PCT

WORLD INTELLECTUAL PROPERTY ORGANIZATION
International Bureau

INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(51) International Patent Classification 6

GO6K A2

(11) International Publication Number:

(43) International Publication Date:

WO 98/25222

11 June 1998 (11.06.98)

(21) International Application Number: PCT/US97/22185

(22) International Filing Date: 3 December 1997 (03.12.97)

(30) Priority Data:

60/032,442 us

3 December 1996 (03.12.96)

(71) Applicant: BULL HN INFORMATION SYSTEMS INC.
[US/US]; 300 Concord Road, Billerica, MA 01821 (US).

(72) Inventors: ANDRESS, Sidney, L.; 5119 West Sweetwater,
Glendale, AZ 85304 (US). MCCULLEY, Lowell, D.; 21653
North 58th Street, Glendale, AZ 85308 (US).

(74) Agent: SOLAKIAN, John, S.; Bull HN Information Systems
Inc., Law Office MA30-883A, 300 Concord Road, Billerica,
MA 01821-4186 (US).

(81) Designated States: European patent (AT, BE, CH, DE, DK,
ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE).

Published
Without international search report and to be republished
upon receipt of that report.

(54) Title: FAULT INTERCEPT AND RESOLUTION PROCESS INDEPENDENT OF OPERATING SYSTEM

(57) Abstract

1

A fault handling process
in a computer system subject
to CPU design errors and

cruo ) |cput

2 4

./

CPU3
13

functioning under an operating

system (OS) having an PCMO PCM1

[42

integral fault handling module T J
includes the steps of: setting 3 5 R

cPU

g2

g3

BD1

an intercept flag when a CPUBUS J

central processor fault occurs
if the fault is to be directed to
a preprocessor; establishing a
safestore frame which includes

1

SHARED
CACHE

15

information identifying the

type of fault and whether

( \

-

the intercept flag is set; and
transferring control to the
OS fault handling module;
then in the OS fault handling
module, determining whether
the intercept flag is set; if
the intercept flag is not set,
handling the fault in the OS
fault module; if the intercept
flag is set, transferring control
from the OS fault module to
an Intercept Process written
in machine language; and

scy 18

[AMS 50
MM 17

- SYSTEM BUS

19—

SERVICE
PROCESSOR

2

R
20

handling the fault in the Intercept Process. This renders the resolution of faults due to correctable CPU design errors independent of the
OS employed at a given installation and customizable to a given system without the need to revise the OS fault modules for each OS. As
each such design error is worked out (e.g., by installing a substitute integrated circuit in which the error has been corrected), the Intercept
Process (and CPU firmware) can be modified to remove monitoring and handling for faults due to the corrected error.




AL
AM
AT
AU
AZ
BA
BB
BE
BF
BG
BJ
BR
BY
CA
CF
CG
CH
CI
CM
CN
Cu
Cz
DE
DK
EE

FOR THE PURPOSES OF INFORMATION ONLY

Codes used to identify States party to the PCT on the front pages of pamphlets publishing international applications under the PCT.

Albania
Armenia
Austria
Australia
Azerbaijan
Bosnia and Herzegovina
Barbados
Belgium
Burkina Faso
Bulgaria

Benin

Brazil

Belarus

Canada

Central African Republic
Congo
Switzerland
Cote d'Ivoire
Cameroon
China

Cuba

Czech Republic
Germany
Denmark
Estonia

ES
FI
FR
GA
GB
GE
GH
GN
GR
HU
IE
IL
IS
IT
Jp
KE
KG
KP

KR
KZ
LC
LI

LK
LR

Spain

Finland

France

Gabon

United Kingdom
Georgia

Ghana

Guinea

Greece

Hungary

Ireland

Israel

Iceland

Ttaly

Japan

Kenya
Kyrgyzstan
Democratic People’s
Republic of Korea
Republic of Korea
Kazakstan

Saint Lucia
Liechtenstein

Sri Lanka

Liberia

LS
LT
LU
LV
MC
MD
MG
MK

ML
MN
MR
MW
MX
NE
NL
NO
NZ
PL
PT
RO
RU
SD
SE
SG

Lesotho

Lithuania
Luxembourg

Latvia

Monaco

Republic of Moldova
Madagascar

The former Yugoslav
Republic of Macedonia
Mali

Mongolia

Mauritania

Malawi

Mexico

Niger

Netherlands

Norway

New Zealand

Poland

Portugal

Romania

Russian Federation
Sudan

Sweden

Singapore

SI
SK
SN
SZ
TD
TG
TJ
™
TR
TT
UA
uG
us
UZ
VN
YU
W

Slovenia

Slovakia

Senegal

Swaziland

Chad

Togo

Tajikistan
Turkmenistan
Turkey

Trinidad and Tobago
Ukraine

Uganda

United States of America
Uzbekistan

Viet Nam
Yugoslavia
Zimbabwe




10

11

12

13

14

15

16

17

18

19

WO 98/25222 PCT/US97/22185

FAULT INTERCEPT AND RESOLUTION PROCESS

INDEPENDENT OF OPERATING SYSTEM

This application claims the benefit of the filing date of U.S. Provisional
Patent Application Serial No. 60/032,442 filed December 3, 1996, entitled
INTERCEPT PROCESS by Sidney L. Andress.

Field of the Invention

This invention relates to computer central processors and, more
particularly, to the repetitive temporary storage of central processing register
contents and supporting information in a safestore in order to facilitate
recovery from a fault or transfer to another domain. Still more particularly, this
invention relates to a safestore feature which intercepts certain faults resulting
from known system design errors and diverts the resolution process for
handling such faults from the operating system fault handling facility to a
special purpose software fault handling facility.

Background of the Invention

As personal computers and workstations have become more and more

powerful, makers of mainframe computers have undertaken to provide features

which cannot readily be matched by these smaller machines in order to stay



10

11

12

13

14

15

16

17

18

19

WO 98/25222 PCT/US97/22185

viable in the marketplace. One such feature may be broadly referred to as fauit
tolerance which means the ability to withstand and promptly recover from
hardware faults and other faults without the loss of crucial information. The
central processing units (CPUs) of mainframe computers typically have error
and fault detection circuitry, and sometimes error recovery circuitry, built in at
numerous information transfer points in the logic to detect and characterize any
fault which might occur.

The CPU(s) of a given mainframe computer comprises many registers
logically interconnected to achieve the ability to execute the repertoire of
instructions characteristic of the CPU(s). In this environment, the achievement
of genuinely fault tolerant operation, in which recovery from a detected fauit
can be instituted at a point in a program immediately preceding the faulting
instruction/operation, requires that one or more recent copies of all the
software visible registers (and supporting information also subject to change)
must be maintained and constantly updated. This procedure is typically carried
out by reiteratively sending copies of the registers and supporting information
(safestore information) to a special, dedicated memory or memory section.

When a fault occurs and analysis determines that recovery is possible,

the safestore information is used to reestablish the software visible registers in



10

11

12

13

14

15

16

17

18

19

WO 98/25222 PCT/US97/22185

the CPU with the contents held recently before the fault occurred so that restart
can be instituted or tried from the corresponding place in program execution.

The logical design of modern CPUs, particularly mainframes, is
enormously complex. Inevitably, logic design errors are present as the design
process proceeds. If the specific hardware in which a design error is
discovered is still in development, it can simply be corrected, sometimes with
appropriate changes in firmware. However, if the faulting condition occurs so
rarely and is so elusive that it is only discovered after systems have been
installed for commercial and/or other field operation, the correction of the
hardware/firmware (for example, by replacing an integrated circuit having the
design error with one in which the error has been corrected) can be time
consuming. Similarly, if a rarely occurring hardware fault is discovered during
development, there may be good reason, such as meeting delivery schedules, to
forego any immediate attempt to effect a definitive hardware/firmware
correction. In both instances, a conventional, and generally effective, prior art
approach has been to set up the CPU firmware to detect and refer faults to a
fault processing module written into the operating system.

There are, however, drawbacks to this approach. When design errors

are discovered, the resolution process for the resulting fault must be



10

11

12

13

14

15

16

17

18

19

WO 98/25222 PCT/US97/22185

incorporated into the fault handling module opetating system itself. This can
be not only a formidable task, but the revisions to the operating system in all
the systems in existence can be disruptive of normal operation. Further, some
mainframe CPUs are configured to run under a plurality of operating systems.
This requires changes to the fault processing modules of each operating system
which can be accommodated by the CPUs. Still further, certain system design
errors are often worked out, even after commercialization, as very large scale
integrated circuits are modified and the chips changed out in individual
installations. As a result, a feature in the operating system(s) introduced to
handle a problem which no longer exists may adversely affect performance and
certainly increases the amount of code in the operating system. It is to the
solution of these related problems that the present invention is directed.
Qbjects of the Invention

It is therefore a broad object of this invention to provide, in a central
processor, fault tolerant operation in which the storage and recovery of
safestore information to handle certain faults is handled independent of the
operating system.

It is a more specific object of this invention to provide a fault tolerant

CPU in which the fault recovery process for certain predetermined faults is

N



10

11

12

13

14

15

16

17

18

19

WO 98/25222 PCT/US97/22185

diverted from the operating system fault processing module to an independent
facility implemented in software written in machine specific language.
Summary of the Invention

Briefly, these and other objects of the invention are achieved, in a fault
tolerant central processing unit having data manipulation circuitry including a
plurality of software visible registers, by providing a safestore memory for
storing the contents of the plurality of software visible registers, after a data
manipulation operation, in order to facilitate restart after a detected fault by
transferring the corresponding contents of the safestore memory back to the
software visible registers during recovery from the detected fault. More
particularly, the subject process is employed in a computer system functioning
under an operating system (OS) having an integral fault handling module and
includes the steps of: setting an intercept flag when a central processor fault
occurs if the fault is to be directed to a preprocessor; establishing a safestore
frame which includes information identifying the type of fault and whether the
intercept flag is set; and transferring control to the OS fault handling module;
then in the OS fault handling module, determining whether the intercept flag is
set; if the intercept flag is not set, handling the fault in the OS fault module; if

the intercept flag is set, transferring control from the OS fault module to an



10

11

12

13

14

15

16

17

18

19

WO 98/25222 PCT/US97/22185

Intercept Process written in machine language; and handling the fault in the
Intercept Process.

This renders the resolution of faults due to correctable CPU design
errors independent of the OS employed at a given installation and customizable
to a given system without the need to revise the OS fault modules for each OS.
As each such design error is worked out (e.g., by installing a substitute
integrated circuit in which the error has been corrected), the Intercept Process
(and CPU firmware) can be modified to remove monitoring and handling for
faults due to the corrected error.

Description of the Drawing

The subject matter of the invention is particularly pointed out and
distinctly claimed in the concluding portion of the specification. The invention,
however, both as to organization and method of operation, may best be
understood by reference to the following description taken in conjunction with
the subjoined claims and the accompanying drawing of which:

FIG. 1 is a high level block diagram of an multiprocessor computer
system which is an exemplary environment for practicing the invention;

FIG. 2 is a slightly lower level block diagram showing additional details

of an exemplary CPU board in the multiprocessor system of FIG. 1;



10

11

12

13

14

15

16

17

18

19

WO 98/25222 PCT/US97/22185

FIG. 3 is a block diagram showing additional details of a basic
processing unit including within each CPU on the CPU board shown in FIG. 2;

FIG. 4 is a revised block diagram of the basic processing unit
particularly showing the relationship of an auxiliary random access memory to
the basic processing unit and its software visible registers (and supporting
information) in accordance with the subject invention, the random access
memory storing, inter alia, a Safestore Frame;

FIG. 5 is a system design flow chart of the intercept Process used in
bandling fauits in accoxidance with the invention; and

FIG. 6 is a process flow diagram illustrating the Intercept Process and
the cooperation between CPU hardware, CPU firmware, the operating system
and the subject Intercept Process in handling faults.

Description of the Preferred Embodiment(s)

Attention is first directed to FIG. 1 which is a high level block diagram
of an exemplary multiprocessor computer system incorporating the invention.
A first CPU board (CPU Board “0”) 1 includes four central processor units 2
(CPU “0™), 4 (CPU “1™), 6 (CPU “2”), 8 (CPU “3”). Each of the central
processor units 2, 4, 6, 8 situated on the first CPU board 1 includes an integral

private cache memory module, 3, 5, 7, 9, respectively. The private cache



10

11

12

13

14

15

16

17

18

19

WO 98/25222 PCT/US97/22185

modules 3, 5, 7, 9 are each configured as “store into”; i.e., the results of each

‘completed operation performed in the CPU are stored into the private cache.

Each of the private cache modules 3, 5, 7, 9 on CPU Board “0” 1 interface
with a CPU bus 10 for direct communications between the CPUs 2, 4, 6, 8.

In the exemplary system, there are three additional CPU boards 12
(CPU Board “1”), 13 (CPU Board “2”) and 14 (CPU Board “3), each of
which is substantially identical to CPU board 1 although those skilled in the
multiprocessor art will understand that each CPU board and each CPU on each
of the boards is assigned a unique identification number to facilitate
communication and cooperation among the CPUs in the system.

CPU board 1 (i.e., CPU Board “0”) also includes a shared cache 11
disposed between (“bridging™) the CPU bus 10 and a system bus 15. It will be
understood that each of the CPU boards 12, 13, 14 also each includes a CPU
bus and a shared cache, identically oriented.

A system control unit 16 serves to couple the system bus 15 to a main
memory unit 17 via a memory bus 18. (It will be noted that the main memory
unit 18 includes a Reserved Memory Space 50 - RMS - which will be
discussed further belovlv.) In addition, one or more input/output units 19

interface the system bus 15 with various input/output subsystems, not shown,



10

11

12

13

14

15

16

17

18

19

WO 98/25222 PCT/US97/22185

to achieve input/output functions on a system basis, all as well known to those
skilled in the art. Similarly, other subsystems 20, not otherwise specified or
shown, may be connected to the system bus 15 to complete a given
multiprocessor system. System control unit 16 also conventionally provides a
multi-phase clock to all the system units requiring a common clock source. A
service processor 21, typically a commercial personal computer or
workstation, serves not only as a system and maintenance console, but also is
used to boot the system and is employed extensively in analyzing and
processing faults.

FIG. 2 is a slightly lower level block diagram of CPU “0” 2 of CPU
board 1 (CPU Board “0”) illustrating additional structure which is present in
each CPU in the system. CPU “0” 2 includes a basic processing unit 22 and
support circuitry 23 therefor.

As previously described, CPU “0” 2 also includes private cache module
“0” 3 which constitutes a cache control unit 24 and a private cache 25 (which
itself includes additional logic to be described below). Cache control unit 24
includes paging unit 26, cache management unit 27 and CPU bus unit 28.
Paging unit 26 interfaces with basic processing unit “0” 22 and cache

management unit 27. Cache management unit 27 also interfaces with private



10

11

12

13

14

15

16

17

18

19

WO 98/25222 PCT/US97/22185

cache memory 25 and CPU bus unit 28. CPU bus unit also interfaces with
CPU bus 10 and, via CPU bus 10, shared cache 11. Private cache 25 is also
coupled directly to receive information from and send information to the CPU
bus 10 and to receive information from and send information to basic
processing unit “0” 22,

As previously described, shared cache 11 also interfaces with system
bus 15 and, via system bus 15, with system control unit 16 and other
systems/subsystems shown in FIG. 1. Main memory 17, including Reserve
Memory Space 50, may be accessed via the system control unit 16 and
memory bus 18.

It will be seen that there are numerous paths for information flow among
the various blocks shown in FIGs. 1 and 2. The types of information may
include control, address, instructions and operands. A given CPU may directly
access its own private cache module and indirectly access the private cache
modules incorporated into the other CPUs on a shared CPU board. Thus, CPU
“0” 2 can access, via the CPU bus 10, the shared cache 11 it shares with CPU
“1” 4, CPU “2” 6 and CPU “3” 8. CPU “0” 2 can also, under defined
conditions, access the private cache module of CPU “2” 6 (for example) via

the CPU bus 10 to effect a local “siphon”. Further, CPU “0” 2 can access (via

10



10

11

12

13

14

15

16

17

18

19

WO 98/25222 PCT/US97/22185

CPU bus 10, shared cache 11 and system bus 15) the shared caches (not
shown) on each of CPU Board “1” 12, CPU Board “2” 13 and CPU Board “3”
14. Still further, a given CPU may indirectly access the private cache modules
(not shown) of a CPU (not shown) on another CPU board; e.g., CPU “0” on
CPU board 1 (CPU Board “0”) may, under defined conditions, access the
private cache module of any one of the CPUs on CPU Board “2” 13 (FIG. 1)
via CPU bus 10, shared cache 11, system bus 15 and the shared cache on CPU
Board “2” to effect a remote “siphon”.

Further yet, for example, CPU “0” 2 can access main memory 17,
including RMS 50, via CPU bus 10, shared cache 11, system bus 15, SCU 16
and memory bus 18. Still further, for example, CPU “0” 2 can access, via
CPU bus 10, shared cache 11 and system bus 15, any other block shown
coupled to the system bus 15 in FIG. 1 to achieve bilateral communication with
input/output devices, other subsystem components and even other
multiprocessor systems.

FIG. 3 is a block diagram which includes additional details of a basic
processing unit 22 in a system incorporating the present invention. The
Address and Execution (AX) unit 30 is a microprocessing engine which

performs all address preparation and executes all instructions except decimal

11



10

11

12

13

14

15

16

17

18

19

WO 98/25222 PCT/US97/22185
arithmetic, binary floating point and multiply/divide instructions. The main
functions performed by the AX unit 30 include: effective and virtual address
formation; memory access control; security checks; register changefuse
control; execution of basic instructions, shift instructions, security instructions,
character manipulation and miscellaneous instructions; and CLIMB safestore
file.

Efficient scientific calculation capability is implemented in the Floating
Point (FP) coprocessor unit 34. The FP unit 34 executes all binary floating
point arithmetic. This unit, operating in concert with the AX unit 30, performs
scalar or vector scientific processing. The FP unit 34: executes all binary and
fixed and floating point muitiply and divide operations; computes 12 by 72-bit
partial products in one machine cycle; computes eight quotient bits per divide
cycle; performs modulo 15 residue integrity checks; executes all floating point
mantissa arithmetic; executes all exponent operations in either binary or
hexadecimal format; preprocesses operands and post-processes results for
multiply and divide instructions; and provides indicator and status control.

The DN unit 32 performs the execution of decimal numeric Extended
Instruction Set (EIS) instructions. It also executes Decimal-to-Binary (DTB),

Binary-to-Decimal (BTD) conversion EIS instructions and Move-Numeric-Edit

12



10

11

12

13

14

15

16

17

18

19

WO 98/25222 PCT/US97/22185
(MVNE) EIS instructions in conjunction with the AX unit 30. The DN unit
both receives operands from and sends results to the private cache 3. A
COMTO (“command to”) bus 38 and a COMFROM (“command from™) bus
36 éouple together the AX unit 30, the DN unit 32 and the FP unit 34 for
certain interrelated operations.

The AX unit 30 includes an auxiliary random access memory 40 which
is used to store safestore (and other) information. Thus, the contents of the
auxiliary RAM 40 are constantly updated with, for example, duplicates of the
contents of software visible registers and other relevant information subject to
change (collectively, the Safestore Frame or SSF) such that, in the event of the
occurrence of a fault from which recovery has been determined to be possible,
processing may be restarted at a point just prior to the fault by transferring the
most recent register set stored in the auxiliary RAM 40 back to reestablish the
register set.

The straightforward use of a safestore is known in the prior art as
exemplified by U.S. Patent 5,276,862, entited SAFESTORE FRAME
IMPLEMENTATION IN A CENTRAL PROCESSOR by Lowell D.
McCulley et al; U.S. Patent 5,553,232, entitted AUTOMATED SAFESTORE

STACK GENERATION AND MOVE IN A FAULT TOLERANT CENTRAL

13



10

11

12

13

14

15

16

17

13

19

WO 98/25222 PCT/US97/22185

PROCESSOR by John E. Wilhite et al; and U.S. Patent 5,557,737 entitled
AUTOMATED SAFESTORE STACK GENERATION AND RECOVERY
IN A FAULT TOLERANT CENTRAL PROCESSOR by John E. Wilhite et
al, all incorporated by reference herein for their disclosure of the repetitive
storage of safestore information in a safestore memory and the use of safestore
information in recovery from a fault.

As previously noted, the AX unit 30, DN unit 32 and FP unit 34 are,
collectively, referred to as the basic processing unit (BPU) 22. Referring now
to FIG. 4, it will be understood that the AX unit 30, (except for the auxiliary
RAM 40), DN unit 32 and FP unit 34 and their support circuitry 23 (FIG. 2)
are represented by the data manipulation logic block 42 in order that the
auxiliary RAM 40 can be discussed in greater detail in the following discussion
of the invention.

Intercept Process provides a fault preprocessor that can review fault
situations and provide machine assembly language level assistance in managing
system design problems. The provision of a fault handling module
incorporated directly in a mainframe operating system to handle known design
errors is well known and effectively permits full functicnality operation of a

system until a new hardware reiease is delivered, at which time the fault

14



10

11

12

13

14

15

16

17

18

19

WO 98/25222 PCT/US97/22185

bandling module sections for handling the design errors which have been
corrected can be disabled. However, there are conditions under which this
basic approach has drawbacks. First, each fault correction routine in a fault
handling module intcgral with an operating system remains until a new version
of the operating system (a relatively rare event) even though the fault may have
been corrected, for example, by substitution of an updated integrated circuit for
one having the design fault. Second, the fault handling facility is not operating
system independent for those machines which can run more that one operating
system.

In accordance with the present invention, the preprocessor is invoked
via CPU hardware/firmware to allow a common machine assembly language
routine, stored in RMS 50, to function with a plurality of operating systems.
(It may be noted that this technique is also useful in processing Service
Processor related tasks.) A system design flow chart of the Intercept Process
as adapted to the present invention is shown in FIG. 5.

Thus, as shown in FIG. 5, if a hardware design error is discovered, the
CPU firmware is modified to set an Intercept flag (in the example, bit 7 of
word 5 in the Safestore Frame) whenever the design error causes a fault. The

Intercept Process code is built or modified to process the fault caused by the

15



10

11

12

13

14

15

16

17

18

19

WO 98/25222 PCT/US97/22185

design error. If and when the design error is later corrected and an integrated
circuit chip having the design error has been replaced by a chip in which the
error has been corrected, the CPU firmware is modified to eliminate checking
for the design fault. If desired, the fault handling code for the fault can be
removed from the Intercept Process code stored in RMS.

In accordance with the invention, the intercepting process is carried out
using operating system software to detect hardware indicators requesting
transfer to the special purpose Intercept Process machine assembly language
code which is stored in RMS 50 by the Service Processor 21 during system
initialization. As shown in FIG. 6, Intercept Process can, independent of the
operating system in use, take corrective action then return to the faulting
process or pass the fault back to the operating system fault module if no
defined action for Intercept Process is detected. (It may be noted that the
Intercept Process can also initiate certain tasks for the Service Processor, then
return to the faulting process although this is not shown in FIG. 6 as this
feature is not a part of the subject invention.)

Specific faults to be intercepted are established during the initialization
of the CPU within its firmware. Thus, the Intercept flag can be set on any fault

as determined to be necessary by the current processor firmware.

16



10

11

12

13

14

15

16

17

18

19

WO 98/25222 PCT/US97/22185

As previously described, the Intercept Process is a machine assembly
language level process that is loaded into RMS 50 upon system initialization.
By being resident in RMS and implemented in machine assembly language, the
Intercept Process is functional with all operating systems which run on a given
hardware system. The Intercept Process is configured such that any fault type
can cause the CPU firmware to invoke it. This is done by setting a dedicated
Intercept Fault flag in the “fault type” word of the SSF. Therefore, an
Intercept Fault can “piggy-back” on a system level fault.

The Intercept Fault flag has priority over all system level faults. When
the operating system detects the presence of the Intercept Fault flag, it transfers
control to the Intercept Process before any processing of the current fauit is
performed. This will permit any corrective action of which the Intercept
Process is capable to occur before an undesired recovery action is taken by the
operating system’s fault module.

The Intercept Process is customized for each release/version of the CPU
firmware. This feature provides the ability for each release of processor
firmware to specify the revision(s) to Intercept Process. This is a substantive
improvement over the prior art in which the operating system fault module had

to carry fixes for all known design errors which ever existed in the CPU design

17



10

11

12

13

14

15

16

17

18

19

WO 98/25222 PCT/US97/22185
(at least since the previous operating system release) because the operating
system fault module could not determine the CPU ﬁrmware revision. |

This process provides the ability to use CPU (under one or more
proprietary operating systems) with known design errors and to quickly resolve
customer problems while the hardware change is being developed. The
Intercept Process is tied to the release of processor firmware. When the
Service Processor loads the selected processor firmware during initialization, it
also places the corresponding Intercept Process into Reserved Memory; thus,
the firmware vefsion and the Intercept Process version must match.

As previously noted, the Intercept Process resides in RMS 50 in main
memory 17 starting on a page boundary and, in the example, is sixteen
consecutive pages in size. These are real pages of memory defined by the
Service Processor 21 when the Intercept Process is loaded during system
initialization. The location of the Intercept Process in RMS is defined in a
predetermined word of the system configuration area of RMS.

Preferably, the mapping of the real pages in RMS storing Intercept
Process code is into the same working space as the operating system’s fault
module. Otherwise, the Intercept Process would be required to correct for

problems in all working spaces in the system, and the changing of the working

18



10

11

13

14

15

16

17

18

19

WO 98/25222 PCT/US97/22185
space registers’ contents would cause additional work for the operating system
upon return from the Intercept Process.

The Intercept Process requires only limited use of the system registers to
perform its function in order to correspondingly limit the impact upon the
operating system when the Intercept Process is invoked. The following defines
the descriptor and pointer registers used by the Intercept Process:

DO = Return descriptor with pointer register having the location within

the operating system’s fault module.

D3 = Frames the SSF entry that has the Intercept Process flag set. The
Intercept Process will look at data from the SSF to determine the
corrective action required.

D4 = The Instruction Segment Register of the failed process. (There
may be cases where the Intercept Process will have to examine the
failing code as part of the recovery routine.)

In the example, the Intercept Process will transfer through ‘“Pointer
Register 0” to return to the operating system fault module. An “inter-segment
transfer” is used to return to the operating system fault module to avoid
affecting the Safestore Frame stack. As shown in FIG. 6, if there is nc process

for handling a given design fault resident in Intercept Process, a Transfer

19



10

11

12

13

14

15

16

17

18

WO 98/25222 PCT/US97/22185
through Pointer Register 0 by Intercept Process causes the operating system
fault module to try a restart of the faulting process (i.e., invoke a retry of the
failed instruction). (If it faults again, the problem may be referred to the
Service Processor, and a CPU freeze could result.) A Transfer through Pointer
Register 0-plus-one by Intercept Process causes the operating system fault
module to process the fault defined in the SSF entry.

Assuming that a patch for a given fault is resident in the current
Intercept Process version, the Intercept Process uses “Descriptor Register 3”
to access the faulting process SSF. Referring briefly to FIG. 4, to analyze the

reason for the request to the Intercept Process and to handle the fault, the

following data in the SSF is needed:
Firmware Address (SSF Word 1)
IC of Fault (SSF Word 3 or 4)

Fault Flags and Code (SSF Word 5)

ISR type (ns/ei) (SSF Word 8)
Index (X) Registers (SSF Words 40-43
A and Q Registers (SSF Wards 44-45)

Descriptors/Pointers (SSF Words 48-53)

20



10

11

12

13

14

15

16

17

18

WO 98/25222 PCT/US97/22185

The A and Q Registers are the CPU’s accumulator and supplementary
accumulator registers, respectively. Other SSF information may be referenced.
The Intercept Process, which modifies only limited information within the SSF,
uses “Descriptor Register 4” to access the faulting process instruction stream.
To understand the reason why the fault occurred requires an analysis of the
instruction stream for conditions that can occur with the hardware signature
value. The Intercept Process will not modify any instruction within the stream.

The Intercept Process, as necessary in the example, uses the A, Q, X1,
X4 and X5 registers to perform its analysis of the intercepted fault. All
program visible registers will be saved before they are used by the Intercept
Process, and the contents of these registers will be restored to their original
values before exiting the Intercept Process.

When any of the defined CPU faults occur, they proceed through the
CPU fault priority logic and form a seven-bit fault code for the highest priority
fault. After this step is performed in the normal way, the CPU fault firmware
compares the seven-bit code to determine if the detected fault is in the group
intended for “intercept” handling. If it is, bit 7 in SSF Word 5 is set “on”

indicating that an intercept request is nested with this fault. The Intercept

21



10

11

12

13

14

15

16

17

18

19

WO 98/25222 PCT/US97/22185

Process is not introduced into hardware and therefore does not have any effect
on existing fault priorities.

As shown in FIG. 6, when the Intercept Flag is set on in the current SSF
Word 5, then the operating system will transfer to the first location of the
Intercept Process code using a descriptor established during system
initialization.

The code within the Intercept Process does not generate faults as the
operating system fault module in the example is not able to handle a second
fault (there is no hardware enforcement of this rule). In a multiprocessor
system, the Intercept Process returns to the same CPU (conventionally
identified by a System Identification Number or the equivalent) that initiated
the request for service. This measure reduces the overhead of managing
interrupts and faults within the Intercept Process.

Two special purpose instructions are used with the Intercept Process.
These two instructions are used to provide certain processor mode permissions
while executing within Intercept Process. The two special purpose instructions
are SICPM (Set Intercept Mode) and RICPM (Reset Intercept Mode). The
SICPM instruction is one of the first instructions executed by. Intercept Process

after control has been transferred to Intercept Process to ensure that the correct



10

11

12

13

14

15

16

17

18

WO 98/25222 PCT/US97/22185
CPU mode and permissions are set before any other instructions are executed.
The RICPM instruction is one of the last instructions executed by the Intercept
Process each time it is called to recover a fault. This instruction resets the
processor mode and permissions to the state that they were in when the
SICPM instruction was executed.

The Intercept Process enters at location zero of the first page that was
defined to the operating system by the Service Processor when the system is
initialized. This common entry point is the only entry point into the Intercept
Process. The Intercept Process needs to identify itself to the system when it is
in execution so that the hardware and firmware can automatically recover for
errors encountered due to system mode and permissions. The Intercept
Process identifies itself to the hardware by the execution of the previously
discussed SICPM instruction. The execution of this instruction causes the
hardware to set an internal flag indicating that the Intercept Process is
temporarily in control of the CPU. A housekeeping routine saves the
processor’s program visible registers. In the example, the registers are saved
by physical processor using X Register 7. This insures that the Intercept

Process will have complete use of all program visible registers and still be able



10

11

12

13

14

15

16

17

18

19

WO 98/25222 PCT/US97/22185

to return to the operating system fault module with the registers in the state and
with the content as when they were called.

The first step of processing an Intercept request is to determine the type
of fault that cansed the request. This is achieved by getting the fault type from
the current SSF. DR3 is required to frame the current SSF. The seven-bit fauit
type generated by the CPU firmware is resident in bits 11 - 17 of Word 5 in the
SSF. This value is used as an index into a processing table.

The next level of the Intercept Process execution routine is fetched from
a functionality table. If the entry in this table for the fault type in not negative
(bit zero = “0”), then the entry has the offset within the Intercept Process
where the present fault type is to be processed. (If the entry in this table for
the fault type is negative (bit zero = “1”), then there is no next level process
routine, and control will be transferred to process an Service Processor /O
request. This feature is outside the present invention.)

In this manner, control is passed to the execution routine within
Intercept Process for handling the specific fault type. It is at this level that the
rules about the fault are applied to determine if the current fauit qualifies for
recovery. The rules, of course, vary depending npon the fanlt type and

hardware problem(s) that cansed the error conditions. When Intercept Process



10

11

12

13

14

15

16

17

18

19

WO 98/25222 PCT/US97/22185
support is required for a certain fault type, the fault handling function is
appropriately defined.

The Intercept Process has two exits, and both cause the operating
system to continue processing, but with different logic paths. A first exit from
the Intercept Process causes the operating system to retry the failed instruction
after the fault has been handled by Intercept Process. A second exit from the
Intercept Process causes the operating system to continue its processing of the
fault and to resolve it if possible. (Although not shown in FIG. 6, it is also
possible that the operating system fault module will refer the fault to the
Service Processor which might freeze the faulting CPU and reconfigure the
system as necessary.)

Regardless of the exit point, the program visible registers must be
restored before returning to the operating system’s fault module. The Intercept
flag (bit 7 in Word 5 in the SSF) will be reset as part of the wrap up processing
in the Intercept Process.

As previously noted, the return from the Intercept Process to the
operating system fault module is a lateral transfer using Pointer and Descriptor
Register Zero. This type of transfer must be done since this is the same type of

transfer used to enter the Intercept Process.



10

WO 98/25222 PCT/US97/22185

The foregoing description describes the invention in the environment of
a multiprocessor computer system; however, it will be appreciated by those
skilled in the art that the invention may be used with equal effect in a
uniprocessor system which includes iterative execution instructions.

Thus, while the principles of the invention have now been made clear in
an illustrative embodiment, there will be immediately obvious to those skilled
in the art many modifications of structure, arrangements, proportions, the
elements, materials, and components, used in the practice of the invention
which are particularly adapted for specific environments and operating

requirements without departing from those principles.



10

11

12

13

14

15

16

17

WO 98/25222 PCT/US97/22185

WHAT IS CLAIMED IS:

1. In a computer system functioning under an operating system including a
fault handling module, a process for handling a central processor fault
comprising the steps of:
A) when a central processor fault occurs during an operation:
1) setting an intercept flag if the fault is to be directed to a
Ppreprocessor;
2) establishing a safestore frame which includes information
identifying the type of fault and whether the intercept flag is set;
and
3) transferring control to the operating system fault handling
module;
B) in the operating system fault handling module, determining whether
thé intercept flag is set;
C) if the intercept flag is not set, handling the fault in the operating
system fault module and going to step F);
D) if the intercept flag is set, transferring control from the operating

system fault module to an intercept process written in machine language;

27



18

19

WO 98/25222 PCT/US97/22185

E) handling the fault in the intercept process; and

F) retrying the operation which caused the fault in the central processor.

2. The process of Claim 1 in which modifiable central processor firmware is
employed to sense the central processor fault and to selectively set the

intercept flag while establishing the safestore frame.

3. The process of Claim 2 in which the central processor firmware is
configured to recognize a central processor fault which is due to a known

hardware design error.

4. The process of Claim 3 in which, after the known hardware design error has
been corrected, the central processor firmware is reconfigured to eliminate

monitoring for faults due to the known hardware design error.

5. The process of Claim 4 in which the current version of the central processor
firmware and the current version of the intercept process are each matched to a
central processor hardware release currently in use for a given central

Processor.



WO 98/25222 PCT/US97/22185

6. The process of Claim 2 in which the intercept process and central processor
firmware are loaded upon initialization of the system in which the central

processor is resident.

7. The process of Claim 3 in which the intercept process and central processor
firmware are loaded upon initialization of the system in which the central

processor is resident.

8. The process of Claim 4 in which the intercept process and central processor
firmware are loaded upon initialization of the system in which the central

processor is resident.
9. The process of Claim 5 in which the intercept process and central processor

firmware are loaded upon initialization of the system in which the central

processor is resident.

29



2 4 6 |
cruo U lcput P [cpuz | cpus| |’
r 12 13 .14
pcMo| |Pcmi1| |PcM2| 8|PcM3 f f f
9 57 7 9 cpu| [cpu| [cpu
CPU BUS 10 ) BD1 BD2| |BD3
| SHARED Bgng
) / )
‘ SYSTEM BUS \
16 SERVICE OTHER
SCU 19—1 1O PROCESSOR|  |SUBSYSTEMS
— 18 21—/ \_
RMS |50 20
=17 FIG. 1

S/l

TTIST/86 OM

S81TT/L6SN/LDd



WO 98/25222

2/5

PCT/US97/22185

2

—

BASIC
PROCESSING
UNIT 0

SUPPORT
CIRCUITRY

T T

v

PAGING
UNIT

~N T

CACHE

MANAGEMENT

UNIT

cPU
BUS
UNIT

1o

CPU BUS

.’

PRIVATE
CACHE

4

SHARED
CACHE

11

SYSTEMBUS

16

SCuU

oy

MAIN RMS

MEMORY

FIG.

2



WO 98/25222 PCT/US97/22185

3/5

PRIVATE CACHE—
INSTRUCTIONS DATA 3
AND CONTROL MOVEMENT

. 32
40 + cotmo t 38~ *
22 36~ Y  comrrom

' :
§ | —— 42 !
1 ‘
1 A |
4 IC OF FAULT |
— I FLAGSEAULT TYPE | \
: z 40 DATA :
' MANUPULATION
e _J LOGIC E
: |
:3; INDEX REGISTERS . seg:‘;:g!s :
\ I
::% A AND Q REGISTERS REGISTERS :
i T !
] J ,
]
149 DESCRIPTORS 44 !
: AND |
: POINTERS !
| !
71 P |
! SAFESTORE FRAME !



WO 98/25222
4/5

PCT/US97/22185

DESIGN
ERROR
FOUND?

REPLACE CHIP WITH
THE DESIGN ERROR
WITH ACHIP IN

MODIFY CPU FIRMWARE
TO SET BIT 7 OF WORD 5
IN THE SAFESTORE
FRAME WHENEVER THE
FOUND DESIGN ERROR
CAUSES A FAULT

BUILD INTERCEPT
PROCESS SOFTWARE TO
PROCESS FAULTS
RESULTING FROM THE
DESIGN ERROR AND
ADD TO REPERTOIRE IN
RESERVED MEMORY

WHICH THE DESIGN
ERROR HAS BEEN
CORRECTED

MODIFY CPU
FIRMWARE TO
ELIMINATE
CHECKING FOR
THE DESIGN FAULT

REMOVE THE INTERCEPT
PROCESS SOFTWARE FOR
PROCESSING FAULTS DUE

TO THE CORRECTED
DESIGN ERROR FROM THE
REPERTOIRE IN
RESERVED MEMORY

DESIGN ERROR
CORRECTED?

FIG. 5



WO 98/25222 PCT/US97/22185
5/5
OPERATING INTERCEPT
CPU HARDWARE CPU FIRMWARE SYSTEM PROCESS
l FAULT CLIMB
FIRMWARE
PROGRAM
EXECUTION ‘

READ FAULT CODE

FROM HARDWARE;

IDENTIFIED COMPARE FAULT
FAULT CODETO
OCCURS INTERCEPT GROUP
AND, IF MATCH,
l | BUILD SSFWORD §
WITH BIT 7 SET.
SSFWORD 5\Y
70N?
COMPLETE eI
FAULT CLINB N

—

HARDWARE

PROCESS FAULTIN

OPERATING SYSTEM

FAULT MOOULE

PROCESS
FAULT

PREPARE TO
RETRY THE
FAILED
INSTRUCTION

l

RESUMES
INSTRUCTION
STREAM

RETURN TO
FAULTED PROCESS

IN INTERCEPT
PROCESS

FIG. 6




	BIBLIOGRAPHY
	DESCRIPTION
	CLAIMS
	DRAWINGS

