07/035623 A1 |0 0 00O 0

(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(19) World Intellectual Property Organization
International Bureau

(43) International Publication Date
29 March 2007 (29.03.2007)

(10) International Publication Number

WO 2007/035623 Al

(51) International Patent Classification:
GOG6F 21/00 (2006.01) GOG6F 12/14 (2006.01)
GOG6F 21/02 (2006.01)

(21) International Application Number:
PCT/US2006/036262

(22) International Filing Date:
15 September 2006 (15.09.2006)

(25) Filing Language: English

(26) Publication Language: English
(30) Priority Data:

60/718,123 17 September 2005 (17.09.2005) US

(71) Applicant (for all designated States except US): TECH-
NOLOGY GROUP NORTHWEST INC. [US/US]; Suite
100, 1100 Dexter Avenue N., Seattle, WA 98109 (US).

(72) Inventors; and

(75) Inventors/Applicants (for US only): HEASMAN, Ray,
E. [ZA/US]; 2101 Second Avenue N, Seattle, WA 98109
(US). BAKER, James, W. [US/US]; 2500 Sixth Avenue
N, #3, Seattle, WA 98109 (US).

(74) Agent: POWELL, Tracy, S.; Christensen O'Connor John-
son Kindness PLLC, 1420 Fifth Avenue, Suite 2800, Seat-
tle, WA 98101-1344 (US).

(81) Designated States (unless otherwise indicated, for every
kind of national protection available): AE, AG, AL, AM,
AT, AU, AZ, BA, BB, BG, BR, BW, BY, BZ, CA, CH, CN,
CO, CR, CU, CZ, DE, DK, DM, DZ, EC, EE, EG, ES, FI,
GB, GD, GE, GH, GM, HN, HR, HU, ID, IL,, IN, IS, JP,
KE, KG, KM, KN, KP, KR, KZ, LA, LC, LK, LR, LS, LT,
LU, LV, LY, MA, MD, MG, MK, MN, MW, MX, MY, MZ,
NA, NG, NI, NO, NZ, OM, PG, PH, PL, PT, RO, RS, RU,
SC, SD, SE, SG, SK, SL, SM, SV, SY, TJ, TM, TN, TR,
TT, TZ, UA, UG, US, UZ, VC, VN, ZA, ZM, ZW.

(84) Designated States (unless otherwise indicated, for every
kind of regional protection available): ARIPO (BW, GH,
GM, KE, LS, MW, MZ, NA, SD, SL, SZ, TZ, UG, ZM,
ZW), Eurasian (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM),
European (AT, BE, BG, CH, CY, CZ, DE, DK, EE, ES, FI,
FR, GB, GR, HU, IE, IS, IT, LT, LU, LV, MC, NL, PL, PT,
RO, SE, S, SK, TR), OAPI (BF, BJ, CF, CG, CI, CM, GA,
GN, GQ, GW, ML, MR, NE, SN, TD, TG).

Published:

with international search report

before the expiration of the time limit for amending the
claims and to be republished in the event of receipt of
amendments

Fortwo-letter codes and other abbreviations, refer to the "Guid-
ance Notes on Codes and Abbreviations” appearing at the begin-
ning of each regular issue of the PCT Gagzette.

(54) Title: SYSTEM AND METHOD FOR FOILING CODE-INJECTION ATTACKS IN A COMPUTING DEVICE

02 00
1) R e y~
I
~ i 1402
i WRITE BUFFER | 104
]]
i — N ourf— !
]]
PROCESSOR i OE |
i ! 406
i 4
42 ! .
! READ BUFFER : 412
]]
ol L Z L 7
DATA BUS{ : our IN v
]
]
OE] .
i i MEMORY
| 1408
! | |/
i I
41\5:}% DECODE BLOCK !
]
| ,— our wd !
a1 ! o !
\‘ OE 1
e I |
READ/WRITE, ; , ya
]
[1
E— ‘ KEY UNIT '
[INSTRUCTTON/DATA| L 2 \f\ 24
H ; ouri-
a6 :r ~_

& (57) Abstract: A method and computing device for protecting against code-injection attacks by fetching transformed instructions
stor-d in memory and restoring the transformed instructions prior to their execution by a processor or interpreter is presented. An
exemplary computing device is configured to execute a method as described in the following steps, as part of fetching a value from
memory, restoring the value according to a context and a restore function if the fetch is for an instruction. Thereafter, the restored
information is passed on to the next stage of the processor for execution.

=

10

15

20

25

30

WO 2007/035623 PCT/US2006/036262

SYSTEM AND METHOD FOR FOILING CODE-INJ ECTION ATTACKS IN A
COMPUTING DEVICE

BACKGROUND

One of the main gatewayé for malicious sbftware (generally referred to as
"malware") to enter and take control of a user's computer is to trick the computer into
executing instructions that were not intended as part of the currently executing program.
As those skilled in the art will appreciate, to execute an application, both executable
instructions and data are loaded into memory. Buffer overrun attacks wrif_e malicious
instructions into the data areas in memory and trick the computer into executing those
instructions as if the data were a legitimate program. fhere are several ways to trick the
computer which usually (but not always) involve corrupting a pointer value in the
computer's memory. Some examples of this kind of malware attack include buffer
overflow attacks, stack overflow attacks, data-as-instructions attacks, injected code
aftacks, format string attacks, integer overflow attacks, malicious string attacké, malicious -
code attacks, heap-smashing attacks, pointer-rewrite attacks, and worms. Of these, the
stack overflow technique is likely the most common.

While the above attacks differ slightly, they almost always result in the same
thing: a pointer to legitimate executable code is corrupted such that it points to malicious
code that was surreptitiously loaded into a data area in memory. With the pointer
corrupted, at some point during the normal execution of the program the corrupted
pointer is followed and begins executing the malicious code.

| As those skilled in the art will appreciate, several ways have been proposed for
protecﬁng the stack frqm being "smashed," i.e., corrupted or otherwise overrun in order to
carry out malicious code, which are extensively described in online informafion stores
and encyclopedias such as Wikipedié. HoWever, these techniques for protecting the
system are inherently flawed: they try to protect the program from becoming corrupted,

or try to detect corruption before the malicious code is executed, which means that these

+ techniques are either too slow to be practicable or are easily circumventable.

In contrast to the above solutions, a desirable approach in protecting a computer
against attacks would be to remove the ability of an attacker to inject executable
instructions into the computer system in a form that could then be executed by the

processor. By removing the ability to inject properly formed instructions into the

- a1-

10

15

20

25

WO 2007/035623 PCT/US2006/036262

computer system, the system is not compromised even when an attacker injects
instructions (though not properly formed) and attempts to redirect execution on those

instructions.

" SUMMARY

This summary is provided to introduce a selection of concepts in a simplified
form that are further described below in the Detailed Description. This summary is not
intended to identify key features of the claimed subject matter, nor is it intended to Be
used as an aid in determining the scope of the claimed Subject matter.

According to aspects of therpreser_it invention, a method to execute instructions
stored in a transformed stéte in a memory, is presented. The method comprises the
following steps. As part of fetching a value from memory, restoring the value acéofding
to a context and a restore function if the fetch is for an instruction. Thereafter, the
restored value is péssed on for execution. . ' .

According to additional aspects of the present invention, a method to execute an
application on a computing device, is presented. The method comprises the following
steps. Loading the applicatidn into a memdry for execution and selectively transforming
the instructions of the loaded application according to a transform function and a context.
As a transformed instruction is fetched from the memory for execution, the fetched
instruction is restored using a restoration function and the context. Thereafter, restored
instruction is passed 6n to the next stage of the processor for execution.

According to further aspects of the present invention, a computing device for
protecting against overrun errors by fetching transformed instructions stored in a memory
and restoring the instructions prior to their execution is presented. An exemplary
computing device includes a processor and a restoration means. The restoration means is
logically located on a data path between the processor's instruction decoder and a
memory. The restoration means is configured to, upon the a fetch of a value from the
memory, selectively restore the value using a context and a restore function if the fetch is
for at least part of an instruction, and pass the restored instruction to the next stage of the

processor for execution.

10

15

20

25

30

WO 2007/035623 PCT/US2006/036262

- DESCRIPTION OF THE DRAWINGS
* The foregoing aspects and many of the attendant advantages of this invention will
become more readily appreciated as the same become better understood by reference to
the following detailed deécription, when taken in conjunction with the accompanying
drawings, wherein: -

FIGURE 1 is a block diagram for illustrating general aspects of the invention

~ with regard to a simple von Neumann architecture computer; '

FIGURE 2 is a pictorial diagram illustrating components of an exemplary
computing device suitable for implementing one or more embodiments of the invention;

FIGURE 3 is a pictorial diagram illustrating aspects of loading an application into
memory for execution according to one aspect of the inﬁe‘ntion; ’ . |

FIGURE 4 is a block diagram illustrating an exemplary hardware configuration
suitable for decoding'and executing encoded instructions according to one aspect of the
invention; | : A | : |

FIGURES 5A and ASB illustrate exemplary Output Enable truth taEles for showing
the output of various hardware components configured according to aspects of the |
invention; '

FIGURE 6 is a block diagram illustrating an alternative exemplary hardware
configuration suitable for decoding and executing encoded mstructlons according to one
aspect of the present mventlon ‘

FIGURE 7 a block diagram illustrating an exemi)lary decode block implementing
a XOR decoding functionality and suitable for use in the 1abyrinth circuitry of
FIGUREG,

| FIGURES 8A and 8B are block diagrams illustrating exemplary key units suitable
for use in the labyrinth circuitry shown in FIGURES 4 and 6;

FIGURE 9 is a flow diagram illustrating an exemplary load routine suitablé for
use by an application loader component when loadiﬁg an appliéation from storagé into
memory, } |

FIGURE 10 is a flow diagram illustrating a logical representation of an execution
routine suitable for implementation in hardware, such as the circuitry of FIGURES 4 and
6, and

10

15

20

25

30

WO 2007/035623 PCT/US2006/036262

FIGURE 11 is a block diagram illustrating an exemplary process‘of and further
illustrating various possible locations where labyﬁnth circiiitry can be logically inserted

in order to provide functionality of the present invention.

DETAILED DESCRIPTION -

In order to avoid confusion with regard to the usage of various terms, as used
throughout this description, the term "transform" and its conjugations are uéed to refer to
the encoding of instructions from the executable opcodes (thét are tybically decoded by a

'p'rocessor- for execution) to an altered state, i.e.,-a "transformed" state. Indeed, the term
“transform," and its converse "restore," are used to distinguish between the decoding that
processors, interpreters, and/or virtual machines perform on an instruction/opcode in the
typical execution thereof, and the transformation and restoration of the executable
instructions to foil the various attacks described above in accordance with the present
invention. ' ‘ |

- In a computing device, the execution of applications by a processor, whether that
processor is part of a computer, personal digital assistant (PDA), intelligent appliance,
mobile phone, or the like; follows a series of steps. On almost all but the simplest
processor-embedded devices, when a prdcess 1s initiated, a corresponding application is
loaded into the compliting device's memory. To execute, the prc;cessor repeatedly fetches
instructions and data from memory, usually one or several bytes at a time. The processor
then executes the fetched instructions one or several at a time.

As mentioned above, code injection and similar attacks trick the processor into
executing one or more instructions of malicious code by writing the malicious code into
the memory's data area, for example by overflowing a buffer. (In this paragraph the word
"buffer" is used in a computer science context meaning "memory used to temporarily
store data".) The contents of the overflowed buffer in a code injection attack is a series of
executable instructions written in such a way as to cause the computing device to perform
the attacker's intended action. For example, the "Code Red" worm used a buffer overflow
in a URL parsing function to take contro] of and infect computers running the Microsoft
IIS Web Server. The worm defaced any web sites running on an infected server, and
directed all infected servers to launch coordinated denial-of-service attacks on certain
well known IP addresses, such as various government web sites. The particular details of

the Code Red worm are well known and readily available on various Web sites.

4

10

15

20

25

30

WO 2007/035623 PCT/US2006/036262

To combat the types of attacks described above, and according to aspects of the
present invention, when any application is loaded into memory for execution, the
executable insfruétions of that application are transformed and stored in memory.
Moreover, the executable instructions remain in their transformed state as long as they
reside in memory. In contrast, the application's data is not transformed and, therefore, is
simply placed in memory. -

Clearly, transformed executable instructions must be restored to their executable
form in order to be executed by the processor. Accordingly, the fransfonned instructions
are restored as part of the fetch process for execution by the processor and remain
restorec{ only within the céntext of being executed by the processor. However, the
executable instructions remain transformed in memory. ’

As those skilled in the art will recognize, the present invention does not address
malware's ability to corrupt a return pointer on the stack to point to malicious instructions
surréptitiously written into a data area according to the various attacks described above. -
However, the malicious instructions are placed in memory without being transformed
and, thus, when the malicious instructions are fetched, thé resto;a?:ion process renders the
instructions ineffective. Of course, attempting to execute the "restored" malicious
instructions may result in a program or. 4system crash. However, in almost all instances, a
crash is preferable to the malicious results of the malware. Fortunately, some crashes
may be averted or quickly detected and handled gracefully by the operating system.

To better set forth the various aspects of the present invention, reference is made
to the accompanying drawings. More particularly, FIGURE 1 is a block diagram for
illustrating general aspects of a simple von Neumann architecture computing device
adapted according to aspects of the present invention. As shown in this figure, the
computing device 100 includes a processor 102 and a memory 104, While not shown in
this figure, the memory stores the loaded application including both transformed
instructions and data. As appreciated by those skilled in the art, while in many modern
computers memory 104 typically comprises volatile random access memory (RAM), it is
anticipated that memory 104 may also comprise ROM (with applications burned therein),
programmable ROM (PROM), non-volatile RAM, and the like. In this simplified

computing device 100, the processor reads instructions and data over a data bus as they

 pass through a decoder 50. As mentioned above, the decoder 50 restores transformed

instructions read from memory as part of a fetch operation. The decoder 50 knows

-5-

10

15

20

25

30

WO 2007/035623 PCT/US2006/036262

whether or not the fetched information is data or instruction according to information
available from the processor 102, such as.a control line indicating whether the fetched
information is an instruction or data. Moreover, the decoder restores transformed
instructions according to a key value, which may be located within a processor's register
or other key value storage location. |

As further shown in FIGURE 1, the processor 102 writes information back to the
memory -1 04 over the data bus. However, when writing, the decoder 50 is bypassed, at
least in a logical sense. Various detailed descriptions regarding a decoder 50 are set forth
below. _

As mentioned above, aspects of the present inventioﬁ may be implemented on a
variety of devices such as, but not limited to, mobile phones, PDAs; mini- and mainframe
computers, tablet, notebook, and desktop personal computers, and the like, running nearly
any type of processor, including either synchronous or asynchronous processors.
However, while there are numerous configurations of computing devices in which the
present invention may be impleménted, FIGURE 2 is a pictorial diagram illustrating
components of an exemplary computing device 200 suitable for implementing one or
more embodiments of the invention. The exemplary computing device 200 includes a
processor 102 and a memory 104. Also illustrated, as part of the .exemplary computing
device 200, is a storage device 106. As those skilled in the art will appreciate, in many
computing devices, the storage device 106 is a non-vblatile storage area which can store
applications, such as applications 110 and 112, even when the computing device 100 is
not powered, whereas the memory 104, as mentioned above, is viewed as a volatile
storage area such as random access memory (RAM). Of course, on many devices these
typical assumptions (with regard to volatile and non-volatile hardware) are not true, and
thus the present configuration should be viewed as illustrative only, and not construed as
limiting upon the present invention. V

The storage device 106 also typically stores an operating system 108. When the
computing device 200 is powered on, the operating system 108 is loaded (és illustrated by
operating system 108') and executed as part of an overall computing system. Moreover,

the operating system 108 typically includes an application loader 114 which is used to

. load applications 110-112 from the storage device 106 into memory. Of course, in a

computing system 200 adapted according to the present invention, the various executable

. -6-

10

15

20

25

30

WO 2007/035623 PCT/US2006/036262

instructions of the operating system 108 are stored in memory 104 -as. transformed
instructions.

Other items that may be stored on the storage devicex 106 include an interpreter,
virtual machine, or processor emulator (nbné of which are shown) any of which may be
configured according to aspects of the present invention to fetch, decode, and execute
executable instructions loaded in memory 104. Of course, while aspects of the present
invention may be implemented in an interpretivé or emulative environment, in at least
one embodiment these same aspects may ‘be implemented in circuitry in or around the
.processof 102. ' -

In order to more fully illustrate aspects of the present invention with regard to

loading an application, FIGURE 3 is a pictorial diagram 300 illustrating aspects of

~loading an application 302 from storage 106 into memory 104 for execution by a

procéséor 102 (6r interpreter) aiccording to aspects of the invention. More particularly, as
those skilled in the art will appréciate, an application typically compﬁses a mix of both
executable iﬂstrucﬁons 304-308 and data310-314. When the operating system 108
(FIGURE 2) operating on a computing device, such as computing device 300, receives an
. instruction to load an application 302 for execution, the application loader 114 retrieves
the application from storage 106 and locafes, or stores, the application in memory 104. In
addition to simply loading the application into memory, the application loader 114
transforms each instruction of the application using an encoding value 316. Accordingly,

as shown in loaded application 302!, instructions 304'-308' are shaded, indicating that

-~ they are transformed.

With the application loaded into memory 104, including the executable
instructions being transformed, focus can now turn to the fetch and execute the processes.
To this end, FIGURE 4 is a block diagram illustrating an exemplary hardware
configuration 400 suitable for restoring and executing transformed instructions. More
particularly, the exemplary configuration 400 includes a processor 102, a memory 104
storing transformed executable instructions 304', and a decoder 402 (which in this figure
is implemented as decoder circuitry and referred to generally as "labyrinth circuitry") for
restoring the transformed executable instructions 304' for execution by the processor 102.

- With regard to the processor 102, the processor is connected to a data bus 412
from which it reads and writes data to and from memory 104. Of course, in the sense of

information on the data bus 412, this "data" may include both instructions and data. The

-7-

10

15

20

25

30

WO 2007/035623 PCT/US2006/036262

processor 102 is also shown as having two output lines: a read/write line 414 and a
instruction/data line 416. These lines are l‘)inary‘ output 1ines. The read/write line 414
outputs an indicator as to whether the operation on the data bus 412 is a read operation
(i.e., from memory 104 to the processor 102) or a Wﬁte_: operation (i.e., from the processor

102 to memory 104). As those skilled in the art will appreciate, the bar above "WRITE"

~ for the read/write line 414 indicates the low (or zero) value is indicative of a write

‘operation on the data bus 412. The code/data line 416 indicates whether the information

- requested (either read or written) is an instruction or data.

The exemplary labyrinth circuitry 402 includes a write buffer 404, a read

buffer 406, a decode block 408, émd a key unit 410. (In this and the following paragraphs
“the term "buffer" is used in the electrical engineering context meaning "an amplifying or

isolating logic element".) Additionally, the exemplary labyrinth circuitry 402 includes an
inverter 418 connected to the read/write line 414; an AND gate 420 connected to both the
read/write line 414 and the instruction/data line 416 with the instruction/data line
inverted; and another AND gate 422 connected to both the read/write line and the
instruction/data line. "Still further, a key bus 424 connects the key unit 410 to the decode
block 408. As can be seen, the write buffer 404, the read buffer 406, and the decode
block 408 are each comnected to the data bus 412, and placed in such a way such that all
information that flows to the processor 102 from memory 104 must pass through the
labyrinth circuitry 402.

While each of the write buffer 404, read buffer 406, and decode block 408 (as
well as the key unit 410) will be described below, it should be appreciated that according
to the illustrated embodjment of FIGURE 4, the write buffer, read buffer, and the decode
block are tri-state devices. As those skilled in the art will appreciate, when enabled, a tri-
state device outputs either a high value (1) or a low value (0), but when disabled, a tri-
state device does not output a drive signal. Accordingly, each of the write buffer 404, the
read buffer 406, and the decode block 408 include an OE input (for "output enable") such
that if high (1) the tri-state device is enabled and outputs a value (either a high or low
value) on the data bus 412, but if low (0) the tri-state device is disabled and does not
output any drive signal on the data bus.

In this illustrated embodiment, the key unit 410 is. configured to always output a
key value over the key bus424, which key value is used to restore transformed

instructions in the decode block 408.

-8-

10

15

20

25

30

WO 2007/035623 PCT/US2006/036262

As can be seen, the OF input of the write buffer 404 is connected to the read/write
line 414 via the inverter 418. Thus, when the read/write line 414 outputs a low value (0),
the inverter 418 inverts the value which enables the write buffer 404. As can be seen, the
write buffer is enabled and outputs a value on the data bus 412 when the read/write
line 414 is low (0), but is disabled when the read/write line is high (1).

The OE input of the read buffer 406 is connected to both the read/write line 414
and the instruction/data line 416 via an AND gate 420, with the value of the
instruction/data line inverted. Thus, when the read/write line 414 is high (1), implying a
read from memory 104 to the processor 102, and the instruction/data line 416 is low (0),
implying that the requested information is data, the read buffer is enabled and transfers |
the data on the data bus 412 from memory 104 to the processor 102. '

The OE input of the decode block 408 is connected to both the read/write line 414
and the instruction/data line 416 via an AND gate 422. n this configuration, when the
read/wﬁte line 414 is high (1) and the instruction/data line 416 is also high (1), implying
that the requested information is an instruction, the décode ‘block decodes the instruction
obtained from memory 104 using the key value on the key bus 424 and outputs thé
decoded instruction on the data bus 412 to the processor 102. -

As a simplification of the above enabled/disabled states, FIGURE 5A illustrates
an exemplary Output Enable truth table 502 for showing the enabled state of the tri-state
devices of the labyrinth circuitry 402, i.e., the read buffer 406, the write buffer 404, and
the decode block 408, in response to the various outputs of the read/write line 414 and
code/data line 416. |

With regard to the configuration presented ih FIGURE 4, and particularly in
regard to the labyrinth circuitry 402, while illustrated as being separate from the
processor 102, it should be appreciatedithat the labyrinth circuitry ﬂaay be ianrporated
within the processor itself, as part of the core processor (i.e., part of a chip and internal to
the processor), or as a supporting circuitry to the processor (i.e., part of the chip but
external to the processor core). More genefally, the labyrinth circuitry may be added at
various points between the processor and memory, including being part of 2 memory

managing subsystem, all of which are anticipated as falling within the scope of the

" present invention. Moreover, the logic behind the labyrinth circuitry 402, along with

other processor functionality may be readily implemented as a drop in module of a

-9-

10

15

20

25

30

WO 2007/035623 PCT/US2006/036262

processor in a field programmable gate array (FPGA) and/or in an application specific
integrated circuit (ASIC) when the processor is a core. ‘

With further regard to the configuration presented in FIGURE 4, as well as other
configurations presented below, the labyrinth circuitry 402 has been presented in its
simplest form for illustration purposes. More particularly, the labyrinth circuitry 402 has
been presented as un-clocked, non-interlc.saved, ‘non-pipelined, and non-multiplexed
ciréuitry. However, as indicated, this is purely fbr simplicity in illustration and should
not be construed as limiting upon the present invention. Those skilled in the art will
appreciate that the labyrinth circuitry 402 is readily adapted as clocked, interleaved,

_pipelined, and/or multiplexed circuitry, and the‘ skill and knﬁwledge to do so, without
undue experimentation 1s readily available.

It should be.appreciated by those skilled in the art that there may be some
instructions that span more than one discrete memory such that it requires more than a
single fetch, i.e., a "single" instruction may span multlple bytes, orwords, etc. Moreover,
when this occurs, it may not be necessary to transform the "entire" iﬁstruction but only
one or more portions. For example, assume that a single instruction is stored in two
words, and each word must be fetched separately. It may be sufficient to foil an injection
attack if only one of the words was transformed and subsequently restored, assuming also
that the labyrinth circuitry was aware as to which word was transformed. This could
logically be accomplished by using a key value in the transform and restore functions that
represent the identity function. If the restore/transform functions used XOR, a key value
of zero would leave a word (i.e., a portion of a multi-fetch instruction) unchanged.

- However, for purposes of the present discussion, whether all or a part of an instruction
(that requires more than one fetch to retrieve) is transformed, it is viewed as the
instruction, as a Whole,iis transformed and subsequently the instruction, as a whole, is
restored. |

While FIGURE 4 presents one embodiment of the labyrinth circuitry 402, those
skilled in the art will appreciate that functionality of the labyrinth circuitry may be
configured in a variety of manners, each of which is functionally equivalent with regard
to restoring transformed instructions retrieved from memory 104. For example,
FIGURE 6 is a block diagram illustrating an alternative configuration of the labyrinth
circuitry 602 suitable for restoring transformed instructions retrieved from memory 104

for execution by the processor 102. As can be seen, the processor 102 still includes a

-10-

10

15

20

25

- 30

WO 2007/035623 PCT/US2006/036262

data bus 412, a read/write line 414, and an instruction/data line 416 as described above in
regard to FIGURE 4, and the labyrinth circuitry 602 relies upon the read/write line and
instruction/data line to determine whether the information on the data bus 412 is being
read from or written to0 memory, and whether the‘ information corresponds to instructions
or data. ,

The labyrinth circuitry 602 includes a write buffer 404 and a decode block 408,
both of which are tri-state devices. The labyrinth circuitry 602 further includes a key
unit 604, different from the key unit 410 described above in regard'to FIGURE 4, which
is connected to the decode block 408 via a key bus 424. Also included in the labyrinth
circuitry 602 is an inverter 418 connecfed to the read/write line 414.

. The write buffer 404 is the same as described abqve in regard to FIGURE 4,

. including its OE lead being connected. to the read/write line 414 via the inverter 418.

Thus, the write buffer 404 is enabled and outputs a value on the data bus 412 when the
read/write line 414 is low (0), but is disabled when the read/write line is high(1).

- - The declode buffer 408, itself, is also configured the same as described above in
regard to FIGURE 4. However, unlike the overall configuration of the labyrinth
circuitry 402, the OE lead of decode block 408 in the labyrinth circuitry 602 is connected
directly to the read/write line 414, and is therefore enabled whenever the read/write line is
high (1) indicating a read. In this embodiment, because all reads from memory 104 to thé
processor 102 pass through the decode block 408, the restoration process implemented by
the decode block must be able to properly process both data and transformed instructioﬁs,
and relies upon the key value output on the key bus 424 from the key unit 604 to ensure'
that only transformed instructions are actually restored. ‘

For its part, the key unit 604, not being a tri-state device, always outputs a value
on the key bus 424 to the decode block 408. However, the key unit 604 is configured
with one or more Select lead(s) connected to the instruction/data line 416, and possibly
other context information. In this embodiment, if the select value is high (1), as indicated
on the instruction/data line 416, the appropriate key value to restore a transformed
instruction is output to the decode block 408. Alternatively, if the select value is low (0)

indicative of data, as indicated on the instruction/data line 416, an alternative key value is

- output such that when combined with data in the decode block 408, the data is

unmodified. While there are a variety of means to implement selectively restoring

- transformed instructions while data remains unchanged, an efficient way to accomplish

-11-

10

15

20

25

30

WO 2007/035623 PCT/US2006/036262

this is to use a logical XOR (exclusive or) operation as the transform/restore operation.

- Those skilled in the art know that the XOR operation provides a true "round trip," ie.,

that a value encoded (or transformed) with a key in an XOR operation is properly
restored with a subsequent application of the XOR operation using the same key, as
defined by the formula, v = XOR(XOR(®, k), k), where v is the value transformed and
restored, and k represents a key value used by the XOR operation to transform and
subsequently restore v. Moreover, when the select value is low (0) on the instruction/data
line 416, indicating that the value read is data, the key unit 604 outputs a zero (0) thereby
leaving the data unmddiﬁed, since v =XOR(v, 0) or the identity function.

‘While an XOR operation using a discrete key {ralue is both efficient and effective,
amore general mathematical descﬁption of the transform/restore operatidn is found in the
formula, v =. Restore(Transform(v, c), c), where v is the value to be transformed and
restored, Restore 'represeﬁts the restoration function that restores a transformed v,
Transform. represents the transformation function, and c represent a context which is used
by both the restoration function Restore and the transformation function T} raﬁsfofm to
"rdund trip" the value v. A context ¢ may simply comprise a key value, but may also
include, but not be limited to, one or more process privilege bits, address space riumbers,
a process identifier (ID), a user's password and/or biometric .information, one or more
lowest address lines, or any combination thereof. Moreover,A when using the general
mathematical formula described earlier, an identity context, ic, should also be available
such that it satisfies the equation v = Restore(v, ic), and possibly, v = Transform(v, ic). In
this manner, if all information - both instructions and data - were "restored” via the
labyrinth circuitry (or its functional equivalent), an identity context could be provided
when the fetched information corresponds to data.

With regard to a key value used by a key unit 604 or 410 to restore transformed

instructions, while a suitable key value may be obtained from a variety of sources, a key

value may be generated via a random number generator (or pseudo-random number
generator) at boot of the computihg device and used as the key value for each process
running on the computing device, or in f:ombination with a context for each process such
that each process ultimately includes a unique key value. Moreover, a random number
may be generated for each process launched on the.computing device and used as the key

value for the corresponding process, or in combination with the process's context. As an

~+ alternative to a random number, or pseudo-random number, a key value may be assigned -

-12-

10

15

20

25

30

WO 2007/035623 PCT/US2006/036262

to a particular computing device and/or prooessor,r or derived from each computing
device's serial number. Yet other alternatives include a nonce, a virtual machine ID, a
security token, Aa hard to guess number, or any combination thereof. While not shown, in
at least one embodiment, the processor 102 is configured to store one or more key values,
irrespective of whether or not the key values are used in combination with a processes
context. Alternatively, a software module, such as the application loader'114 or some
other component of the operating system 108 may store the various key values
corresponding to the executing processes. Still i;urther, it should be appreciated that
context switches from onerp'rocess to another, and/or prilvile‘ge escalations may require
the use of different key values and/or contexts.

FIGURE 7 is a block diagram illustrating an exemplary decode block 702
implementing XOR transform/réstore functionality and suitable for use in the labyrinth
circuitry 602 of FIGURE 6. More particularly, the decode block 702 accepts values
(either instructions or data) on the data bus 414 from memory 104 and a key value on the
key bus 424 from a key unit 604, Internal to the decode block 702 is an array of XOR
gates, represented by the logical XOR symbol 704, which perform an exclusive OR
operation on the value on the data bus 412' (i.e., from memory) w1th the key value on the
key bus 424 and outputs the results on the data bus 412 to the processor 102. However,
as the exemplary decoding block 702 is a tri-state deV1ce, a value is output to the

processor 102 only when the decode block is enabled (i.e., when the read/write line 414 is

* high (1)).

Returning again to FIGURE 6, in order for the decode block 408 to always be able
to perform the restore operation, even when the information read from the memory 104 is
data, the key unit 604 selectively outputs zero or the key value, depending on the value
received at the select lead. This enables the decode block to always "restore" all
information read by the processor 102 since, as mentioned above, v = XOR(v, 0).
FIGURE 5B illustrates the output enabled/select state values of the various components
of the labyrinth circuitry 602 of FIGURE 6. Of course, with regard to the key unit 604,
when not selected (0), the output of the key unit is zero, otherwise the output of the key
unit is the key value.

It should be appreciated that while an XOR operation is an efficient and relatively
effective means for encoding instructions, the present invention should not be construed

as-limited to the use of XOR. Any suitable encoding/encryption algorithm may be used
-13-

10

15

20

25

30

WO 2007/035623 PCT/US2006/036262

for transforming 'and restoring executable instructions. For example, other
transform/restore functions may include, but are not limited to, a substitution box (s-box)
_technique, a Feistel network, and the like, each of §vhich are well known in the art.
Moreover, while synﬁnetrical encoding techniques may be more efficient in storing a
single encoding value, both symmetr'icaI' and asymmetrical encoding/decoding techniques
may be used so long as the equation v = Restore(Transform (v, c), c) is preserved.
Turning now 'to FIGURES 8A and 8B, these are block diagrams illustrating
exemplary key units suitable for use in the hardware configurations as -shown in

FIGURES 4 and 6. With regard to FIGURE 8A, key unit 802 is connected to key

" bus 424 on which to output a key value (not shown) or zero (if the select line 806 is low

~ (0)). Of course, since the key value is not a fixed value, the key unit 802 obtains the key

value from the data bus 412 when the latch lead goes high (1) from-the key write
line 804.

To enhahcé the security of the instructions, mulﬁple key values may be used. In
one embodiment, the key value necessary to transform and restore an executable
instruction depends upon the storage/memory address of the instruction. More
particularly, in one embodiment, the least significant bits of the memory address of a
given instruction are- used as an index to determine Whicﬁ key value to use in

Atransforming and/or restoﬁﬁg the instruction. Accofdingly, the number. of key values
should correspond to a power of two. FIGURE 8B illustrates an exemplary key unit 810
that would utilize and temporarily store four different keﬁr values (not shown)
corresponding to the different combinations available over the two least significant
address bits on lines 812 and 814. As with the key unit 802, the key values are read from
the data bus 412 and stored according to the address bits on lines 812 and 814 when the
write select lead detects a high (1) on the key write line 804. The select lead determines
whether to output zero as the key value when the select 806 is low (0) or output a key

- value according to the address bits when the select lead is high (1). .

FIGURE 9 is a flow diagram illustrating an exemplary load routine 900 suitable
for use by an application loader component 114 when loading an application 110 from
storage 106 into memory 104. ABeginning at block 902, the encoding value 316 is -
obtained. The encoding value used to transform executable instructions needs to be
generated such that attackers cannot guess it easily, and should be changed often, if

possible. As. described above, the encoding value 316 can be randomly generated,

-14-

10

15

20

25

30

WO 2007/035623 PCT/US2006/036262

derived from provided information, unique to a device or program, or some combination
of the above. At block 904, the appllcauon loader 114 starts loading the apphcatmn 110
into memory 104 for subsequent execution.

At control block 906, a looping process is begun to iterate through each
instruction loaded into memofy 104 for transformation. At block 908, an instruction is
transformed using the obtained encoding/key value according to a pfedetermined

transformation function (such as XOR). If multiple key values are used, the appropriate

* key value is selected for each instruction and used to transform that instruction, as

described above in regard to FIGURE 8B. At control block 910, the routine 900 returns
to control block 906 if there are additional instructions in memory 104 to be transformed.
Otherwise, i.e., all instructions have been transformed, the exemplary routine 900
terminates.

It should be appreciated that on some devices, particularly "simple" dévices,
applications are pre-loaded by the manufacturer. - In these instances, the pre-loaded
applications would be written to the device such that the instructions written to the device
are already transformed using a predetermined encoding key, such as the device's serial
number.

FIGURE 10 is a flow diagram illustrating a logical representation of an execution
routine 1000 suitable for implementation in hardware, such as the labyrinth circuitry 402
or 602, for executing transformed instructions stored in memory 104. Beginning at
block 1002, a value is fetched from memory 104. At decision block 1004, a
determination is made as to whether the fetch is for an instruction or for data. Of course,
this determination is simply a logical determination, and perhaps not an actual
determination, since in several embodiments, as illustrated in FIGURES 4 and 6, the
"determination" as to whether the fetch is for an instruction or data is based on the
instruction/data signal line 416 which controls one or more gates and devices.

If the fetching operation is for an instruction, at block 1006 the fetched instruction
is restored using the restoration function and the corresponding key value. Of course,
while not shown, if multiple key values are used, the particular key value to be used must
be also determined using the available context, such as one or more of the lowest
significant address bits. After restoring the transformed instruction, or if the value was

- not an instruction but rather data, the value is then passed onto the next stage witlﬁn the

processor 102. Thereafter, the routine 1000 terminates.

-15-

10

15

20

25

30

WO 2007/035623 PCT/US2006/036262

~ With regard to the above described routines, it should be appreciated that these are
logical steps and may not correspond to actual discrete steps in their respective processes.
Similarly, those skilled in the art will appreciate that the above-described routines may
include various steps that are not identified which have been omitted for purpose of
clarity in describing more pertinent aspects of the present invention. Moreover, with
regard to routine 900, whether the application is first loaded into the memory 104 before
the instructions are transformed, or whether the instructions are transformed as they are
retrieved from storage 106 and stored in memory 104 is not important, and both are
a:ntlc1pated as falling within the scope of the present invention.

FIGURE 11 is a block dlagram 111ustrat1ng an exemplary processor 1100 and
further illustrating various possible locations where labyrinth circuitry can be logically
inserted in order to provide functionality of the present invention. As shown in
FIGURE 11, an exemplary processor 1100 includes an arithmetic logic umt (ALU) 1102,
an instruction decoder 1104, an instruction fetcher 1106, CPU registers 1108, a memory
controller 1110, as well as various data paths and control lines between the various
components. The instruction decoder 1104 is not the same as the decode block 408 of the
labyrinth circuitry which restores transformed instructions, but rather the typical
instruction decoder as found in a typical processor. In other words, a restored instruction
must still be decoded by the instruction decoder 1104 in order for the ALU 1102 to
perform the corresponding operations. w i

As can be seen by the numbered icons, the labyrinth circuitry may be located in
any number of locations with regard to the processor 1100. Moreover, icon 1 illustrates
that the lebyrinth circuitry may be placed between the memory and the memory
controller 1110. Icon 2 illﬁstrates that the labyrinth circuitry may be located within the
rmemory controller 1110. The labyrinth circuitry may also be placed between the memory
controller 1110 and the instruction fetcher 1106, as indicated by icon 3. Still further, the

.labyrinth circuitry may be placed in either the instruction fetcher 1108 as indicated by .
icon 4, between the instruction fetcher 1106 and the instruction decoder 1104 as indicated |
by icon'5, and in the instruction decoder 1104 as indicated by icon 6. It is worth noting
that at positions 3, 4, 5, or 6 only instructions (no data) are received. If the labyrinth
circuitry is added at any one of these locations, the decoder block, such as decoder
block 408 of FIGURES 4 and 6, can be enabled continuously, irrespective of the

-instruction/data and read/write lines.

-16-

10

15

20

25

30

WO 2007/035623 PCT/US2006/036262

The circuitry and/or various functionality of the present invention can be iocated
at any one or any combination of these loéations within a given processor 1100 while
remaining true to the spirit and purpose of the invention. The spirit of the invention is
present whenever instructions and data are stored in memory such that either instructiong
or data or both are ericoded in such a way that data cannot be trahsparently read as
executable instructions; plus the invention includes a decoder that restores transformed
instructions or data, or 'bdth, as each instruction or chunk of 'déta, or both, are read from
memory. ' '

Those skilled in the art will appreciate that at least some processors include a
plurality of instruction decoder 1104. Accordingly, (while not shown) as an alternative to
providing a labyrinth circuitry separate to an instruction decoder 1104, one or more
instruction decoders 1104 could be particularly configured to process transformed
instructions as paft of its decoding'ﬁlﬁctioﬂali’cy. However, this is viewed as being the
logical equivalent of including a labyrinth circuitry within an instruction decoder 1104, as
illustrated by icon 6, and is therefore anticipated as falling within the scope of the present

invention.

Tt should be appreciated that the exemplary processor 1100 has been simplified in

. order to illustrate various locations in which the labyrinth circuitry may be placed, and an

actual processor would typically include numerous other components not currently
shown. One such component is a memory cache. In processors with one or more .
memory caches, it is simpier to not locate the labyrinth circuitry between a cache and
memory 104, as cache consistency issues are thereby avoided. However, the present
invention is not so limited. If the labyrinth circuitry is logically located between a cache
and memory 104, care should be taken to ensure that stale cached instructions are
refetched at appropriate times such that they are restored correctly.

While the above description has been generally made in regard to a software
application loader 114 and a hardware implementation of labyrinth circuitry, it should be
appreciated that the general ‘principles may be equally and beneficially applied to a
software implemented process and/or an application interpreter such as a virtual machine.
In these embodiments, the steps of fetching an encoded instruction, decoding that

instruction, and executing instructions should be implemented in software.

-17-

WO 2007/035623 PCT/US2006/036262

While illustrative embodiments have been illustrated and described, it will be

appreciated that various changes can be made therein without departing from the spirit

and scope of the invention.

-18-

WO 2007/035623 PCT/US2006/036262

CLAIMS

1. A method to execute“instructions ‘stored iﬁ a transformed state in a
meinory, the method comprising: '

as part of fetching a value from memory, restoring the value according to a
context and a restore function if the fetch is for an instruction;

passing the restored value on for execution.

2. The method of Claim 1, wherein the context is used to determine a key

value for restoring the fetched value.

3. The method of Claim 2, wherein the context is determined, at least in part,

according to a current execution state.

4. The method of Claim 2, wherein the context comprises, at least in part,
any one of a random number, a pseudo-random number, a serial number, a process
- number, a device-assigned number, a nonce, a virtual machine ID, a security token, a

hard to guess number, or any combination thereof.

5. The method of Claim 2, wherein the restore function is a logical XOR

operation performed on the fetched value with the key value.

6. * The method of Claim 2, wherein the restore function is an S-box finction.
7. The method of Claim 2, wherein the restore function is a Feistel network.
8. The method of Claim 2, wherein the context is determined, at least in part,

according to the memory address of the fetched instruction.

9. The method of Claim 1, wherein instructioné are stored in memory as
transformed instructions according to a transform function i, = Transform(i, c), where i
represents an original instruction, 7 represents the corresponding transformed instruction,
and c represents the context, where at least some of the context is used by the transform

function; and

-19-

WO 2007/035623 PCT/US2006/036262

wherein restoring the fetched value using a restore function if the fetch is for an
instruction comprises restoring the fetched value using a restore function Restore that

satisfies the equation i = Restore(Transform(i, c), c).

10. The method of Claim 1 further comprising, if the fetch is not for an
instruction, providing an identity context to the restore function and applying the restore
function to the fetched value, wherein the identity context is configured such that it
satisfies the equation d = Restore(d, ic), where dj represents the fetched vélue, Restore

represents the restore function, and ic represents the identity context.

11. A method to execute an application on a computing device, the method
compfisi’ng: ‘ |

loading the application into a memory for execution and selectively transforming
the instructions of the loaded application according to a transform function and a context; |
and . ' '

as a transformed instruction is fetched from the memofy for execution:

restoring the fetched instruction using a restoration function and the

context; .and

passing the restored instruction to the next stage of execution.

12. The method of Claim 11, wherein the context comprises, at least in part,
any one of a random number, a pseudo-random number, a serial number, a process -
number, a device-assigned number, a nonce, a virtual machine ID, a security token, a

hard to guess number, or any combination thereof,

13. The method of Claim 11 further comprising determining a key value from
the context, and wherein restoring the fetched instruction using a restore function and the
context comprises restoring the fetched instruction using the restore function and the key

value.

14. The method of Claim 13, wherein the context is determined, at least in

part, according to a current execution state.

15. The method of Claim 13, wherein the context is determined, at least in

part, according to the memory address of the fetched instruction.

20~

WO 2007/035623 PCT/US2006/036262

16. The method of Claim 13, wherein the restoration function is a logical -
XOR operation performed on the fetched instruction with the key value.

-17. The method of Claim 13, wherein the restoration function is an S-box

function.

18. The method of Claim 13, wherein the <restoration function is a Feistél

network.

19. The method of Claim 11 further compﬁsing, as a ﬂon—transformed
instruction is fetched, providing an identity context to the restore function and applying '
the restore function to the non-transformed instruction, wherein the identity context is
configured such that it satisfies the equation d = Restore(d, ic), where d fepresents the .
fetched non-transformed instruction, Restore represents the réstore function, and ic

represents the identity context.

20. The method of Claim 11, wherein the transformed instructions stored in

the memory are encoded according to a transform function i, = Transform(i, c), where i

represents the original instruction, i represents the transformed instruction, and ¢
represents a context, some of which is used by the transform funcﬁon; and

| wherein restoring that .information‘ identified by a processor as a transformed ’

instruction using a restore function comprises restoring the fetched instruction using a

restore function Restore that satisfies the equation i = Restore(Transform(i, c), c).

21. A computing device for executing instructions stored in a memory, the
computing device comprising:
a processor; and
a restoration means logically located on a data path between the processor's
instruction decoder and a memory, wherein the restoration means is configured to, upon a
fetch of a value from the memory:
selectively restore the value using a context and a restore function if the -
fetch is for an instruction; and
pass the restored instruction to the next stage of the processor for

execution.

21-

WO 2007/035623 PCT/US2006/036262

22. The computing device of Claim 21, wherein the context comprises, at least
in part, any one of a random number, a pseudo-random number, a serial number, a -
process number, a device-assigned number, a nonce, a virtual machine ID, a security

token, a hard to guess number, or any combination thereof.

23. The computing device of Claim 21, wherein the restoration means is
- logically located on the -data path where only instructions are carried, such that the

restoration means restores all fetched values using a context and a restore function.

24. The computing device of Claim 21 further comprising a determination
means for determining whether the fetch is for an instruction, and wherein the restoration
means determines that the fetch is for a transformed instruction according to the

determination means.

25. The computing device of Claim 24, wherein the restoration means

: compﬁses a key unit providing a key value based on the context for restoring the
transformed instructions, and upon a fetch of a transformed instruction from the memory,
the restoration means obtains the key value for restoring the transformed instruction from

the key unit.

A 26>. The computing dévice of Claim 25, wherein the key unit selectively
provides the key value or an identity key value depending upon whether the
determination means indicates that the fetch is fbr an instruction or data, and wherein the
identity key value is configured such that it satisfies the equation d = Restore(d, ikv),
where d represents the fetched data, Restore represents the restore function, and ikv

represents the identity key value.

27. The computing device of Claim 26, wherein the restore function is an

XOR operation with the key value, and wherein the identity key value is zero.’

28. The computing device of Claim 26, wherein the restore function is an

S-box operation.

29. The computing device of Claim 26, wherein the restore function is a

Feistel network.

22

WO 2007/035623 PCT/US2006/036262

30. The computing device of Claim 21, wherein the context is determined, at

least in part, according to the current state of the processor. ‘

31. The computing device of Claim 21, wherein the context is determined, at

leaét n f)art, according to the memory address of the fetched value.

32. The computing device of Claim 21, wherein the computing device
comprises a field programmable gate array (FPGA) and wherein the restoration means is

configured as a drop-in module in for the FPGA.

33, The combuting device of Claim 21, wherein the computing device
comprises an application specific integrated circuit (ASIC) and wherein the restoration

means is configured as a drop-in module for the ASIC."

23-

PCT/US2006/036262

WO 2007/035623

1/11

- AYOWANW

‘T°S1]

agtm [\\ h:a vIv(q
J au H 013100 lpvpuorgoniysug
anjva hayy a1qua
. , qJOSSAD0Yd
(HONOYHI SASSVd VIV
HTIHM SNOLLONYISNI
AANWIOASNVYUL
STHOLSTYW)

poay I*lv

<H
<
A

p

001

J4A02Ad _||dh!§ 3w (]

PCT/US2006/036262

WO 2007/035623

2/11

.N.M.Nrﬁ

wem

mﬁﬂ

\

—7

N

- A NOILVIITddV INOILVIITddV _ |/
WALSAS
ONILVIAIO
. V NOILVIITddV _ |/
A w~omvoriaav
—
- x\\‘\\‘ j
\\\ m@ﬁB%j
AH._ N waavornowvortaay ~_ S
PIT
- AL WALSAS ONIILVIAO 4 |
801
S JOSSTI0Ud u
> <
0L 41} % |
00T

44

011

PCT/US2006/036262

WO 2007/035623

3/11

" vIva

VIVa

s

80€

ANTVA J
ONIAOINA
| snorronursar
v \ VIVd q
AL VIVa
T e SNOLLONYLSNI ||
qAAAVOT
NOILLVIITddV
- VIVa SNOLLDNYISNT | |
-) -
01¢ N
N IIVIOILS
FIT \\
901
00¢

1425

90¢

P0€

e

PCT/US2006/036262

WO 2007/035623

4/11

vo€c

P51

AJONWAN

00%

P! I
01 //__{\/ - “ 9lr
m INno ! /e ~
£ (444 : VIVA/NOLLONYLSNI
/\mr/ IINN AT “ Q\
o .
|
| / : LLRM/AVI
| N s
i 10 N
N NI 0 “ 257
“ NI Ino !
|
! 2014 3d023dd gﬁw
| |
1 | |
wew_ i
C 70 !
| ’]
_ NI INo IolllleLQNm_m:m VIva
|
|
i ¥F1INg AvVII)
. Y ! 457
/ T |
9t | | _| !
: | 0 | MOSSIIONUd
| |
A INO NI !
| . i
| &
/T~ AIING ALRIM ! _ J
505 | , o L ~ A
L] :
1 01

PCT/US2006/036262

WO 2007/035623

5/11

‘g6 51

(D) d1123713S (T) AI19VNa (0) aa19vsid (I) HOTH (T) HOIH

(D) d31D3714S (0) aa19VSsIa (I) AITIVNT 0) MO'T (1) HOIH

(0) A4ID314S .ION (1) AI19VNa (0) a319vsid (1) IDIH 0) MOT

(0) Qﬁwmu% ION (0) AI19VvsId (D) AITIVNT 0) MOT 0) MOT
FOOILINNADI | 8070019 30003a |50% ¥I4ING ALRIM | | ZITam/avi | VIVA/NOLIDNMISNI

(9 TINDOII) TT19VIL HINYL IDFTAS/ATIVNI INdINO
. . F0S
VS 'SL

(I) AIT9VNA (0) AITIVSIA 0) ag19vsid (1) HOIH (I) HOIH

(0) ax1gvsIia (0) aT19VSsId (I) dT19VNT (0 MOT (1) HOTH

(0) aT19VvsIa (1) AITAVNI (0) a319vsId (T) HOTH 0 MOT

0) dI19VSIA) aa1gvsia (I) ATT19VNT 0) MOT 0 MOT
$0% DO0T4 IA024d | 0% ¥ILING AvIY |F0F ¥14INd TIrIM ALRIM/AVI | VIVA/NOIIDINMISNI

(& TANOI) I19VI HINII TIGVNI INdINO

-

09

PCT/US2006/036262
6/11

WO 2007/035623

‘931
* 711 [
" Ino IDTTIS i q VIVA/NOLLDNYLSNI
| LINN XD i M)
! | 9TF
i
4 , > TLRIM/aVI
] oy
| | \Umw
_ 90 !
“ NI _
! NI INno _
| Mo
! MD0T1d 3d0d3a - 81F
AAOWANW R“L_/{\ _
0% n “
|/
| : |
R |)
TLF | 70 . ZIF
m 11no NI “
_ MOSSADONd
| | T D
507 | MFIINd AIDIM !
] _ - |

= A~ } N.m%

PCT/US2006/036262

WO 2007/035623

7/11

(MOSSID>oUd

—4~— dHLOL)
% viva

ANTT
5 Tly grpm/avad
(LINN XDI d0 $0L
WOYH) — ¥
| A
(KRIOWAN Ll
WOM]) -
v.ivd 1 D01 3d02Id (4 4
| I

WL

4174

PCT/US2006/036262
8/11

WO 2007/035623

- ges1d

908

. 4% 4
018 LOTTIS

LOATIS JINIM
VI —5— "y
D014
1dooId
OL IADT —io— SIIg
L TNO AT vI8
. 0XDI —pg— LXAINOD
i NIADI | snd
viva . .8
LINN AT V\% .Nm
1 4 908

dII-IM

VI 55— ~roy

AD01d

10053d | INO AT
oL
snd
o NIADA |VAUI oIV
7~ 1nn xzx

cry

. <08

WO 2007/035623

PCT/US2006/036262
9/11

9

=

2

OBTAIN ENCODING
VALUE FOR APPLICATION

l | 9

BEGIN LOADING APPLICATION
INTO MEMORY FOR EXECUTION}

l | 906

>

4

!

MORE
INSTRUCTIONS
TO TRANSFORM

L NEXT INSTRUCTION

—!

»(FOR EACH INSTRUCTION ...

l 908

TRANSFORM INSTRUCTION
USING ENCODING VALUE

l | 910

{

!

AN

Fig.9.

WO 2007/035623 PCT/US2006/036262
10/11

1000

1002

A~

FETCH VALUE FROM MEMORY

1004

IS FETCH FOR AN

(NSTRUCTION OR DATAZe"

INSTRUCTION 1006

RESTORE TRANSFORMED
VALUE (INSTRUCTION)
l s
' PASS VALUE TO THE NEXT
™ STAGE IN FETCH OPERATION

Fig. 10.

PCT/US2006/036262

WO 2007/035623

11/11

arl

‘TI°31

SYALSTOAY 1dD

niv

=3

.%m\HIL \H\

< .E Ly AATTOUINOD
ATOWIN il =5 ANOWAW

(L]

AAI'V ﬂﬂm J4d0OHd

NOIIDNIYISNI

- AR

@mﬂ THAHIILAA

ﬂlp |

OLIT

NOILIDNAISNT

f -

ya

[Eypusy

WIL yfll\l//

0011

INTERNATIONAL SEARCH REPORT

International application No

PCT/US2006/036262

A. CLASSIFICATION OF SUBJECT MATTER
INV. GO6F2

1/00 GO6F21/02 G06F12/14

According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

GO6F

Minimum documentation searched (classification system followed by classification symbols)

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

Electronic data base consulted during the international search (name of data base and, where practical, search terms used)

EPO-Internal

C. DOCUMENTS CONSIDERED TO BE RELEVANT

Category*

Citation of document, with indication, where appropriate, of the relevant passages

Relevant to claim No.

KC G S ET AL ASSOCIATION FOR COMPUTING
MACHINERY: "Countering code-injection
attacks with instruction-set
randomization”

PROCEEDINGS OF THE 10TH. ACM CONFERENCE ON
COMPUTER AND COMMUNICATIONSSECURITY.
(CCS’03). WASHINGTON, DC, OCT. 27 - 31,
2003, ACM CONFERENCE ON COMPUTER AND
COMMUNICATIONS SECURITY, NEW YORK, NY
ACM, US,

vol. CONF. 10, 2003, pages 272-280,
XP002333430

ISBN: 1-58113-738-9

the whole document

1-33

Further documents are listed in the continuation of Box C.

See patent family annex.

*A" document defining the general state of the art which is not
considered to be of particular relevance

'E* earlier document but published on or after the international
filing date

L document which may thiow doubts on priority claim(s) or

which is cited to establish the publication date of another v : . i i i
citation or other special reason (as specified) Y* document of particular relevance; the claimed invention

cannot be considered to involve an inventive step when the

*0O" document referring to an oral disclosure, use, exhibition or document is combined with one or more other such docu-

* Special categories of cited documents :

'T* later document published after the international filing date

invention

or priority date and not in conflict with the application but
cited o understand the principle or theory underlying the

X document of particular relevance; the claimed invention

cannot be considered novel or cannot be considered 1o

involve an inventive step when the document is taken alone

other means ments, such combination being obvious to a person skilled
P document published prior to the international filing date but in the art.
later than the priority date claimed *&" document member of the same patent family
Date of the actual completion of the international search Date of mailing of the intemnational search report
9 February 2007 21/02/2007
Name and mailing address of the ISA/ Authorized officer
European Patent Office, P.B. 5818 Patentlaan 2
NL - 2280 HV Rijswijk
Tel. (+31-70) 340-2040, Tx. 31 651 eponl, : .
Fax (+31-70) 3403016 Veillas, Erik

Form PCT/ISA/210 (second sheet) (April 2005)

page 1 of 2

INTERNATIONAL SEARCH REPORT

International application No

PCT/US2006/036262

C(Continuation). DOCUMENTS CONSIDERED TO BE RELEVANT

AL) 22 June 1999 (1999-06-22)

column 3, line 63 - column 4, Tine 29;
figure 1

column 16, line 17 - column 17, line §;
figures 15,16

Category* | Citation of document, with indication, where approptiate, of the relevant passages Relevant to claim No.
X EP 1 510 899 A (FUJITSU LTD [JP]) 1-33

2 March 2005 (2005-03-02)

paragraphs [0040], [0065] - [0083];

figures 7-9
A US 5 915 025 A (TAGUCHI MASAHIRO [JP] ET 1,8

Form PCT/ISA/210 (continuation of second shest) (April 2005)

page 2 of 2

INTERNATIONAL SEARCH REPORT

Information on patent family members

International application No

PCT/US2006/036262
Patent document Publication Patent family Publication
cited in search report date member(s) date

EP 1510899 A 02-03-2005 AU 2002306257 Al 22-12-2003
Wo 03104948 Al 18-12-2003
US 2005033973 Al 10-02-2005
US 5915025 A 22-06-1999 Jp 3627384 B2 09-03-2005
JP 9258977 A 03-10-1997

Form PCT/ISA/210 (patent family annex) (April 2005)

	Page 1 - front-page
	Page 2 - description
	Page 3 - description
	Page 4 - description
	Page 5 - description
	Page 6 - description
	Page 7 - description
	Page 8 - description
	Page 9 - description
	Page 10 - description
	Page 11 - description
	Page 12 - description
	Page 13 - description
	Page 14 - description
	Page 15 - description
	Page 16 - description
	Page 17 - description
	Page 18 - description
	Page 19 - description
	Page 20 - claims
	Page 21 - claims
	Page 22 - claims
	Page 23 - claims
	Page 24 - claims
	Page 25 - drawings
	Page 26 - drawings
	Page 27 - drawings
	Page 28 - drawings
	Page 29 - drawings
	Page 30 - drawings
	Page 31 - drawings
	Page 32 - drawings
	Page 33 - drawings
	Page 34 - drawings
	Page 35 - drawings
	Page 36 - wo-search-report
	Page 37 - wo-search-report
	Page 38 - wo-search-report

