TRAITEMENT DES TROUBLES CAUSES PAR L’ALCOOLISATION FOETALE (TCAF).

La présente invention concerne un facteur de croissance placentaire (PIGF) en tant que médicament pour son utilisation dans la prévention et/ou le traitement des troubles causés par l’alcoolisation foetale (TCAF) choisis dans le groupe comprenant le syndrome d’alcoolisation foetale (SAF), l’atteinte vasculaire cérébrale et l’hypotrophie d’un sujet ayant été exposé à l’alcool in utero. La présente invention concerne également une composition pharmaceutique ou un produit comprenant le PIGF pour ces mêmes applications thérapeutiques.
INTRODUCTION

L'alcool est un tératogène responsable d'atteintesphysiques et comportementales. Chez l'Homme, l'exposition prénatale à l'alcool peut conduire à des altérations du développement cérébral. Ainsi, la consommation d'alcool au cours de la grossesse (alcoolisation fœtale) constitue la première cause de handicap et notamment de retard mental d'origine non génétique au monde et également en France.

Les dommages varient selon la période où le fœtus a été exposé, les taux d'alcoolémie, les facteurs génétiques et environnementaux, le mode de consommation (chronique, binge drinking).

Le Syndrome d'Alcoolisation Fœtale (SAF) constitue la manifestation la plus extrême et invalidante des troubles causés par l'alcoolisation fœtale (TCAF). Son incidence est estimée en France à 1,5 % des naissances. Le SAF associe des anomalies physiques comme une hypotrophie (retard de croissance), une dysmorphie cranio-faciale et des anomalies neurocomportementales se traduisant par des troubles des fonctions cognitives (troubles de l'attention, de la motricité, de l'apprentissage ou encore de la mémoire). Des séquelles neurologiques sont également présentes chez les enfants TCAF dont l'incidence est estimée en France à près de 1% des naissances.

L'angiogenèse cérébrale est concomitante avec le processus de neurogénèse et contribue au bon développement cérébral en assurant aux cellules nerveuses un apport en nutriments, en oxygène et en facteurs trophiques. En particulier, l'angiogenèse cérébrale constitue un prérequis au bon développement du réseau neuronal. De plus, il a été récemment démontré un impact direct des vaisseaux cérébraux sur le processus de migration de populations neuronales et des oligodendrocytes. Il a également été établi précédemment par les inventeurs que l'alcoolisation in utero perturbe l'angiogenèse cérébrale et que cet effet concourt aux anomalies cérébrales de l'alcoolisation.

Cibler les anomalies vasculaires de l'exposition in utero à l'alcool apparaît donc comme une stratégie thérapeutique afin de réduire les atteintes neurodéveloppementales de l'alcool et corriger les fonctions cérébrales altérées. En effet, la prise en charge actuelle des enfants TCAF vise, par une stimulation des fonctions motrices et cognitives, à réduire les troubles du langage, de l'apprentissage ou encore de l'attention qui sont diagnostiqués tardivement souvent entre 4 et 5 ans avec la scolarisation. Les résultats obtenus par un tel suivi sont
limités et les troubles de l’alcoolisation \textit{in utero} vont impacter à long terme sur l’intégration sociale et professionnelle de ces futurs adultes. Il n’existe à ce jour aucun traitement à visée curative des effets neurodéveloppementaux de l’alcool chez les enfants TCAF.

Il existe donc un besoin visant à développer une nouvelle thérapeutique des troubles liés à l’alcoolisation \textit{in utero} destinée à traiter en particulier une vascularisation cérébrale anormale, d’améliorer l’angiogenèse cérébrale ou encore les troubles du développement qui y sont associés.

\textbf{DESCRIPTION}

Les inventeurs ont précédemment démontré que le dosage placentaire du facteur de croissance placentaire (PIGF) permet d’identifier, parmi les enfants exposés \textit{in utero} à l’alcool, ceux qui ont subi des atteintes cérébrales. Ces enfants présentent notamment une diminution des taux de PIGF placentaire qui correspond à une angiogenèse cérébrale altérée.

Par la suite, dans un modèle pré-clinique d’alcoolisation \textit{in utero}, les inventeurs ont découvert qu’une supplémentation en PIGF placentaire corrige l’action de l’alcool sur des paramètres morphométriques et anatomiques indicateurs de la croissance foetale tels que la taille du corps et de la tête à la naissance. De plus, les inventeurs ont démontré que l’augmentation de la quantité de PIGF permet de réduire fortement l’effet délétère de l’alcool sur la vascularisation cérébrale du foetus. Elle permet notamment d’améliorer l’angiogenèse cérébrale et de corriger la désorganisation des microvaisseaux induite par l’alcool.

TCAF et en particulier, dans la prévention et/ou le traitement des troubles neurologiques (tels que l’hyperactivité, perte de l’attention, dépression, anxiété, troubles émotionnels, irritabilité excessive, problèmes comportementaux, etc.) dus à des migrations neuronales et oligodendrocytaires vasculo-dépendantes anormales au niveau cérébral ou des troubles de croissance (hypotrophie) suite à la consommation d’alcool pendant la grossesse.

Dans un premier aspect, la présente invention concerne ainsi un facteur de croissance placentaire (PIGF) pour son utilisation dans la prévention et/ou le traitement des troubles causés par l’alcoolisation fœtale (TCAF) chez un sujet ayant été exposé à l’alcool in utero.

On entend par « PIGF » ou « Placental growth factor » ou « facteur de croissance placentaire » (tous ces termes sont synonymes) une protéine de la famille des facteurs de croissance de l’endothélium vasculaire (VEGF). Plus particulièrement, PIGF au sens de l’invention est une protéine de 149 acides aminés hautement similaire à VEGF-A qui est reconnue par le même récepteur que ce dernier, le VEGF-R1, mais qui n’est pas reconnue par le récepteur VEGF-R2. PIGF est fortement exprimé par le placenta, mais pas par le fœtus et en particulier par le cerveau fœtal. PIGF glycosylé en N-terminal est sécrété et fonctionne en dimère pour contrôler l’angiogenèse. Le terme « PIGF » se réfère notamment à l’ensemble des 4 isoformes PIGF1-4 : PIGF-1 et PIGF-3 sont des isoformes qui ne lient pas l’héparine tandis que PIGF-2 et PIGF-4 contiennent des domaines supplémentaires qui permettent de fixer l’héparine. Encore plus préférentiellement, on entend par PIGF une protéine humaine dont la séquence est choisie parmi l’une quelconque des isoformes identifiées par les numéros d’accession Uniprot P49763-2 (PIGF-1 dont la séquences d’acides aminés correspond à la SEQ ID NO :1) ; P49763-3 (PIGF-2 dont la séquences d’acides aminés correspond à la SEQ ID NO :2) ; P49763-1 (PIGF-3 dont la séquences d’acides aminés correspond à la SEQ ID NO :3) ; P49763-4 (PIGF-4 dont la séquences d’acides aminés correspond à la SEQ ID NO :4) présentées dans le listage de séquences annexé à la présente demande.

Selon un mode de réalisation de la présente invention, du PIGF recombinant ou des analogues protéiques du PIGF humain peuvent être également utilisés dans la prévention et/ou le traitement d’un TCAF.

Particulièrement, le PIGF de la présente invention est obtenu, en utilisant un système de production de protéine recombinante procaryote ou eucaryote, notamment en i) cultivant un microorganisme ou des cellules eucaryotes transformées à l’aide d’une séquence nucléotidique codant le PIGF humain (numéro d’accession NCBI du gène 5228; numéro
d'accession des transcrits NM_002632.5 (SEQ ID NO :5), NM001207012.1 (SEQ ID NO :6), NM_001293643.1 (SEQ ID NO :7)) et ii) isolant la protéine produite par ledit microorganisme ou lesdites cellules eucaryotes. Cette technique est bien connue de l'homme du métier. Pour plus de détails la concernant, on pourra se référer à l'ouvrage ci-après : Recombinant DNA Technology I, Editors Ales Prokop, Raskesh K Bajpai ; Annals of the New-York Academy of Sciences, Volume 646, 1991. La protéine PLGF est de préférence purifiée / isolée à partir de lysats de cellules et/ou de sumageants de cellules par lesquelles elle est exprimée et/ou sécrétée. Cette purification peut se faire par tout moyen connu de l'homme du métier. De nombreuses techniques de purification sont décrites dans Voet D et Voet JG, Techniques de purification des protéines et des acides nucléiques.

De nombreux vecteurs dans lesquels on peut insérer une molécule d'acide nucléique d'intérêt afin de l'introduire et de la maintenir dans une cellule hôte eucaryote ou procaryote, sont connus; le choix d'un vecteur approprié dépend de l'utilisation envisagée pour ce vecteur (par exemple réplication de la séquence d'intérêt, expression de cette séquence, maintien de cette séquence sous forme extrachromosomique ou bien intégration dans le matériel chromosomique de l'hôte), ainsi que de la nature de la cellule hôte (par exemple, les plasmides sont de préférence introduits dans des cellules bactériennes, tandis que les YACs sont de préférence utilisés dans des levures). Ces vecteurs d'expression peuvent être des plasmides, des YACs, des cosmides, des rétrovirus, des épisomes dérivés d'EBV, et tous les vecteurs que l'homme du métier peut juger appropriés à l'expression desdites chaînes.

Les vecteurs selon l'invention comprennent l'acide nucléique codant le PLGF, ou une séquence similaire, ainsi que les moyens nécessaires à son expression. On entend par « moyen nécessaire à l'expression d'un peptide », le terme peptide étant utilisé pour toute molécule peptidique, telle que protéine, polypeptidé, polypeptide, etc., tout moyen qui permet d'obtenir le peptide, tel que notamment un promoteur, un terminator de transcription, une origine de réplication et de préférence un marqueur de sélection. Les moyens nécessaires à l'expression d'un peptide sont liés de façon opérationnelle à la séquence d'acides nucléiques.
codant pour le fragment polypeptidique de l’invention. Par « liés de façon opérationnelle », on entend une juxtaposition desdits éléments nécessaires à l’expression du gène codant pour le fragment polypeptidique de l’invention, lesquels sont en une relation telle que cela leur permet de fonctionner de façon attendue. Par exemple, il peut exister des bases supplémentaires entre le promoteur et le gène codant le fragment polypeptidique de l’invention tant que leur relation fonctionnelle est préservée. Les moyens nécessaires à l’expression d’un peptide peuvent être des moyens homologues, c’est-à-dire naturellement compris dans le génome du vecteur utilisé, ou bien être hétérologues, c’est-à-dire rajouté de façon artificielle à partir d’un autre vecteur et/ou organisme. Dans ce dernier cas, lesdits moyens sont clonés avec le fragment polypeptidique à exprimer. Des exemples de promoteurs hétérologues comprennent les promoteurs viraux tels que le promoteur SV40 (Virus simien 40), le promoteur du gène de la thymidine-kinase du virus simplex de l’Herpès (TK-HSV-1), le LTR du virus du sarcome de Rous (RSV), le promoteur premier immédiat du cytomégalovirus (CMV) et le promoteur dernier majeur adénoviral (MLP), ainsi que tout promoteur cellulaire qui contrôle la transcription des gènes codant pour des peptides chez des eucaryotes supérieurs, tel que le promoteur du gène de phosphoglycérate-kinase (PGK) constitutif (Adra et al., Gene 1987), le promoteur des gènes spécifiques du foie alpha1-antitrypsine et F1X et le promoteur SM22 spécifique des cellules du muscle lisse (Moessler et al., Development 1996). Les méthodes de suppression et d’insertion de séquences d’ADN dans des vecteurs d’expression sont largement connues de l’homme du métier et consistent notamment en des étapes de digestion enzymatique et ligature. Les vecteurs de l’invention peuvent également comprendre des séquences nécessaires au ciblage des peptides vers des compartiments cellulaires particuliers. Un exemple de ciblage peut être le ciblage vers le réticulum endoplasmique obtenu en utilisant des séquences d’adressage du type de la séquence leader issue de la protéine E3 de l’adénovirus (Ciernik I. F., et al., The Journal of Immunology, 1999).

Le terme « terminator de transcription » désigne ici une séquence du génome qui marque la fin de la transcription d’un gène ou d’un opéron, en ARN messager. Le mécanisme de terminaison de la transcription est différent chez les procaryotes et chez les eucaryotes. L’homme du métier connait les signaux à utiliser en fonction des différents types cellulaires. Par exemple, si la cellule dans laquelle le vecteur va être introduit est une bactérie, il utilisera un terminator Rho-indépendant (séquence répétée inversée suivie d’une série de T (uraciles sur l’ARN transcrit) ou un terminator Rho-dépendant (constitué d’une séquence consensus reconnue par la protéine Rho).
Le terme « origine de réplication » (aussi appelée ori) est une séquence unique d’ADN permettant l’initiation de la réplication. C’est à partir de cette séquence que débute une réplication unidirectionnelle ou bidirectionnelle. L’homme du métier sait que la structure de l’origine de réplication varie d’une espèce à l’autre ; elle est donc spécifique d’une espèce bien qu’elle ait certaines caractéristiques communes entre espèces. Un complexe protéique se forme au niveau de cette séquence et permet l’ouverture de l’ADN et le démarrage de la réplication.

L’homme du métier connaît les conditions dans lesquelles cultiver ces cellules, ainsi que les conditions expérimentales nécessaires à l’expression des fragments polypeptidiques par ces cellules.

Le procédé de production de PIGF recombinant peut comprendre les étapes suivantes :

a) la culture dans un milieu et conditions de culture appropriés d’une cellule hôte comprenant le vecteur codant pour PIGF ; et

b) l’isolement du PIGF produit à l’étape a).

Le PIGF peut être isolé (purifié) à partir de la cellule l’exprimant. Dans ce cas, une étape préalable de lyse desdites cellules pourra être nécessaire.

Les milieux et conditions de culture associées à chaque type cellulaire utilisé pour la production de protéines recombinantes sont bien connus de l’homme du métier.

L’isolement (ou la purification) de PIGF peut se faire par tout moyen connu de l’homme du métier. On citera par exemple la précipitation différentielle ou l’ultracentrifugation. Il peut être également avantageux de purifier le PIGF par chromatographie d’échange ionique, par chromatographie d’affinité, par tamisage moléculaire, ou par isofocalisation. Toutes ces techniques sont décrites dans Voet D et Voet JG, Techniques de purification des protéines et des acides nucléiques, chapitre 6, Biochimie, 2nde édition.

Plus précisément, dans une première étape, le matériel dont on veut extraire la protéine (tissu animal ou végétal, bactéries, etc) est généralement broyé. Divers appareils (‘Waring Blender’, appareil Potter-Evilljem, ‘Polytron’, etc) peuvent être employés à cette fin. Cette homogénéisation se fait dans un tampon de composition appropriée, bien connue de l’homme du métier. L’homogénat ainsi obtenu est ensuite clarifié, le plus souvent par centrifugation, pour éliminer les grosses particules peu ou mal broyées ou encore pour obtenir la fraction cellulaire contenant la protéine recherchée. Si la protéine est justement dans un compartiment cellulaire, on utilise généralement un détergent doux (Triton X-100, Tween 20, Désoxycholate de sodium, etc) pour la libérer en dissolvant les membranes de ce compartiment. L’emploi de détergent doit souvent être fait de façon contrôlée car ils peuvent briser les lysosomes, ce qui libère des enzymes hydrolytiques (protéases, nucléases, etc.) qui peuvent attaquer et détruire les protéines ou autres molécules qu’on veut isoler. Des précautions particulières doivent être prises si on travaille avec des protéines sensibles à la dégradation ou peu nombreuses. Une solution fréquente à ce problème est l’inclusion dans les solutions d’inhibiteurs de protéases qui sont physiologiques (inhibiteurs de trypsine, antipâte,
leupeptine, etc) ou artificiels (E64, PMSF, etc). Ensuite diverses techniques existent pour isoler la protéine recherchée.

Une des méthodes se prétant le mieux à de gros volumes est la précipitation différentielle au sulfate d’ammonium. Les chromatographies d’échange ionique ou les chromatographies d’affinité, applicables aussi à de gros volumes d’échantillon mais ayant un assez bon pouvoir de séparation, constituent de bonnes méthodes intermédiaires. Pour finaliser la purification, le tamisage moléculaire ou l’isofocalisation sont souvent utilisés. Ces techniques permettent de raffiner la pureté, mais nécessitent de très petits volumes de protéines concentrées. Il est souvent avantageux, entre ces étapes, d’éliminer les sels ou produits utilisés dans ces chromatographies. Ceci peut être obtenu par dialyse ou par ultrafiltration.

Il peut aussi être avantageux d’utiliser un vecteur portant une séquence permettant d’identifier le PIGF de l’invention. De plus, il peut être avantageux de faciliter la sécrétion dans un système procaryote ou eucaryote. En effet, dans ce cas, la protéine recombinante d’intérêt sera présente dans le surnageant de la culture cellulaire plutôt qu’à l’intérieur des cellules hôtes.

Le PIGF peut être produit à des taux atteignant au moins 1mg par litre, de préférence 2 mg par litre, de manière encore plus préférée, 5mg par litre de culture cellulaire.

De manière alternative, il est possible de préparer le PIGF par synthèse chimique. L’homme du métier connaît les procédés de synthèse chimique, par exemple les techniques mettant en œuvre des phases solides ou utilisant des phases solides partielles, par condensation de la protéine ou par une synthèse en solution classique. Les fragments de l’invention peuvent par exemple être synthétisés par les techniques de la chimie de synthèse, telles que la synthèse de type Merrifield qui est avantageuse pour des raisons de pureté, de spécificité antigénique, d’absence de produits secondaires non désirés et pour sa facilité de production. Cette synthèse chimique peut être couplée à une approche de génie génétique ou par génie génétique seul en utilisant les techniques bien connues de l’homme du métier et décrites par exemple dans Sambrook J. et al., Molecular Cloning : A Laboratory Manual, 1989. Les réactifs et produits de départ sont commercialement disponibles, ou peuvent être synthétisés par des techniques conventionnelles bien connues (voir par exemple, WO 00/12508, WO 2005/085260).

En particulier des analogues de PIGF peuvent être synthétisés en utilisant la technique décrite par Zheng et al. (Acta Ophthalmologica 2012 90(7) : e512 - e523).
Comme indiqué précédemment, la présente invention a pour objet un PIGF pour son utilisation dans la prévention et le traitement des TCAF. On entend par « Troubles Causés par l’Alcoolisation Fœtale (TCAF) » l’ensemble des troubles chez l’enfant résultant de l’exposition à l’alcool durant la gestation. Ce terme comprend entre autres l’ensemble des troubles comportementaux qui vont se révéler progressivement avec l’âge. Les enfants présentant ces troubles sont appelés des « enfants TCAF. » Dans leur version la plus sévère, les TCAF correspondent au syndrome d’alcoolisation fœtale (SAF). Celui-ci se traduit par une dysmorphie craniofaciale (comprénant des fentes palpébrales raccourcies, un sillon naso-labial lisse, allongé, effacé et une lèvre supérieure mince); un retard de croissance non spécifique (taille ou poids ou périmètre crânien) prénatal ou postnatal ou les deux ; des malformations diversement associées (cardiopathies, malformations uro-génitales, malformations digestives ou troubles de l’architecture cérébrale) et des troubles du développement neurologique s’exprimant parfois par un retard mental et plus souvent par des difficultés d’apprentissage. Les enfants atteints de SAF sont appelés des « enfants SAF ».

La majorité des enfants TCAF présente des troubles d’inadaptation et du comportement qui se révèlent progressivement avec l’âge (comprénant des difficultés d’allaitement et d’alimentation, des troubles du sommeil puis, à l’âge scolaire, des anomalies du comportement, des troubles cognitifs retentissant sur l’apprentissage, des déficits intellectuels avec un QI abaissé de 20 points (1 à 2 écarts type), des difficultés d’apprentissage de la lecture (dyslexie) et plus encore du calcul (dyscalculie), des troubles de l’attention accompagnés d’hyperactivité ou d’hypercinésie. Ils sont connus sous le nom de Syndrome Déficitaire de l’Attention avec hyper kinésie (SDAH) (ou Attention Deficit Hyperactivity Disorder (ADHD) en anglais). Le terme TCAF est parfois substitué par le terme TSAF (Troubles du Spectre de l’Alcoolisation Fœtale) correspondant (ou Fetal Alcohol Spectrum Disorder (FASD) en anglais). Une définition complète des TCAF est donnée dans le Rapport de l’Académie Nationale Française de Médecine relatif à l’alcoolisation fœtale (adopté le 22 mars 2016).

Les inventeurs ont précédemment montré que l’exposition à l’alcool cause des atteintes vasculaires cérébrales. Par « atteinte vasculaire cérébrale », on entend ici toute altération du système vasculaire cérébral, notamment une altération entraînant un fonctionnement altéré, voire défectueux dudit système. Une atteinte vasculaire cérébrale dans le contexte de l’invention peut notamment être une désorganisation du système vasculaire cérébral. Plus particulièrement, l’alcoolisation fœtale induit une orientation aléatoire des vaisseaux
cérébraux. Selon un mode de réalisation particulier, le trouble de l'alcoolisation foetale est lié à une atteinte vasculaire cérébrale. Encore plus particulièrement, ledit trouble de l'alcoolisation foetale est lié à une désorganisation du système vasculaire cérébral.

Les inventeurs ont également démontré par leurs travaux précédents que l'alcoolisation foetale provoque une défaillance dans l'angiogenèse cérébrale. L'angiogenèse cérébrale est le processus de formation de vaisseaux sanguins dans le cerveau.

Selon un mode de réalisation de la présente invention, le PIGF est utilisé pour stimuler l'angiogenèse cérébrale et ainsi améliorer le fonctionnement cérébral.

Selon encore un autre mode de réalisation de l'invention, le PIGF peut être utilisé pour prévenir et/ou traiter au moins un TCAF choisi parmi un quelconque des troubles de l'inadaptation et du comportement cités ci-dessus. Le PIGF peut aussi être utilisé pour prévenir et/ou traiter le syndrome d'alcoolisation foetale (SAF), notamment lorsque le SAF se manifeste sous forme d'une hypotrophie.

Dans le contexte de la présente invention, le terme « Syndrome d'Alcoolisation Foetale (SAF) » désigne la manifestation la plus extrême et invalidante des troubles causés par l'alcoolisation foetale (TCAF). Elle associe des anomalies physiques comme une hypotrophie (retard de croissance), une dysmorphie crânio-faciale et des anomalies neurocomportementales se traduisant par des troubles des fonctions cognitives (troubles de l'attention, de la motricité, de l'apprentissage ou encore de la mémorisation). On parle de SAF partial lorsque l'enfant ne présente qu'une partie des symptômes SAF. Les enfants SAF partiels présentent toutefois toujours une ou des anomalies neurocomportementales.

Dans le contexte de l'invention, un enfant SAF, en particulier un nouveau-né, est considéré comme "hypotrophique" si son poids et sa taille sont en dessous du 10e percentile des courbes de référence. C'est souvent le cas des nouveau-nés prématurés et des nouveau-nés exposés in utero à l'alcool. L'hypotrophie peut aussi être diagnostiquée avant terme, par échographie : on parle alors d'hypotrophie foetale ou de retard de croissance intra-utérin.

Les inventeurs ont en outre démontré que l'augmentation de la quantité de PIGF permet d'augmenter la taille du corps entier d'un fœtus ou de l'une ou plusieurs de ses parties, en particulier la taille du crâne, la taille du corps, la taille d'abdomen et sa profondeur. Cela permet ainsi le rétablissement partiel ou complet de l'aspect morphométrique normal.
L’administration de PIGF permet donc de compenser l’hypotrophie des sujets SAF qui représentent les formes les plus graves de TCAF.

Selon un autre mode de réalisation, la présente invention concerne ainsi un PIGF pour son utilisation dans la prévention et/ou le traitement du SAF, notamment lorsque le SAF se manifeste sous forme d’une hypotrophie due à l’exposition intra-utérine à l’alcool. En particulier, il s’agit d’une hypotrophie du corps entier d’un sujet ou de l’une ou plusieurs de ses parties choisies parmi le torse (ou encore appelé le corps), l’abdomen et le crâne. En particulier le sujet est un fœtus ou un enfant, en particulier un prématuré.

Selon un mode de réalisation de la présente invention le sujet ayant été exposé in utero à l’alcool est choisi parmi un embryon, un fœtus ou un enfant, de préférence un fœtus ou un enfant, en particulier, un enfant prématuré.

La période entre la 30ème semaine gestationnelle et le terme de la grossesse est celle pendant laquelle l’angiogenèse cérébrale est la plus importante. Il est ainsi particulièrement préféré d’administrer le PIGF à un fœtus exposé in utero à l’alcool à cette période précisément.

Selon un mode de réalisation particulier de l’invention, lorsque le sujet TCAF est un enfant prématuré, le traitement consistera à supplémerter en PIGF ce sujet sur la période ex utero correspondante aux semaines de vie intra-utérines perdues. De préférence, la fenêtre de traitement peut s’étendre de la 30ème semaine gestationnelle au terme théorique (40 semaines gestationnelles), période durant laquelle l’angiogenèse cérébrale chez l’Homme est particulièrement intense.

On entend par « sujet » selon l’invention un humain, et de préférence un embryon, un fœtus ou un enfant. Un « embryon », tel qu’on l’entend ici, correspond à un ovocyte fécondé de moins de trois mois. Par « fœtus », on entend ici un individu pris avant la naissance et dont l’âge gestationnel est compris entre 3 et 9 mois. Après l’accouchement, le sujet devient un enfant. Par « enfant », on entend selon l’invention un individu dont l’âge est inférieur à 3 ans. Sont ainsi compris dans la catégorie des enfants selon l’invention, les nouveau-nés, dont l’âge est compris entre 0 et 1 mois, les nourrissons, qui ont entre 1 mois et 2 ans, et les enfants proprement dits, qui sont âgés d’au moins 2 ans. Un « nouveau-né », comme on l’entend ici, peut aussi bien être né à terme qu’être prématuré. Dans le contexte de la présente demande le terme « prématuré » désigne un enfant né vivant avant 37 semaines d’aménorrhée. Ce terme recouvre trois sous-catégories : la prématurité extrême (<28 semaines); la grande
prématurité (entre la 28e et la 32e semaine); la prématurité moyenne, voire tardive (entre la 32e et la 37e semaine). Dans la présente invention les enfants prématurés traités par PIGF sont de préférence dans la catégorie de prématurité moyenne, voire tardive.

L'expression « un sujet avec des troubles d'alcoolisation fœtale » ou « sujet TCAF » telle qu'utilisée ici se rapporte à un embryon, un fœtus ou un sujet, en particulier humain, qui est exposé ou susceptible d'être exposé à l'alcool in utero et qui souffre de troubles d'alcoolisation fœtale ou qui est en danger de développer en raison de la consommation maternelle d'alcool une des conditions liées aux troubles d'alcoolisation fœtale, y compris les effets décrits ci-dessus. En particulier, un sujet TCAF peut avoir une taille du corps entier ou de ses parties inférieure à la normale et un réseau vasculaire cérébral désorganisé, ladite désorganisation étant notamment liée à une orientation aléatoire des vaisseaux cérébraux. Lorsqu'un sujet TCAF est atteint en particulier par un SAF, on parle dans ce cas d'un « sujet SAF ».

Par « traitement », on entend ici toute action permettant de diminuer ou d'éradiquer les symptômes ou les causes des TCAF. Un traitement au sens de l'invention peut comprendre l'administration de PIGF, d'une composition pharmaceutique ou d'un produit le comprenant avec ou sans un suivi psychothérapeutique.

Par « prévention », on entend ici toute action permettant de prévenir complètement ou partiellement le risque d'apparition des symptômes ou les causes des TCAF. Une prévention au sens de la présente invention comprend l'administration de PIGF, d'une composition pharmaceutique, à un sujet exposé in utero à l'alcool ou à un sujet ayant été exposé in utero à l'alcool mais pour lequel les symptômes de TCAF ne sont pas encore apparus et l'angiogenèse cérébrale toujours en cours. Les inventeurs mettent à profit le fait que le PIGF est un facteur angiogénique naturellement présent à ces stades du développement fœtal chez un sujet sain ce qui présente l'avantage d'une utilisation aisé de PIGF par compensation dans la prévention de TCAF.

Selon un mode de réalisation de la présente invention, le facteur de croissance placentaire est administré en une quantité thérapeutiquement efficace à un sujet ayant été exposé à l'alcool in utero.

Dans le contexte de l'invention, « une quantité thérapeutiquement efficace » signifie une quantité suffisante pour influencer le cours thérapeutique d'un état pathologique particulier.
Une quantité thérapeutiquement efficace est également celle à laquelle tous les effets toxiques ou secondaires de l’agent sont compensés par les effets thérapeutiquement bénéfiques du principe actif utilisé.

Selon un autre mode de réalisation de la présente invention, le facteur de croissance placentaire (PIGF) est administré in utero et/ou ex utero. Il est ainsi envisageable de débuter un traitement (ou une prévention) par l’administration de PIGF durant la période intra-utérine et de le continuer après l’accouchement notamment lorsque l’enfant est né prématurément et qu’il perd par conséquent l’apport physiologique du PIGF placentaire.

De préférence, le PIGF sera administré seul ou dans une composition pharmaceutique par voie systémique, en particulier par voie intraveineuse, intramusculaire, intradermique, intrapéritonéale, sous-cutanée, ou orale. De manière plus préférée, le PIGF sera administré à plusieurs reprises, de manière étalée dans le temps.

En particulier, lorsque l’administration de PIGF est effectuée in utero, celle-ci a lieu de préférence directement au niveau placentaire afin d’atteindre plus rapidement le cerveau fœtal et éviter la dégradation de la protéine par l’organisme maternel.

Lorsque l’administration de PIGF a lieu après la naissance, de préférence, celui-ci est administré par voie parentérale, de préférence intraveineuse surtout s’il s’agit d’un enfant prématuré ou d’un nouveau-né.

Les modes d’administration, posologies et formes galéniques optimaux peuvent être déterminés selon les critères généralement pris en compte dans l’établissement d’un traitement adapté à un patient comme par exemple l’âge ou le poids corporel du patient, la gravité de son état général, la tolérance au traitement et les effets secondaires constatés.

Lorsque le PIGF est administré sous forme de compositions pharmaceutiques, pour l’administration sous-cutanée, intramusculaire, intraveineuse, transdermique locale, le PIGF peut être administré sous formes unitaires d’administration, en mélange avec des supports pharmaceutiques classiques au sujet en ayant besoin. Les formes unitaires d’administration appropriées comprennent les formes par voie intramusculaire, intraveineuse.

Comme indiqué ci-dessus, le choix de la voie d’administration la plus appropriée dépendra du moment où cette administration sera effectuée. En particulier, lorsque l’administration d’une composition cosmétique comprenant PIGF est effectuée in utero, celle-ci se fera par voie
intermusculaire ou voie intraveineuse, de préférence au niveau placentaire. L'administration de la composition pharmaceutique comprenant le PLGF à un enfant nouveau-né ou un enfant prématûré est faite de préférence par voie intraveineuse.

Pour une administration parentérale, intranasale ou intraoculaire, on utilise des suspensions aqueuses, des solutions salines isotoniques ou des solutions stériles et injectables qui contiennent des agents de dispersion et/ou des agents mouillants pharmacologiquement compatibles.

Les formes pour l'administration parentérale sont obtenues de façon conventionnelle par mélange du PLGF avec des tampons, des agents stabilisants, des conservateurs, des agents solubilisants, des agents isotoniques et des agents de mise en suspension. Conformément aux techniques connues, ces mélanges sont ensuite stérilisés puis conditionnés sous la forme d'injections intraveineuses.

A titre de tampon, l'homme du métier pourra utiliser des tampons à base de sels de phosphate organique. Des exemples d'agents de mise en suspension englobent le méthylcellulose, l'hydroxyéthylcellulose, l'hydroxypropylcellulose, l'acacia et la carboxyméthylcellulose sodique. En outre, des stabilisants utiles selon l'invention sont le sulfite de sodium et le métasulfite de sodium, tandis que l'on peut citer le p-hydroxybenzoate de sodium, l'acide sorbique, le crésol et le chlorocrésol en tant que conservateurs.

Les compositions pharmaceutiques de l'invention peuvent être formulées de manière à être administrées au patient par une unique voie ou par des voies différentes.

La posologie dépend naturellement de la forme sous laquelle le PLGF sera administré, du mode d'administration, de l'indication thérapeutique, de l'âge du patient et de son état.

La dose à administrer est préférablement de 0,001 à 250 mg/kg de PLGF par jour, de préférence de 0,01 à 100 mg/kg de PLGF par jour, de manière plus préférée de 0,1 à 50 mg/kg de PLGF par jour et de manière encore plus préférée de 1 à 25 mg/kg de PLGF par jour.

La dose unitaire du PLGF comprend de préférence de 0,1 à 50 mg/kg de ce composé.

Selon un mode de réalisation de la présente invention, la dose initialement administrée du PLGF pourra être ajustée si nécessaire au cours d'un traitement en fonction de la réponse à ce
traitement du sujet traité. L'Homme du métier se basant sur ces connaissances générales et sur la présente description saura ajuster la dose de PIGF de manière à optimiser son effet thérapeutique.

Comme mentionné plus haut dans la description, le facteur de croissance placentaire (PIGF) peut être utilisé également sous la forme de principe actif dans une composition pharmaceutique.

Selon un second aspect, la présente invention concerne ainsi une composition pharmaceutique comprenant un facteur de croissance placentaire (PIGF) tel que défini ci-dessus et un véhicule pharmaceutiquement acceptable pour son utilisation dans la prévention et/ou le traitement des troubles causés par l'alcoolisation foetale (TCAF).

La composition pharmaceutique selon la présente invention peut être utilisée dans la prévention et/ou le traitement de différents types de TCAF comme décrit pour le PIGF ci-dessus. En particulier, ces TCAF sont choisis dans le groupe comprenant les troubles d'inadaptation et du comportement ou le syndrome d'alcoolisation foetale (SAF), notamment lorsqu'il se manifeste sous forme d'une hypotrophie et l'atteinte vasculaire cérébrale due à l'exposition à l'alcool in utero.

La composition de la présente invention peut être également utilisée pour améliorer l'angiogenèse cérébrale d'un sujet ayant été exposé à l'alcool in utero.

On entend par « véhicule pharmaceutiquement acceptable » au sens de la présente invention, toute matière qui est appropriée à une utilisation dans un produit pharmaceutique. A titre d'exemple de véhicule pharmaceutiquement acceptable, on peut citer le lactose, l'amidon éventuellement modifié, la cellulose, l'hydroxypropylméthyl cellulose, le mannitol, le sorbitol, le xylitol, le dextrose, le sulfate de calcium, le phosphate de calcium, le lactate de calcium, les dextrates, l'inositol, le carbonate de calcium, la glycine, la bentonite et leurs mélanges.

La composition pharmaceutique selon l'invention peut se présenter sous différentes formes et être administrée de différentes manières comme indiquées plus haut en détails.

Selon un mode de réalisation, la composition pharmaceutique de la présente invention comprend un PIGF en tant que principe actif en une concentration comprise entre 0.001
mg/kg et 250 mg/kg en poids par rapport au poids total du sujet auquel la composition pharmaceutique sera administrée.

Préférentiellement, la concentration de PI GF est comprise entre 0,01 mg/kg et 100 mg/kg en poids par rapport au poids du sujet auquel la composition pharmaceutique sera administrée et encore plus particulièrement, entre 0,15 mg/kg et 50 mg/kg en poids par rapport au poids du sujet auquel la composition pharmaceutique sera administrée ou encore, entre 1 mg/kg et 25 mg/kg en poids par rapport au poids total du sujet auquel la composition sera administrée.

Les inventeurs ont démontré que l’augmentation de la quantité de PI GF est particulièrement efficace dans le rétablissement de l’atteinte de la vascularisation cérébrale permettant ainsi de ramener la fonction neuronale à un état normal.

Selon un mode de réalisation de la présente invention, le PI GF ou la composition pharmaceutique le comprenant est donc utilisé pour le traitement et/ou la prévention des atteintes de la vascularisation cérébrale dues à l’exposition à l’alcool in utero.

En outre, les inventeurs ont également démontré que l’augmentation de la quantité de PI GF permet d’augmenter la taille du corps entier d’un foetus ou l’une ou plusieurs de ses parties, en particulier la taille du crâne, la taille du corps, la taille d’abdomen et sa profondeur après une exposition à l’alcool pendant la période intra-utérine. Cela permet ainsi le rétablissement partiel ou complet de l’aspect morphométrique normal.

Selon un autre mode de réalisation, la présente invention concerne ainsi un PI GF ou une composition pharmaceutique le comprenant pour son utilisation dans la prévention et/ou le traitement de l’hypotrophie due à l’exposition intra-utérine à l’alcool, notamment lorsque cette hypertrophie est une manifestation du SAF. En particulier, il s’agit d’une hypotrophie du corps entier d’un sujet ou de l’une ou plusieurs de ses parties choisies parmi le torse (ou encore appelé le corps), l’abdomen et le crâne. En particulier le sujet est un sujet SAF qui est un foetus ou un nouveau-né, en particulier un prématuré.

Un quatrième aspect de l’invention a pour objet une méthode de traitement de troubles de l’alcoolisation foetale chez un sujet. Ladite méthode comprend une étape d’administration ou surexpression de PI GF ou l’administration d’une composition pharmaceutique le comprenant à un sujet présentant des TCAF comprenant en particulier le syndrome d’alcoolisation foetale (SAF), notamment lorsqu’il se manifeste sous forme d’une hypotrophie et/ou une atteinte vasculaire cérébrale d’un sujet ayant été exposé à l’alcool in utero.
Cette méthode de traitement peut comprendre au préalable une étape de diagnostic de TCAF.

Selon un cinquième aspect de la présente invention concerne le facteur de croissance placentaire (PIGF), une composition pharmaceutique ou un produit le comprenant selon l’invention pour l’utilisation dans le traitement des TCAF, ladite utilisation comprenant les étapes suivantes préalablement à l’administration dudit PIGF ou de ladite composition au sujet à traiter :

a) mesure de la quantité de PIGF dans un échantillon biologique dudit sujet, de préférence provenant du placenta ou du sang du cordon ;

b) comparaison de la quantité de PIGF de l’étape a) avec une référence qui est une mesure de la quantité de PIGF dans un individu sain, et

c) détermination d’un TCAF ou du risque de développer un TCAF chez ledit sujet.

On entend par « échantillon biologique » selon l’invention tout échantillon qui peut être prélevé à partir d’un sujet. Alternativement, l’échantillon biologique est un échantillon provenant du placenta, notamment du cordon ombilical. En effet, le PIGF est exprimé par des cellules du placenta tout au long de la grossesse. Cela permet de doser le PIGF sans attenter à l’intégrité du sujet, en particulier quand celui-ci est un embryon ou un fœtus. De façon générale, l’échantillon biologique doit permettre la détermination du taux d’expression de PIGF. L’échantillon à tester peut être utilisé comme obtenu directement à partir de la source biologique ou à la suite d’un prétraitement pour modifier le caractère de l’échantillon. Par exemple, un tel prétraitement peut inclure la préparation de plasma à partir de sang, la dilution de fluides visqueux et ainsi de suite. Des procédés de prétraitement peuvent aussi impliquer la filtration, la précipitation, la dilution, la distillation, le mélange, la concentration, l’inactivation de composants perturbateurs, l’addition des réactifs, une lyse, etc. En outre, il peut être bénéfique de modifier un échantillon d’essai solide pour former un milieu liquide ou pour libérer l’analyte.

Selon un mode de réalisation, lorsque la quantité de PIGF mesurée à l’étape a) est inférieure à la référence le sujet est déterminé comme souffrant de ou ayant un risque de développer un TCAF et en particulier une atteinte de la vascularisation cérébrale ou un SAF, notamment une hypotrophie.

Selon la présente invention, la quantité de PIGF est mesurée lorsqu’un sujet présente au moins un trouble pouvant être lié à l’exposition à l'alcool intra-utérine. La quantité de PIGF sera également mesurée lorsqu'un sujet ne présente pas un ou plusieurs troubles particuliers liés à l'exposition d'alcool intra-utérine mais pour qui l'exposition à l'alcool pendant cette période a été avérée ou supposée. Ainsi, la mesure de la quantité de PIGF comme décrit ci-dessus permettra de confirmer ou d’infirmer un TCAF ou le risque d’en développer un avant la prise en charge thérapeutique.

Selon un mode de réalisation, la quantité de PIGF est déterminée en mesurant la quantité de transcrits codant le PIGF ou la quantité du polypeptide.

Le taux d’expression génique ou protéique peut être mesuré par de nombreuses méthodes qui sont à la disposition de l’homme du métier. Il peut y avoir plusieurs étapes intermédiaires entre le prélèvement de l'échantillon biologique et la mesure de l'expression de PIGF, lesdites étapes correspondant à l’extraction à partir dudit échantillon d’un échantillon d’ARNm (ou de l’ADNc correspondant) ou d’un échantillon de protéine. Celui-ci peut ensuite être directement utilisé pour mesurer l’expression de PIGF. La préparation ou l’extraction d’ARNm (ainsi que la rétrocopie de celui-ci en ADNc) ou de protéines à partir d’un échantillon cellulaire ne sont que des procédures de routine bien connues de l’homme du métier.

Une fois qu’un échantillon d’ARNm (ou d’ADNc correspondant) ou de protéine est obtenu, l’expression de PIGF, au niveau soit des ARNm (c’est-à-dire dans l’ensemble des ARNm ou des ADNc présents dans l’échantillon), soit des protéines (c’est-à-dire dans l’ensemble des protéines présentes dans l’échantillon), peut être mesurée. La méthode utilisée pour ce faire dépend alors du type de transformation (ARNm, ADNc ou protéine) et du type d'échantillon disponible.

Quand l'expression de PIGF est mesurée au niveau de l’ARNm (ou d’ADNc correspondant), n’importe quelle technologie habituellement utilisée par l’homme du métier peut être mise en œuvre. Ces technologies d’analyse du niveau d’expression des gènes, comme par exemple
l’analyse du transcriptome, incluent des méthodes bien connues telles que la PCR (Polymerase Chain Reaction, si on part d’ADN), la RT-PCR (Reverse Transcription-PCR, si on part d’ARN) ou la RT-PCR quantitative ou encore les puces d’acides nucléiques (dont les puces à ADN et les puces à oligonucléotides) pour un plus haut débit.

Par « puces d’acides nucléiques », on entend ici plusieurs sondes d’acides nucléiques différentes qui sont attachées à un substrat, lequel peut être une micropuce, une lame de verre, ou une bille de la taille d’une microsphère. La micropuce peut être constituée de polymères, de plastiques, de résines, de polysaccharides, de silice ou d’un matériau à base de silice, de carbone, de métaux, de verre inorganique, ou de nitrocellulose.

Les sondes peuvent être des acides nucléiques tels que les ADNC (« puce à ADNC »), les ARNm (« puce à ARNm ») ou des oligonucléotides (« puce à oligonucléotides »), lesdits oligonucléotides pouvant typiquement avoir une longueur comprise entre environ 25 et 60 nucléotides.

Pour déterminer le profil d’expression d’un gène particulier, un acide nucléique correspondant à tout ou partie dudit gène est marqué, puis mis en contact avec la puce dans des conditions d’hybridation, conduisant à la formation de complexes entre ledit acide nucléique cible marqué et les sondes attachées à la surface de la puce qui sont complémentaires de cet acide nucléique. La présence de complexes hybridés marqués est ensuite détectée.

Ces technologies permettent de suivre le niveau d’expression d’un gène en particulier ou de plusieurs gènes voire même de tous les gènes du génome (full genome ou full transcriptome) dans un échantillon biologique (cellules, tissus ...). Ces technologies sont utilisées en routine par l’homme du métier et il n’est donc pas besoin de les détailler ici.

Alternativement, il est possible d’utiliser toute technologie actuelle ou future permettant de déterminer l’expression des gènes sur la base de la quantité d’ARNm dans l’échantillon. Par exemple, l’homme du métier peut mesurer l’expression d’un gène par hybridation avec une sonde d’acide nucléique marquée, comme par exemple par Northern blot (pour l’ARNm) ou par Southern blot (pour l’ADNC), mais aussi par des techniques telles que la méthode d’analyse sérielle de l’expression des gènes (SAGE) et ses dérivés, tels que LongSAGE, SuperSAGE, DeepSAGE, etc. Il est aussi possible d’utiliser des puces à tissu (aussi connues en tant que TMAs : « tissue microarrays »). Les tests habituellement employés avec les puces à tissu

De préférence, l’expression du PIGF est mesurée au niveau protéique par une méthode sélectionnée parmi l’immunohistologie, l’immunoprécipitation, le western blot, le dot blot, l’ELISA ou l’ELISPOT, les puces à protéines, les puces à anticorps, ou les puces à tissu couplées à l’immunohistochimie, les techniques de FRET ou de BRET, les méthodes de microscopie ou d’histochimie, dont notamment les méthodes de microscopie confocale et de microscopie électronique, les méthodes basées sur l’utilisation d’une ou plusieurs longueurs d’onde d’excitation et d’une méthode optique adaptée, comme une méthode électrochimique (les techniques voltamétrie et d’ampérométrie), le microscope à force atomique, et les méthodes de radiofréquence, comme la spectroscopie résonance multipolaire, confocale et non-confocale, détection de fluorescence, luminescence, chemiluminescence, absorbance, réflectance, transmittance, et biréfringence ou index de réfraction (par exemple, par résonance des plasmons de surface, par ellipsométrie, par méthode de miroir résonnant, etc), cytométrie de flux, imagerie par résonance radioisotopique ou magnétique, analyse par électrophorèse en gel de polyacrylamide (SDS-PAGE); par spectrophotométrie HPLC-Mass, par chromatographie liquide/spectrophotométrie de masse/spectrométrie de masse (LC-MS/MS).

Plus préférentiellement, la quantité de PIGF est déterminée par une méthode choisie parmi l’immunoprécipitation, l’immunohistologie, le western blot, le dot blot, l’ELISA ou l’ELISPOT, les puces à protéines, les puces à anticorps, ou les puces à tissu couplées à l’immunohistochimie. Des anticorps dirigés contre PIGF sont disponibles commercialement (voir par exemple, R&D Systems, Santa Cruz, Abcam, etc.) et peuvent être utilisés dans les
méthodes de l’invention. Encore plus préférentiellement, l’expression du PIGF est mesurée par Western Blot ou par ELISA.

En outre, la quantité de PIGF est normalisée par rapport à un marqueur témoin qui peut être un gène choisi parmi B2M, TFRC, YWHAZ, RPLO, 18S, GUSB, UBC, TBP, GAPDH, PPIA, POLR2A, ACTB, PGK1, HPRT1, IPO8 et HMBS, ou un polypeptide choisi parmi le produit desdits gènes.

Le taux de PIGF ainsi mesuré est comparé par la suite à un taux d’expression de PIGF de référence afin de déterminer s’il s’agit d’un sujet TCAF.

Par « un taux d’expression de PIGF de référence », on entend au sens de la présente demande tout taux d’expression dudit facteur utilisé à titre de référence. Par exemple, un taux d’expression de référence peut être obtenu en mesurant le taux d’expression de PIGF dans un échantillon biologique, par exemple un placenta ou le sang ombilical, d’un sujet sain, c’est-à-dire un sujet qui n’a pas été exposé à l’alcool in utero.

L’invention sera décrite plus précisément au moyen des exemples ci-dessous. Lesdits exemples sont fournis ici à titre d’illustration et ne sont pas, sauf indication contraire, destinés à être limitatifs.

LÉGENDES DES FIGURES

Figure 1. Effets de l’exposition alcoolique in utero sur l’angiogénèse corticale chez les embryons E20 de Souris. A,B: Effets de l’exposition alcoolique foetale de GD15 à GD20 sur l’organisation des microvaisseaux corticaux chez des animaux témoin (A) et exposés à l’alcool (B). Les microvaisseaux du cerveau ont été visualisés par immunohistochimie contre CD31. Les flèches indiquent les microvaisseaux du cerveau présentant une orientation radiale dans le groupe « Témoin ». Il faut noter une perte de l’organisation radiale dans le groupe « Alcool ».

Figure 2. Effets de l’exposition alcoolique in utero sur l’expression des membres de la famille VEGF/PIGF chez les embryons E20 de Souris. A-E: Quantification par western blot des niveaux protéiques de VEGFA (A), PIGF (B), sVEGF-R1 (C), mVEGF-R1 (D) et VEGF-R2 dans
le cortex des groupes « Témoin » et « Alcool ». F: Comparaison par western blot des niveaux protéiques de PIGF dans le cortex et le placenta des embryons E20 du groupe « Témoin ». *p<0.05 ; ***p<0.001 vs le groupe « Témoin » à l’aide d’un test t non-apparié.

Figure 4. Effets de l’exposition alcoolique in utero sur l’expression des protéines participant à la barrière placentaire et au métabolisme énergétique placentaire. A,B: Observation par immunohistochimie de la protéine ZO-1 dans la zone du labyrinthhe du placenta de souris des groupes « Témoin » (A) et « Alcool » (B). La protéine ZO-1 apparaît comme formant des groupes de points (flèches) dans le groupe « Témoin » tandis que le marquage est diffus dans le groupe « Alcool ». Les couches de trophoblastes ont été mises en évidence par immunoréactivité avec le transporteur de glucose Glut-1. Les noyaux ont été marqués au Hoechst. C: Double marquage avec des anticorps contre les transporteurs de monocarboxylate MCT-1 et de glucose dans la zone du labyrinthhe d’un placenta « Témoin ». Par contraste avec Glut-1, l’expression de MCT-1 est associée avec la couche maternelle du syncytiotrophoblaste. Les noyaux ont été marqués au Hoechst. D: Quantification par western blot des niveaux d’expression des protéines ZO-1 et MCT-1 dans les placenta des groupes « Témoin » et « Alcool ». *p<0.05, **p<0.01 vs le groupe « Témoin » à l’aide d’un test t non-
apparié. Les analyses par Western blot ont montré que le taux de ZO-1 a diminué de façon significative dans les placentas des animaux exposés à l'alcool tandis que le taux de la protéine MCT-1 a augmenté significativement. * P <0,05, ** p <0,01 par rapport au groupe témoin en utilisant le test t non apparié. E-H : Des essais d’immunohistochimie illustrent la distribution du VEGF-R1 (E), Glut-1 (F,G) et du PIGF (H) dans les couches de syncytiotrophoblastes du placenta de souris. Les noyaux ont été marqués au Hoechst.

Figure 5. Effets de l’exposition alcoolique in utero sur l’expression des membres de la famille VEGF/PIGF dans des placentas murins. A-F: Quantification par western blot des effets de l’exposition à l’alcool pendant la dernière semaine de gestation sur l’expression placentaire de VEGF-A (A), PIGF (B), sVEGF-R1 (C), mVEGF-R1 (D), VEGF-R2 (E) et CD31 (F) à GD20. G,H: Marquage par immunohistochimie montrant la distribution de VEGF-R2 (G) dans les couches de syncytiotrophoblastes du placenta marquées avec Glut-1 (H). Les noyaux ont été marqués au Hoechst. *p<0.05 vs le groupe « Témoin » à l’aide d’un test t non-apparié.

Figure 6. Diffusion du Bleu Evans et du PIGF recombinant humain injectés in utero du placenta dans le cerveau du foetus et effet de la répression placentaire du PIGF sur la vascularisation cérébrale. A,B: Visualisation au cours du temps du Bleu Evans administré par microinjection dans le placenta d’une souris gravide à GD15. La fluorescence a été détectée par illumination aux UV (A) et est représentée à l’aide d’une échelle de couleurs factices (B). C,D: Visualisation au cours du temps de la fluorescence du Bleu Evans dans le cerveau des foetus après une microinjection placentaire à GD15. La fluorescence a été détectée par illumination aux UV (C) et est représentée à l’aide d’une échelle de couleurs factices (D). E,F: Quantification au cours du temps par spectrophotométrie de l’absorbance à 595 nm du signal du Bleu Evans injecté dans les placentas (E) et de la suite dans les cerveaux des foetus correspondants (F). G: Quantification par ELISA du PIGF humain dans le cerveau de foetus de souris 30 min après injection du hPIGF dans les placentas des souris gravides à GD15. *p<0.05 vs le groupe « Témoin » à l’aide d’un test t non-apparié. H : Microphotographie visualisant l’expression d’eGFP 48 heures après la transfection in utero de placentas de souris gravide GD15 avec un plasmide codant pour une eGFP. I,J : Triple coloration eGFP / Glut-1 / Hoechst indiquant que la fluorescence d’eGFP (I) est principalement associée à la couche trophoblastique fœtale (J) marquée avec Glut-1 (têtes de flèches). La partie fœtale des couches trophoblastiques est identifiée par la présence de globules rouges nucléés spécifiques de la circulation fœtale (flèches). K : Visualisation par Western blot de PIGF, la GFP et les protéines d’actine dans les placentas des animaux non-transfectées (sh- / GFP -), GFP-
transfectées (sh- / GFP +) et shPLGF/GFP transfectées (sh+ / GFP +). L,M : Quantification par Western Blot des taux de PI GF (L) et l’expression de GFP (M) dans les placentas des animaux non-transfectées (sh- / GFP -), GFP-transfectées (sh- / GFP +) et shPLGF/GFP transfectées (sh+ / GFP +) quatre jours après la transfection. N : Quantification par transfert de Western des taux d’expression du VEGF-R1 dans le cerveau de fœtus à partir des placentas non-transfectées (sh- / GFP -), GFP-transfectées (sh- / GFP +) et shPLGF/GFP transfectées (sh+ / GFP +) quatre jours post-transfection. * P <0,05 vs le groupe “sh- / GFP” en utilisant le test ANOVA à sens unique suivie d’un test post-hoc de Tukey. O-R : Visualisation du système vasculaire dans le cortex de fœtus à partir des placentas non transfectés (Sh- / GFP -) (O), GFP transfectés (Sh- / GFP +) (P) et shPLGF / GFP transfectés (Sh+ / GFP +) (Q) Analyse statistique de la désorganisation des vaisseaux corticaux réalisée à l’aide du test de x2 (R).

Figure 9. Caractérisation morphométrique des effets de l’exposition alcoolique in utero sur le placenta humain des semaines gestationnelles 35 à 42. A,B: Marquage immunohistoïchimique réalisé contre CD31 et marquage au bleu de toluidine pour visualiser les microvaisseaux (marrons) présents dans les villosités placentaires (bleu) des groupes « Témoin » (A) et “FAS/pFAS” (B) à des âges de gestation allant de [35-42 WG]. La région luminaire des microvaisseaux est fortement réduite dans le groupe “FAS/pFas”. C: Pourcentage de villosités classées par taille dans les placenta des groupes « Témoin » et “FAS/pFAS” à des âges de gestation allant de [35-42 WG]. D: Répartition des vaisseaux par taille de villosités dans les placenta des groupes « Témoin » et “FAS/pFAS” à des âges de gestation allant de [35-42 WG]. E: Surface vasculaire par taille de villosités dans les placenta des groupes « Témoin » et “FAS/pFAS” à des âges de gestation allant de [35-42 WG]. *p<0,05 vs le groupe « Témoin » à l’aide d’un test t non-apparié.

Figure 10. Effets au cours du temps de l’exposition alcoolique in utero sur les densités de villosités et de vaisseaux dans des placenta humains et caractérisation par western blot de protéines pro-angiogéniques et du métabolisme énergétique. A: Evolution des densités de villosités dans les placenta des groupes « Témoin » (A) et “FAS/pFAS” (B) à des âges de gestation [20-25 WG], [25-35 WG] et [35-42 WG]. B: Evolution des densités de vaisseaux dans les placenta des groupes « Témoin » et “FAS/pFAS” à des âges de gestation [20-25 WG], [25-35 WG] et [35-42 WG]. #p<0,05, **p<0,01 vs le groupe « Témoin » comme indiqué sur le graphe. *p<0,05, ***p<0,001 pour les groupes « Témoin » vs « Alcool » pour une classe donnée d’âge gestationnel. C-H: Quantification par western blot des niveaux protéiques de ZO-1 (C), MCT-1 (D), PI GF (F), VEGFA (F), VEGF-R1 (G) et VEGF-R2 (H) dans les placenta des groupes « Témoin » et “FAS/pFAS”. *p<0,05 vs le groupe « Témoin » à l’aide d’un test t non-apparié.

Figure 11. Comparaison des atteintes cérébrales et placentaires observées chez les fœtus humains et induites par l’exposition alcoolique in utero et corrélation statistique. A-H: Organisation vasculaire dans les cerveaux (A,D) et les placenta (E,H) de patients du groupe « Témoin » a WG22 (A,E) et WG31 (C,G) et organisation vasculaire dans les cerveaux (B,D) et les placenta (F,H) des patients du groupe “FAS/pFAS” à WG21 (B,F) et WG33 (D,H). I,J: Corrélation statistique entre la désorganisation vasculaire corticale et la densité vasculaire placentaire dans les patients des groupes « Témoin » (I) et FAS/pFAS (J).

Figure 12. Effets de la surexpression de PI GF in utero sur la croissance du fœtus et de la vascularisation corticale lors de l’exposition intra-utérine à l’alcool. A,B : Une approche
d’activation PGF/CRISPR/dCas9 couplée à une électroporation du placenta in utero a été réalisée à GD13 (A) et la surexpression de PIGF a été contrôlée à GD20 (B). Dans le groupe « Alcool », l’exposition à l’alcool in utero a lieu entre GD15 et GD20. C,D : Visualisation de fœtus E20 issues de souris gravides exposées à du NaCl (C) ou l’alcool (D). Il est à noter la petite taille des fœtus exposés à l’alcool. Les barres indiquent des mesures morphométriques qui ont été réalisées (taille de la tête (a); la taille du corps (b), la taille de l’abdomen (c) et la taille du fœtus entier (a + b)). E,F : Visualisation de fœtus E20 issues de souris gravides après électroporation in utero des plasmides PGF/CRISPR-dCas9 dans les placenta de groupes « Témoin » (E) ou des souris gravides exposées à l’alcool (F). G,H : Quantification de la taille de l’abdomen (G) et du fœtus entier (H) dans le groupe « Témoin » (NaCl) et dans le groupe « Alcool ». Dans une même corne utérine certains placenta n’ont pas subi d’électroporation (barres noires), d’autres ont subi une électroporation avec le plasmide CRISPR-cas9 de contrôle (barres grises) ou une électroporation avec les plasmides PGF/CRISPR-dCas9 (barres blanches) # p <0,01; ### p < 0,001; #### p <0,0001 vs le groupe « Témoin » et * p <0,05; ** p <0,01; **** p <0,0001 comme indiqué en utilisant le test ANOVA à deux voies suivi d’un test post-hoc de Tukey. I-K : Visualisation du système vasculaire dans le cortex du fœtus E20 à partir des placenta de contrôle (NaCl) / non transfectés (I), d’alcool / contrôle de CRISPR-cas9 transfectés (J) et d’alcool PGF/CRISPR-dCas9 transfectés. On note que la surexpression du PIGF au niveau placenta corrigé la désorganisation de la vascularisation cérébrale induite par l’alcoolisation in utero. L : Quantification du pourcentage des vaisseaux radiaux dans le cortex des fœtus E20 à partir des placenta n’ayant pas subi d’électroporation (barres noires), ayant subi une électroporation avec des plasmide contrôle CRISPR-cas9 (barres grises) et une électroporation avec des plasmide PGF CRISPR-dCas9 (barres blanches). # p <0,05 ; ## p <0,01 vs le groupe « Témoin » et * p <0,05 comme indiqué en utilisant le test ANOVA à deux voies suivi d’un test post-hoc de Tukey.

Figure 13. Effets de la surexpression placentaire de PIGF sur la taille de la tête et du corps du fœtus E20 dans les groupes « Témoin » et « Alcool ». A,B : Quantification de la taille de la tête (A) et du corps (B) dans le groupe « Témoin » (NaCl) et le groupe « Alcool ». Dans une même corne utérine certains placenta n’ont pas subi d’électroporation (barres noires), d’autres ont subi une électroporation avec les plasmide de contrôle CRISPR-cas9 (barres grises) ou une électroporation avec des plasmide PGF CRISPR-dCas9 (barres blanches). ## P <0,01; ### P <0,001; #### P <0,0001 par rapport au groupe « Témoin » et * p <0,05; ** P <0,01 comme indiqué en utilisant le test ANOVA à deux voies suivi d’un test post-hoc de Tukey.
EXEMPLES

Exemples A : Anomalies suite à une alcoolisation in utero

Les exemples A ci-dessous regroupent plusieurs résultats des tests réalisés antérieurement à la présente invention démontrant que chez la Souris et l’Homme :

- l’alcoolisation fœtale impacte l’angiogenèse cérébrale et l’organisation du réseau vasculaire cérébral,
- ces altérations cérébrales sont corrélatées avec des anomalies vasculaires du placenta,
- un facteur pro-angiogénique placentaire est en mesure d’atteindre le cerveau fœtal,
- les anomalies neurodéveloppementales de l’angiogenèse cérébrale chez les enfants TCAF sont associées à une désorganisation du système PIGF placentaire/VEGF-R1 cérébral,
- une invalidation placentaire du PIGF reproduit les effets de l’alcoolisation fœtale sur le VEGF-R1 cérébral, et
- une désorganisation des taux placentaires de PIGF suite à une alcoolisation fœtale permet de prédire une atteinte cérébrale.

Anomalies de l’angiogenèse cérébrale suite à une alcoolisation in utero

Effets d’une exposition in utero à l’alcool sur le développement du réseau vasculaire cérébral

Les présents inventeurs ont précédemment démontré qu’une alcoolisation prénatale à l’alcool induit une désorganisation vasculaire cérébrale. En particulier, l’effet de l’alcool est associé à une diminution significative du nombre de vaisseaux corticaux présentant une orientation radiale au profit du nombre de microvaisseaux possédant une orientation aléatoire (Figure 1). Parallèlement à l’étude effectuée chez la Souris, une analyse du système microvasculaire cérébral chez l’Homme a montré que, comme chez la Souris, les microvaisseaux corticaux qui ont une orientation radiale dans le groupe « Témoin » sont totalement désorganisés dans le groupe « FAS/pFAS » (Figure 11 et Jegou et al., 2012).

Effets d’une exposition in utero à l’alcool sur l’expression de gènes représentatifs du système vasculaire chez la Souris
Les études de RT-PCR quantitative (ARNm) et de Western blot (protéine) ont révélé une dérégulation marquée des taux de récepteurs VEGF-R1 et VEGF-R2 qui relaient les effets pro-angiogéniques de facteurs comme le VEGFA ou encore le PIGF. Les anomalies du réseau vasculaire cérébral sont donc associées à une dérégulation de l'expression de récepteurs pro-angiogéniques cérébraux (Figure 2 et Jegou et al., 2012).

Anomalies de l'angiogenèse placentaire suite à une alcoolisation in utero

Différents paramètres placentaires ont été étudiés chez la Souris (Figures 3-5) et chez l'Homme (Figures 7-9) par une approche immunohisto chimique couplée à une analyse morphométrique comprenant notamment la densité et la taille des villosités placentaires, la densité et la surface vasculaire ou encore la proportion de vaisseaux par villosité. Chez l’Homme, ces paramètres ont été mesurés et comparés entre 34 placentas d’individus témoins et 36 placentas provenant d’individus exposés in utero à l’alcool. Les placentas ont été répartis en trois classes d’âges comparables à celles de l’étude cérébrale (Jegou et al., 2012). Sont présentés dans ce document les résultats concernant les classes d’âge [20-25GW], [25-35GW] et [35-42GW].

En particulier, l’analyse morphométrique indique que la répartition des vaisseaux placentaires par tailles de villosité et la surface vasculaire sont significativement impactées par l’alcoolisation (Figure 10). De plus, une analyse longitudinale de la densité vasculaire prenant en compte le facteur « âge » indique que dans le groupe « Témoins » l’angiogenèse placentaire augmente fortement entre les classes d’âge [20-25GW] et [25-35GW]. Cette forte augmentation de la vascularisation placentaire s’explique par un développement important du cerveau au cours du troisième trimestre de la grossesse qui nécessite des besoins accrus en oxygène et en nutriments. En revanche, l’alcoolisation fœtale induit une stagnation voire une baisse de la densité vasculaire placentaire (Figure 10).

En conclusion, les présents résultats indiquent qu’il existe dans le placenta humain comme dans le cortex cérébral des anomalies vasculaires chez les sujets ayant été exposés à l’alcool. Ces résultats confortent donc l’hypothèse d’un corrélat entre troubles cérébraux et déficits placentaires de l’angiogenèse.

Démonstration d’une corrélation entre les anomalies vasculaires placentaires et cérébrales
Les anomalies vasculaires placentaires et cérébrales observées chez l’Homme suite à une alcoolisation in utero peuvent être le fruit de processus totalement indépendants sans lien de cause à effet ou, au contraire, étroitement intriqués. Le fait que la source de PI GF soit unique et d’origine placentaire plaide en faveur de la seconde hypothèse. Toutefois, afin de démontrer un lien entre les atteintes vasculaires cérébrales et placentaires, nous avons effectué une étude de corrélation d’une part chez les sujets du groupe « Témoin » et, d’autre part, chez les individus du groupe « FAS/pFAS » (Figure 11).

Les résultats démontrent que dans le groupe « Témoin », l’accroissement de la vascularisation placentaire n’impacte pas l’organisation radiale des vaisseaux corticaux ($R^2 = 0,4719$). En revanche, le défaut de vascularisation placentaire observé dans le groupe « FAS/pFAS » est étroitement corrélé avec l’orientation aléatoire des vaisseaux corticaux ($R^2 = 0,9995$). Il existe donc une interaction très significative entre les altérations vasculaires placentaires et cérébrales.

Démonstration d’un lien fonctionnel entre le PI GF placentaire et son récepteur cérébral

L’administration in utero d’une molécule fluorescente au niveau placentaire chez la Souris gestante (GD15) est retrouvée après 20-30 min dans le cerveau du fœtus (Figure 6). De plus, du PI GF recombinant humain injecté chez la Souris au niveau du placenta est détecté après 30 min par ELISA au niveau du cerveau fœtal (Figure 6). Ces données indiquent que des molécules placentaires et notamment le PI GF sont en mesure d’atteindre le cerveau du fœtus.

L’invalidation par transfection in utero placentaire du PI GF murin par des shRNA se traduit par une répression des taux protéiques de PI GF placentaire après 48 heures (Figure 6). Cet effet est associé au niveau cérébral par une chute des niveaux protéiques du récepteur VEGF-R1 (Figure 6). Ces résultats indiquent que i) la répression spécifique du PI GF placentaire impacte directement l’expression du récepteur cérébral, ii) la répression spécifique du PI GF placentaire mime les effets de l’alcool sur l’expression du VEGF-R1 cérébral (Figures 2 et 6).

Les niveaux d’expression de protéines connues pour être soit des acteurs de l’angiogenèse soit des protéines spécifiques du système vasculaire ont été quantifiés par western blot. Ce travail a été effectué chez l’animal (Souris ; placenta/cerveau) et chez l’Homme (placenta).

Chez la Souris, la quantification des taux d’expression de VEGFα et de PI GF placentaires démontre une diminution significative uniquement du PI GF (dont le placenta est la seule
source dans l’organisme ; Figure 5). Parallèlement, la quantification des récepteurs au \(VEGF_A \) et au \(PlGF \) indique que l’expression du \(VEGFR1 \) (unique récepteur du \(PlGF \)) est diminuée aussi bien dans le placenta que dans le cerveau (Figures 2 et 5). Cette diminution, très marquée, est de l’ordre de 50%. L’expression de \(VEGFR2 \) au niveau cérébral n’est quant à elle pas affectée. De plus, la quantification de la protéine vasculaire \(ZO-1 \), impliquée dans l’établissement de la barrière placentaire et hématopoïétique, est fortement diminuée dans le placenta (Figure 4).

Parallèlement aux travaux menés chez la Souris, l’analyse d’expression protéique a été menée sur des placentas humains dont l’alcoolisation maternelle était avérée et les enfants vivants. Nous avons recueilli 7 placentas « Témoins » et 6 placentas « Alcool » et quantifié par western blot les marqueurs candidats identifiés chez la Souris. Les résultats indiquent que dans le groupe « Alcool » les expressions du \(PlGF \) et de \(ZO-1 \) sont très fortement diminuées comme chez la Souris (Figure 10). Ces données indiquent que les effets de l’alcoolisation fœtale observés aux niveaux placentaire et cérébral sont retrouvés chez deux espèces différentes, la Souris et l’Homme.

Exemples B : Effet thérapeutique de \(PlGF \)

Ces exemples correspondent aux résultats obtenus par des tests de surexpression de \(PlGF \) au niveau placentaire permettant ainsi de reverser l’effet délétère de l’alcool sur la morphologie et la taille de fœtus ainsi que sur l’angiogenèse cérébrale.

1. **Matériels et méthodes**

Surexpression placentaire de \(PlGF \) par activation in vivo du gène PGF dans un système CRISPR-dCas9

Associée à l’électroporation in vivo, l’approche CRISPR-dCas9 est une méthode de surexpression génique innovante pour l’identification du rôle de protéines endogènes dans les processus de développement. Les plasmides d’activation PGF CRISPR-dCas9 (sc-42211-ACT) constituant un complexe des médiateurs de l’activation synerigique (SAM) ont été conçus et fournis par Santa Cruz Biotechnology. SAM se lie à un site spécifique situé en amont du site de d’initiation de la transcription du gène PGF, activant ainsi la transcription endogène du gène cible. En pratique, les plasmides d’activation PGF-CRISPR dCas9 sont transfectés par électroporation in utero à GD13 dans deux groupes de souris (« Témoin » et « Alcool »). L’exposition à l’alcool a lieu entre GD15 à GD20. Un délai de deux jours entre la transfection
des plasmides d’activation PGF CRISPR-dCas9 et le traitement par l’alcool est nécessaire pour permettre l’expression de plasmide et la surexpression de PLGF. Pour une souris gravide donnée, 3 placentas ont été transfectés avec les plasmides d’activation PGF CRISPR-dCas9, 3 placentas ont été transfectés avec les plasmides contrôle CRISPR-cas9 (sc-418922) ciblant un ARN guide non-spécifique de 20 nt (contrôle négatif). Les autres placentas ne sont pas transfectés et sont utilisés comme contrôle (groupe « Témoin »).

2. Résultats

La surexpression placentaire du gène PGF permet de rétablir l’angiogenèse cérébrale du fœtus altérée par l’exposition à l’alcool in utero.

Une stratégie d’activation par le système CRISPR-dCas9 couplée à une transfection in utero a été utilisée pour permettre l’induction d’une forte expression du gène endogène PGF dans le placenta des souris gravides n’ayant pas été traitées à l’alcool (groupe « Témoin ») et des souris gravides ayant été exposées à l’alcool (groupe « Alcool ») (Fig. 12, A et B). À GD20, il a été observé que l’exposition à l’alcool in utero conduit à une diminution de la croissance intra-utérine du fœtus (figure 12, C et D.) avec une diminution significative de la taille de la tête (p <0,01; figure 13), de la taille du corps (p <0,0001; fig. S2) de la taille de l’abdomen (p <##; la figure 12, G) et de la taille du fœtus entier (p <####; la figure 12, H). Dans le groupe « Témoin », la surexpression de PGF induit une évolution macromorphique du fœtus (figure 12, C et E), avec une augmentation significative de la taille de l’abdomen (p <0,01; figure 12, G) et de la taille du fœtus entier (p <0,01; figure 12 H). Dans le groupe « Alcool », la surexpression de PGF augmente de manière significative la taille du corps (p <0,05; figure 13) et la taille du fœtus entier (p <0,01; figure 12, H). En comparaison avec le groupe « Témoin », la surexpression de PGF a supprimé les effets délétères de l’alcool sur la taille de la tête (figure 13) et sur la taille de l’abdomen (figure 12,G) et a réduit de 38,6 ± 2,8% et 46,8 ± 2,9% les effets de l’alcool sur la taille du corps (figure 13) et la taille des fœtus entiers (figure 12, H), respectivement. Aucun effet sur la morphologie du fœtus n’a été observé chez des souris gravides transfectées avec le plasmide contrôle CRISPR-cas9 (figure 12, G et H). Comme, il a été démontré précédemment, dans le cerveau de fœtus des souris à E20, l’exposition à l’alcool in utero conduit à une désorganisation du système vasculaire cortical (figures 1, A et B). La transfection du placenta avec un plasmide de contrôle CRISPR-cas9 n’a aucun effet sur les altérations angiogéniques induites par l’exposition à l’alcool in utero (figures. 12, I, J et L). En revanche, chez des souris gravides dont le placenta a été transfecté avec un plasmide
d’activation CRISPR-PGF dCas9, l’organisation radiale des microvaisseaux corticaux a été rétablie de manière significative (p <0,05; fig. 4, K, L). Ces données constituent la première démonstration que la surexpression du PLGF dans le placenta permet de rétablir partiellement ou entièrement les déficiences morphologiques et les altérations de l’angiogenèse cérébrale induites par exposition à l’alcool in utero.

Conclusion

Au vu des différents résultats obtenus par les inventeurs chez la Souris gravide, il apparaît que :

- la surexpression de PLGF dans le placenta d’une souris gravide exposée à l’alcool permet la disparition complète des anomalies morphométriques au niveau de l’abdomen et du crâne du fœtus causées par l’exposition à l’alcool. Ainsi, la taille du crâne et de l’abdomen qui se trouve réduite suite à l’exposition à l’alcool revient à la normale après la surexpression de PLGF,

- la surexpression de PLGF dans le placenta d’une souris gravide exposée à l’alcool permet la diminution des anomalies morphométriques au niveau de corps du fœtus et du fœtus entier causées par l’exposition à l’alcool. Ainsi, la taille du corps du fœtus ainsi que la taille du fœtus entier réduites lors de l’exposition à l’alcool revient quasiment à la normale après la surexpression de PLGF,

- la surexpression de PLGF au niveau placentaire permet l’amélioration de l’angiogenèse cérébrale du fœtus altérée par l’exposition à l’alcool d’une souris gravide. La fonction neuronale de ce fœtus se trouvera ainsi améliorée,

- la surexpression de PLGF peut être utilisée efficacement en tant que médicament dans le traitement des anomalies de type TCAF, en particulier pour améliorer l’angiogenèse cérébrale et/ou rétablir l’aspect morphologique normal de la vascularisation du fœtus atteint de TCAF.
REVENDICATIONS

1. Facteur de croissance placentaire (PIGF) pour son utilisation dans la prévention et/ou le traitement des troubles causés par l'alcoolisation fœtale (TCAF) chez un sujet ayant été exposé à l'alcool in utero.

2. PIGF pour son utilisation selon la revendication 1, caractérisé en ce que le TCAF est lié à une atteinte vasculaire cérébrale.

3. PIGF pour son utilisation selon la revendication 1 ou la revendication 2, caractérisé en ce que ledit PIGF stimule l'angiogenèse cérébrale.

4. PIGF pour son utilisation selon la revendication 1, caractérisé en ce que le TCAF est le syndrome d'alcoolisation fœtale (SAF), notamment lorsqu'il se manifeste sous forme d'une hypotrophie chez un sujet ayant été exposé à l'alcool in utero.

5. PIGF pour son utilisation selon la revendication 4, caractérisé en ce que l'hypotrophie est une hypotrophie du sujet entier ou d'une de ses parties choisies parmi le torse, l'abdomen et le crâne.

6. PIGF pour son utilisation selon l'une quelconque des revendications 1 à 5, caractérisé en ce que ledit PIGF possède la séquence représentée par une parmi SEQ ID NO : 1 à SEQ ID NO : 4.

7. PIGF pour son utilisation selon l'une quelconque des revendications 1 à 6, caractérisé en ce qu'il est obtenu par génie génétique ou par synthèse chimique.

8. PIGF pour son utilisation selon l'une quelconque des revendications 1 à 7, caractérisée en ce que le sujet ayant été exposé à l'alcool in utero est choisi parmi un embryon, un fœtus et un enfant, en particulier un enfant prématuré.

9. PIGF pour son utilisation selon l'une quelconque des revendications 1 à 8, caractérisé en ce que l'enfant est un enfant prématuré.

10. Composition pharmaceutique pour son utilisation dans la prévention et/ou le traitement des troubles causés par l'alcoolisation fœtale (TCAF) comprenant un PIGF tel que défini dans l'une quelconque des revendications 1 à 9 et un véhicule pharmaceutiquement acceptable.
11. PIGF pour son utilisation selon l'une quelconque des revendications 1 à 9 ou composition pharmaceutique pour son utilisation selon la revendication 10, caractérisés en ce que ladite utilisation comprend une étape préalable d'identification du sujet, ladite identification comprenant les étapes suivantes :

a) mesure de la quantité de PIGF dans un échantillon biologique dudit sujet, de préférence provenant du placenta ou du sang du cordon ombilical ;

b) comparaison de la quantité de PIGF de l'étape a) avec une référence qui est une mesure de la quantité de PIGF chez un sujet sain, et

c) détermination d'un TCAF ou d'un risque de développer un TCAF chez l'édit sujet.

12. PIGF ou composition pour leur utilisation selon la revendication 11 caractérisés en ce que le sujet souffre d'un TCAF ou a été identifié à risque de développer un TCAF si la quantité mesurée de PIGF à l'étape a) est inférieure à la référence de l'étape b).

13. PIGF ou composition pour leur utilisation selon la revendication 11, caractérisés en ce que la quantité de PIGF est déterminée en mesurant la quantité d'acide nucléique PIGF ou la quantité du polypeptide PIGF.

14. PIGF ou composition pour leur utilisation selon l'une quelconque des revendications 11 à 13 caractérisés en ce que la quantité de PIGF est mesurée par une méthode sélectionnée parmi le Northern blot, le Southern blot, la PCR, la RT-PCR, la RT-PCR quantitative, le SAGE et ses dérivés, les puces d'acides nucléiques, notamment les puces à ADNC, les puces à oligonucléotides et les puces à ARNm, les puces à tissu et le RNA-Seq et/ou par une méthode sélectionnée parmi l'immunohistologie, l'immunoprécipitation, le western blot, le dot blot, l'ELISA ou l'ELISpot, les puces à protéines, les puces à anticorps, ou les puces à tissu couplées à l'immunohistochimie, les techniques de FRET ou de BRET, les méthodes de microscopie ou d'histochimie, dont notamment les méthodes de microscopie confocale et de microscopie électronique, les méthodes basées sur l'utilisation d'une ou plusieurs longueurs d'onde d'excitation et d'une méthode optique adaptée, comme une méthode électrochimique (les techniques voltamétrie et d'amplérométrie), le microscope à force atomique, et les méthodes de radiofréquence, comme la spectroscopie résonance multipolaire, confocale et non-confocale, détection de fluorescence, luminescence, chemiluminescence, absorbance, réflectance, transmittance, and biréfringence ou index de réfraction (par exemple, par résonance des plasmons de surface, par ellipsométrie, par méthode de miroir résonnant, etc), cytométrie de
flux, imagerie par résonance radioisotopique ou magnétique, analyse par électrophorèse en gel de polyacrylamide (SDS-PAGE); par spectrophotométrie HPLC-Mass, par chromatographie liquide/spectrophotométrie de masse/spectrométrie de masse (LC-MS/MS).
Figure 2

A

B

C

D

E

F
Figure 4

A

Glut-1 / ZO-1 / Hoechst

B

Glut-1 / ZO-1 / Hoechst

C

MCT-1 / Glut-1 / Hoechst

D

ZO-1
Actine

MCT-1
Actine

DO rapport ZO-1 / Actine

Ctrl | Akc
120 | 110

DO rapport MCT-1 / Actine

Ctrl | Akc
120 | 110

*
Figure 6 (suite)
Figure 10

A

![Graph A](image)

B

![Graph B](image)

C

![ZO-1 Western Blot](image)

D

![MCT-1 Western Blot](image)

E

![PLGF Western Blot](image)

F

![VEGFA Western Blot](image)
Figure 10 (suite)

G

\[m\text{VEGFR1} \]

\[\text{Actine} \]

\[\bar{\text{VEGFR1/actine}} \]

<table>
<thead>
<tr>
<th></th>
<th>Ctrl</th>
<th>Alc</th>
</tr>
</thead>
<tbody>
<tr>
<td>VEGFR1/actine</td>
<td>(6)</td>
<td>(6)</td>
</tr>
</tbody>
</table>

H

\[\text{VEGFR2} \]

\[\text{Actine} \]

\[\bar{\text{VEGFR2/actine}} \]

<table>
<thead>
<tr>
<th></th>
<th>Ctrl</th>
<th>Alc</th>
</tr>
</thead>
<tbody>
<tr>
<td>VEGFR2/actine</td>
<td>(6)</td>
<td>(6)</td>
</tr>
</tbody>
</table>
Figure 11

A

B

C

D

E

F

G

H

I

J

\[y = 17,505e^{0.0745} \]
\[R^2 = 0.4719 \]

\[y = 106,19e^{0.004} \]
\[R^2 = 0.9995 \]
Figure 12
Figure 12 (suite)
B249636D36502_listage séquences_ST25
SEQUENCE LISTING

<110> UNIVERSITE DE ROUEN NORMANDIE
CENTRE HOSPITALIER UNIVERSITAIRE DE ROUEN
INSTITUT NATIONAL DE LA SANTE ET DE LA RECHERCHE MEDICALE (INSERM)

<120> TRAITEMENT DES TROUBLES CAUSES PAR L'ALCOOLISATION FOETALE (TCAF)

<130> B249636D36502

<160> 7

<170> PatentIn version 3.5

<210> 1
<211> 149
<212> PRT
<213> homo sapiens

<220> misc_feature
<223> PlGF-1, 149 aa, n' P49763-2

<400> 1

Met Pro Val Met Arg Leu Phe Pro Cys Phe Leu Gln Leu Leu Ala Gly
1 5 10
Leu Ala Leu Pro Ala Val Pro Pro Gln Gln Trp Ala Leu Ser Ala Gly
20 25 30
Asn Gly Ser Ser Glu Val Glu Val Val Pro Phe Gln Glu Val Trp Gly
35 40 45
Arg Ser Tyr Cys Arg Ala Leu Glu Arg Leu Val Asp Val Val Ser Glu
50 55 60
Tyr Pro Ser Glu Val Glu His Met Phe Ser Pro Ser Cys Val Ser Leu
65 70 75 80
Leu Arg Cys Thr Gly Cys Cys Gly Asp Glu Asn Leu His Cys Val Pro
85 90 95
Val Glu Thr Ala Asn Val Thr Met Gln Leu Leu Lys Ile Arg Ser Gly
100 105 110
Asp Arg Pro Ser Tyr Val Glu Leu Thr Phe Ser Gln His Val Arg Cys
115 120 125
Glu Cys Arg Pro Leu Arg Glu Lys Met Lys Pro Glu Arg Cys Gly Asp
130 135 140
Ala Val Pro Arg Arg
145

<210> 2
<211> 170
B249636D36502_listage séquences_ST25

<212> PRT
<213> homo sapiens

<220> misc_feature
<221> PLGF-2, 170aa, n° P49763-3
<400> 2

Met Pro Val Met Arg Leu Phe Pro Cys Phe Leu Gln Leu Leu Ala Gly
1 5 10 15
Leu Ala Leu Pro Ala Val Pro Pro Gln Gln Trp Ala Leu Ser Ala Gly
20 25 30
Asn Gly Ser Ser Glu Val Glu Val Val Pro Phe Gln Glu Val Trp Gly
35 40 45
Arg Ser Tyr Cys Arg Ala Leu Glu Arg Leu Val Asp Val Val Ser Glu
50 55 60
Tyr Pro Ser Glu Val Glu His Met Phe Ser Pro Ser Cys Val Ser Leu
65 70 75 80
Leu Arg Cys Thr Gly Cys Cys Gly Asp Glu Asn Leu His Cys Val Pro
85 90 95
Val Glu Thr Ala Asn Val Thr Met Gln Leu Leu Lys Ile Arg Ser Gly
100 105 110
Asp Arg Pro Ser Tyr Val Glu Leu Thr Phe Ser Gln His Val Arg Cys
115 120 125
Glu Cys Arg Pro Leu Arg Glu Lys Met Lys Pro Glu Arg Arg Arg Pro
130 135 140
Lys Gly Arg Gly Lys Arg Arg Arg Glu Lys Gln Arg Pro Thr Asp Cys
145 150 155 160
His Leu Cys Gly Asp Ala Val Pro Arg Arg
165 170

<210> 3
<211> 221
<212> PRT
<213> homo sapiens

<220> misc_feature
<221> PLGF-3, 221 aa, n° P49763-1
<400> 3

Met Pro Val Met Arg Leu Phe Pro Cys Phe Leu Gln Leu Leu Ala Gly
1 5 10 15

Pge p
B249636D36502_listage séquences_ST25

Leu Ala Leu Pro Ala Val Pro Pro Gln Gln Trp Ala Leu Ser Ala Gly
20 25 30

Asn Gly Ser Ser Glu Val Glu Val Val Pro Phe Gln Glu Val Trp Gly
35 40 45

Arg Ser Tyr Cys Arg Ala Leu Glu Arg Leu Val Asp Val Val Ser Glu
50 55 60

Tyr Pro Ser Glu Val Glu His Met Phe Ser Pro Ser Cys Val Ser Leu
65 70 75 80

Leu Arg Cys Thr Gly Cys Cys Gly Asp Glu Asn Leu His Cys Val Pro
85 90 95

Val Glu Thr Ala Asn Val Thr Met Gln Leu Leu Lys Ile Arg Ser Gly
100 105 110

Asp Arg Pro Ser Tyr Val Glu Leu Thr Phe Ser Gln His Val Arg Cys
115 120 125

Glu Cys Arg His Ser Pro Gly Arg Gln Ser Pro Asp Met Pro Gly Asp
130 135 140

Phe Arg Ala Asp Ala Pro Ser Phe Leu Pro Pro Arg Arg Ser Leu Pro
145 150 155 160

Met Leu Phe Arg Met Glu Trp Gly Cys Ala Leu Thr Gly Ser Gln Ser
165 170 175

Ala Val Trp Pro Ser Ser Pro Val Pro Glu Glu Ile Pro Arg Met His
180 185 190

Pro Gly Arg Asn Gly Lys Lys Gln Gln Arg Lys Pro Leu Arg Glu Lys
195 200 205

Met Lys Pro Glu Arg Cys Gly Asp Ala Val Pro Arg Arg
210 215 220

<210> 4
<211> 242
<212> PRT
<213> homo sapiens

<220> misc_feature
<221> PlGF-4, 242 aa, n° P49763-4
<400> 4

Met Pro Val Met Arg Leu Phe Pro Cys Phe Leu Gln Leu Leu Ala Gly
1 5 10 15

Pge p
<table>
<thead>
<tr>
<th>B249636D36502_listage séquences_ST25</th>
</tr>
</thead>
<tbody>
<tr>
<td>Leu Ala Leu Pro Ala Val Pro Pro Gln Gln Trp Ala Leu Ser Ala Gly</td>
</tr>
<tr>
<td>20 25</td>
</tr>
<tr>
<td>Asn Gly Ser Ser Glu Val Glu Val Val Pro Phe Gln Glu Val Trp Gly</td>
</tr>
<tr>
<td>35 55 40 60</td>
</tr>
<tr>
<td>Arg Ser Tyr Cys Arg Ala Leu Glu Arg Leu Val Asp Val Val Ser Glu</td>
</tr>
<tr>
<td>50</td>
</tr>
<tr>
<td>Tyr Pro Ser Glu Val Glu His Met Phe Ser Pro Ser Cys Val Ser Leu</td>
</tr>
<tr>
<td>65 70 75 80</td>
</tr>
<tr>
<td>Leu Arg Cys Thr Gly Cys Cys Gly Asp Glu Asn Leu His Cys Val Pro</td>
</tr>
<tr>
<td>85 90 95</td>
</tr>
<tr>
<td>Val Glu Thr Ala Asn Val Thr Met Gln Leu Leu Lys Ile Arg Ser Gly</td>
</tr>
<tr>
<td>100 105</td>
</tr>
<tr>
<td>Asp Arg Pro Ser Tyr Val Glu Leu Thr Phe Ser Gln His Val Arg Cys</td>
</tr>
<tr>
<td>115 120 125</td>
</tr>
<tr>
<td>Glu Cys Arg His Ser Pro Gly Arg Gln Ser Pro Asp Met Pro Gly Asp</td>
</tr>
<tr>
<td>130 135 140</td>
</tr>
<tr>
<td>Phe Arg Ala Asp Ala Pro Ser Phe Leu Pro Pro Arg Arg Ser Leu Pro</td>
</tr>
<tr>
<td>145 150 155 160</td>
</tr>
<tr>
<td>Met Leu Phe Arg Met Glu Trp Gly Cys Ala Leu Thr Gly Ser Gln Ser</td>
</tr>
<tr>
<td>165 170</td>
</tr>
<tr>
<td>Ala Val Trp Pro Ser Ser Pro Val Pro Glu Glu Ile Pro Arg Met His</td>
</tr>
<tr>
<td>175 180 185</td>
</tr>
<tr>
<td>Pro Gly Arg Asn Gly Lys Lys Gln Glu Arg Lys Pro Leu Arg Glu Lys</td>
</tr>
<tr>
<td>190 195 200 205</td>
</tr>
<tr>
<td>Met Lys Pro Glu Arg Arg Arg Pro Lys Gly Arg Gly Lys Arg Arg Arg</td>
</tr>
<tr>
<td>210 215</td>
</tr>
<tr>
<td>Glu Lys Gln Arg Pro Thr Asp Cys His Leu Cys Gly Asp Ala Val Pro</td>
</tr>
<tr>
<td>220 225 230 235 240</td>
</tr>
<tr>
<td>Arg Arg</td>
</tr>
</tbody>
</table>

<210> 5
<211> 1911
<212> DNA
<213> Homo sapiens

Pge p
B249636D36502_listage séquences_ST25

<220> 5
cctgcacacg actgcggctgc ccgctggcgg gggctggcgg gctgaccggg 60
cgctccccag aatccgtctg ggaactctgag tcgctgagtg cgggccccgc ccggacctcc 120
gccccggctcc agtctcctgaa accagggcgc ggacgggcttg cagttcctca aaggagctcc 180
tgtctggtgga cggaaactcgc tcagcggcag cggccccacgc taccgcgagg ccctggatg 240
cactgggccgc ccgagccgacc atccccccgga ccgctcgcgtt cccgggctcc ccgccccgcc 300
gagccccgctc ccgctgggttt cccagcagcac acgctttact acctgctgctacctgc gacgctggc 360
gctgtccaga agatgtcctga accaccgccc ggggctcctgg ggcagcatgg aaggaggttgtg 420
cagccccgctc acctagcagct tctctctctgt tcgacgctgg trccccccggt atgcacatgg 480
tgtttttttcc tggacgagcag cttggtctggga acgttcctgaag atatgcaggtgcttcatgag 540
tcctcctgtct ctctgagcctag cttgccggggct ttgctggtgc cccccagtag cccacacgct 600
ttgctctggta ctctcctgctgg ccttcctggag ggtggtgggg aatctctgcct cccagagttc 660
tggggccgca gctactgctg ccggcgcttgag ggacctggtgg acgttctggtc gcatctgtc 720
tagagggtagag gcagaggttt catccccaccc cttctttctc cgacgagctg cccacacgcc 780
ttgccgcttag gaaatgtcctc tcttctctgtg ggtgagacgg ttaagatcact cctgtcagttc 840
taaagatcct gttctggggag ccgccccctct acgcttgagc tgcacctctc cccagacgtctt 900
cgctgcaaat ccggccctct ccgggaagag atcgagggagc aaagggagag aaccagaccg 960
gaggggaaga ggaggagaga gaagacagaga cccacagact gcacccctgg cggccaggtc 1020
gtccccggga ggttaaccac cccctttggag agagagcccc cgccaggggcgcc cctggtatttt 1080
attacgctga cactcctcag tgaacctctgc tggctacccct cctcttattta ttagcacaact 1140
gttccccctgc tgaatgccttc gctctctctca acagcagggg ccaggaagaga cagacccccag 1200
aggaattcag tgcctctcaac acgcttgagag aagaagagaga gccaagccac gcagcctcgg 1260
agctcctcgt tggaaagagc ccagacagcttg gcgtctggtga cgggcaagct agggccccagag 1320
ggggctggag gttcctcggaag gccaaagaaag gggcctctgtc acctgttttctttc 1380
gggctcagg ctctgcagcg aacacagccc tttgctctctg gacgctctggt cccaaagtgg 1440
gatgcggatcc ctgtgctgggag ccgcacggcgc tgcctgttgga aaggccccgg acgggggcca 1500
ggggatcagg ccctccccctc gctcttccttg aagactcag tgcagcagct ggtgggaga 1560
gttggcctgt cgggcttttt cccacctcccc gcttttccctg acctttttct cccacacgcc 1620
attgctttgt actgggacttt ggctttttccc gcaccacccct gccccccctta 1680
agagacacat acagactggag ccgccccgctg gagaagagcg gctgtggtgagt agaacaagct 1740
cagcagttgg ggatgggtcttaccagggag gagcctcctgt gctccagctcg aagggcagttg 1800
cagggagcag gttttccccca ggggcttcctgc cccccccccac gctgtctccctg cagggccactc 1860
tgactgcctga ggcagattttct ctgtaataaa atatctcagtg ctggtggagcc gcctgggctt 1911
B249636D36502_listage séquences_ST25

<210> 6
<211> 1848
<212> DNA
<213> Homo sapiens

<220>
<221> misc_feature
<223> mRNA of P1GF-2, (Référence NCBI NM_001207012.1)

<400> 6
cctgcacgc actgcgggctc cgggcgtcgc ggctgctccgc ggccctcggc gctgaccggg 60
cgctggcggg gcagccttgat gacaaccttg ccggcggcgc gggcctgagg cggcctccgg 120
gcgcggcgc gcgcggcgc gcgcggcgc gcgcggcgc gcgcggcgc gcgcggcgc 180
tgctgcggcgc gcgcggcgc gcgcggcgc gcgcggcgc gcgcggcgc gcgcggcgc 240
cacgcggcgc gcgcggcgc gcgcggcgc gcgcggcgc gcgcggcgc gcgcggcgc 300
ggagcggttc gcggcggcgc gcgcggcgc gcgcggcgc gcgcggcgc gcgcggcgc 360
ggatccagc gcgcggcgc gcgcggcgc gcgcggcgc gcgcggcgc gcgcggcgc 420
cagcggcgc gcgcggcgc gcgcggcgc gcgcggcgc gcgcggcgc gcgcggcgc 480
tgcggcggcgc gcgcggcgc gcgcggcgc gcgcggcgc gcgcggcgc gcgcggcgc 540
tgcggcggcgc gcgcggcgc gcgcggcgc gcgcggcgc gcgcggcgc gcgcggcgc 600
tgcggcggcgc gcgcggcgc gcgcggcgc gcgcggcgc gcgcggcgc gcgcggcgc 660
tgcggcggcgc gcgcggcgc gcgcggcgc gcgcggcgc gcgcggcgc gcgcggcgc 720
tgcggcggcgc gcgcggcgc gcgcggcgc gcgcggcgc gcgcggcgc gcgcggcgc 780
tgcggcggcgc gcgcggcgc gcgcggcgc gcgcggcgc gcgcggcgc gcgcggcgc 840
tgcggcggcgc gcgcggcgc gcgcggcgc gcgcggcgc gcgcggcgc gcgcggcgc 900
tgcggcggcgc gcgcggcgc gcgcggcgc gcgcggcgc gcgcggcgc gcgcggcgc 960
tgcggcggcgc gcgcggcgc gcgcggcgc gcgcggcgc gcgcggcgc gcgcggcgc 1020
tgcggcggcgc gcgcggcgc gcgcggcgc gcgcggcgc gcgcggcgc gcgcggcgc 1080
tgcggcggcgc gcgcggcgc gcgcggcgc gcgcggcgc gcgcggcgc gcgcggcgc 1140
tgcggcggcgc gcgcggcgc gcgcggcgc gcgcggcgc gcgcggcgc gcgcggcgc 1200
tgcggcggcgc gcgcggcgc gcgcggcgc gcgcggcgc gcgcggcgc gcgcggcgc 1260
tgcggcggcgc gcgcggcgc gcgcggcgc gcgcggcgc gcgcggcgc gcgcggcgc 1320
tgcggcggcgc gcgcggcgc gcgcggcgc gcgcggcgc gcgcggcgc gcgcggcgc 1380
tgcggcggcgc gcgcggcgc gcgcggcgc gcgcggcgc gcgcggcgc gcgcggcgc 1440
tgcggcggcgc gcgcggcgc gcgcggcgc gcgcggcgc gcgcggcgc gcgcggcgc 1500
tgcggcggcgc gcgcggcgc gcgcggcgc gcgcggcgc gcgcggcgc gcgcggcgc 1560
tgcggcggcgc gcgcggcgc gcgcggcgc gcgcggcgc gcgcggcgc gcgcggcgc 1620
tgcggcggcgc gcgcggcgc gcgcggcgc gcgcggcgc gcgcggcgc gcgcggcgc 1680

gacacata gatggggccc cgggttgtag aagagcgtgc cgggtgtag aacagcgtgc 1800
B249636D36502_listage séquences_ST25

ccagtgggga tgaggtcaccc agggagggag cctgtgcgtc ccagctgaag gcagttggcag 1740
ggagacaggt tccccaaggg ccctgacc ccaccaagct gttcctgcag ggccatctga 1800
cctgcaagcc agatattcttt gaataaagta ttcatagttg gaaacgct 1848

<210> 7
<211> 1908
<212> DNA
<213> Homo sapiens

<220>
<221> misc_feature
<223> mRNA of PI GF-3, (référence NCBI NM_001293643.1)

<400> 7
ccctgcacgc actgcgaggt ctccggcctgc gggtgcggcag gggtgctgcgg gctgacgccgg 60
cgcctgggg gaactgcgctg ctcggcggtcgg gggggcgccg cgggacggcc 120
gccgggcct gtcgcttccag aaccaggccg ggacggccgtg cagttccaga agggacgtgcg 180
tgcctcgcga ggaacgtcga tgcagcggac gcggcccaag tcggagagctg cctggaagtgg 240
cactgggcgc ccagccgacc atccccggga cccgcctgccc cctcgccgcgc ccgcctcgccc 300
ggccgctccc cgcgctgggtt cccagcacc acgcctacc acgggcctgc gcctccggcc 360
ggctctccag agatgtgcag aaccagggcc gggtgcctcgg ggcagcagtgag ggggagctgc 420
cacagcccccc actcagctct tcctctctcg tggcaggggg tccccggggg atgagcatgg 480
tgggtttttcg tcggagcccg cttgctcggag acgtctgaga agatgcctcgat catgagctgtg 540
tttctctctgc tccgctagct cctgcgctccgg cgctgcctgc ctgctgctgc cccccagcgg 600
gctcttgctcg ctgagcagcgc tctgctcagat gttgaagctgg taccccttccaga ggaagctgg 660
ggccccgacgt actggcgccgc gctggagaggg cctggtgagcc tggtaacggcc gttaccggcg 720
gaggtggagc acagttctcag ccacatctctgt tcttcctctcg tgcgctgacac cgctgcgtgc 780
ggcgatgaga atctcctaca gttgccccgg gagaagccca atgtaccatt gcagccctta 840
aacatccggt ctgagggccgc gcccctctccag tttcaggtcga cttgctctccaga gcaagctgct 900
tggagctcgcc gcggctctgc gcggagagag caagccgcaag ggagagcagc ccagccgagg 960

3059550
B249636D36502_listage séquences ST25

gatccagcca cttccccctc ttctttcgaatcagcaca ttcagctctg gagaacagtg 1560

gttgcctgg ggcttttgcc actccttgtc cccggtgatc tccccctcaca ctttgccatt 1620
tgttgtact ggacatttgt tctttccggc caaggtgcca ccacccctgcc ccccctaaga 1680
gacacataca gagtgggccc cgggctggag aaagagctgc cttgatgaga aacagctcag 1740
ccaqtgggga tgaggtcaccc aggggagag agctgtgcgtcc ccaqctgaag gcagtggcag 1800
gggagcaggt tccccaaaggg cccctggaccc cccacaagctt gcctcgag cggccatctga 1860
tgtccaaagcc agattctttt gaataaagta ttctagtggt gaaacgct 1908
<table>
<thead>
<tr>
<th>Catégorie</th>
<th>Citation du document avec indication, en cas de besoin, des parties pertinentes</th>
<th>Revendication(s) concernée(s)</th>
<th>Classement attribué à l'invention par l'INPI</th>
</tr>
</thead>
</table>

DOCUMENTS CONSIDÉRÉS COMME PERTINENTS

Revendication(s) concernée(s)

Classement attribué à l'invention par l'INPI

Date d'achèvement de la recherche

<table>
<thead>
<tr>
<th>Date d'achèvement de la recherche</th>
<th>Examinateur</th>
</tr>
</thead>
<tbody>
<tr>
<td>7 septembre 2017</td>
<td>Durrenberger, Anne</td>
</tr>
</tbody>
</table>

CATEGORIE DES DOCUMENTS CITES

- X : particulièrement pertinent à lui seul
- Y : particulièrement pertinent en combinaison avec un autre document de la même catégorie
- A : arrière-plan technique
- Q : divulgation nonirecte
- P : document interaliaire
- T : théorie ou principe à la base de l'invention
- E : document de brevet bénéficiant d'une date antérieure à la date de dépôt et qui n'a pas été publié qu'à cette date de dépôt ou qu'à une date postérieure.
- D : cité dans la demande
- L : cité pour d'autres raisons
- & : membre de la même famille, document correspondant
<table>
<thead>
<tr>
<th>Catégorie</th>
<th>Citation du document avec indication, en cas de besoin, des parties pertinentes</th>
<th>Revendication(s) concernée(s)</th>
<th>Classement attribué à l'invention par l'INPI</th>
</tr>
</thead>
</table>

DOMAIINES TECHNIQUES RECHERCHÉS (IPC)

Date d'achèvement de la recherche 7 septembre 2017

Examinateur Durrenberger, Anne

CATEGORIE DES DOCUMENTS CITES

- X : particulièrement pertinent à lui seul
- Y : particulièrement pertinent en combinaison avec un autre document de la même catégorie
- A : arrière-plan technologique
- O : divulgation non-eptive
- P : document interolaire
- T : théorie ou principe à la base de l'invention
- E : document de brevet bénéficiant d'une date antérieure à la date de dépôt et qui n'a été publié qu'à cette date de dépôt ou qu'à une date postérieure.
- D : cité dans la demande
- L : cité pour d'autres raisons
- & : membre de la même famille, document correspondant
ANNEXE AU RAPPORT DE RECHERCHE PRÉLIMINAIRE
RELATIF À LA DEMANDE DE BREVET FRANÇAIS NO. FR 1661813 FA 835358

La présente annexe indique les membres de la famille de brevets relatifs aux documents brevets cités dans le rapport de recherche préliminaire visé ci-dessus.
Les dits membres sont contenus au fichier informatique de l'Office européen des brevets à la date du 07-09-2017
Les renseignements fournis sont donnés à titre indicatif et n'engagent pas la responsabilité de l'Office européen des brevets, ni de l'Administration française

<table>
<thead>
<tr>
<th>Document brevet cité au rapport de recherche</th>
<th>Date de publication</th>
<th>Membre(s) de la famille de brevet(s)</th>
<th>Date de publication</th>
</tr>
</thead>
<tbody>
<tr>
<td>DE 102004029325 A1</td>
<td>05-01-2006</td>
<td>AUCUN</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>US 7863247 B1</td>
<td>04-01-2011</td>
</tr>
<tr>
<td></td>
<td></td>
<td>US 2002111301 A1</td>
<td>15-08-2002</td>
</tr>
<tr>
<td></td>
<td></td>
<td>WO 0053217 A2</td>
<td>14-09-2000</td>
</tr>
</tbody>
</table>

Pour tout renseignement concernant cette annexe : voir Journal Officiel de l'Office européen des brevets, No.12/82