PCT

WORLD INTELLECTUAL PROPERTY ORGANIZATION
International Bureau

INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(51) International Patent Classification 6

GO6F A2

(11) International Publication Number:

(43) International Publication Date:

WO 98/55910

10 December 1998 (10.12.98)

(21) International Application Number: PCT/US98/11267

(22) International Filing Date: 2 June 1998 (02.06.98)

(30) Priority Data:

08/869,659 5 June 1997 (05.06.97) Us

(71) Applicant: SUN MICROSYSTEMS, INC. [US/US], 2250
Garcia Avenue, Mountain View, CA 94043 (US).

(72) Inventors: SAULPAUGH, Thomas; 6938 Bret Harte Drive,
San Jose, CA 95120 (US). BOHMAN, David, E., II; 1200
Washington Street #5, San Francisco, CA 94108 (US).

(74) Agents: HYMAN, Eric, S. et al.; Blakely, Sokoloff, Taylor &
Zafman, 7th floor, 12400 Wilshire Boulevard, Los Angeles,
CA 90025-1026 (US).

(81) Designated States: JP, European patent (AT, BE, CH, CY, DE,
DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE).

Published
Without international search report and to be republished
upon receipt of that report.

(54) Title: APPARATUS AND METHOD FOR SECURE DEVICE ADDRESSING

(57) Abstract

A method for securely accessing a peripheral device at an absolute address
is disclosed. A computer program is executed to request from an operating system
a memory access object including a procedure executable to address the peripheral
device at the absolute address. An operating system procedure is executed to
provide the memory access object to the computer program if a value associated
with the computer program indicates that the computer program is trusted to
If the operating system procedure provides the
memory access object to the computer program, the computer program is executed
invoke the memory access object procedure to address the peripheral device at

perform absolute addressing.

the absolute address.

EACH ADDRBSSABLE DEV!CB TOA DATABASE OF DEVICE
INFORMATION 210

MANAGER CODE THAT PROVIDES AN APPLICATION
PROGRAMMING INTERFACE FOR BUILDING AND
SUPPLYING MEMORY ACCESS OBJECTS 218

- A
FIRST PLATFORM MANAGER PROCEDURE, THE OBJECT-
REQUESTING PROGRAM PASSING A PARAMETER
IDENTIFYING ONE OF THE ADDRESSABLE DEVICES 220

TO BUILD A MEMORY ACCESS OB]'ECT THAT MAPS THE
IDENTIFIED ADDRESSABLE DEVICE BASED ON|
INFORMATION IN THE DATABASE OF DEVICE
INFORMATION, THE FIRST PLATFORM MANAGER
PROCEDURE RETURNING THE MEMORY ACCESS OBIECT
TO THE CALLER

CALL A SECOND !’LAT!‘ORM MANAGER PROCEDURE TO
ACTIVATE ACCESS METHODS IN THE MEMORY ACCESS
OBJECT

EXECUTE THE SECOND Fﬁ]’fﬁm MANAGER @::]
TO VERIFY THAT THE OBJECT-REQUESTING PROGRAM
CODE IS TRUSTED

EXECUTE THE SECOND PLATFORM MANAGER PROCEDURE
TO ACTIVATE THE ACCESS METHODS OF THE MEMORY|

ACCESS OBJECT

AL
AM
AT
AU
AZ
BA
BB
BE
BF
BG
BJ

BY
CA
CF
CG
CH
CI
CM
CN
Cu
CZ
DE
DK
EE

Codes used to identify States party to the PCT on the front pages of pamphlets publishing international applications under the PCT.

Albania
Armenia
Austria
Australia
Azerbaijan
Bosnia and Herzegovina
Barbados
Belgium
Burkina Faso
Bulgaria

Benin

Brazil

Belarus

Canada

Central African Republic
Congo
Switzerland
Cdte d’Ivoire
Cameroon
China

Cuba

Czech Republic
Germany
Denmark
Estonia

ES
FI
FR
GA
GB
GE
GH
GN
GR
HU
IE
IL
IS
IT
JP
KE
KG
KP

KR
KZ
LC
LI

LK
LR

FOR THE PURPOSES OF INFORMATION ONLY

Spain

Finland

France

Gabon

United Kingdom
Georgia

Ghana

Guinea

Greece

Hungary

Ireland

Israel

Iceland

Italy

Japan

Kenya
Kyrgyzstan
Democratic People’s
Republic of Korea
Republic of Korea
Kazakstan

Saint Lucia
Liechtenstein

Sri Lanka

Liberia

LS
LT
LU
LV
MC
MD
MG
MK

ML
MN
MR
MW
MX
NE
NL
NO
NZ
PL
PT
RO
RU
SD
SE
SG

Lesotho

Lithuanija
Luxembourg

Latvia

Monaco

Republic of Moldova
Madagascar

The former Yugoslav
Republic of Macedonia
Mali

Mongolia

Mauritania

Malawi

Mexico

Niger

Netherlands

Norway

New Zealand

Poland

Portugal

Romania

Russian Federation
Sudan

Sweden

Singapore

SI
SK
SN
SZ
™D
TG
TJ
™
TR
TT
UA
UG
us
vz
VN
YU
w

Slovenia

Slovakia

Senegal

Swaziland

Chad

Togo

Tajikistan
Turkmenistan
Turkey

Trinidad and Tobago
Ukraine

Uganda

United States of America
Uzbekistan

Viet Nam
Yugoslavia
Zimbabwe

WO0.98/55910 PCT/US98/11267

APPARATUS AND METHOD FOR SECURE DEVICE ADDRESSING

BACKGROUND OF THE INVENTION

(1) Field of the Invention

The present invention relates to the field of computer programming.
More specifically, the present invention relates to a method for providing

secure input/output (I/O) device addressing.

2) Art Background

Virtually all modern operating systems support the notion of a user-
installable device driver. A device driver is a computer program that
provides an operating system (OS) with a well-defined set of services to
control the operation of a specific computer hardware component. The act
of installing a device driver generally involves loading the device driver
into system memory and recording the location of the device driver in an
OS-maintained data structure. Once installed, the device driver operates as
an extension of the OS5. When an application program requests the OS to
perform device I/0O, the operating system identifies the device driver
responsible for the subject device and requests service via the OS/device

driver interface.

In order for a device driver to perform device control, the device
driver must be able to access locations in the computer system's I/O space,
where device registers and device buffers are mapped. These locations are
called absolute addresses. The need to access absolute addresses presents
several difficulties. First, if device driver access to the computer system's
I/0 space is not sufficiently restricted, the computer system becomes more
vulnerable to being corrupted or crashed by buggy device driver code. This

presents a major impediment to the ability to download remote code for

WO0-98/55910 PCT/US98/11267

execution. At present, a "sandbox" model is typically employed to prevent
remote code from addressing critical memory regions such as the 1/O space.
In the sandbox model, code is verified instruction by instruction to ensure
that memory access outside a specified memory range does not occur.
Unfortunately, the sandbox model significantly restricts the types of
programs that can securely be downloaded for execution. Further, the
sandbox model does not address security issues of locally resident

application programs.

A second problem with I/O space addressing from device drivers is
that some modern computer programming languages, most notably the
JavaTM programming language developed by SunT™M Microsystems of
Mountain View, California, do not support the sort of peek and poke
operations necessary to read and write absolute memory locations in the I/O
space. Java and Sun are trademarks of Sun Microsystems, Inc..
Consequently, though they might want to, programmers cannot presently
implement device drivers that must read and write absolute memory

locations in such programming languages.

Yet another problem caused by I/0 space addressing from device
drivers is reduced portability. The manner in which I/O space is addressed
changes from hardware platform to hardware platform. As a result, a
different device driver is usually required for each different hardware
platform to which a device might be coupled. This complicates matters not
only for device driver programmers, but also for systems administrators and
on-line device driver providers. Instead of being able to make one device
driver available for download and installation, systems administrators and
on-line providers must provide as many device drivers as there are

hardware nuances affecting device driver code.

WO0-98/55910 PCT/US98/11267

It would be desirable therefore, to provide a method for limiting
access to a computer system's I/O space to secure, trusted programs and then
to the precise range of I/O space necessary for a given secure, trusted
program to perform its intended function. Further, it would be desirable to
provide a method for accessing the I/O space from a program written in a
programming language having no facility for asserting an absolute address
in the I/O space. It would also be desirable to provide a method for accessing
I/0 space in a way that allows the accessing program to be easily ported

between different hardware platforms.

WO0-98/55910 PCT/US98/11267

BRIEF SUMMARY OF THE INVENTION

A method for securely addressing a peripheral device at an absolute
address is disclosed. A computer program such as a device driver or bus
manager is executed to request a memory access object from an operating
system. The memory access object includes a procedure executable to
address the peripheral device at the absolute address. The operating system
provides the memory access object to the computer program if a value
associated with the computer program indicates that the computer program
is trusted to perform absolute addressing. If the operating system provides
the memory access object to the computer program, the computer program
invokes the procedure included in the memory access object to address the

peripheral device at the absolute address.

WO0.98/55910 PCT/US98/11267

BRIEF DESCRIPTION OF THE DRAWING

The present invention is illustrated by way of example and not
limitation in the figures of the accompanying drawing in which like

references indicate similar elements and in which:
Fig. 1 illustrates a traditional device driver model.

Fig. 2 is a flow diagram of a method according to one embodiment of

the present invention.

Fig. 3 is a block diagram illustrating a software architecture that may

be used to implement the method of Fig. 2.

Fig. 4 illustrates the construction of a device tree based on a computer

architecture.

Fig. 5 illustrates the construction of memory access objects based on a

device tree.

Fig. 6 illustrates a device driver model according to the present

invention.

Fig. 7 depicts a computer architecture that can be used to perform the

method of the present invention.

WO0-98/55910 PCT/US98/11267

DETAILED DESCRIPTION

A method for secure device addressing is described below. Although
numerous specific details are set forth in order to provide a thorough
understanding of the present invention, it will be apparent to one of
ordinary skill in the art that the present invention may be practiced without
such specific details. For example, much of the following discussion is
focused on I/0 space addressing at the direction of a program written in the
Java programming language. It will be readily appreciated, however, that
the present invention may be used to address I/0 space from a program

written in other programming languages.

Traditional Device Driver Model

Fig. 1 illustrates the manner in which device control is performed in
a traditional device driver model. Application program 105, operating
system 115 and device drivers 117, 119, 121, 123 and 125 are all loaded into
computer system memory. As discussed below in reference to Fig. 6, the
expression “system memory” refers to general purpose random-access
memory (RAM) from which instructions are read in a processor fetch and
execute cycle and into which operating system 115 code and application

program 105 is loaded for execution.

Operating system 115 includes a set of services 116 that can be invoked
by application programs to perform various operating system functions.
Herein, the expression "operating system" refers to program code executed
to manage hardware resources on behalf of application programs and
includes stand-alone virtual machines and operating-system-mounted

virtual machines that are used to provide services to application programs.

The set of services 116 is referred to as an "application programming

interface" (API) and includes a number of services devoted to device

W0-98/55910 PCT/US98/11267

control. Similarly, each device driver 117, 119, 121, 123 and 125 implements
a set of device driver services 118, 120, 122, 124 and 126 that can be invoked
by operating system 115 to control the attached devices 150, 152, 154, 156 and
158. Each set of device driver services (118, 120, 122, 124 and 126) defines a
standard device driver interface, no matter how different the attached

hardware devices may be from one another.

If, during execution of application program 105, an instruction
requesting device I/0 is executed, a service in API 116 is invoked by
procedure call, process activation or software interrupt to carry out the
requested operation. This is indicated in Fig. 1 by arrow 171. As an aside, a
procedure call is typically referred to as a "method call” in an object-oriented
context. Herein, a procedure may be a method, function, subroutine or any

other sequence of instructions which ends in a return to a caller.

As discussed above, operating system 115 does not include device
control code for each of the attached devices and instead maintains a data
structure identifying device drivers for that purpose. The operating system
115 determines the device driver corresponding to the device control
request, indicated by way of example in Fig. 1 to be device driver 119, then
invokes device driver 119 by making a call (indicated by arrow 172) to a
service provided through device driver interface 120. After being invoked
by call 172, device driver 119 may absolutely address registers or data buffers
in hardware device 152 directly, or indirectly through another layer of
software that provides basic I/0O services (BIOS) for fundamental computer

components such as display, keyboard and storage media.

In the traditional device driver model of Fig. 1, device driver code
(117, 119, 121, 123, 125) is tightly bound to the controlled hardware device
(150, 152, 154, 156, 158) and the device driver must be able to address absolute

WO 98/55910 PCT/US98/11267

addresses in the system 1/0O space where the controlled device's registers and
data buffers are mapped. Herein, the expression "I/O space" refers to the set
of processor addressable locations not already mapped to system memory
and includes both memory-mapped locations and I/O port mapped
locations. As stated below, system memory may be addressed by either

physical or virtual addressing schemes.

It is important to distinguish between addressing I/O space and
addressing system memory. Addresses in I/O space are determined by the
physical connection of hardware devices to a computer system's address
buses. Therefore, unlike program variables or dynamically allocated storage
having addresses in system memory, I/O space addresses cannot be
remapped (unless, of course, hardware is reconfigured). For example, a
program variable used to store data before it is written to a control register
could be mapped to a different address in system memory each time the
program defining the variable is loaded into system memory by the
operating system. By contrast, the control register itself is mapped to a
particular address determined by a physical connection to an address bus and
must always be addressed at the particular address. For this reason, I/O
space addresses are said to be "absolutely mapped” and a computer program
which writes or reads an absolutely mapped address is said to perform

"absolute addressing".

Most popular programming languages provide a facility to perform
absolute addressing. In the BASIC (Beginner's All-purpose Symbolic
Instruction Code) programming language, PEEK and POKE operators are
provided for reading and writing memory at locations offset from a
program-specified base address. IN and OUT instructions are provided for

performing analogous operations in an I/O port address space. In the C and

W0 98/55910 PCT/US98/11267

C++ programming languages, absolute addressing is as simple as assigning a
pointer to point to a specified address in the I/O space, then de-referencing

the pointer to write to or read from the pointed to location.

Although the power to point and write/read anywhere in a computer
system's I/O space makes device driver programming possible, it also gives
life to some of the more pernicious programming bugs. The C
programming language is particularly notorious in this regard. C's pointer
model, though powerful and versatile, makes it easy to corrupt and leak
memory. Even experienced programmers occasionally index beyond the
end of an array, inadvertently corrupting memory contents or causing a
system-halting exception. Memory leaks caused by mishandling pointers to
dynamically allocated memory can be even worse. Often a memory leak
goes unnoticed until the offending code is executed a sufficient number of
times to affect system performance. Since test systems tend to have
inordinately large amounts of memory and are frequently re-booted,
memory leaks often go undetected during software testing and make their

way into commercial releases of software products.

The popularity of the Internet and its promise as a software delivery
conduit has increased the sensitivity of software vendors to program bugs.
The vision of Internet computing is that computer users will increasingly
download application code from remote Internet sites and then execute the
downloaded code on their own machines. Of course, sites providing code
that crashes or corrupts the downloading system are not likely to have

repeat visitors.

At roughly the same time the Internet began to come into
mainstream use, a new programming language, named Java™, began to

gain notoriety. The Java programming language includes several features

W0 98/55910 PCT/US98/11267
10

that make it well suited to Internet programming. First, Java programs tend
to be relatively secure and free of bugs. The designers of Java sought to
avoid some of the more error-prone features of the C and C++
programming languages and entirely omitted support for pointer data types.
Also, Java programs automatically scan for memory allocated to Java arrays
and objects that are no longer in use, and reclaim the memory for later
allocation. This feature is referred to as "garbage collection” and effectively

prevents the sorts of memory leaks that plague C and C++ programs.

Another feature that makes Java a good programming language for
the Internet is that Java source code is compiled into a stream of bytes ("Java
byte codes") that can be interpreted for execution by just about any hardware
platform. By embedding a Java interpreter in an Internet browser, Java byte
codes downloaded from Internet sites can be interpreted into machine
instructions recognized by the local processor and executed. As a result,
small Java application programs (referred to as Java Applets) can be linked
to a web page and downloaded automatically by the browser upon reaching
the link. The effect is to achieve significantly more interactive and useful
web-sites. Since Java interpreters have been written for most of the popular
computing platforms, including Windows '95, Macintosh and Sun Solaris,
Java byte codes can be executed by the majority of machines browsing the
Internet. Windows 95 is a trademark of Microsoft Corporation. Macintosh
is a Trademark of Apple Computer. Sun Solaris is a trademark of Sun

Microsystems.

Finally, Java is an‘object-,oriented programming (OOP) language. In
OOP, computing problems are resolved into data and operations to be
performed on data. By combining the data and associated operations

(referred to as "methods" in OOP parlance) in a programming construct

WO0-98/55910 PCT/US98/11267
11

called an "object”, then limiting access to object data to object method calls,
the underlying representation of object data and implementation of object
methods can be hidden from calling code. From the caller's perspective, the
object is a black box having well defined inputs and outputs so that the
object's functionality can be exploited without concern for the object's
internal workings. This language-enforced modularity is advantageous in
any software development requiring more than a few programmers, because
it allows natural, well-defined boundaries to be drawn between
programming tasks. Also, since the access to data is limited to a handful of
identifiable methods, bugs arising from untimely or erroneous data
modification are rare and easy to trace. Finally, since most OOP languages,
including Java, include facilities for re-using objects and extending their
functionality in new objects, OOP naturally encourages re-use of existing
code; a major shortcoming of traditional, procedure-oriented programming

languages like C, Pascal and BASIC.

Despite its advantages as an Internet programming language, Java is
not suited for writing device drivers that function according to the
traditional device driver model. As stated above, absolute addressing in
system I/O space is not possible in Java. This means that device driver
programmers that might otherwise choose to program in Java are forced to
use other, less secure programming languages. Of course, the Java
programming language could be modified to support absolute addressing,
but that would undermine the secure nature of memory access by Java

programs, one of Java's primary strengths.

Overview of a Method According to the Present Invention

In the present invention, absolute addressing is performed by way of

an object-oriented application programming interface in the operating

WO 98/55910 PCT/US98/11267
12

system. A device driver or other program that must perform absolute
addressing requests access to memory access objects maintained by a trusted
memory manager. The memory manager provides memory access objects
to the device driver or other program, but without activating the methods
of the memory access objects. The device driver or other program then
requests the memory manager to activate the methods of the memory access
objects. The memory manager verifies that a digital signature associated
with the device driver or other program indicates that the device driver or
other program is sufficiently trusted before activating the methods of the
memory access object. Once the memory access object methods have been
activated, the device driver or other program is able to perform read and
write operations at absolute addresses without ever having direct access to
the absolute addresses wrapped in the memory access objects. This allows
secure, flexible absolute addressing by programs written in programming
languages like Java that have eliminated pointer data types and pointer

arithmetic.

Fig. 2 is a flow diagram of a method 200 according to one embodiment
of the present invention. At step 205, when the computer is powered on, a
boot program stored in firmware is executed to scan the I/O space to
determine the identity and location of processor-addressable hardware
devices attached to the system. At step 210 the device identity and absolute
address information obtained in step 205 is used to generate a database of
device information. When this operation is performed in compliance with
the standard set forth in IEEE 1275-1994, the database of device information
describing each of the addressable devices is stored in a well defined data
structure known as a "1275 device tree". In alternate embodiments of the
present invention, other databases of device information may be used

instead of a 1275 device tree.

WO 98/55910 PCT/US98/11267
13

At step 215, operating system code is loaded into system memory.
The operating system code includes code that can be executed to implement
a software entity referred to as a "platform manager". The platform
manager provides an application programming interface (API) that can be
invoked by other operating system code and by code not included in the
operating system (e.g., a device driver), to build one or more data objects
called "memory access objects" and to supply the memory access objects to
the calling code. Program code executed to call methods provided in the
platform manager API is referred to in method 200 as "object-requesting”
code. Thus, at step 220, object-requesting code such as a bus manager,
memory manager or device driver is executed to call a first platform
manager procedure that builds and returns a memory access object. The
object-requesting code passes a parameter to the first platform manager
procedure that can be used by the platform manager to identify absolute
address information in the database of device information pertaining to a
particular device or set of devices. In one embodiment of the present
invention, for example, the object-requesting code passes a device name that
can be matched with a device name stored in the 1275 device tree to locate

the associated absolute address of the device.

At step 225 of method 200, the first platform manager procedure is
executed to build the requested memory access object. In a preferred
embodiment of the present invention, the memory access object built in
step 225 is defined by a Java programming language construct known as an
object class. When the object class is instantiated (instantiation refers to
allocating memory space for and initializing a data object based on the object
class) a base absolute address and a length defining a range of absolute
addresses are copied into private data members of the memory access object

and made accessible only by methods included in the memory access object

WO0.-98/55910 PCT/US98/11267
14

definition. The object methods allowing read and write access to absolute
addresses are referred to herein as access methods. By invoking the access
methods of a memory access object, a computer program can perform
absolute addressing without specifying or even having access to the value of
an absolute address. This provides significant benefits. First, the developer
of a computer program that must read from or write to an absolute address
is able to effectively code the absolute addressing step without having to
specify the size, format or value of the absolute address. Without code
specifying such details, device drivers and other absolute addressing
programs are much less likely to contain erroneous memory access code.
Also, without hardware-dependent absolute addressing code, it becomes
possible to write device drivers that are portable between different hardware
platforms. Further, the need for a wide-open pointer model to accomplish
absolute addressing is eliminated. This means that absolute addressing can
be performed by programs written in programming languages having no
facility for absolute addressing. Also, as will be discussed further below,
forcing absolute addressing to be performed through memory access object
methods enables software-controlled bounds checking and simplifies

debugging of code addressing the system I/O space.

Still referring to method 200 of Fig. 2, at step 225, the platform
manager returns the memory access object to the caller. However, according
to one embodiment of the present invention, the access methods of the
memory access object returned in step 225 are inactivated and therefore
cannot initially be invoked to perform absolute addressing. Consequently,
at step 230, the object-requesting program code is executed to call a second
platform manager procedure to activate the access methods of the memory

access object.

WO 98/55910 PCT/US98/11267
15

At step 235, the second platform manager is executed to verify that the
object-requesting code is sufficiently trusted to permit it perform absolute
addressing. According to a preferred embodiment of the present invention
trust is verified according to at least one of two techniques. First, if the
object-requesting code seeking activation of memory access object access
methods is included within operating system code trusted with memory
access objects, the access methods are activated at step 240. In one
embodiment of the present invention, the package facility of the Java
programming language is used to partition operating system code trusted
with activated memory access objects from operating system code not
trusted with activated memory access objects. That is, trusted operating

system code is grouped together in a secure Java package.

It will be appreciated that while the above-described embodiment of
the present invention includes separate steps for obtaining and activating a
memory access object, in an alternate embodiment of the present invention,
these steps may be combined. For example, information allowing
verification that the object-requesting code module is trusted could be
passed to the platform manager procedure in the same call that requests a
memory access object. A mefnory access object will be returned to the object-

requesting code only if the verification is successful.

In the other of the two verification techniques, if the object-requesting
code is not included within trusted operating system code, as in the case of a
device driver or bus manager, the object-requesting code may still be
accorded trusted status if it includes a digital signature identifying a certified
entity known to the platform manager. The certified entity is made known
to the platform manager when a certificate from a digital signature certifying

authority is imported into an identity database available to the platform

WO0.98/55910 PCT/US98/11267
16

manager. If the object-requesting code includes a digital signature indicating
that it has been signed by a certified entity imported into the identity
database, the platform manager will activate the memory access object access

methods at step 240.

Fig. 3 is a block diagram illustrating a software architecture 250 that
may be used to implement method 200 of Fig. 2. Architecture 250 is made
up of three layers of software: a boot layer 275, memory management layer
280 and access layer 285. Boot layer 275 includes IEEE 1275-1994 firmware
251 and operating system booter 253. Firmware 251 is executed to scan the
I/0 space of the computer system in which it is installed to determine the
identity and absolute address of addressable devices in the computer system.
Operating system booter 253, which also may be provided in a non-volatile
storage device, includes code that is executed to load an operating system

into the computer system's memory.

Memory management layer 280 includes a device tree database 255
(designated "1275 device tree" in Fig. 2), a platform manager 257 and a
memory management package 259. The identity and absolute address
information obtained during execution of firmware 251 is copied to device
tree database 255 for later use by platform manager 257. This is indicated by
arrow 271. As discussed above, platform manager 257 includes an API that
provides procedures that may be called to obtain and activate, respectively, a
memory access object. Thus, if during execution of code in memory
management package 259, it is necessary to access an absolute address, a
procedure call (indicated by arrow 272) is issued to platform manager 257
requesting a memory access object. Based on a passed parameter received in
procedure call 272, platform manager 257 examines the 1275 device tree 255

(as indicated by arrow 273) to locate the absolute address. Platform manager

WO 98/55910 PCT/US98/11267
17

257 then encapsulates the absolute address in a memory object and returns a
reference to the object to the calling code within memory management
package 259. As stated above, the access methods of the memory access
object must be activated before they can be invoked to perform absolute
addressing. Thus, code in memory management package 259 is executed to
issue procedure call 277 to platform manager 257. After confirming that the
calling code is included within trusted memory package 259, the platform
manager procedure invoked by call 277 activates the access methods of the

memory access object.

Access layer 285 includes a device driver 261 and an identity database
263. When executed device driver 261 issues a procedure call (as indicated
by arrow 274) to platform manager 257 requesting a memory access object.
As described above, platform manager 257 examines the 1275 device tree to
identify a device corresponding to a parameter passed in procedure call 274.
Platform manager 257 then builds a memory access object encapsulating an
absolute address of the identified device and returns the memory access
object to the device driver 261. Another procedure call (indicated by arrow
278) is then issued by device driver 261 requesting activation of the access
methods of the memory access object returned in response to procedure call
274. After determining that device driver 261 is not included in a secure
operating system package, platform manager 257 inspects a digital signature
266 included within or appended to device driver 261 to determine whether
it indicates that the device driver 261 has been signed by a certified entity.
The act of inspecting the digital signature 266, as indicated by arrow 275 in
Fig. 3, may be implemented, for example, by passing the digital signature or
the address of the digital signature to the platform manager 257 in procedure
cail 278. Platform manager determines whether the device driver 261 has

been signed by a certified entity by determining whether the digital signature

WO.98/55910 PCT/US98/11267
18

266 corresponds to a certificate previously recorded in identity database 263.
This operation is indicated by arrow 276 in Fig. 3. A certificate can be
recorded in the identity data base by a system administrator or other

individual after obtaining the certificate from a certifying authority.

IEEE 1275-1994 Device Tree

Fig. 4 depicts a device tree 351 used to represent a computer
architecture 301. As stated above, device tree 351 is a data structure
constructed by boot firmware to provide information about the hardware
attached to a computer system. "Open Firmware" is the name given to non-
proprietary boot firmware that can construct a device tree according to the
IEEE 1275-1994 standard for a number of different hardware platforms. For a
given hardware platform, each system bus corresponds to an interior node
of the device tree and the devices coupled to the system bus are represented
by child nodes of the interior node. This way, the structure of the device
tree reflects the structure of the underlying hardware. For example, bus 305
of computer system 301 corresponds to interior node 355 of device tree 351,
and attached devices 307, 309, 311, 313, 315 and 317 (i.e., microprocessor,
memory, serial I/O, parallel I/O, storage media and display, respectively)
correspond to child nodes 357, 359, 361, 363, 365 and 367 of interior node 305.
It will be appreciated that numerous other devices could be attached to bus
305 and that there may be multiple system buses in a more complex

architecture.

According to the IEEE 1275-1994 standard, devices plugged into
expansion slots on a computer bus report their characteristics to Open
Firmware via a device interface. Open firmware then stores the reported
information in a device tree node established for the reporting device. The

reported information will typically include the device name, model,

W0 98/55910 PCT/US98/11267
19

revision level, device type, register locations, interrupt levels, supported
features and any other information significant to the operation of the
reporting device. Device tree nodes are also established for permanently
installed devices and the set of information used to describe a particular
device can be extended to support new types of devices having new

characteristics.

As Fig. 5 illustrates, absolute addresses stored in the device tree 351
are used in the construction of memory access objects 405, 415, 425 and 435.
Open Firmware includes a client interface defined by the IEEE 1275-1994
standard to allow operating systems and other programs to access the device
tree. In a preferred embodiment of the present invention, the operating
system invokes services provided by the Open Firmware client interface to
identify absolute addresses corresponding to attached devices. For each
absolute address identified, a memory access object may be instantiated and

the absolute address encapsulated in the memory access object.

Methods in each of the memory access objects (405, 415, 425, 435) may
be made public or kept private. Public methods can be invoked by any code
having access to the memory access object, while private methods can be
invoked only by methods of the memory access object itself. Thus, in
memory access object 405, methods Get(), Set() and Compare() are made
public to allow programs having access to memory access object 405 to read a
value from the absolute address encapsulated in memory access object 405,
write a value to the absolute address, and compare the absolute address for
equality with another absolute address. It will be appreciated that other
methods could be added. Memory access object 405 includes private data
fields to hold the absolute address value and a length value. Together the

absolute address and the length define a range of addresses which can be

W0 98/55910 PCT/US98/11267
20

touched by the methods of the memory access object 405, and the memory

access object 405 is said to "wrap" the range of absolute addresses.

The size and format of an absolute address is usually dependent on a
processor or bus included in the hardware platform. Even within a single
hardware platform, some absolute addresses may be memory mapped while
others may be I/O port mapped. Thus, when an operating system including
memory access objects according to the present invention is executing on a
processor having a 32-bit address width, a memory access object capable of
wrapping a range of 32-bit addresses may be used. When executing on a
processor having a 64-bit address width, a memory access object capable of
wrapping a range of 64-bit addresses is necessary. In a preferred
embodiment, an address class tool-kit is provided to allow different sized
and formatted absolute addresses to be wrapped in objects. Once a class has
been defined it can be referenced by the platform manager of Fig. 3 to build a

memory access object.

Device Driver Model According to the Present Invention

Fig. 6 illustrates a device driver model according to the present
invention. Application program 105, operating system 515 and device
drivers 532, 534, 536 and 538 are all loaded into system memory. After
application program 105 invokes an operating system service provided in
the operating system's API 116 to perform device control (as indicated by
arrow 171), the operating system identifies the device driver responsible for
performing the requested device control operation (in this case device
driver 532), then calls a service provided by the device driver interface 118 of
device driver 532 as indicated by arrow 172. So far, events have been as
described above in reference to the traditional device driver model of Fig. 1.

However, instead of accessing the attached hardware device at an absolute

WO 98/55910 PCT/US98/11267
21

address maintained in the device driver 532 code or pointer variables,
device driver 532 invokes a method made public in memory access object
505. Depending on the operation originally requested by application
program 105, the method of memory access object 505 may write or read the
absolute address of a register or data buffer in the controlled device, in this
case storage media 150. Registers and buffers within the other attached
devices (Display 152, Sound card 154, Print driver 156, Modem 158) can be
read and written in a similar fashion by invoking methods in other

operating system memory access objects (506, 507, 508).

As mentioned briefly above, in addition to allowing device drivers to
be written without requiring pointers to absolute addresses, the present
invention allows software controlled bounds checking of absolute addresses
before they are asserted. This is significant because the granularity of bounds
checking performed by memory access object methods can be much finer
than that achieved in hardware. For example, the memory management
unit (MMU) of Motorola™ 680x0 processors can be used to define pages as
small as 4 kilobytes (kb) and to cause an exception if an access outside the
page boundary is detected. Motorola is a trademark of Motorola, Inc..
However, in the context of a computer's 1/O space where legal ranges of one
or two bytes are common, 4kb is often much too coarse for meaningful
bounds checking. On the other hand, when get/set methods of a memory
access object are invoked, the access is limited by object definition to an
address in the precise range specified by the absolute address and length data
wrapped by the object. This makes bounds checking possible to the

granularity of a single address value.

Another advantage of forcing absolute addressing to be performeci by

invocation of memory access object methods is that other time-consuming

WO0O.98/55910 PCT/US98/11267
22

hardware protection mechanisms can be avoided. For example, Motorola
680x0 processors must often be switched between user and supervisor modes
based on the range of memory access required. In the traditional device
driver model, device drivers are executed in supervisor mode in order to
have access to the system I/O space. Application programs, on the other
hand, are executed in user mode to ensure that application program bugs do
not inadvertently corrupt data at critical I/O space addresses. While
switching between user and supervisor modes provides a level of security, it
slows program execution and adds complexity to the programming

environment.

In the device driver model according to the present invention, there
is no need for the device driver programmer to specify addresses in the
system I/O space. In fact, when application programs and device drivers are
written in a secure programming language like Java, programmers cannot
point and write to the I/O space at all. Consequently, when used to support
Java-coded application programs and device drivers, the device driver
model of the present invention may safely be executed in 680x0 supervisor
mode at all times, thereby simplifying the system programming model and

avoiding the execution overhead required for mode switching.

Computer System Overview

Fig. 7 depicts a block diagram of a general purpose computer system
600 for performing the individual steps of the method of the present
invention. The computer system 600 includes a processor 307, memory 309,
display device 317, keyboard 605, cursor control device 610, and computer
network access device 615 each coupled to a bus 305. Bus 305 typically
includes an address bus, data bus and control bus (not shown). Cursor

control device 610 may be a mouse, trackball, pen or any other device for

WO0.98/55910 PCT/US98/11267
23

manipulating a cursor on display 317. Both the cursor control device 610
and the keyboard 605 enable the computer system 600 to receive input from
a computer-user. Network access device 615 may be a modem, network
adapter card or any other device for coupling computer 600 to a computer

network.

Memory 309 may include both system memory (e.g., random access
memory) and non-volatile storage such as a semiconductor read-only-
memory, hard disk-drive, floppy disk-drive, optical disk-drive or any other
computer-readable medium. When power is applied to the computer
system 600, program code defining an operating system is loaded from non-
volatile storage into system memory by processor 307 or another device,
such as a direct memory access controller (not shown), having access to
memory 309. Sequences of instructions comprised by the operating system
are then executed by processor 307 to load other computer programs and
portions of computer programs into system memory from non-volatile
storage. The present invention may be embodied in a sequence of
instructions which can be stored in a computer-readable medium and
executed by processor 307. It will be appreciated that both system memory
and non-volatile storage may be used to effectuate a virtual memory. In
that case, sequences of instructions defining a portion of the operating
system or an application program may be kept in non-volatile storage and

then moved to system memory when required for execution.

It should be noted that the individual method steps of the present
invention may be performed by a general purpose processor programmed
with instructions that cause the processor to perform the recited steps
described in reference to Fig. 2 above, specific hardware components that

contain hard-wired logic for performing the recited steps, or any

WO0.98/55910 PCT/US98/11267
24

combination of programmed general purpose computer components and
custom hardware components may also be used. Nothing disclosed herein
should be construed as limiting the present invention to a single
embodiment wherein the recited steps are performed by a specific

combination of hardware components.

A method for secure device addressing is thus described. While the
present invention has been described in particular embodiments and
through particular examples, the present invention should not be construed
as limited by such embodiments and examples, but rather construed

according to the following claims.

WO 98/55910 PCT/US98/11267
25

CLAIMS

What is claimed is:

1. A method for securely addressing a peripheral device at an absolute

address comprising the computer-implemented steps of:

executing a first computer program to request a memory access object
from an operating system, the memory access object including a
procedure executable to address the peripheral device at the

absolute address;

executing a first operating system procedure to provide the memory
access object to the first computer program if a value associated
with the first computer program indicates that the first computer

program is trusted to perform absolute addressing; and

executing the first computer program to invoke the memory access
object procedure to address the peripheral device at the absolute

address.

2. The method of Claim 1 wherein said step of executing a first operating
system procedure to provide the memory access object to the first
computer program if a value associated with the first computer
program indicates that the first computer program is trusted comprises
the step of determining that a digital signature associated with the first
computer program indicates that the first computer program has been

signed by a certified entity.

3. The method of Claim 2 wherein said step of determining that a digital

WO 98/55910 PCT/US98/11267
26

signature associated with the first computer program indicates that the
first computer program has been signed by certified entity comprises
the step of determining that the digital signature corresponds to a
certificate in an identity database, the certificate having been previously

obtained from a certifying authority.

4. The method of Claim 1 wherein said step of executing a first computer
program to request a memory access object comprises the step of
executing the first computer program to request a memory access object

that maps the peripheral device.

5. The method of Claim 4 further comprising the step of executing a
second operating system procedure to build the memory access object
including the procedure executable to address the peripheral device at

the absolute address.

6. The method of Claim 5 wherein said step of executing a second
operating system procedure to build the memory access object
comprises the step of passing to the second operating system procedure
a parameter indicating the peripheral device to be mapped by the

memory access object.

7. The method of Claim 5 wherein said step of executing a second
operating system procedure to build the memory access object
comprises the step of examining a database of absolute addresses to find
an absolute address corresponding to a parameter passed to the second

operating system procedure by the first computer program.

W0 98/55910

10.

11.

12.

13.

14.

PCT/US98/11267
27

The method of Claim 5 wherein said step of executing a second
operating system procedure to build the memory access object

comprises the step of instantiating a data object based on a pre-defined

object class.

The method of Claim 1 wherein said step of executing a first operating
system procedure to provide the memory access object to the first
computer program comprises the step of returning a reference to the

memory access object to the first computer program.

The method of Claim 1 wherein said step of executing a first operating
system to provide the memory access object comprises the step of
providing the first memory access object to the first computer program
if the value associated with the first computer program indicates that
the first computer program is a sequence of program code included in a

secure collection of object classes.

The method of Claim 10 wherein the secure collection of object classes

is a Java package.

The method of Claim 1 wherein the first computer program is a device

driver.

The method of Claim 1 further comprising the step of downloading the

first computer program from a computer network.

A computer-readable medium having stored thereon sequences of

instructions which, when executed by a processor, cause said processor

WO 98/55910 PCT/US98/11267

15.

16.

28

to securely address a peripheral device at an absolute address by

performing the steps of:

executing a first computer program to request a memory access object
from an operating system, the memory access object including a
procedure executable to address the peripheral device at the

absolute address;

executing a first operating system procedure to provide the memory
access object to the first computer program if a value associated
with the first computer program indicates that the first computer

program is trusted to perform absolute addressing; and

executing the first computer program to invoke the memory access
object procedure to address the peripheral device at the absolute

address.

The computer-readable medium of Claim 14 wherein said step of
executing a first operating system procedure to provide the memory
access object to the first computer program if a value associated with
the first computer program indicates that the first computer program is
trusted comprises the step of determining that a digital signature
associated with the first computer program indicates that the first

computer program has been signed by a certified entity.

The computer-readable medium of Claim 14 wherein said sequences of
instructions include instructions which, when executed by said
processor, cause said processor to perform the step of executing a second
operating system procedure to build the memory access object

including the procedure executable to address the peripheral device at

WO0.98/55910

17.

18.

19.

PCT/US98/11267
29

the absolute address.

The computer-readable medium of Claim 16 wherein said step of
executing a second operating system procedure to build the memory
access object comprises the step of examining a database of absolute
addresses to find an absolute address corresponding to a parameter
passed to the second operating system procedure by the first computer

program.

A computer data signal embodied in a carrier wave and representing
sequences of instructions which, when executed by a processor, cause
said processor to securely address a peripheral device at an absolute

address by performing the steps of:

executing a first computer program to request a memory access object
from an operating system, the memory access object including a
procedure executable to address the peripheral device at the

absolute address;

executing a first operating system procedure to provide the memory
access object to the first computer program if a value associated
with the first computer program indicates that the first computer

program is trusted to perform absolute addressing; and

executing the first computer program to invoke the memory access
object procedure to address the peripheral device at the absolute

address.

The computer data signal of Claim 18 wherein said step of executing a

first operating system procedure to provide the memory access object to

WO 98/55910 PCT/US98/11267
30

the first computer program if a value associated with the first cc;mputer
program indicates that the first computer program is trusted comprises
the step of determining that a digital signature associated with the first
computer program indicates that the first computer program has been

signed by a certified entity.

20. A computer system comprising:
a bus;
a processor coupled to said bus;
a peripheral device coupled to said bus; and

a memory coupled to said bus; said memory having stored therein
sequences of instructions which, when executed by said processor,
cause said processor to securely address said peripheral device at

an absolute address by performing the steps of:

executing a first computer program to request a memory access object
from an operating system, the memory access object including a
procedure executable to address said peripheral device at the

absolute address;

executing a first operating system procedure to provide the memory
access object to the first computer program if a value associated
with the first computer program indicates that the first computer

program is trusted to perform absolute addressing; and

executing the first computer program to invoke the memory access
object procedure to address said peripheral device at the absolute

address.

WO 98/55910 PCT/US98/11267

21.

31

The method of Claim 1 wherein said step of executing a first computer
program to request a memory access object comprises the step of
executing the first computer program on either a first hardware
platform or a second hardware platform, the second hardware platform

being different from the first hardware platform.

WO 98/55910 PCT/US98/11267

1/7

105

)

APPLICATION
PROGRAM 1

/116
1156

U l\l [] HEEEERERN]
OPERATING SYSTEM v J
APPLICATION
PROGRAMMING
INTERFACE
118 (122 124 126
q) C
d11 l [] | 1] |
/ ; /
11 {123 L5
150 152 154 156 158
{ 0 \ { {
| | 1o] | |]
STORAGE DISPLAY SOUND PRINT MODEM

MEDIA

FIG. 1

SUBSTITUTE SHEET (RULE 26)

WO0.98/55910 PCT/US98/11267

200 2/7
\‘ [START |

i
EXECUTE BOOT CODE TO SCAN THE I/0 SPACE OF A
COMPUTER SYSTEM TO DETERMINE THE IDENTITY AND
ABSOLUTE ADDRESS OF ADDRESSABLE DEVICES IN THE
COMPUTER SYSTEM 205

\
COPY THE DEVICE IDENTITY AND ABSOLUTE ADDRESS OF
EACH ADDRESSABLE DEVICE TO A DATABASE OF DEVICE
INFORMATION 210

LOAD OPERATING SYSTEM CODE INCLUDING PLATFORM
MANAGER CODE THAT PROVIDES AN APPLICATION
PROGRAMMING INTERFACE FOR BUILDING AND
SUPPLYING MEMORY ACCESS OBJECTS 215

EXECUTE OBJECT-REQUESTING PROGRAM CODE TO CALL A
FIRST PLATFORM MANAGER PROCEDURE, THE OBJECT-
REQUESTING PROGRAM PASSING A PARAMETER
IDENTIFYING ONE OF THE ADDRESSABLE DEVICES 220

Y
EXECUTE THE FIRST PLATFORM MANAGER PROCEDURE
TO BUILD A MEMORY ACCESS OBJECT THAT MAPS THE
IDENTIFIED ADDRESSABLE DEVICE BASED ON
INFORMATION IN THE DATABASE OF DEVICE
INFORMATION, THE FIRST PLATFORM MANAGER
PROCEDURE RETURNING THE MEMORY ACCESS OBJECT
TO THE CALLER 225

]
EXECUTE THE OBJECT-REQUESTING PROGRAM CODE TO
CALL A SECOND PLATFORM MANAGER PROCEDURE TO
ACTIVATE ACCESS METHODS IN THE MEMORY ACCESS
OBJECT 230

Y
EXECUTE THE SECOND PLATFORM MANAGER PROCEDURE
TO VERIFY THAT THE OBJECT-REQUESTING PROGRAM
CODE IS TRUSTED 235|

)
IF THE OBJECT-REQUESTING CODE MODULE IS TRUSTED,
EXECUTE THE SECOND PLATFORM MANAGER PROCEDURE
TO ACTIVATE THE ACCESS METHODS OF THE MEMORY
ACCESS OBJECT 240

FIG. 2

SUBSTITUTE SHEET (RULE 26)

]

WO 98/55910 PCT/US98/11267

3/7
ACCESS LAYER
285
250 261
- 6 [_263
DEVICE DRIVER IDENTITY
DATABASE

DIGITAL —[266
SIGNATURE | 7

/

278 "MEMORY MANAGEMENT
275 2

LAYER 280
255 ~-274 <oV
1 , 4] 76
1275 DEVICE -
TREE ANAGER | MEMORY
¢ |MANAGEMENT
\ / 272 PACKAGE
~7
» 277
273 L257 1259
271-4 BOOT LAYER 275
i

IEEE 1275-1994 :
FIRMWARE OPERATING

SYSTEM BOOTER

l251 2-253

FIG. 3

SUBSTITUTE SHEET (RULE 26)

WO 98/55910 PCT/US98/11267

417
f307 [309 f311 f313
301 WP MEMORY/| { SERIAL| |PARALLEL
\\ i70 170

205
STORAGE! IpispLay
L
a1s J 317
\§%
355
) [
l
opyer- —
y —y Y y
357 {as9 U361 (z63 (365 l367
351

FIG. 4

SUBSTITUTE SHEET (RULE 26)

PCT/US98/11267

WO 98/55910
5/7
r {355 / 351
|
DEVICE 3 l .
TREE '
ADDRESS
ADDRESS OBJECT OBJECT Agé’f*g%?s Aggjg%%s
405~
PUBLIC METHODS) })
415 425 435

GET()
SET()
COMPARE()

PRIVATE DATA
ADDRESS VALUE

ADDRESS RANGE

FIG. 5

SUBSTITUTE SHEET (RULE 26)

PCT/US98/11267

WO 98/55910

6/7

9

Old

W3aOW LNIHd aNnos AVidsSIa wwcummﬁﬁm
wmwv omww #mv va Nom-
ONINNYEBOA
806G 105 905 NOLLYOI'IddV
H-HEG ;e
(T T I T T IIIT I T R IT11
LeS o:\
#NJ écl omv wpc cll (WAL
[[[11 [11 [V1
. .- | \
v w vmmv \.Nmm
8€s 9€s I WVHDOHd
NOILYOIlddV
J

SOl

SUBSTITUTE SHEET (RULE 26)

PCT/US98/11267

WO 98/55910

777

009 /)

S19

30IA3A

$S300V
AHHOMLIN
H31NdWNOJ

L ‘Ol

0oi9

30IA30A
TOHLNOD
HOSHNO

G09
advOdA3X

AY1dSia

gog snd
71€ 60€ 10¢€
390IA3Q AHOWANW HOSS300Hd

SUBSTITUTE SHEET (RULE 26)

	BIBLIOGRAPHY
	DESCRIPTION
	CLAIMS
	DRAWINGS

