Thr Ala Gln Thr Leu Lys Leu Ser Gln Leu Leu Val
515 520 525

Lys Tyr Phe Phe Tyr Cys Leu Lys Leu Ser Thr Ala Gly Thr Ser Val
530 535 540

Pro Ser Gly Thr Val Pro Glu Ser Leu Asp Glu Ser Leu Asn Arg Val
545 550 555 560

Tyr Ser Leu Leu Ser Lys His Cys Gly His Arg Lys Ala Ala Arg Thr
565 570 575

Ala Ala Leu Arg Glu Leu Leu Glu Gly Ala Leu Phe Leu Tyr Gly Asp
580 585 590

Leu Phe Gly Ser Gln Ala Glu Ser Gln Ala Tyr Ser Phe Asp Lys Pro
595 600 605

Asp Asp Leu Leu Ile Arg Leu Asn Gln Lys Gln Gly Ile Ala Leu Asn
610 615 620

Ala Ser Arg Ala Thr Val Leu His Ala Gly Ile Ile Gly Gln Gly Pro
625 630 635 640

Lys Ile Pro Ser Lys Lys Ala Val Gly Pro Ala Ser Glu Met Gln Asn
645 650 655

His Leu Leu Asn Ala Ile Val Ala Cys Cys Gln Asp Val Asn Asp His
660 665 670

Gln Ala Thr Ile Asp Gly Phe Ser Tyr Val Ser Leu Leu Val Glu
675 680 685

Met Ile Ser Pro Asp Val Met Tyr Asn Gly Leu Pro Trp Pro Glu Glu
690 695 700

2003295784 19 Aug 2005

Asp Phe Ile Arg Val Thr Met Glu Arg Asp Leu Gln Ile Gln Arg Thr
 705 710 715 720
 Phe Arg His Ser Pro Ile Leu Trp Ser Ile Leu Gly Leu Val Ala Cys
 725 730 735
 Tyr Arg Pro Ser Leu Cys Tyr Cys Ser Val Leu Leu Arg Ala Leu Cys
 740 745 750
 Ala Ser Ala Leu His Gln Trp Arg Ser Lys Thr Ala Glu Thr Leu Asn
 755 760 765
 Gly Gln Lys Thr Asp Leu Leu Tyr Met Thr Thr Lys Leu Leu Glu Leu
 770 775 780
 Met Ala Leu Ala Gln Leu Leu Pro Pro Pro Leu Ser Tyr Leu His Ile
 785 790 795 800
 Val Leu Glu Tyr Phe Asp Gly Pro Glu Ile Ala Tyr Val Leu Lys Glu
 805 810 815
 Cys Val Trp Asn Tyr Met Lys Asp His Val Pro Ser Pro Val Leu Phe
 820 825 830
 Val Cys Asp Pro Thr Gly Phe His Trp Arg Asp Pro Leu Thr Ser Arg
 835 840 845
 Pro Pro Leu Gln Tyr Thr Asn Pro Leu Arg Asn Thr Met Gln Lys Lys
 850 855 860
 Leu Thr Lys Val Gly His Leu Tyr His Gln Met Phe Val Gly Pro Glu
 865 870 875 880
 Leu Arg Asn Pro Ser Ala Ser Asn Ser Gly Gln Pro Thr Gln Gln Pro
 885 890 895
 Leu Val Gln Gly
 900

<210> 21
 <211> 27
 <212> PRT
 <213> Homo sapiens
 <400> 21

Met Ser Ala Leu Cys Asp Pro Pro Gly Ala Pro Gly Pro Pro Gly Pro
 1 5 10 15
 Ala Pro Ala Thr His Gly Pro Ala Pro Leu Ser
 20 25