00 A1l

o

069

(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(19) World Intellectual Property Organization
International Bureau

(43) International Publication Date
6 September 2002 (06.09.2002)

PCT

A 0 00O RO

(10) International Publication Number

WO 02/069200 Al

(51) International Patent Classification’: GO6F 17/30

(21) International Application Number: PCT/US02/05613

(22) International Filing Date: 25 February 2002 (25.02.2002)

(25) Filing Language: English

(26) Publication Language: English
(30) Priority Data:

60/271,124 24 February 2001 (24.02.2001) US

(71) Applicants and

(72) Inventors: GARA, Alan, G. [US/US]; 38 Marion Avenue,
Mount Kisco, NY 10549 (US). GIAMPAPA, Mark, E.
[US/US]; 140 North Broadway, Apt. GT-14, Irvington, NA
10533 (US). STEINMACHER-BUROW, Burkhard, D.
[CA/US]; 28 Manchester Drive, Mount Kisco, NY 10549
(US).

(74) Agents: GROLZ, Edward et al.; Scully, Scott, Murphy
& Presser, 400 Garden City Plaza, Garden City, NY 11530
(US).

(81) Designated States (national): AE, AG, AL, AM, AT, AU,
AZ,BA, BB, BG, BR,BY, BZ, CA, CH, CN, CO, CR, CU,
CZ, DE, DK, DM, DZ, EC, EE, ES, FI, GB, GD, GE, GH,
GM, HR, HU, ID, IL,, IN, IS, JP, KE, KG, KP, KR, KZ, L.C,
LK, LR, LS, LT, LU, LV, MA, MD, MG, MK, MN, MW,
MX, MZ, NO, NZ, OM, PH, PL, PT, RO, RU, SD, SE, SG,
SL SK, SL, TJ, TM, TN, TR, TT, TZ, UA, UG, US, UZ,
VN, YU, ZA, ZM, ZW.

(84) Designated States (regional): ARIPO patent (GH, GM,
KE, LS, MW, MZ, SD, SL, SZ, TZ, UG, ZM, ZW),
Eurasian patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM),
European patent (AT, BE, CH, CY, DE, DK, ES, FI, FR,
GB, GR, IE, IT, LU, MC, NL, PT, SE, TR), OAPI patent
(BE BJ, CF, CG, CI, CM, GA, GN, GQ, GW, ML, MR,
NE, SN, TD, TG).

Published:

with international search report

before the expiration of the time limit for amending the
claims and to be republished in the event of receipt of
amendments

[Continued on next page]

(54) Title: CHECKPOINTING FILESYSTEM

Network

"
igh Switch >

Performance
Compute
" Engine

(Hree)

A

> /ot

/2

Host Control

as

fﬂi
e

(57) Abstract: The present invention is directed to a checkpointing filesystem of a ditributedmemory parallel supercomputer (102)
comprising a node (104) that accesses user data (110) on the filesystem (200) the filesystem (110) comprising an interface (202)
that is associated with a disk (204) for storing the user data. The checkpointing filesystem provides for taking and checkpoint of
~~ the filesystem and rolling back to a previously taken checkpoint, as well as for writing user data to and deleting user data from the
checkpointing filesystem. The checkpointing filesystem provides a recently written file allocation table (WFAT) for maintaining
information regarding the user data written since a previously taken checkpoint and a recently deleted file allocation table (DFAT)
for maintaining information regarding user data deleted from since the previously taken checkpoint, both of which are utilized by
the checkpointing filesystem to take a checkpoint of the filesystem and rollback the filesystem to a previously taken checkpoint, as
well as to write and delete user data from the checkpointing filesystem.



w0 02/069200 A1 I 0RO 00000 OO

For two-letter codes and other abbreviations, refer to the "Guid-
ance Notes on Codes and Abbreviations” appearing at the begin-
ning of each regular issue of the PCT Gazette.



WO 02/069200 PCT/US02/05613

10

15

20

25

30

CHECKPOINTING FILESYSTEM

CROSS REFERENCE

The present invention claims the benefit of commonly-owned, co-pending United

States Provisional Patent Application Serial Number 60/271,124 filed February 24,

v2001 entitled MASSIVELY PARALLEL SUPERCOMPUTER, the whole contents

and disclosure of which is expressly incorporated by reference herein as if fully set
forth herein. This pateht application is additionally related to the following
commonly-owned, co-pending United States Patent Applications filed on even date
herewith, the entire contents and disclosure of each of which is expressly
incorporated by reference herein as if fully set forth herein. U.S. patent application
Serial No. (YOR920020027US1, YOR920020044US1 (15270)), for “Class
Networking Routing”; U.S. patent épplication Serial No. (YOR920020028US1
(15271)), for “A Global Tree NetWork for Computing Structures”; U.S. patent
application Serial No. (YOR920020029US1 (15272)), for ‘Global Interrupt and
Barrier Networks™; U.S. patent application Serial No. (YOR92002003 OUSI
(15273)), for ‘Optimized Scalable Network Switch”; U.S. patent application Serial
No. (YOR920020031US1, YOR920020032US1 (15258)), for “Arithmetic
Functions in Torus and Tree Networks’; U.S. patent applicatibn Serial No.
(YOR920020033US1, YOR920020034USI (15259)), for ‘Data Capture Technique
for High Speed Signaling”; U.S. patent application Serial No. )
(YOR920020035US1 (15260)), for ‘Managing Coherence Via Put/Get Windows’;
U.S. patent application Serial No. (YOR920020036US1, YOR920020037US1
(15261)), for “Low Latency Memory Access And Synchronization”; U.S. patent
application Serial No. (YOR920020038US1 (15276), for ‘Twin—Ta@led Fail-Over
for Fileservers Maintaining Full Performance in the Presence of Failure”; U.S.
patent application Serial No. (YOR920020039US1 (15277)), for “Fault Isolation
Through No-Overhead Link Level Checksums’; U.S. patent applicationvSerial No.
(YOR920020040US1 (15278)), for “Ethernet Addressing Via Physical Location
for Massively Parallel Systems”; U.S. patent application Serial No. '

Y OR920020041US1 (15274)), for “Fault Tolerance in a Supercomputer Through



WO 02/069200 PCT/US02/05613

10

15

20

25

30

Dynamic Repartitioning”; U.S. patent application Serial No. (Y OR920020042USI
(15279)), for “Checkpointing Filesystem™; U.S. pétcnt application Serial No.
(YOR920020043US1 (15262)), for “Efficient Implementation of Multidimensional
Fast Fourier Transform on a Distributed-Memory Parallel Multi.-Node Computer”;
U.S. patent application Serial No. (YOR9-20010211US2 (15275)), for “A Novel
Massively Parallel Supercomputer”; and U.S. patent application Serial No. |
(YOR920020045US1 (15263)), for “Smart Fan Modules and System”.

BACKGROUND OF THE INVENTION

Technical Field of the Invention

The present invention generally relates to a field of filesystems in corﬁputers.
More particularly, the present invention is directed to efficiently checkpointing a
filesystem on a distributed-memory parallel supercomputer, thereby facilitating

faster execution of applications.

Description of the Prior Art

In large computing systems, such as a distributed-memory parallel supercomputer,
it is standard to save a state of a system at regular intervals such that a application
can be rolled back and rerun from a last saved state of the system, thereby saving
time and computing resources. This is necessary because the large computing
systems do not have the reliability of small computing systems and the applications
that utilize the large computing systems often run for hours, days or weeks. More
particularly, the large computing systems may crash or be brought down for |
maintenance, exceptions may be encountered while an application executes, or
programmer-defined conditions may be met whicﬁ terminate the application.

Since the application manipulates disk files, the roll back restores the manipulated
disk files to a previous clean state, i.c., to a previous éheckpoint. Therefore,
checkpointing the application mitigates the rerunning of the application since the
application need only be rolled back to the previous éheckpoint rather than be

rerun from the start. Thus, checkpointing of the filesystem is a critical aspect of



WO 02/069200 PCT/US02/05613

10

15

20

25

30

checkpointing in the large computing systems, such as the distributed-memory

parallel supercomputer.

A main motivation for a distributed-memory parallel supercomputer is a fast
execution of the épplication. Thus, during the execution of an application on the
distributed-memory parallel supercomputer, there is a need for a checkpointing
filesystem, which is not significantly slower than a filesystem without '
checkpointing. Similarly, there is a need for a checkpointing filesystem in which
the act of checkpointing is fast, since during checkpointing of the filesystem the
application is ﬁot executing. There also is a need for a checkpointing filesystem,
which éppears to the application as a normal filesystem and does not complicate

the implementation of the application.

Therefore, there is a need in the art for providing a checkpointing filesystem on the
distributed-memory parallel supercomputer that facilitates faster execution of an

application executing on the distributed-memory parallel supercomputer.

SUMMARY OF THE INVENTION

1t is therefore an object of the present invention to provide a checkpointing

- filesystem that facilitates fast execution of an application on the distributed-

memory parallel supercomputer.

It is another object of the present invention to provide a checkpointing filesystem,
which is not significantly slower than a filesystem without checkpointing on the

distributed-memory parallel supercomputer.

It is a yet another object of the present invention to provide a checkpointing
filesystem, which appears to the application as a conventional filesystem and does
significantly effect an application on the distributed-memory parallel

supercomputer.



WO 02/069200 PCT/US02/05613

10

15

20

25

30

It is a further object of the present invention to provide a checkpointing filesystem
in which the taking of a checkpoint does not significantly effect execution of an

application on the distributed-memory parallel supercomputer.

It is yet a further object of the present invention to provide a checkpointing
filesystem in which the rolling back of a previously taken checkpoint is efficient as
possible, thereby not significantly effecting the appliéation on the on the

distributed-memory. parallel supercomputer.

According to an embodiment of the present invention, there is provided a method
for checkpointing a filesystem of a distributed-memory parallel supercomputer
comprising a node that accesses user data on the filesystem, the filesystem
comprising an interface that is associated with a disk for storing the user data, the
method comprising the steps of: informing the node and the interface to complete
their access to the filesystem in order to take a checkpoint of the ﬁle;ystem;
directing the interface to take the checkpoint of the associated disk, the taking of
the checkpoint comprising a step of clearing: (i) a recently written file allocation
table (WFAT) for maintaining information regarding the user data written to the
disk since a previously taken checkpoint; (ii) a recently deleted file allocation table
(DFAT) for maintaining information regarding the user data deleted from the disk
since the previously taken checkpoint; and informing the node and the interface
that they may resume their access to the filesystem, wherein the WFAT and DFAT

are utilized to rollback the filesystem to a clean state.

According to another embodiment of the present invention, there is provided a
method for rollihg back a checkpointing filesystem of a distributed-memory
parallel éuperc':omputer comprising a node that accesses user data on the filesystem
to a previously taken checkpoint of the ﬁlesystem, the filesystem comprising an
interface that is associated with a disk for storing the user data, the method
comprising the steps of: informing the node and the interface to complete their
access to the filesystem in order rollback to the previously taken checkpoint of the
filesystem; directing the interface to rollback to the previously taken checkpoint of

the associated disk, the rolling back to the previously taken checkpoint comprising:



WO 02/069200 PCT/US02/05613

10

15

20

25

30

(1) removing user data from a file allocation table (FAT) utilizing a
recently written file allocation table (WFAT) that maintains information regarding
the user data written to the disk since the previously‘takel_ll checkpoint; (ii) adding
user data to the FAT from a recently deleted file allocation table (DFAT) that
maintains information regarding user data deleted from the disk since the
préviously taken checkpoint; and informing the node and the interface that they
may resume their access to the filesystem, whérein the WFAT and DFAT are

utilized to rollback the filesystem to a clean state.

According to yet another embodiment of the present invention, there is pfovided a
method for writing user data to a checkpointing ﬁlesjstem of a distributed-memory
parallel supercomputer comprising a node that accesses the user data on the
filesystem, the filesystem comprising an interface that is associated with a disk for
storing the user data, the method comprising the steps of: selecting sectors that are

marked as free in a file allocation table (FAT) and not marked as deleted in a

- recently deleted file allocation table (DFAT) that maintains information regarding

user data deleted from the disk since a previously taken checkpoint; writing the
user data to the selected sectors qﬁ the disk; updating the FAT to reflect the written
user data; and updating a recently written file allocation table (WFAT) that
maintains infdnnation regarding the user data written to the disk since the
previously taken checkpoint, wherein the WFAT and DFAT are utilized to rollback

the filesystem to-a clean state.

According to a further embodiment of the present invention, there is provided a
method for deleting user data from a checkpointing filesystem of a distributed-
memory parallel supercomputer comprising a node that accesses the user data on
the filesystem, the filesystem comprising an interface that is associated with a disk
for storing the user data, the mgthod comprising the steps of: deleting sectors
associated with the user data to be deleted from the disk from a file allocation table
(FAT); determining whether the sectors to be deleted are marked in a recently
written file allocation table (WFAT) that maintains information regarding user data
written to the disk since a previously taken checkpoint; and updating a recently

deleted file allocation 'table (DFAT) if the sectors are not marked in WFAT at step



WO 02/069200 PCT/US02/05613

10

15

20

25

30

(b), the DFAT maintaining information regarding the user data deleted from the
disk since the previously taken checkpoint, wherein the WFAT and DFAT are

utilized to rollback the filesystem to a clean state.

According to yet a further embodiment, there is provided a checkpointing
filesystem of a distributed-memory parallel supercomputer compﬁsing a node that
accesses user data on thg filesystem, the filesystem comprising an interface that is
associated with a disk for storing the user data, comprising: a host controller
comprising means for informing the node and the interface to complete their access
to the filesystem in order to take a checkpoint of the filesystem, directing the
interface to take a checkpoint of thc'associatcd disk, and informing the node and
the interface that they may resume their access to the filesystem after the
checkpoint it takén; and the interface comprising a means for clearing: a recently
written file allocation table (WFAT) that maintains information regarding the user
data written to the disk since a previously taken checkpoint; and a recently deleted
file allocation table (DFAT) for maintaining information regarding the user data
deleted from the disk since the previously taken checkpoint, wherein the WFAT
and DFAT are utilized to rollback the filesystem to a clean state.

The checkpointing filesystem of the distributed-memory parallel supercomputer
further comprises rolling back to the previously taken checkpoint, wherein: the -
host controller further comprises means for informing the node and the interface to
complete their access to the filesystem in order rollback to the previously taken
checkpoint of the filesystem, for directing the interface to rollback to the
previously taken checkpoint of the associated disk, and for informing the node and
the interface that they may resume their access to the filesystem; and the interface
further comprises means for rolling back te the previously taken checkpoint, the

means comprising removing user data from a file allocation table (FAT) utilizing

the WFAT and adding user data to the FAT from DFAT. -

The checkpointing filesystem of the distributed-memory parallel supercomputer
further comprising writing user data to the checkpointing filesystem, wherein: the

interface further comprises means for selecting sectors that are marked as free in



WO 02/069200 PCT/US02/05613

the FAT and not marked for deletion in DFAT, for writing the user data to the
selected sectors on the disk; for updating the FAT to reflect the written user data,
and for updating WFAT.

5  The checkpointing filesystem of a distributed-memory parallel supercoinputer
further comprising deleting user data from the checkpointing filesystem, wherein:
the‘iﬁterface further comprises means for deleting sectors associated with the ﬁser
data to be deleted from the disk from the FAT, for determining whether the sectors

. to be deleted are marked in the WFAT, and for updating the DFAT if the sectors
10 are not marked in WFAT.

BRIEF DESCRIPTION OF THE DRAWINGS

The objects, features and advantages of the present invention will become apparent
15 to one skilled in the art, in view of the following detailed description taken in

combination with the attached drawings, in which:

Figure 1 illustrates an exemplary high-level system diagram for performing

checkpointing of the filesystem according to the present invention;

20
Figure 2 illustrates is an exemplary more-detailed system diagram of Figure 1 for
pefforming checkpointing of the filesystem according to the present invention;
Figure 3 illustrates a conventional filesystem without checkpointing;

25

Figure 4 illustrates an exemplary checkpointing filesystem according to the present

invention;

Figure 5 illustrates an exemplary method flowchart that depicts taking a checkpoint .

30 in the checkpointing filesystem of Figure 4 according to the present invention;



WO 02/069200 PCT/US02/05613

10

15

20

25

30

Figure 6 illustrates an exemplary method flowchart that depicts rolling back to a
previously taken checkpoint in the checkpointing filesystem of Figure 4 according

to the present invention;

Figure 7 illustrates an exemplary method flowchart that depicts writing of user data

to the checkpointing filesystem 400 of Figure 4 according to the present invention;

Fi guré 8 illustrates an exemplary method flowchart that depicts deleting of user

data from the checkpointing filesystem 400 according to the present invention; and

Figure 9 illustrates an exemplary flowchart that depicts reading of user data in the

checkpointing filesystem 400 according to the present invention.

- DETAILED DESCRIPTION OF THE
PREFERRED EMBODIMENT OF THE INVENTION

The present invention is directed a checkpointing filesystem on the distributed-
memory parallel supercomputer that facilitates faster execution of an application

executing on the distributed-memory parallel supercomputer.

Figure 1 is an exemplary high-level system diagram 100 for performing
checkpointing of the filesystem according to the present invention. The high
performance computer engine (i.e., “HPCE”) 102 represents the distributed-
memory parallel supercomputer. The HPCE is a distributed-memory parallel
supercomputer that cofnprises’ a plurality of nodes. The HPCE 102 communicates
via the network switch 104 with the fileserver/filesystem 106 and host control
server 108. The HPCE communicates with the foregoing system components over
communication connections 110, which may represent standard networking
connections, such as Ethernet ahd the like. The host control server 108 controls
the HPCE 102 and the fileserver/filesystem 106, and determines when to perform a
checkpoint of the filesystem and when to restore the filesystem from'a previous

checkpoint as will be described below in greater detail.



WO 02/069200 PCT/US02/05613

10

15

20

25

30

Figure 2 is an exemplary more-detailed system diagram 200 of Figure 1 for
perfdrming checkpointing of the filesystem according to the present ihvention.
The fileserver/filesystem 106 comprises a plurality of personal computers (i.e.,
“PCs”) 202. The distributed-memory parallel supercomputer comprises
approximately 1024 PCs. In the distributed-memory parallel supercomputer, each
PC 202 serves a Redundant Array of Independent Disks (i.e., “RAID”) cage, i.e., a
plurality of disk drives. For brevity and clarity of the present invention, fhe
following description will be in terms of each PC 202 serving a disk 204 instead of
a RAID cage. More particularly, each PC 202 serves as an interface for the HPCE
102 to an associated disk 204 via the network switch 104. The HPCE 102
communicates with the fileserver/filesystem 106 via messages that represent basic
file operations, such as read, write and delete. A hode of the HPCE 102 may

access any file stored on any disk 204 via associated PC interface 202.

Further with reference to Figure 2, in order to perform a checkpoint, the host
control 108 informs each of the nodes of the HPCE 102 and the PCs 202 to
complete any disk activity (i.e., access) and not to start any new disk activity. The
host control 108 directs each PC 202 to make a checkpoint of its associated disk
204. This checkpointing activity is completely local to each PC 202 and its
associated disk 204. The checkpointing activity is the same with regard to all PCs,
i.e, as if a single PC 202 performs a checkpoint of its associated disk 204.
Similarly, when a checkpoint is restored, the restoration is completely local to each
PC 202 and its associated disk 204. Therefore, in thé following description
performing a qheckpoint and restoring a checkpoint will be described in detail with
regard to a single PC 202 and associated drive 204. The host control 108 is a
complete computer including its own internal filesystem, which maintains the
software for driVing the host control 108, including the taking of a checkpoint and
rolling back to previous checkpoint as described below in greater detail. In
fileserver/filesystem 106, each PC 202 is a complete computer including its own
internal filesystem, in addition to the associated disk 204. The internal filesystem
of the PC 202 maintains the soﬂwafé for driving the PC 202, including the taking
of a.checkpoint and rolling back to a previous checkpoint as described below in |

greater detail.



WO 02/069200 PCT/US02/05613

10

15

20

25

30

Figure 3 depicts a conventional filesystem 300 without checkpointing. The
filesystem 300 occupies an entire disk or a portion of the disk. The filesystem
comprises two parts. The first part is user data 304 and the free space 306 in the
filesystem. The second part is a File Allocation Table (i.e., “FAT”), also known as
metadata, which includes a description of the user data 304 and the free Space 306.
Thus, the FAT 302 includes ﬁlenames‘, file data start sectors, file sizes, as well as

free sectors: An exampie of such a FAT 302 is the industry standard FAT32.

Figure 4 is an exemplary checkpointing filesystem 400 according to the present
invention. The filesystem comprises five parts. The first part is tﬁe user data 304
and the free space 306 in the checkpointing filesystem 400, which are analogous to
the filesystem without checkpointing 300 in Figure 3. The second part is the File
Allocation Table (i.e., “FAT”) 302, which is analogous to that of the filesystem
without checkpointing 300 in Figure 3. The third part of the checkpointing
filesystem 400 is a recently Written FAT (i.e., “WFAT”) 402, which is structured
like the FAT 302, but only maintains information on the user data 304 written
since a previous checkpoint. The fourth part of the checkpointing filesystem 400 is
arecently Deleted FAT (i.e., “DFAT”) 404, which is structured like the FAT 302,
but only maintains information on the user data 304 deleted since the previous
checkpoint. The fifth and final part the checkpointing filesystem 400 is the
recehtly Written or Deleted list (i.e., “WDLIST”) of user data, which includes the
same information as the WFAT 402 and the DFAT 404. The WFAT 402 and
DFAT 404 are optimal for fast random access, since they provide indexed by
sector access to information about recently written or deleted user data 304. Like
the FAT 302, the WFAT 402 includes an entry for every sector in the
checkpointing filesystem 400. Typically only a small fraction, if any, of sectors

includes user data 304 written since the previous checkpoint, so most of the WFAT

" 402 entries are empty. Similarly, most of the DFAT 404 entries are empty. By

contrast to the WFAT 402 and DFAT 404, the WDLIST 406 is optimal for fast
sequential access to all the information about the recently written or deleted user
data 304. More particularly, the WDLIST 406 provides a list of sectors in the
WFAT 402 marking data written since the previous checkpoint and of sectors in

the DFAT 404 marking data deleted since the previous checkpoint.

-10-



WO 02/069200 PCT/US02/05613

10

15

20

25

30

Figure § is an exemplary method flowchart 500 that depicts taking a checkpoint in
the checkpointing filesystem 400 according to the present invention. The taking of
the checkpoint starts at step 502. At step 504, the WFAT 402 is cleared, since at
the checkpoint the user data 304 written since a previous checkpoint becomes part
of the checkpoint. Since the WFAT 402, just like the FAT 302, is a lérge data
structure, clearing the WFAT 402 by iterating through the entire data structure is

inefficient. Because the WDLIST 406 i‘s a much smaller data structure than the

 WFAT 402, it is faster to clear the WFAT 402 using entries in the WDLIST 406.

At step 506, the DFAT 404 is cleared since at the checkpoint the user data 304
deleted since the i)fcvious checkpoint must be deleted from the checkpoint. For
efficiency, the DFAT 404 is cleared using WDLIST 406. More particularly, the
WDLIST'406 is a list of all sectors in the WFAT 402 and DFAT 404 marking user
data 304 written or deleted since the previous checkpoint. The WFAT 404 and
DFAT 404 are cleared by unmarking each sector listed in the WDLIST 406. After
the WFAT 402 and the DFAT 404 are respectively cleared at steps 504 and. 506,
the WDLIST 406 is also cleared by deleting its list of marked sectors. At this point
the filesystem is in a clean or consistent state. The éxernplary taking of the
checkpoint 500 is fast as required by the distributed-memory parallel
supercomputer illustrated in Figures 1 and 2, land minimally impacts the

application.

Figure 6 is an exemplary method flowchart 600 that depicts rolling back to a
previously taken checkpoint according to the present invention. The rolling back to
the previously taken checkpoint starts at step 602. At step 604, the FAT 302 is
returned to the previously taken checkpoint using WDLIST 406. More
particularly, at the rollback to the previously taken checkpoint, the user data 304
written since the previous checkpoint is removed from the FAT 302, and the user
data 304 deleted since the previous checkpoint is returned to the FAT 302. Since
the WDLIST 406 includes all the information on the user data 304 written and
deleted since the previously taken checkpoint, the WDLIST is used to return the
FAT to the pre\}idusly taken checkpoint. At step 606, the WFAT 402 is cleared
utilizing WDLIST 406 for efficiency. Since, the WDLIST 406 is a list of all

-11-



WO 02/069200 PCT/US02/05613

10

15

20

25

30

sectors in the WFAT 402 and DFAT 404 marking user data 304 written or deleted
since the previous checkpoint, the WFAT 402 and DFAT 404 are cleared by
unmarking each sector listed in the WDLIST 406. At step 608, the DFAT 404 is
cleared utilizing the WDLIST 406. At step 610, the WDLIST 406 is then cleared.
The situation immediately after the rollback of the FAT is the same as after taking
a checkpoint in Figure 5 above, i.e., the filesystem is in a clean or consistent state.
Therefore, the application may resume execution from the rolled back Checkpoint

without restarting the af)plication.

Figure 7 is an exemplary method flowchart 700 that depicts a write of user data
304 to the checkpointing filesystem 400 of Figure 4 according to the present
invention. It is to be noted that the steps of Figure 7 described below are behind
the scenes and are not visible to the application. The writing of the user data 304 to
the checkpointing filesystem 400 starts at step 702. At step 704, sectors marked as |
free in the FAT 302 and not marked for deletion in the DFAT 404 are chosen for

the write. More particularly, as in the case of the filesystem without checkpointing

7300 of Figure 3, free sectors to contain the user data 304 that is to be written have

to be found first, except that in the checkpointing filesystem 400 the sectors cannot
be marked as deleted in the DFAT 404 because they are sectors marked as deleted
since the previously taken checkpoint and must be preserved in case of a rollback
to the previously taken checkpoint. Given that the free sectors are not in the DFAT
402, the user data 304 may be written to the free sectors at step 706. At step 708,
the FAT 302 is updated to reflect the write of user data 304. Since the write is
after a previoﬁs checkpoint, WFAT 402 and WDLIST 406 are respectively updated
at steps 710 and 712. At step 714, the writing of user data 304 to the
checkpointing ﬁldsystem 400 ends. In the conventional filesystem 300 without
checkpointing, the filesystem 300 also performs a set of steps for writing the user
data to the filesystem 300. The convéntional steps include: choosing sectors
marked free in the FAT 302; wﬁting the user data 304 to the free sectors; and
updating the FAT to reflect the user data written. Over and above the conventional
filesystem 300, the following steps are additional due to the checkpointing of the
filesystem according to the present invention: ensuring that the free sectors are not

in DFAT 404; updating WFAT 402 and updating WDLIST 406 as particularly

-12-



WO 02/069200 PCT/US02/05613

10

15

20

25

30

described above. The additional steps take little time as compared to the writing
the user data 304. For example, ensuring that the sectors are not in DFAT is a fast
random access lookup. Thus the checkpointing filesystem 400 of Figure 4
according to the present invention is almost as fast as the filesystem without
checkpointing 300 of Figure 3. This fact satisfies the speed required by the

distributed-memory parallel supercomputer illustrated in Figures 1 and 2.

Figure 8 is an éxemplary method flowchart 800 describing how a delete of user
data 304 from the checkpointing filesystem 400 according to the present invention.
The deleting of thé user data 304 from the checkpointing filesystem 400 starts at
steb 802. It is to be noted that the steps of Figure 8 described below are behind the
scenes and are not visible to the application. At step 804, sectors associated with
user data 304 to be deleted are deleted from the FAT 302. At step 806, it is
determined whether the sectors to be deleted from the FAT 302 are marked in the
WFAT 402. If the sectors to be deleted are marked in the WFAT. 402, then the
sectors are deleted from the WFAT 402 at step 808. Otherwise, if the sectors to be
deleted are not marked in the WFAT 402, the DFAT 404 is updated at step 810 by
marking in the DFAT 404 the deleted sectors. More particularly with regard to
steps 806 and 808, if the sectors to be deleted are marked in the WFAT 402, then
the entries are unmarked in the WFAT 402 and the DFAT 404 is not updated since
the sectors deleted were created after -the previous checkpoint and thus should not
be recovered in a rollback. With regard to steps 806 and 810, the sectors to be
deleted are not marked in the WFAT 402, and thus the sectors were created before
the previous checkpoint and thus should be recovered in a rollback. Therefore, the
sectors are marked in the DFAT 404. In either case, whether or not the sectors to
be deleted are marked in the WFAT 402, the WDLIST 406 is updated at step 812
with the sectors unmarked in the WFAT 402 or marked in the DFAT 404. At step
814, the deleting of the user data from the checkpointing filesystem 400 ends. In
the conventional filesystem 300 without checkpointing, the filesystem 300 also
updates the FAT 302 with information concerning the delete. However, the
remairﬁng steps of Figure 8 are unique to the checkpointing ﬁlesystem 400

according to the present invention. Since the remaining steps take time that is

-13-



WO 02/069200 PCT/US02/05613

10 -

15

20

comparable to updating the FAT 302, the checkpointing filesystem according to

the present invention is fast.

Figure 9 is an exemplary flowchart 900 that depicts how a read of user data 304 in
the checkpointing filesystem 400 according to the present invention. The reading
of the user data 304 from the checkpointing filesystem 400 starts at step 902. At
step 904, the PC 202 receives a request from a node of the distributed-memory
parallel supercorriputer to read a file. At step 906, the FAT 302 is examined to
determine which sectors to read. At step 908, the PC 202 reads the sectors
determined at step 906 from the associated disk 204. At step 910, PC 202
transmits the read sectors to the requesting node of the distributed-memory parallel
supercomputer. At step 912, the reading of the user data 304 from the
checkpointing filesystem 400 ends. Thus, the reading of user data 304 from the
chéckpointing filesystem is exactly as it is in a filesystem without checkpointing
300 of Figure 3. More particularly, the reads in the checkpointing filesystem 400
of distributed-memory parallel supercomputer illustrated in Figures 1 and 2 are as

fast as the on the supercomputer with a filesystem without checkpointing 300.

While the invention has been particularly shown and described with regard to
preferred embodiments thereof, it will be understood by those skilled in the art that
the foregoing and other changes in form and details may be made therein without d

eparting from the spirit and scope of the invention.

-14-



WO 02/069200 PCT/US02/05613

CLAIMS:
1
Having thus described our invention, what we claim as new, and desire to secure
by Letters Patent is:
1 1. A method for checkpointing a filesystem of a distributed-memory parallel
2  supercomputer comprising a node that accesses user data on the filesystem, the
3 filesystem comprising an interface that is associated with a disk for storing the user
4  data, the method comprising the steps of:
5 (a) informing the node and the interface to complete their access to
6 the filesystem in order to take a checkpoint of the ﬁlesystém;
7- (b) directing the interface to take the checkpoint of the associated
8  disk, the taking of the checkpoint comprising a step of clearing;
9 (i) a recently written file allocation table (WFAT) for
10  maintaining information regarding the user data written to the disk since a
11 previously taken checkpoint;
12 (i1) a recently deleted file allocation table (DFAT) for
13 maintaining information regarding the user data deleted from the disk since the
14  previously taken checkpoint;
15 (c) informing the node and the interface that they may resume their
16  access to the filesystem, wherein the WFAT and DFAT are utilized to rollback the
17  filesystem to a clean state.

1 2. The method for checkpointing a filesystem of a distributed-memory parallel
2 supercomputer according to Claim 1, wherein the WFAT and the DFAT are

3 accessible in random order.

3. The method for checkpointing a filesystem of a distributed-memory parallel
supercomputer according to Claim 1, wherein a written or deleted list (WDLIST) is

provided for maintaining information associated with the WFAT and the DFAT

HBOW N =

and is accessible in a sequential order.

-15-



WO 02/069200 PCT/US02/05613

| I e T T e S S e S e L e T
© VW 0 N Y AW N = O

O 0NN Y W N -

4. The method for checkpointing a filesystem of a distributed-memory parallel
supercomputer according to according to Claim 3, wherein the step of clearing

utilizes the information of the WDLIST to clear the WFAT and DFAT.

5. The method for checkpointing a filesystem of a distributed-memory parallel
supercomputer according to according to Claim 4, wherein the method further

comprises a step of clearing the WDLIST.

6. A method for rolling back a checkpointing filesystem of a distributed-memory

parallel supercomputer comprising a node that accesses user data on the filesystem

toa previously taken checkpoint of the filesystem, the filesystem comprising an

interface that is associated with a disk for storing the user data, the method
comprising the steps of: _

(a) informing the node and the interface to complete their access to
the filesystem in order rollback to the previously taken checkpoint of the
filesystem;

| (b) directing the interface to rollback to the previously taken
checkpoint of the associated disk, the rolling back to the previously taken
checkpoint comprising;

(1) removing user data from a file allocation table (FAT)
utilizing a recently written file allocation table (WFAT) that maintains information
regarding the user data written to the disk since the previously taken checkpoint;

(i1) ad'ding user data to the FAT from a recently deleted file
allocation table (DFAT) that maintains information regarding user data deleted
from the disk since the previously taken checkpoint; and

(c) informing the node and the interface that they may resume their
access to the filesystem, wherein the WFAT and DFAT are utilized to rollback the

filesystem to a clean state.
7. The method for rolling back a checkpointing filesystem of a distributed-memory

parallel supercomputer according to Claim 6, wherein the WFAT and the DFAT

are accessible in random order.

-16-



WO 02/069200 PCT/US02/05613

DWW N e

—

N W W N

—_— e e e
S OWNN= O

O 0 N N AW N -

8. The method for rolling back a checkpointing filesystem of a distributed-memory
parallel supercomputer according to Claim 1, wherein a written or deleted list
(WDLIST) is provided for maintaining information associated with the WFAT and

the DFAT and is accessible in a sequential order.

9. The method for rolling back a checkpointing filesystem of a distributed-memory
parallel supercomputér according to Claim 8, wherein the steps of removing and

adding user data utilize the information of the WDLIST.

‘1 0. The method for rolling back a checkpointing filesystem of a distributed-
memory parallel supercomputer according to Claim 9, wherein the method further
comprises the steps of:

clearing the WFAT and the DFAT utilizing information of the
WDLIST; and

clearing the WDLIST.

li. A method for writing user data to a checkpointing filesystem of a distributed-
rnemdry parallel supercomputer comprising a node that accesses the user data on
the filesystem, the filesystem comprising an interface that is associated with a disk
for storing the user data, the method comprising the steps of: ‘

(a) selecting sectors that are marked as free in a file allocation table
(FAT) and not marked as deleted in a recently deleted file allocation table (DFAT)
that maintains information regarding user data deleted from the disk since a
previously taken checkpoint;

(b) writing the user data to the selected sectors on the disk -

(c) updating the FAT to reflect the written user data; and

(d) updating a recently written file allocation table (WFAT) that

maintains information regarding the user data written to the disk since the

_previously taken checkpoint; wherein the WFAT and DFAT are utilized to rollback

the filesystem to a clean state.

-17-



WO 02/069200 PCT/US02/05613

S W

O 0 9 N R W =

L e
A W N~ O

BN e

12. The method for writing user data to a checkpointing filesystem of a distributed-
memory parallel supercomputer according to Claim 11, wherein the WFAT and the

DFAT are accessible in random order.

13. A method for writing user data to a checkpointing filesystem of a distributed-
memory parallel supercomputer Claim 11, wherein a written or deleted list
(WDLIST) is provided for maintaining information associated with the WFAT and

the DFAT and is accessible in a sequential order.

14. A method for deleting user data from a checkpointing filesystem of a

_ distributed-memory parallel supercomputer comprising a node that accesses the

user data on the filesystem, the filesystem comprising an interface that is
associated with a disk for storing the user data, the method comprising the steps of:

(a) deleting sectors associated with the user data to be deleted from
the disk from a file allocation table (FAT);

(b) determining whether the sectors to be deleted are marked in a
recently written file allocation table (WFAT) that maintains information regarding
user data written to the disk since a previously taken checkpoint; and

(c) updating a recently deleted file allocation table (DFAT) if the
sectors are not marked in WFAT at step (b), the DFAT maintaining information
regarding the user data deleted from the disk since the previously taken checkpoint,
wherein the WFAT and DFAT are utilized to rollback the filesystem to a clean

state.

15. The method for deleting user data from a checkpointing filesystem of a
distributed-memory parallel supercomputer according to Claim 14, wherein the
WFAT and the DFAT are accessible in random order.

16. The method for deleting user data from a checkpointing filesystem of a
distributed-memory parallel supercomputer according to Claim 14, wherein a
written or deleted list (WDLIST) is provided for maintaining information

associated with the WFAT and the DFAT and is accessible in a sequential order.

-18-



WO 02/069200 PCT/US02/05613

O 0 3 O h D WO —

— e bk e e
B AW = O

O 0 3 O 1 A W N =

e e e )
W N = O

17. The method for deleting user data from a chec‘kpoihting filesystem of a
distributed-memory parallel supercomputer according to Claim 16, further

comprising a step of updating the WDLIST.

18. A checkpointing filesystem of a distributed-memory parallel supercomputer
comprising a node that accesses user data on the filesystem, the filesystem
comprising an interface that is associated with a disk for storing the user data,
comprising: '

a host controller comprising means for informing the node and the
interface to complete their access to the filesystem in order to take a checkpoint of
the filesystem, directing the interface to tak¢ a checkpoint of the associated disk,
and informing the node and the interface that they may resume their access to the
filesystem after the checkpoint it taken; and

| the interface comprising a means for clearing: a.recéntly written file
allocation table (WFAT) that maintains information regarding the user data written
to the disk since a previously taken checkpoint; and a recently deleted file
allocation table (DFAT) for maintaining information regarding the user data
deleted from the disk since the previously taken checkpoint, wherein the WFAT
and DFAT are utilized to rollback the filesystem to a clean state.

19. The checkpointing filesystem of a distributed-memory parallel supercomputer
according to Claim 18, further comprising rolling back to the previously taken
checkpoint, wherein:

the host controller further comprising means for informing the node
and the interface to complete their access to the filesystem in order rollback to the
previously taken checkpoint of the filesystem, for directing the interface to
rollback to the previously taken checkpoint of the associated disk, and for
informing the node and the interface that they may resume their access to the
ﬁlésystem; and |

the interface further comprising means for rolling back to the
previously taken checkpoint, the means comprising: rerhoving user data from a file
allocation table (FAT) utilizing the WFAT and adding user data to the FAT from
DFAT. ‘

-19-



WO 02/069200 PCT/US02/05613

N N W AW

N N W e

b W N

20. The checkpointing ﬁlesystem of a distributed-memory parallel supercomputer
according to Claim 18, further comprising writing user data to the checkpointing
filesystem:

the interface further comprising means for selecting sectors that are «
marked as free in the FAT and not marked for deletion in DFAT, for writing the
user data to the selected sectors on the disk; for updating the FAT to reflect the
written user data, and for updating WFAT.

'21. The checkpointing filesystem of a distributed-memory parallel supercomputer

according to Claim 18, further comprising deleting user data from the
checkpointing filesystem:

the interface further comprising means for deleting sectors
associated with the user data to be deleted from the disk from the FAT, for
determining whether the sectors to be deleted are marked in the WFAT, and for

updating the DFAT if the sectors are not marked in WFAT.

22. The checkpointing filesystem of a distributed-memory parallel supercomputer
according to Claim 18, wherein the WFAT and the DFAT are accessible in random

order.

23. The checkpointing filesystem of a distributed-memory parallel supercomputer
according to Claim 18, wherein a written or deleted list (WDLIST) is provided for
maintaining information associated with the WFAT and the DFAT and is

accessible in a sequential order.

220-



WO 02/069200 PCT/US02/05613

1/8
(60
j0% 0¥ //06
High Performance ' Nc;work Fileserver and -
Compute Engine - ‘ Switch _ Filesystem
- (HPecE)" ‘7—> N e
| /O

[

Host Control

1~ /0%

| HGHRE i



WO 02/069200 PCT/US02/05613
2/8

P = - - - .= mm e . _mm—m - . —m = . — - memm . e —— = -

' 1
. i
i : ' 1 .
202 _ 20
High Network \ - ( s Af
Performance | Switch ' PC , < . ™)

Compute L X
"~ Engine , B ; ~—
]

(Hece) S oo TR

/02

[ A

Host Control

/9%

F/guae 2



WO 02/069200 PCT/US02/05613
3/8

300
V4

\/302_

1

FAT

User Data~ 30t/

Free Space ~ 30 b

F%w%3
% 4—0 0
FAT ™B02
WFAT Agoz
DFAT ™~ Yo 4‘
WDLIST A o6

User Data ~ Sotf;

Free Space~-20(,

Figure i



WO 02/069200
4/8

PCT/US02/05613

Lo

: 7
Cl

clear WFAT /ijY
using WDLIST
clear DFAT __$06
using WDLIST

Y
clear WDLIST ~ 5

s

F/'gu&ef |



WO 02/069200

5/8

PCT/US02/05613

, 600
{

!

return FAT to
last checkpoint
using WDLIST

Q—éoyf

!

clear WFAT
using WDLIST

606

I

clear DFAT
using WDLIST

~60¢

i

clear WDLIST

Y

Hgb/rf G



WO 02/069200
6/8

PCT/US02/05613

.700 |
¥

%

and not marked in DFAT

choose sectors marked free in FAT L%l/

'

write user data
to previously free sectors

A

'

update FAT - 70 i
A 4 .

update WFAT - ?/0
y ' .

update WDLIST T2

CID

Fi l%éér”@ F



WO 02/069200

Yes

508

7/8

PCT/US02/05613

delete from FAT

are sectors
to be deleted

delete from WFAT

l

marked in WFAT?

Yob

No

AR

update  'DFAT

l

S/

update WDLIST

75/56/% %

W



WO 02/069200
8/8

CEDYRd

PCT/US02/05613

700

receive request to read a file

~ 04

l‘

examine FAT to determine
which sectors of user data to read

~ 906

l |

read determined sectors of user

pé]og

data

transmit read sectors of user data

End NQ/&



INTERNATIONAL SEARCH REPORT

International application No.

PCT/US02/05613

A. CLASSIFICATION OF SUBJECT MATTER
IPC(7) GO6F 17/30
USCL 7077201, 202, 204

According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

U.S. : 707/201, 202, 204

Minimum documentation searched (classification system followed by classification symbols)

Documentation searched other than minimum documentation (o the extent that such documents are included in the fields searched

Please See Continuation Sheet

Electronic data base consulted during the international search (name of data base and, where practicable, search terms used)

C. DOCUMENTS CONSIDERED TO BE RELEVANT

Category *

Citation of document, with indication, where appropriate, of the relevant passages

Relevant to claim No.

Y US 6,173,292 B1 (BARBER et al) 09 January 2001 (09.01.2001) whole document. 1-10
1823

Y US 5,551,043 A (CRUMP et al) 27 August 1996 (27.08.1996) whole document. 1-10
presy

X US 5,864,849 A (BOHANNON et al) 26 January 1999 (26.01.1999) whole document. 1i-17

D Further documents are listed in the continuation of Box C.

[

See patent tamily annex.

* Special categories of cited documents:

“A"  document defining the general state of the art which is not considered 10 be
of particular relevance

“E™ earlier application or patent published on or after the international filing date

“L™  document which may throw doubts on priority claim(s) or which is cited to
establish the publication date of another citation or other special reason (as
specitied)

0" document referring to an oral disclosure. use, exhibition or other means

“P"  document published prior 1o the imernational filing date but later than the
priority date claimed

“T" fater document published atter the international filing date or priority
date and not in conflict with the application but cited to understand the
principle or theory underlying the invention

"X document of particular relevance: the claimed invention cannot be
considered novel or cannot be considered to involve an inventive step
when the docutnent is taken alone

Y document of particular relevance: the claimed invention cannot be
considered o involve an inventive step when the document is
combined with one or more other such documents. such combination
being obvious 1o a person skilled in the ant

n&” document member of the same patent family

Date ot the actual completion of the international search

04 June 2002 (04.06.2002)

Date of mailing of the lmcrmuinﬁzrch report

Name and mailing address of the ISA/US
Commissioner of Patents and Trademarks
Box PCT
Washington. D.C. 20231

Facsimile No. (703)305-3230

Telephone No.

Authorized oftic
: './l n fo P ﬂ'
Hayminu.A%;mmdi B, ‘p /;/’ VST

(703) 305 1950

& .
,-/ 4"‘-

Form PCT/ISA/210 (second sheet) (July 1998)




International application No.

INTERNATIONAL SEARCH REPORT
PCT/US02/05613

Continuation of B. FIELDS SEARCHED Item 3:
WEST Search

Databases Searched: USPT, PGPB, JPAB, EPAB, DWPI, TDBD
Search Terms: checkpoint$, file$, rollback, fat, delet$

Form PCT/ISA/210 (second sheet) (July 1998)



	Abstract
	Bibliographic
	Description
	Claims
	Drawings
	Search_Report

