PLATES AND PROTOTYPE WORKPIECES PRODUCED WITH A DEVICE FOR PERFORMING A FAST PROTOTYPING PROCESS

Inventors: Claude Barlier, Coinches (FR); Alain Wadsworth, Ban de Laveline (FR)

Correspondence Address:
Gary M. Cohen, Esq.
Strafford Building Number Three, 125 Strafford Avenue, Suite 300
Wayne, PA 19087-3318 (US)

Appl. No.: 12/157,509
Filed: Jun. 11, 2008

Related U.S. Application Data
Continuation of application No. 10/276,217, filed on Apr. 2, 2003, filed as application No. PCT/FR01/01445 on May 14, 2001.

Publication Classification
Int. Cl.
B21B 1/46

ABSTRACT
A plate for producing a prototype part using a rapid prototyping process is made of metal, plastic or a metallo-plastic composite material, including thermofusible, thermoplastic and thermosetable materials, and is machined with the machining tool of a prototyping machine which further includes a plate mold integrated in the prototyping machine. The mold is adapted to receive a material matching the shape of the mold, and to subject the plate to a heating/cooling cycle using a heating/cooling device integrated in the mold body, and additionally includes a vat, a base plate, a heating circuit and a fluid circulation circuit.
PLATES AND PROTOTYPE WORKPIECES PRODUCED WITH A DEVICE FOR PERFORMING A FAST PROTOTYPING PROCESS

RELATED CASE

BACKGROUND OF THE INVENTION

[0002] The present invention relates to a device for producing plates made of metal, plastic or a metallo-plastic composite, including, for example, thermofusible, thermoplastic or thermosetting materials, and more particularly, to the machining of such materials by a machine tool in a rapid prototyping process. The present invention also relates to a method for machining and assembling thermofusible plates, for producing prototype parts, and the products obtained.

[0003] In general, the present application will make reference to a rapid prototyping process which is known by the name “STRAUTOCONCEPTION” (a registered trademark), and which is disclosed, for example, in the commonly owned European Patent No. 0 585 502-B1. Reference will also be made to the commonly owned French Patent Applications No. 98 14687 and No. 98 14688.

[0004] In general, the “STRAUTOCONCEPTION” process can be used to produce mechanical parts and items, particularly prototypes, from a specific computer-aided design. This is achieved by the successive steps of performing a virtual breakdown of the part to be produced into elementary laminates, placed in an array, manufacturing a plurality of elementary laminates or layers, building up the plurality of manufactured layers, and assembling the layers to form the part to be produced. The laminates originate from a prior breakdown of the part on predetermined planes, and in one or more determined steps.

[0005] The underlying principle is that the volume of the part to be reproduced, as a prototype, is broken down into a multitude of laminates. The laminates are produced by machining, for example, by the rapid micromilling of a material in plate or sheet form. The material to be used can, for example, be made of wood, a composite, plastic or metal.

[0006] Irrespective of which of these materials is selected for use, there is necessarily a significant loss of material. While this is not in itself prohibitive in carrying out the process, it is nonetheless detrimental to the economy of the process because chips and offcuts of material, and the milling residue produced, cannot be used.

[0007] There is, therefore, a need for a machining process that permits the machining of a material, and that permits recycling of the residue from the machined material, as well as machined parts that are of an unsatisfactory quality or that no longer have any use.

SUMMARY OF THE INVENTION

[0008] In accordance with the present invention, this is achieved with a device for producing plates made of metal, plastic or a metallo-plastic composite, including, for example, thermofusible, thermoplastic or thermosetting materials, which can be machined by a machine tool in a rapid prototyping process. To this end, a plate mold is incorporated into the prototyping machine which is capable of receiving a material that hugs the shape of the mold, having been subjected to a heating/cooling cycle by a heating/cooling device incorporated into the body of the mold. The material used for implementing this can be in the form of a liquid, granules or a solid element. The material can be thermofusible, or can be a thermoplastic or a thermosettable material. For thermoplastic materials, the heating/cooling process will be reversible. For materials in the form of granules, the process will include a phase of plasticizing, by heat, and compression or injection.

[0009] It will be understood that the improvements of the present invention will find application for any material which can, within a reasonable temperature range, pass from a liquid state to a solid state, possibly reversibly.

[0010] An important feature of the present invention is that the machining of plates in the form of a laminate or a collection of laminates placed in an array will be performed directly in the mold. Chips generated by the machining are collected, and can be recycled. The part is held in the mold, in the cold state, and is released from the mold by the slight heating of lower portions of the part, sufficient to detach the part from the bottom of the mold.

[0011] Compared to prior processes and devices, the apparatus of the present invention allows greater ease of material supply. The apparatus of the present invention also allows the automation of the overall prototyping process to be optimized.

[0012] The invention will be better understood with reference to the description which follows, together with the following drawings.

DESCRIPTION OF THE DRAWINGS

[0013] FIG. 1 is a schematic, isometric view, in partial cross-section, of a device of the present invention.

[0014] FIG. 2 is an alternative embodiment of the device shown in FIG. 1.

DETAILED DESCRIPTION OF THE INVENTION

[0015] Referring to FIG. 1, the device (1) of the present invention comprises a tank (2), a baseplate (3), a heating circuit (4) and a fluid-circulation circuit (5). The device (1) is fitted, for example, by nuts (6, 7) onto a flat surface, for example, the bed of a machine tool (M), beneath a head (H) for machining a plate or part which is to be received and retained in position on the machine tool (M) by the device (1) as will be described more fully below. The head (H), the machine tool (M) and their manner of operation in a rapid prototyping process are known, for example, from the above-referenced European Patent No. 0 585 502-B1, and French Patent Applications No. 98 14687 and No. 98 14688.

[0016] The bottom of the tank (2) includes a perforated plate (3). Resistive heating elements (4) and fluid-circulating tubes (5) pass longitudinally through the perforated plate (3). Perforations (8) are formed transversely in the plate (3) and placed free face of the tank (2) in communication with a lower reservoir of fluid (9).

[0017] Movement of the fluid is controlled by a piston (10), which can operate responsive to compressed air or any other functionally equivalent mechanical system compatible with the conditions of use. A retracted top plate (13) can temporarily close the mold while the material is being injected or during the curing phase.

[0018] An alternative embodiment, use of the plate (13) for closing the mold can be circumvented. The material will
then extend beyond the upper plane of the mold. Leveling is performed by skimming, for example, using the milling device which is already in place on the rapid prototyping station, or using any other scraping-method. Excess liquid is removed through vents (11, 12) placed, for example, in the upper part of the mold. As other possible alternative embodiments, the cooling passages can act as a network for circulating a heating fluid, and the feed ducts can be situated only on lateral parts of the mold to make the ducts easier to break off as the laminate is extracted.

[0020] The basic principle of the present invention is the production of plates which can be ejected after cooling, possibly by a suitable piston system. Numerous alternative embodiments can be anticipated without departing from the scope of the present invention.

[0021] For example, as shown in FIG. 2, the retractable upper plate (13) allows the injection of a plate or a part (14). Ejection is managed by pneumatic and/or mechanical means (15) which will eject the part (14) after slight heating. The tank, or the actual cavity of the mold, will facilitate mold release and extraction of the part (14). The plate (14), which has remained solid, can also be ejected by once again liquefying the plastic in the reservoir.

What is claimed is:

1. A plate for a prototype part comprising a plurality of plates produced by a process for machining each plate to form a laminate for a collection of laminates placed as an array for producing the prototype part, using a rapid prototyping process defined by a computer-aided breakdown of the prototype part into the collection of the laminates, the process comprising the steps of:

 machining the plate while in a mold incorporated in a rapid prototyping machine, wherein the mold has a defined shape, and wherein the mold receives material for producing the plate in a shape that hugs the shape of the mold; and

 subjecting the machined plate to a heating and cooling cycle while in the mold, including holding the plate in the mold in a cold state during the machining, for release from the mold by heating lower portions of the plate sufficient to detach the plate from the mold after the machining.

2. The plate of claim 1 wherein the process further includes the step of forming the plate of a material selected from the group of materials consisting essentially of metals, plastics and metallo-plastic composites which are capable of changing from a liquid phase to a solid phase.

3. The plate of claim 1 wherein the process further includes the step of forming the plate of a material selected from the group consisting essentially of thermosetting and thermoplastic materials.

4. The plate of claim 1 wherein the shape of the mold which receives the material includes surface portions which are open to exterior portions of the mold, and wherein the process further includes the step of exposing the open surface portions to a machine tool during the machining of the plate.

5. The plate of claim 4 wherein the process further includes the step of machining the exposed surface portions with the machine tool during the machining of the plate.

6. The plate of claim 5 wherein the machine tool is separate from the mold.

7. The plate of claim 1 wherein the process further includes the steps of heating the material for producing the plate, following the machining, and ejecting the machined plate from the mold following the heating.

* * * * *