(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(19) World Intellectual Property
Organization
International Bureau

(10) International Publication Number

WO 2004/099978 A2

(51) International Patent Classification’: GO6F 9/38 Austin, TX 78733 (US). SANDER, Benjamin, T.; 5701
Medicine Creek, Austin, TX 78735 (US).

(43) International Publication Date
18 November 2004 (18.11.2004)

(21) International Application Number:
PCT/US2004/000483 (74) Agent: DRAKE, Paul, S.; Advanced Micro Devices, Inc.,
5204 East Ben White Boulevard, Mail Stop 562, Austin,

(22) International Filing Date: 9 January 2004 (09.01.2004) TX 78741 (US).

English (81) Designated States (unless otherwise indicated, for every
kind of national protection available): AE, AG, AL, AM,
AT, AU, AZ, BA, BB, BG, BR, BW, BY, BZ, CA, CH, CN,

(25) Filing Language:

(26) Publication Language: English CO. CR, CU, CZ, DE, DK, DM, DZ, EC, EE, EG, ES, FL
GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, JP, KE,
(30) Priority Data: KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MA, MD,
10/429,159 2 May 2003 (02.05.2003) US MG, MK, MN, MW, MX, MZ, NA, NI, NO, NZ, OM, PG,
PH, PL, PT, RO, RU, SC, SD, SE, SG, SK, SL, SY, TJ, TM,
(71) Applicant (for all designated States except US): AD- TN, TR, TT, TZ, UA, UG, US, UZ, VC, VN, YU, ZA, ZM,
VANCED MICRO DEVICES, INC. [US/US]; One ZW.
AMD Place, Mail Stop 68, P.O. Box 3453, Snunyvale, CA
94088-3453 (US). (84) Designated States (unless otherwise indicated, for every
kind of regional protection available): ARIPO (BW, GH,
(72) Inventors; and GM, KE, LS, MW, MZ, SD, SL, SZ, TZ, UG, ZM, ZW),
(75) Inventors/Applicants (for US only): FILIPPO, Michael, Eurasian (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), Euro-
A.; 2030 Chaparral Road, Manchaca, TX 78652 (US). pean (AT, BE, BG, CH, CY, CZ, DE, DK, EE, ES, FI, FR,
PICKETT, James, K.; 1700 #2 Palomino Ridge Drive, GB, GR, HU, IE, IT, LU, MC, NL, PT, RO, SE, SI, SK,

[Continued on next page]

(54) Title: SPECULATION POINTERS TO IDENTIFY DATA-SPECULATIVE OPERATIONS IN MICROPROCESSOR

!)
' |

! i

: Instruction :

| Dispatch Unit . Cache | !

{ 104 108 | ;

! |

| l Prefeich !

! Unit > !

i Scheduler(s) 108 |

| 118 !

! |

! ; . Memory | System

Speculation Pointer A, .

f - .un OI. " Reire . Controller |=e-L—{ Memory
i Speculation Pointer B Quete 4Spe'culatlon 160 : 200
| Speculation Painter G 102 Pointer D - !

! A4 | i

' 1

! Functional Functional Functional !

I | Register Unit Unit Unit H

1| Fie > 126A 1268 126C i

| Data !

] M8 < !

} Execution Cors(s) il C1ac§e < > :

! i24 128 |

Lt t 4 |

! |

! |

H Result Bus 130 !

| " !

04/099978 A 2 I 1K T 0 R OO ORI O

& (57) Abstract: A microprocessor (100) may include a retire queue (102) and one or more data speculation verification units. The
data speculation verification units are each configured to verify data speculation performed on operations. Each data speculation
verification unit generates a respective speculation pointer identifying outstanding operations on which data speculation has been
verified by that data speculation verification unit. The retire queue (102) is configured to selectively retire operations dependent on

g the speculation pointer received from each of the data speculation verification units.

WO 2004/099978 A2 I} N0 A0VYH0 AT 00000 000N A

TR), OAPI (BF, BJ, CF, CG, CI, CM, GA, GN, GQ, GW, For two-letter codes and other abbreviations, refer to the "Guid-
ML, MR, NE, SN, TD, TG). ance Notes on Codes and Abbreviations” appearing at the begin-
Published: ning of each regular issue of the PCT Gagzette.

— without international search report and to be republished
upon receipt of that report

10

15

20

25

30

35

40

WO 2004/099978 PCT/US2004/000483

TITLE: SPECULATION POINTERS TO IDENTIFY DATA-SPECULATIVE OPERATIONS IN
MICROPROCESSOR
Technical Field
[0001] This invention is related to the field of microprocessors and, more particularly, to performing data

speculation in a microprocessor.

Background Art

[0002] Superscalar microprocessors achieve high performance by executing multiple instructions
concurrently and by using the shortest possible clock cycle consistent with their design. However, data and control
flow dependencies between instructions may limit how many instructions may be issued at any given time. As a
result, some microprocessors support speculative execution in order to achieve additional performance gains.

[0003] One type of speculation is control flow speculation. Control flow speculation predicts the direction in
which program control will proceed. For example, branch prediction may be used to predict whether a branch will
be taken. Many types of branch prediction are available, ranging from methods that simply make the same
prediction each time to those that maintain sophisticated histories of the previous branches in the program in order
to make a history-based prediction. Branch prediction may be facilitated through hardware optimizations, compiler
optimizations, or both. Based on the prediction provided by the branch prediction mechanism, instructions may be
speculatively fetched and executed. When the branch instruction is finally evaluated, the bganch prediction can be
verified. If the prediction was incorrect, any instructions that were speculatively executed Based on the incorrect
predication may be quashed.

[0004] Another type of speculation is data speculation, which predicts data values. Proposed types of data
speculation include speculatively generating addresses for memory operations and speculatively generating data
values for use in computational operations. As with control speculation, the underlying conditions used to

speculative generate a value are eventually evaluated, allowing the speculation to be verified or undone.

DISCLOSURE OF INVENTION

[0005] Various embodiments of methods and systems for retiring operations dependent on speculation

pointers identifying which operations are data speculative with respect to various verification units within a
microprocessor are disclosed. In one embodiment, a microprocessor may include a retire queue and one or more
data speculation verification units. The data speculation verification units are each configured to verify data
speculation performed on operations. Each data speculation verification unit generates a respective speculation
pointer identifying outstanding operations on which data speculation has been verified by that data speculation
verification unit. The retire queue is configured to selectively retire operations dependent on the speculation pointer
received from each of the data speculation verification units.

[0006] In one embodiment, one of the data speculation verification units may be included in a load store unit.
Such a data speculation verification unit may be configured to verify types of data prediction such as dependency
prediction, address. prediction, and/or data prediction. For example, a data speculation verification unit included in
a load store unit may be configured to verify a dependency prediction predicting that a younger load operation is not

dependent on an older store operation with an uncomputed address. Similarly, a data speculation verification unit

10

15

20

25

30

35

40

WO 2004/099978 PCT/US2004/000483

included in a load store unit may be configured to verify a dependency prediction predicting that a result of a
younger load operation will equal a source of an older store operation.

[0007] Another one of data speculation verification units may be included in a functional unit configured to
execute non-memory operations. Such a data speculation verification unit may be configured to verify a data
prediction predicting the result of a non-memory operation. Yet another data speculation verification unit may be
included in 2 memory controller and configured to verify memory predictions.

[0008] In one embodiment, one of the data speculation verification units may be configured to receive
information identifying each outstanding operation for which a type of data speculation verified by that data
speculation verification unit has been performed. That data speculation verification unit may be configured to
identify which outstanding operations have been verified by that data speculation verification unit by advancing its
respective speculation pointer to identify an operation that is younger than the youngest outstanding operation on
which that type of data speculation has been verified and older than another outstanding operation on which that
type of data speculation has been performed. If no operation is currently identified to that data speculation
verification units as being data-speculative, that data speculation verification units may set a value of its respective
speculation pointer to indicate that no currently outstanding operations are data-speculative with respect to that data
speculation verification unit.

[0009] In embodiments in which the retire queue receives several speculation pointers, the retire queue may
be configured to determine whether an operation is retirable by determining whether the operation is older than a
youngest operation identified as being non-data-speculative by all of the speculation pointers.

[0010] A microprocessor that includes one or more data speculation verification units that generate
speculation pointers and a retire queue that retires operations dependent on the speculation pointers may be included
in a computer system.

[0011] In some embodiments, a method may involve: performing data speculation for an operation; a
verification unit verifying the data speculation performed for the operation; the verification unit generating a
speculation pointer indicating that the operation is not data-speculative with respect to the verification unit in
response to said verifying; and, in response to the speculation pointer indicating that the operation is not data-
speculative with respect to the verification unit, retiring the operation.

[0012] Such a method may also involve one or more other verification units verifying data speculation
performed on other operations and generating other speculation pointers indicating that the other operations are not
data-speculative with respect to those verification units. Retiring the operation may be dependent on all of the

speculation pointers. Each verification unit may verify different types of data speculation.

BRIEF DESCRIPTION OF DRAWINGS

[0013] A better understanding of the present invention can be obtained when the following detailed

description is considered in conjunction with the following drawings, in which:

[0014] FIG. 1 shows a microprocessor, according to one embodiment.

[0015] FIG. 2A is a flowchart illustrating how speculation pointers may be advanced, according to one
embodiment.

[0016] FIG. 2B is a flowchart illustrating a method of conditioning operation retirement on current

speculation pointers, according to one embodiment.

[0017] FIG. 3 shows an exemplary computer system, according to one embodiment.
2

10

15

20

25

30

35

40

WO 2004/099978 PCT/US2004/000483

[0018] FIG. 4 shows another exemplary computer system, according to another embodiment.

[0019] While the invention is susceptible to various modifications and alternative forms, specific
embodiments thereof are shown by way of example in the drawings and will herein be described in detail. It should
be understood, however, that the drawings and detailed description thereto are not intended to limit the invention to
the particular form disclosed, but on the contrary, the intention is to cover all modifications, equivalents, and
alternatives falling within the spirit and scope of the present invention as defined by the appended claims. Note, the
headings are for organizational purposes only and are not meant to be used to limit or interpret the description or
claims. Furthermore, note that the word “may” is used throughout this application in a permissive sense (i.e.,
having the potential to, being able o), not a mandatory sense (i.e., must). The term “include” and derivations
thereof mean “including, but not limited to.” The term “connected” means “directly or indirectly connected,” and

the term “coupled”” means “directly or indirectly coupled.”

MODE(S) FOR CARRYING OUT THE INVENTION

[0020] FIG. 1 is a block diagram of one embodiment of a microprocessor 100. Microprocessor 100 is

configured to execute instructions stored in a system memory 200. Many of these instructions operate on data
stored in system memory 200. Note that system memory 200 may be physically distributed throughout a computer
system and may be accessed by one or more microprocessors 100.

[0021] Microprocessor 100 may include an instruction cache 106 and a data cache 128. Microprocessor 100
may include a prefetch unit 108 coupled to the instruction cache 106. A dispatch unit 104 may be configured to
receive instructions from instruction cache 106 and to dispatch operations to scheduler(s) 118. One or more
schedulers 118 may be coupled to receive dispatched operations from dispatch unit 104 and to issue operations to
one or more execution cores 124. Execution core(s) 124 may each include a load/store unit configured to perform
accesses to data cache 128. Results generated by execution core(s) 124 may be output to a result bus 130. These
results may be used as operand values for subsequently issued instructions and/or stored to register file 116. A
retire queue 102 may be coupled to scheduler(s) 118 and dispatch unit 104. The retire queue 102 may be
configured to determine when each issued operation may be retired. In one embodiment, the microprocessor 100
may be designed to be compatible with the x86 architecture. Note that microprocessor 100 may also include many

other components. For example, microprocessor 100 may include a branch prediction unit (not shown).

, [0022] Instruction cache 106 may temporarily store instructions prior to their receipt by dispatch unit 104.

Instruction code may be provided to instruction cache 106 by prefetching code from the system memory 200
through prefetch unit 108. Instruction cache 106 may be implemented in various configurations (e.g., set-
associative, fully-associative, or direct-mapped). In some embodiments, there may be multiple levels of instruction
and/or data cache 106 and 128. Some levels may be integrated with the microprocessor 100, as shown, while other
levels of cache may be external to the microprocessor.

[0023] Prefetch unit 108 may prefetch instruction code from the system memory 200 for storage within
instruction cache 106. In one embodiment, prefetch unit 108 may be configured to burst code from the system
memory 200 into instruction cache 106. Prefetch unit 108 may employ a variety of specific code prefetching
techniques and algorithms.

[0024] Dispatch unit 104 may output signals including bit-encoded operations executable by the execution
core(s) 124 as well as operand address information, immediate data, and/or displacement data. In some
embodiments, dispatch unit 104 may include decoding circuitry (not shown) for decoding certain instructions into

3

10

15

20

25

30

35

40

WO 2004/099978 PCT/US2004/000483

operations executable within execution core(s) 124. Simple instructions may correspond to a single operation. In
some embodiments, more complex instructions may correspond to multiple operations. If an operation involves the
update of a register, a register location within register file 116 may be reserved (e.g., upon decode of that operation)
to store speculative register states (in an alternative embodiment, a reorder buffer may be used to store one or more
speculative register states for each register). A register map may translate logical register names of source and
destination operands to physical register names in order to facilitate register renaming. A register map may track
which registers within register file 116 are currently allocated.

[0025] The microprocessor 100 of FIG. 1 supports out of order execution. A retire queue 102 may keep track
of the original program sequence for register read and write operations, allow for speculative instruction execution
and branch misprediction recovery, and facilitate precise exceptions. Retire queue 102 may be implemented in a
first-in-first-out configuration in which operations move to the “bottom” of the buffer as they are validated, making
room for new entries at the “top” of the queue. Retire queue 102 may retire an operation in response to that
operation completing execution and any data or control speculation performed on any operations, up to and
including that operation in program order, being verified. Retire queue 102 may commit the speculative state of a
physical register to the architectural state of microprocessor 100 when the operation that generated the value in that
physical register is retired. In some embodiments, retire queue 102 may be implemented as part of a reorder buffer.
Such a reorder buffer may also provide data value storage for speculative register states in order to support register
renaming. Note that in other embodiments, retire queue 102 may not provide any data value storage. Instead, as
operations are retired, retire queue 102 may deallocate registers in register file 116 that are no longer needed to
store speculative register states and provide signals to a register map indicating which registers are currently free.
By maintaining speculative register states within register file 116 (or, in alternative embodiments, within a reorder
buffer) until the operations that generated those states are validated, the results of speculatively-executed operations
along a mispredicted path may be invalidated in the register file 116 if a branch prediction is incorrect.

[0026] If a required operand of a particular operation is a register location, register address information may
be routed to a register map (or a reorder buffer). For example, in the x86 architecture, there are eight 32-bit logical
registers (e.g., EAX, EBX, ECX, EDX, EBP, ESI, EDI and ESP). Physical register file 116 (or a reorder buffer)
incindes storage for results that change the contents of these logical registers, allowing out of order execution. A
physical register in register file 116 may be allocated to store the result of each operation that is determined to
modify the contents of one of the logical registers. Therefore, at various points during execution of a particular
program, register file 116 (or, in alternative embodiments, a reorder buffer) may have one or more registers that
contain the speculatively executed contents of a given logical register.

[0027] A register map may assign a physical register to a particular logical register specified as a destination
operand for an operation. Dispatch unit 104 may determine that register file 116 has one or more previously
allocated physical registers assigned to a logical register specified as a source operand in a given operation. The
register map may provide a tag for the physical register most recently assigned to that logical register. This tag may
be used to access the operand’s data value in the register file 116 or to receive the data value via result forwarding
on the result bus 130. If the operand corresponds to a memory location, the operand value may be provided on the
result bus (for result forwarding and/or storage in register file 118) through load/store unit 222. Operand data
values may be provided to execution core(s) 124 when the operation is issued by one of the scheduler(s) 118. Note

that in alternative embodiments, operand values may be provided to a corresponding scheduler 118 when an

10

15

20

25

30

35

40

WO 2004/099978 PCT/US2004/000483

operation is dispatched (instead of being provided to a corresponding execution core 124 when the operation is
issued).

[0028] The bit-encoded operations and immediate data provided at the outputs of dispatch unit 104 may be

-routed to one or more schedulers 118. Note that as used herein, a scheduler is a device that detects when operations

are ready for execution and issues ready operations to one or more functional units. For example, a reservation
station is a scheduler. Operations in a scheduler or group of schedulers may also be referred to as operations in an
instruction or operation window or scheduling window. Each scheduler 118 may be capable of holding operation
information (e.g., bit encoded execution bits as well as operand values, operand tags, and/or immediate data) for
several pending operations awaiting issue to an execution core 124. In some embodiments, each scheduler 118 may
not provide operand value storage. Instead, each scheduler may monitor issued operations and results available in
register file 116 in order to determine when operand values will be available to be read by functional units 126
(from register file 116 or result bus 130). In some embodiments, each scheduler 118 may be associated with a
dedicated functional unit 126. In other embodiments, a single scheduler 118 may issue operations to more than one
of the functional units 126.
[0029] Schedulers 118 may be provided to temporarily store operation information to be executed by the
execution core(s) 124. As stated previously, each scheduler 118 may store operation information for pending
operations. Additionally, each scheduler may store operation information for operations that have already been
executed but may still reissue. Operations are issued to execution core(s) 124 for execution in response to the
values of any required operand(s) being made available in time for execution. Accordingly, the order in which
operations are executed may not be the same as the order of the original program instruction sequence. Operations
that involve data speculation may remain in scheduler(s) 118 at least until those operations become non-speculative
so that those operations may be reissued if the data speculation is incorrect.
[0030] In one embodiment, each of the execution core(s) 124 may include several functional units 126 (e.g.,
functional units 126A-126C, as shown in FIG. 1). Some functional units, e. g., 126A, may be configured to perform
integer arithmetic operations of addition and subtraction, as well as shifts, rotates, logical operations, and branch
operations. Other functional units, e.g., 126B, may be configured to accommodate floating point operations. One or
more of the functional units, e.g., 126A, may be configured to perform address generation for load and store
memory operations to be performed by a functional unit, e.g., 126C, that performs load and store operations to
access data stored in data cache 128 and/or system memory. In one embodiment, such a functional unit 126C may
be configured with a load/store buffer with several storage locations for data and address information for pending
loads and/or stores.
[0031] One or more functional units 126 may also provide information regarding the execution of conciitional
branch instructions to a branch prediction unit so that if a branch was mispredicted, the branch prediction unit may
flush instructions subsequent to the mispredicted branch that have entered the instruction processing pipeline and
redirect prefetch unit 106. The redirected prefetch unit 106 may then begin fetching the correct set of instructions
from instruction cache 106 or system memory 200. In such situations, the results of instructions in the original
program sequence that occurred after the mispredicted branch instruction may be discarded, including those which
were speculatively executed and temporarily stored in register file 116.
[0032] Results produced by functional units 126 within execution core(s) 124 may be output on the result bus
130 to the register file 116 if a register value is being updated. If the contents of a memory location are being
changed, the results produced within execution core(s) 124 may be provided to the load/store unit 126C.

5

10

15

20

25

30

35

40

WO 2004/099978 PCT/US2004/000483

[0033] Data cache 128 is a cache memory provided to temporarily store data being transferred between
execution core(s) 124 and the system memory 200. Like the instruction cache 106 described above, the data cache
128 may be implemented in a variety of specific memory configurations, including a set associative configuration.
Additionally, data cache 106 and instruction cache 128 may be implemented in a unified cache in some
embodiments.

[0034] In some embodiments, a microprocessor 100 may include an integrated memory controller 160,
allowing the microprocessor to interface directly to system memory 200. In other embodiments, memory controller

160 may be included in a bus bridge that indirectly couples microprocessor 100 to system memory 200.

Data Speculation
[0035] As described herein, a data value is speculative if there is a possibility that the data value may found to

be incorrect and consequentially recomputed. A speculative data value is one that cannot be identified with
certainty as being correct or incorrect. A data value may be recomputed if that data value is the result of an
operation for which some data speculation has been performed or if the data value depends on another speculative
data value (e.g., if the data value is generated as the result of an operation having one or more speculative
operands).

[0036] Various mechanisms within a microprocessor 100 may perform data speculation. For example,
dispatch unit 104, memory controller 160, and/or one or more functional units 126 may each perform data
speculation for a particular operation. Dispatch unit 104 may detect that a result of one opeyation may be used as a
speculative operand for another operation. For example, dispatch unit may predict that a load operation will access
data stored to data cache 128 by a prior store operation. The dispatch unit 104 may responsively identify a data
value stored in a register used as the source of the store operation as the speculative result of the load operation.
This type of data speculation is referred to herein as dependency prediction. Dependency prediction may be
extended in the dispatch unit 104 by linking the source of the store operation as a speculative operand source for
operations specifying the result of the load operation as an operand. Another type of dependency prediction may be
performed in load store unit 126C by allowing certain loads to bypass stores with uncomputed addresses, i.e., by
predicting that younger loads are not dependent on earlier stores.

[0037] In a multiprocessor system, memory controller 160 may perform coherency checks to maintain cache
coherency. Memory controller 160 may speculatively return a copy of a cache line from system memory 200
before coherency checks with other microprocessors’ caches are complete. If the coherency checks subsequently
determine that the correct copy of the cache line to retrieve is currently stored in another processor’s cache, the
copy of the cache line speculatively retrieved from system memory 200 may be invalidated. Accordingly, any load
operation results generated from accessing that cache line will be speculative until the coherency checks finish.
This type of speculation is referred to herein as memory prediction.

[0038] Dispatch unit 104 may perform data speculation by predicting the result of an operation. For example,
some operations may tend to generate the same result, and thus each time one of those operations is handled, the
result may be speculatively generated by dispatch unit 104 prior to actual execution of the operation by a functional
unit 126. This type of data speculation is referred to herein as data prediction. Note that data prediction may also
be performed in other portions of the microprocessor (e.g., in a load store unit 126C).

[0039] A load store unit 126C may speculatively generate the address and, based on the speculative address,

the result of a load instruction whose address has not yet been computed based on a pattern of earlier-handled loads.
6

10

15

20

25

30

35

40

WO 2004/099978 PCT/US2004/000483

For example, if the previous N load operations have targeted addresses A1-AN that are spaced by a constant offset
C from each other (e.g., Al; A2 = Al + C; ... ; AN = A(N-1) + C), the load store unit 126C may speculatively
return the data at the most recently accessed address AN plus the constant offset C as the result of the load
operation. This type of data speculation is referred to herein as address prediction. Note that other forms of address
prediction may be employed in other embodiments.

[0040] Operations that depend on the result of operations on which data speculation has been performed may
also generate speculative results. For example, if address prediction is used to generate the speculative result of a
load operation, any dependent operations that execute using the load’s speculative result as an operand may produce
speculative results, which may in turn be used as operands by other dependent 6perations. Accordingly, if the
underlying speculation in the load operation is determined to be incorrect, the dependent operations’ results may
also be incorrect, and thus the entire dependency chain of operations dependent on that load may need to be re-
executed in order to produce correct results. On the other hand, if the underlying speculation is found to be correct,
the dependent operations’ results may be correct (assuming those results are not based on any other speculative
values).

[0041] Many operations for which data speculation has been performed may be verified when those
operations are executed by a functional unit. For example, the data prediction used to speculatively generate the
result of an operation may be verified by the functional unit 126 that executes that operation by comparing the
actual result of the operation with the speculative result. Such operations may not need to be re-executed if the data
speculation is incorrect, since the correct result is already available. Other operations may be verified without being
completely executed. For example, if a load with an uncomputed address forwarded its result from an earlier store
(e.g., due to dependency or address prediction), the speculative result of the load may be verified when the load
address is calculated. If the data speculation is incorrect, such an operation may need to be re-executed (at least
partially) in order to generate the correct result.

[0042] Since operations for which data speculation has been performed and their dependent operations may
need to be re-executed, retire queue 102 may be configured to only retire operations for which any underlying data
speculation has resolved. As shown in FIG. 1, each means for verifying data speculation (in this embodiment,
memory controller 160 and functional units 126) may be configured to provide the retire queue 102 with a
speculation pointer indicating the operations for which data speculation has been verified. Each speculation pointer
may identify the operations for which data speculation has been verified, with respect to a particular verification
means, by having a value equal to the tag of the youngest operation verified by that verification means. The retire
queue 102 may use the speculation pointers to identify which operations may be retired. The various components
within microprocessor 100 that are configured to verify one or more types of data speculation are referred to herein
as data speculation verification units.

[0043] Each speculation pointer may identify which point in the underlying instruction stream is non-
speculative with respect to a particular portion of the microprocessor. For example, Speculation Pointer D, which is
generated by memory controller 160, may identify the youngest non-speculative operation with respect to memory
controller 160, which verifies memory predictions. In one embodiment, memory controller 160 may generate
Speculation Pointer D to point to the most recently verified operation for which memory prediction has been
performed. In another embodiment, memory controller 160 may generate Speculation Pointer D to point to the

operation just before the oldest unverified operation for which memory prediction has been performed. In general,

10

15

20

25

30

35

40

WO 2004/099978 PCT/US2004/000483
Speculation Pointer D indicates to the retire queue 102 which operations are no longer speculative from the
perspective of memory controller 160.

[0044] Functional units 126A and 126B may respectively perform integer and floating point operations in one
embodiment. Functional units 126A and 126B may each verify data prediction. Speculation Pointers A and B
respectively identify which operations have been verified by functional units 126A and 126B in the embodiment
illustrated in FIG. 1. Speculation Pointer C is generated by a functional unit 126C that performs load and store
operations. Speculation Pointer C may identify which operations have been verified by load store unit 126C.
Functional unit 126C may be configured to verify address, data, and/or dependency predictions.

[0045] As described above, the value of each speculation pointer depends on which operations have been
verified by a respective data speculation verification unit. In some embodiments, the values of the speculation
pointers generated by the verification portions of the microprocessor 100 may also depend on information
identifying the operations on which data speculation has been performed. For example, in one embodiment,
memory controller 160 may track each operation on which memory prediction has been performed. As memory
controller 160 verifies each operation, memory controller 160 may advance Speculation Pointer D to identify that
all operations up to the next youngest operation on which memory prediction was performed are non-data-
speculative with respect to the memory controller 160. In one embodiment, memory controller 160 may identify
those operations by advancing Speculation Pointer D to point to the next youngest speculative operation tracked by
memory controller 160. Similarly, the mechanisms that perform other types of data speculation (e.g., dispatch unit
104 and/or the functional unit 126C that performs load and store operations) may also track the operations on which
data speculation has been performed. In some embodiments, at least some of these data speculation mechanisms
may provide this information to the data speculation verification unit(s) (e.g., load store unit 126C and/or one or
more of the other functional units 126) that are configured to verify that type of data speculation. If there are
currently no data-speculative operations to be verified by a particular one of the data speculation verification units,
the speculation pointer generated by that verification unit may be set to a value that indicates that all outstanding
operations are non-data-speculative with respect to that particular verification unit.

[0046] The retire queue 102 may identify which operations may be retired by comparing the portions of the
operation stream identified by the speculation pointers. The oldest operation identified by all speculation pointers
as non-speculative may be the oldest operation retirable by retire queue 102. For example, assume operations 0-10
(with operation O being the oldest operation in program order and 10 being the youngest operation in program order,
where program order is the order of the instructions in the program being executed before any operations re-
ordering or out-of-order processing has been performed within microprocessor 100) have been dispatched by
dispatch unit 104. If Speculation Pointer A indicates that operations up to operation 6 are non-data-speculative,
Speculation Pointer B indicates that operations up to operation 5 are non-data-speculative, Speculation Pointer C
indicates that operations up to operation 3 are non-data-speculative, and Speculation Pointer D indicates that all
outstanding operations are non-data-speculative (e.g., because no memory prediction has been performed for any of
operations 0-10), retire quene 102 may identify the operations up to operation 3 as the set of operations that may be
retired. Note that operation retirement may also depend on typical retirement constraints such as whether those
operations have already been executed by a functional unit 126 and whether any control prediction affecting those
operations has successfully resolved. For example, if a data-speculative operation is determined to be incorrect and
needs to be re-executed, that operation may be identified as non-speculative by one or more speculation pointers but

should not be retired until that operation has been re-executed. Information about which operations have and have
8

10

15

20

25

30

35

40

WO 2004/099978 PCT/US2004/000483

not been executed, or re-executed if needed, may be provided to the retire queue 102 by scheduler 118 in some
embodiments.

[0047] FIG. 2A illustrates one embodiment of a method used to generate a speculation pointer. Such a
method may be implemented, at least in part, by one of the data speculation verification units, such as memory
controller 160 and functional units 126. At 201, data speculation is performed for an operation. The data
speculation at 201 may be performed by the same portion of the microprocessor that will verify the data speculation
in some embodiments. If that data speculation has been verified at 203, the speculation pointer may be advanced,
as shown at 205, to identify the operation on which data speculation was performed at 201 as being non-speculative.
[0048] In one embodiment, advancing the speculation pointer at 205 may involve advancing the speculation
pointer to identify the operation which has most recently been verified, indicating that all operations up to and
including that operation are non-data-speculative with respect to a particular means for verifying data speculation.
In other embodiments, advancing the speculation pointer at 205 may involve advancing the speculation pointer to
identify the operation just before the mext data-speculative operation, in program order, to be verified by that
particular verification means. For example, a load store unit 126 may track which operations the load store unit has
performed data speculation for. Each time that load store unit 126 verifies one of those data-speculative operations,
the load store unit 126 may advance its speculation pointer to indicate that all operations up to the next operation for
which the load store unit performed data speculation are non-data-speculative with respect to the load store unit.
Other embodiments may advance the pointer in other ways. For example, a functional unit may verify a type of
data speculation performed by the dispatch unit. In some embodiments, the functional unit may not be aware of the
total set of outstanding operations on which the dispatch unit has performed that type of data speculation. Instead,
the functional unit may only know which of the operations currently outstanding within that functional unit are
data-speculative. Accordingly, in response to verifying data speculation for a particular operation, the functional
unit may advance the speculation pointer to identify the operation just prior to the oldest data-speculative operation
(if any) outstanding within that functional unit. If none of the operations currently outstanding within that
functional unit are data-speculative, the functional unit may update the value of its speculation pointer to indicate
that no outstanding operations are currently data-speculative with respect to that functional unit.

[0049] FIG. 2B illustrates a flowchart of one embodiment of a method of retiring an outstanding operation.
At 211, one or more speculation pointers are received. If multiple speculation pointers are received, each
speculation pointer may identify a different portion of the outstanding operations as being non-data-speculative. If
any of the speculation pointers indicates that a particular operation may still be data-speculative, that operation may
not be retired, as indicated at 213. However, if none of the speculation pointers identify that operation as possibly
being data-speculative, the operation may be retired, as indicated at 213-215, assuming all other prerequisites for

retirement of that operation are met.

Exemplary Computer Systems

[0050] FIG. 3 shows a block diagram of one embodiment of a computer system 900 that includes a processor

100 coupled to a variety of system components through a bus bridge 902. Processor 100 may include one or more

data verification units configured to generate speculation pointers and a retire queue configured to retire operations

identified by the speculation pointers as being non-data-speculative, as described above. Other embodiments of a

computer system are possible and contemplated. In the depicted system, a main memory 200 is coupled to bus

bridge 902 through a memory bus 906, and a graphics controller 908 is coupled to bus bridge 902 through an AGP
9

10

15

20

25

30

35

40

WO 2004/099978 PCT/US2004/000483
bus 910. Several PCI devices 912A-912B are coupled to bus bridge 902 through a PCI bus 914. A secondary bus
bridge 916 may also be provided to accommodate an electrical interface to one or more EISA or ISA devices 918
through an EISA/ISA bus 920. In this example, processor 10 is coupled to bus bridge 902 through a CPU bus 924
and to an optional L2 cache 928. In some embodiments, the processor 100 may include an integrated L1 cache (not
shown).
[0051] Bus bridge 902 provides an interface between processor 100, main memory 200, graphics controller
908, and devices attached to PCI bus 914. When an operation is received from one of the devices connected to bus
bridge 902, bus bridge 902 identifies the target of the operation (e.g., a particular device or, in the case of PCI bus
914, that the target is on PCI bus 914). Bus bridge 902 routes the operation to the targeted device. Bus bridge 902
generally translates an operation from the protocol used by the source device or bus to the protocol used by the
target device or bus.
[0052] In addition to providing an interface to an ISA/EISA bus for PCI bus 914, secondary bus bridge 916
may incorporate additional functionality. An input/output controller (not shown), either external from or integrated
with secondary‘ bus bridge 916, may also be included within computer system 900 to provide operational support
for a keyboard and mouse 922 and for various serial and parallel ports. An external cache unit (not shown) may
also be coupled to CPU bus 924 between processor 100 and bus bridge 902 in other embodiments. Alternatively,
the external cache may be coupled to bus bridge 902 and cache control logic for the external cache may be
integrated into bus bridge 902. 1.2 cache 928 is shown in a backside configuration to processor 100. It is noted that
12 cache 928 may be separate from processor 100, integrated into a cartridge (e.g., slot 1 or slot A) with processor
100, or-even integrated onto a semiconductor substrate with processor 100. '
[0053] Main memory 200 is a memory in which application programs are stored and from which processor
100 primarily executes. A suitable main memory 200 may include DRAM (Dynamic Random Access Memory).
For example, a plurality of banks of SDRAM (Synchronous DRAM) or Rambus DRAM (RDRAM) may be
suitable.
[0054] PCI devices 912A-912B are illustrative of a variety of peripheral devices such as network interface
cards, video accelerators, audio cards, hard or floppy disk drives or drive controllers, SCSI (Small Computer
Systems Interface) adapters and telephony cards. Similarly, ISA device 918 is illustrative of various types of

peripheral devices, such as a modem, a sound card, and a variety of data acquisition cards such as GPIB or field bus

. interface cards.

[0055] Graphics controller 908 is provided to control the rendering of text and images on a display 926.
Graphics controller 908 may embody a typical graphics accelerator generally known in the art to render three-
dimensional data structures that can be effectively shifted into and from main memory 200. Graphics controller 908
may therefore be a master of AGP bus 910 in that it can request and receive access to a target interface within bus
bridge 902 to thereby obtain access to main memory 200. A dedicated graphics bus accommodates rapid retrieval
of data from main memory 200. For certain operations, graphics controller 908 may further be configured to
generate PCI protocol transactions on AGP bus 910. The AGP interface of bus bridge 902 may thus include
functionality to support both AGP protocol transactions as well as PCI protocol target and initiator transactions.
Display 926 is any electronic display upon which an image or text can be presented. A suitable display 926
includes a cathode ray tube ("CRT"), a liquid crystal display ("LCD"), etc.

[0056] It is noted that, while the AGP, PCI, and ISA or EISA buses have been used as examples in the above
description, any bus architectures may be substituted as desired. It is further noted that computer system 900 may

10

10

15

20

25

30

35

40

WO 2004/099978 PCT/US2004/000483

be a multiprocessing computer system including additional processors (e.g., processor 100a shown as an optional
component of computer system 900). Processor 10a may be similar to processor 100. More particularly, processor
100a may be an identical copy of processor 100. Processor 100a may be connected to bus bridge 902 via an
independent bus (as shown in FIG. 3) or may share CPU bus 924 with processor 100. Furthermore, processor 100a
may be coupled to an optional L2 cache 928a similar to L2 cache 928.

[0057] Turning now to FIG. 4, another embodiment of a computer system 900 that may include a processor
100 having one or more data speculation verification units configured to generate speculation pointers and a retire
queue that retires operations dependent on the speculation pointers as described above is shown. Other
embodiments are possible and contemplated. In the embodiment of FIG. 4, computer system 900 includes several
processing nodes 1012A, 1012B, 1012C, and 1012D. Each processing node is coupled to a respective memory
200A-200D via a memory controller 1016A-1016D included within each respective processing node 1012A-1012D.
Additionally, processing nodes 1012A-1012D include interface logic used to communicate between the processing
nodes 1012A-1012D. For example, processing node 1012A includes interface logic 1018A for communicating with
processing node 1012B, interface logic 1018B for communicating with processing node 1012C, and a third
interface logic 1018C for communicating with yet another processing node (not shown). Similarly, processing node
1012B includes interface logic 1018D, 1018E, and 1018F; processing node 1012C includes interface logic 1018G,
1018H, and 10187; and processing node 1012D includes interface logic 1018J, 1018K, and 1018L. Processing node
1012D is coupled to communicate with a plurality of input/output devices (e.g., devices 1020A-1020B in a daisy
chain configuration) via interface logic 1018L. Other processing nodes may communicate with other IO devices in
a similar fashion.

[0058] Processing nodes 1012A-1012D implement a packet-based link for inter-processing node
communication. "In the present embodiment, the link is implemented as sets of unidirectional lines (e.g., lines
1024 A are used to transmit packets from processing node 1012A to processing node 1012B and lines 1024B are
used to transmit packets from processing node 1012B to processing node 1012A). Other sets of lines 1024C-1024H
are used to transmit packets between other processing nodes as illustrated in FIG. 4. Generally, each set of lines
1024 may include one or more data lines, one or more clock lines corresponding to the data lines, and one or more
control lines indicating the type of packet being conveyed. The link may be operated in a cache coherent fashion
for communication between processing nodes or in a non-coherent fashion for communication between a processing
node and an I/O device (or a bus bridge to an I/O bus of conventional construction such as the PCI bus or ISA bus).
Furthermore, the link may be operated in a non-coherent fashion using a daisy-chain structure between I/O devices
as shown. It is noted that a packet to be transmitted from one processing node to another may pass through one or
more intermediate nodes. For example, a packet transmitted by processing node 1012A to processing node 1012D
may pass through either processing node 1012B or processing node 1012C as shown in FIG. 4. Any suitable
routing algorithm may be used. Other embodiments of computer system 900 may include more or fewer processing
nodes then the embodiment shown in FIG. 4.

[0059] Generally, the packets may be transmitted as one or more bit times on the lines 1024 between nodes.
A bit time may be the rising or falling edge of the clock signal on the corresponding clock lines. The packets may
include command packets for initiating transactions, probe packets for maintaining cache coherency, and response
packets from responding to probes and commands.

[0060] Processing nodes 1012A-1012D, in addition to a memory controller and interface logic, may include

one or more processors. Broadly speaking, a processing node comprises at least one processor and may optionally
11

10

15

20

25

30

35

40

WO 2004/099978 PCT/US2004/000483

include a memory controller for communicating with a memory and other logic as desired. More particularly, each
processing node 1012A-1012D may include one or more copies of processor 100. External interface unit may
include the interface logic 1018 within the node, as well as the memory controller 1016.

[0061] Memories 200A-200D may comprise any suitable memory devices. For example, a memory 200A-
200D may comprise one or more RAMBUS DRAMs (RDRAMs), synchronous DRAMs (SDRAMs), static RAM,
etc. The address space of computer system 900 is divided among memories 200A-200D. Each processing node
1012A-1012D may include a memory map used to determine which addresses are mapped to which memories
200A-200D, and hence to which processing node 1012A-1012D a memory request for a particular address should
be routed. In one embodiment, the coherency point for an address within computer system 900 is the memory
controller 1016A-1016D coupled to the memory storing bytes corresponding to the address. In other words, the
memory controller 1016A-1016D is responsible for ensuring that each memory access to the corresponding
memory 200A-200D occurs.in a cache coherent fashion. Memory controllers 1016A-1016D may comprise control
circuitry for interfacing to memories 200A-200D. Additionally, memory controllers 1016A-1016D may include
request queues for queuing memory requests.

[0062] Interface logic 1018A-1018L may comprise a variety of buffers for receiving packets from the link
and for buffering packets to be transmitted upon the link. Computer system 900 may employ any suitable flow
control mechanism for transmitting packets. For example, in one embodiment, each interface logic 1018 stores a
count of the number of each type of buffer within the receiver at the other end of the link to which that interface
logic is connected. The interface logic does not transmit a packet unless the receiving interface logic has a free
buffer to store the packet. As a receiving buffer is freed by routing a packet onward, the receiving interface logic
transmits a message to the sending interface logic to indicate that the buffer has been freed. Such a mechanism may
be referred to as a "coupon-based" system.

[0063] IO devices 1020A-1020B may be any suitable I/O devices. For example, I/O devices 1020A-1020B
may include devices for communicate with another computer system to which the devices may be coupled (e.g.,
network interface cards or modems). Furthermore, I/O devices 1020A-1020B may include video accelerators,
audio cards, hard or floppy disk drives or drive controllers, SCSI (Small Computer Systems Interface) adapters and
telephony cards, sound cards, and a variety of data acquisition cards such as GPIB or field bus interface cards. It is
noted that the term "I/O device" and the term "peripheral device" are intended to be synonymous herein.

[0064] As used herein, the term "clock cycle” refers to an interval of time in which the various stages of the
instruction processing pipelines complete their tasks. Instructions and computed values are captured by memory
elements (such as registers or arrays) according to a clock signal defining the clock cycle. For example, a memory
element may capture a value according to the rising or falling edge of the clock signal.

[0065] The above discussion describes signals as being "asserted". A signal may be defined as being asserted
when it conveys a value indicative of a particular piece of information. A particular signal may be defined to be
asserted when it conveys a binary one value or, alternatively, when it conveys a binary zero value.

[0066] Numerous variations and modifications will become apparent to those skilled in the art once the above
disclosure is fully appreciated. It is intended that the following claims be interpreted to embrace all such variations

and modifications.

INDUSTRIAL APPLICABILITY
This invention may generally be applicable to microprocessors.
12

10

15

20

25

30

35

40

WO 2004/099978 PCT/US2004/000483
WHAT IS CLAIMED IS:

1. A microprocessor (100), comprising:
one or more data speculation verification units configured to verify data speculation performed on
operations and to generate a respective speculation pointer identifying outstanding operations on
which data speculation has been verified by that one of the one or more data speculation
verification units; and
a retire queue (102) coupled to receive a speculation pointer from each of the one or more data speculation
verification units and configured to selectively retire operations dependent on the speculation

pointer received from each of the one or more data speculation verification units

2. The microprocessor (100) of claim 1, wherein a load store unit (126) includes one of the one or more data
speculation verification units, wherein the data speculation verification unit included in the load store unit (126) is

configured to verify dependency predictions.

3. The microprocessor (100) of claim 1, wherein a functional unit (126) configured to execute non-memory
operations includes one of the one or more data speculation verification units, wherein the data speculation
verification unit included in the functional unit (126) is configured to verify a data prediction predicting a result of a

non-memory. operation.

4. The microprocessor (100) of claim 1, wherein one of the one or more data speculation verification units is
configured to receive information identifying each one of a plurality of outstanding operations for which a type of
data speculation verified by that one of the one or more data speculation verification units has been performed; and
wherein that one of the one or more data speculation verification units is configured to identify which
outstanding operations have been verified by that one of the one or more data speculation verification units by
advancing a respective speculation pointer to identify an operation younger than the youngest outstanding operation
on which data speculation has been verified and older than another outstanding operation on which the type of data

speculation has been performed.

5. A computer system (900), comprising:
a memory (200); and
a processor (100) coupled to the memory (200);
characterized in that:
the processor (100) includes one or more data speculation verification units configured to verify
data speculation performed on operations and to generate a respective speculation
pointer identifying outstanding operations on which data speculation has been verified
by that one of the one or more data speculation verification units; and
the processor (100) further includes a retire queue (102) coupled to receive a speculation pointer
from each of the one or more data speculation verification units and configured to
selectively retire operations dependent on the speculation pointer received from each of

the one or more data speculation verification units.
13

10

15

20

25

30

WO 2004/099978 PCT/US2004/000483

6. The computer system (900) of claim 5, wherein a load store unit (126) includes one of the one or more data
speculation verification units, wherein the data speculation verification unit included in the load store unit (126) is

configured to verify dependency predictions.

7. The computer system (900) of claim 5, wherein a functional unit (126) configured to execute non-memory
operations includes one of the one or more data speculation verification units, wherein the data speculation
verification unit included in the functional unit (126) is configured to verify a data prediction predicting a result of a

non-memory operation.

8. A method, comprising:
performing data speculation for an operation;
a verification unit verifying the data speculation performed for the operation;
the verification unit generating a speculation pointer indicating that the operation is not data-speculative
with respect to the verification unit in response to said verifying; and
in response to the speculation pointer indicating that the operation is not data-speculative with respect to

the verification unit, retiring the operation.

9. The method of claim 8, further comprising an other verification unit verifying data speculation performed
on an other operation and generating an other speculation pointer indicating that the other operation is not data-
speculative with respect to the other verification unit;

wherein said retiring the operation is dependent on both the speculation pointer and the other speculation

pointer.
10. The method of claim 8, wherein said generating the speculation pointer indicating that the operation is not

data-speculative with respect to the verification unit depends on the operation being an oldest operation on which

any type of data speculation verified by the verification unit has been performed.

14

PCT/US2004/000483

WO 2004/099978

1/4

00¢
KAowspy

weishg

!
]
I
[
|
|
|
!
|
]
I
|
{
!
|
|
l
!
|
|
|
|

<>

0El snglinsey
AN i)
8cl
| BYoB) (e—P (s)a109 uonnosx3g L
9t1
ereq — — —
9%t g9¢c} Y9cl alid
nin nin mwn laysiBay
[eUOROUN [euOROUN] feuonoun4
A
q Jeiuiod mloﬂa <5 Tmiting uone|noadg
Uone|mosdg” Mu_om g TeIog UoNe[noadg
Hod 1 V¥ JoIUIog UONg[oeds
BIT
80T (s)ie|npayosg
—— uun
yoleleld %
901 50T
> eyey [T 1un yoredsiq
uononsuy|

00T Josseooidooipy

091
18]j0A1U07)
fowsy

WO 2004/099978 PCT/US2004/000483
2/4

v

Perform data speculation for
operation
201

No

Data
speculation verified?
203

Yes

Advance speculation
painter to identify that operation as
non-speculative
205

1
1

Receive one or more speculation
pointers
211

FIG. 2A

No Any
speculation pointer
indicate that outstanding operation
is speculative?

23

Yes

Retire outstanding operation
215

‘J' FiG. 2B

PCT/US2004/000483

WO 2004/099978

3/4

€ Ol

0c6 5
Aeidsiq
sng 816 -
VSIS 9018 VS k | oyoen gy |
I |
w | i
Jajjo1u0) saydesr i i
— !
! 2]
: 001 "
976 | Josseooid |
d¢l6 Y¢cl6 _ I
ebpug sng dBy K\ e —
sng ABpL008S soneq 10d 80iA8(] [0d 016
y
206) R 00F
abpuig sn "~ sn i 1085990
N6 sngiod P o X &w d
A A
206 sng 1449 v
aSnop Aowsiy N—gop 326
[preoghey] y ayoen 77
006 00¢
Aiowepy urepy

WO 2004/099978

4/4

PCT/US2004/000483

200A 200B
Memory /_ Memory /-
A A
10180\] /1016A 1018D ‘ 10168
MC V /—1018A MC V
/ 1024A — 618F
Processing - > Processing 7]
L Node T S8 Node T
1012 | e 10248 10128
IF IF
A A
\—10188 ¥— 1018E
1024E ~ _—1024F 1024C ~_ _—1024D
1018G \
1018H 1018J
] ya 1 1018K
IF " | —1018l | IF 1018L
! /102G |
Processing - > Processing > 0
L Node T L Node T .
10120 /10241 10120 | |« De‘;‘g‘;OA
MC N MC *
F —1016C T —1016D
- 200C > 200D
Memory /— Memory /— ~
e
Device
10208

FIG. 4

	Abstract
	Bibliographic
	Description
	Claims
	Drawings

