PCT

WORLD INTELLECTUAL PROPERTY ORGANIZATION
International Bureau

INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(51) International Patent Classification 5 :
GO6F 15/60, 15/18, 15/42, 15/20 Al

(11) International Publication Number:

(43) International Publication Date:

WO 94/28504

8 December 1994 (08.12.94)

(21) International Application Number: PCT/US94/05877

(22) International Filing Date: 20 May 1994 (20.05.94)

(30) Priority Data:

08/066,389 21 May 1993 (21.05.93) us

(60) Parent Application or Grant

(63) Related by Continuation
Us 08/066,389 (CIP)
Filed on 21 May 1993 (21.05.93)

(71) Applicant (for all designated States except US): ARRIS PHAR-
MACEUTICAL [US/US]; Suite 3, 385 Oyster Point Boule-
vard, South San Francisco, CA 94080 (US).

(72) Inventors; and

(75) Inventors/Applicants (for US only): CHAPMAN, David
[CA/US]; 442 A Collingwood Street, San Francisco, CA
94114 (US). CRITCHLOW, Roger [US/US]; 339 JERSEY
Street, San Francisco, CA 94114 (US). DIETTERICH,
Tom [US/US); 1785 NW Hillcrest Drive, Corvalis, OR
97330 (US). JAIN, Ajay, N. [US/US]; 436 Portofino Dr
#205, San Carlos, CA 94070 (US). LATHROP, Rick
[US/US]; 121 Auburn Street, Cambridge, MA 02139 (US).

PEREZ, Tomas, Lozano [US/US]; 545 Technology Square,
Cambridge, MA 02139 (US).

(74) Agent: SWERNOFSKY, Steven, A.; D’Alessandro, Frazzini

& Ritchie, 2099 Lincoln Avenue, Suite 101, San Jose, CA
95125 (US).

(81) Designated States: AM, AT, AU, BB, BG, BR, BY, CA, CH,

KZ, LK, LU, LV, MD, MG, MN, MW, NL, NO, NZ, P
PT, RO, RU, SD, SE, SL, SK, TJ, TT, UA, US, UZ, VN
European patent (AT, BE, CH, DE, DK, ES, FR, GB, GR
IE, IT, LU, MC, NL, PT, SE), OAPI patent (BF, B, CF
CG, CIL, CM, GA, GN, ML, MR, NE, SN, TD, TG).

CN, CZ, DE, DK, ES, FI, GB, GE, HU, JP, KP, KR,

<

-

Published

With international search report.

Before the expiration of the time limit for amending the
claims and to be republished in the event of the receipt of
amendments.

(54) Title: A MACHINE-LEARNING APPROACH TO MODELING BIOLOGICAL ACTIVITY FOR MOLECULAR DESIGN AND

TO MODELING OTHER CHARACTERISTICS
(57) Abstract

Explicit representation of molecular shape of molecules is com-
bined with neural network learning methods to provide models with
high predictive ability that generalize to different chemical classes where
structurally diverse molecules exhibiting similar surface characteristics
are treated as similar. A new machine-learning methodology is dis-
closed that can accept multiple representations of objects (100) and
construct models (102-114) that predict characteristics of those objects
(116). An extension of this methodology can be applied in cases where
the representations of the objects are determined by a set of adjustable
parameters. An iterative process applies intermediate models to gener-
ate new representations of the objects by adjusting parameters (108) and
repeatedly retrains the models to obtain better predictive models. This
method can be applied to molecules because each molecule can have
many orientations and conformations, or representations, that are deter-
mined by a set of translation, rotation, and torsion angle parameters.

sleo
SELECT INITIAL POSES
To Folm TM/u:uq- seT

guiLd morsL Aun SET loz
IQITIAL PARAMETGL VALVES

ExTRACT FVEATVEGS TZOM 104
Poses 1w TAAIWING SE

CALCULATE PREDICTED Mrlwvt‘,o‘

OF Potet 1y TeA G SET
AND  CroosE B

= {
{
| |
| |
| |
| |
1 |
\ Mobll’)’ PoRA METEL VALUES
TO Mitisrne biEFELALCES 108 !
| BETWEFL PREDrCTED AMLD |
| ACTUAL AcTivimes OF 6ST PosEs |
|

|
|
| |
. |

|
1
1 {
| i
, !
1 |
f !
| [

[10% Vo

Yes ~hL

|REPOSE Of- LE-SELECT PofES TO
NANMIES ﬁCYlvny AND
Fotk VEW TRAMIUE cET

USE MDDEL AUD PARAMETER
VALUES To PREDICT Atv

OF MOLECULE wTH NO /.“6
PoSES 1N TRAIMINE SET,IT
3esT PosES, AuD TS
DESILABLE Ay VAOESIRAbLE]
PRoPERL TizSg




applications under the PCT.
AT Austria

AU Australia

BB Barbados

BE Belgium

BF Burkina Faso
BG Bulgaria

BJ Benin

BR Brazil

BY Belarus

CA Canada

CF Central African Republic
CcG Congo

CH Switzerland

CI Cdte d'Ivoire
M Cameroon

CN China

cs Czechoslovakia
CZ  Cazech Republic
DE Germany

DK Denmark

ES Spain

FI Finland

FR France

GA Gabon

FOR THE PURPOSES OF INFORMATION ONLY

Codes used to identify States party to the PCT on the front pages of pamphlets publishing international

QOO Q
xZm®

SSEREEE SERWOAE

5858

United Kingdom
Georgia

Guinea

Greece

Hungary

Ireland

Italy

Japan

Keaya

Kyrgystan
Democratic People’s Republic
of Korea

Republic of Korea
Kazakhstan
Liechtenstein

Sri Lanka
Luxembourg
Latvia

Monaco

Republic of Moldova
Madagascar

Mali

Mongolia

Mauritania
Malawi

Niger

Netherlands
Norway

New Zealand
Poland

Portugal

Romania

Russian Federation
Sudan

Sweden

Slovenia

Slovakia

Seaegal

Chad

Togo

Tajikistan
Trinidad and Tobago
Ukraine

United States of America
Uszbeki

Viet Nam




10

15

20

25

30

35

40

WO 94/28504 PCT/US94/05877

A MACHINE-LEARNING APPROACH
TO MODELING BIOLOGICAL ACTIVITY FOR MOLECULAR
DESIGN AND TO MODELING OTHER CHARACTERISTICS

This application is a continuation-in-part of
Application Serial No. 08/066,389, filed May 21, 1993, in the
name of the same inventors, with the same title, and assigned to
the same assignee.

Background of the 1Invention

This invention relates in general to a machine-
learning approach to modeling bioclogical activities or other
characteristics and, in particular, to a machine-learning
approach to modeling biological activity for molecular design or
other characteristics. 1In modeling biological activity, the
approach is preferably shaped-based.

The shape that a molecule adopts when bound to a
biological target, the biocactive shape, is an essential
component of its biological activity. This shape, and any
specific interactions such as hydrogen bonds, can be exploited
to derive predictive models used in rational drug design. These
can be used to optimize lead compounds, design de novo
compounds, and search databases of existing compounds for novel
structures possessing the desired biological activity. In order
to aid the drug discovery process, these models must make useful
predictions, relate chemical substructures to activity, and
confidently extrapolate to chemical classes beyond those used
for model derivation.

Physical data such as x-ray crystal structures of
drug-target complexes provide a shape model directly and have
led to recent successes in structure-based drug-design.

However, in the absence of such daté, rational drug design must

rely upon predictive models
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derived solely from observed biological activity.
Several methods exist that produce predictive models
relying, in part, on molecular shape.

Existing methods for constructing predictive
models are unable to model steric interactions
accurately, particularly when these interactions involve
large regions of the molecular surface. Existing
quantitative structure-activity relationship (QSAR)
models are severely limited by the types of molecular
properties they consider. Methods that employ proper-
ties of substituents assume that the molecules share a
common structural skeleton, and hence canncot be extra-
polated to molecules with different skeletons. Many
methods employ ad hoc features that make it difficult to
interpret the models as a guide for drug design.
Pharmacophore models (e.g., BioCAD) model activity in
terms of the positions of a small number of atoms of
functional groups. This overcomes many of the problems
of traditional QSAR methods, but it has difficulty

addressing steric interactions. R
In U.S. Patent No. 5,025,388 to Cramer, III, et

al., a comparative molecular field analysis (COMFA)

methodology is proposed. In this methodology, the

three-dimensional structure for each molecule is placed’
within a three-dimensional lattice and a probe atom is
chosen, placed successively at each lattice inter-
section, and the steric and electrostatic interaction
energies between the probe atom and the molecule
calculated for all lattice intersections. Such energies
are listed in a 3D-QSAR table. A field fit procedure is
applied by choosing the molecule with the greatest
biological activity as the reference in conforming the
remaining molecules to it. In determining which
conformation of the molecule to use in the analysis,
COMFA proposes using averaging or Boltzman distribution

weighting to determine a most representative conformer.
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After the 3D-QSAR table is formed, a partial least squares
analysis and cross-validation are performed. The outcome is a
set of values of coefficients, one for each column in the data
table, which when used in a linear equation relating column
values to measured biological values, would tend to predict the
observed biological properties in terms of differences in the
energy fields among the molecules in the data set, at every one
of the sampled lattice points.

The COMFA method is disadvantageous since it requires
that the chemist guess the alignment and active conformation of
each molecule or, alternatively, compute the average or a
weighted distribution of the steric and electrostatic fields for
all conformations. This can undermine the applicability and
accuracy of the method.

The COMFA method is also disadvantageous because it

constructs a linear model to predict activity as a function of

the properties measured at the grid points. Biological activity
is an inherently non-linear function of molecular surface
properties (such as electrostatic, weak polar, and van der waals
interactions). In COMFA these nonlinearities must be captured
in the field values measured at the grid points.

None of the above-described approaches is entirely
satisfactory. It is therefore desirable to provide an improved
approach for modeling biological activity in which the above-
described difficulties are alleviated.
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Summary of the Invention

The invention provides a method of predicting
activities of molecules in response to data from actual assays
of a set of training molecules. 1In a preferred embodiment, this
method includes selecting initial conformations and orientations
("poses") for molecules in a training set, constructing a model
in response to those poses, and revising the model by altering
parameters and by selecting new poses in response to differences
between the model and data from actual assays.

An important advantage of the approach of this
application over COMFA is that a non-linear mathematical model
is employed. This permits a surface representation that is
easier to understand and more efficient to compute. The non-

linearity is handled by a mathematical model.
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This invention is based on the observation that
it is difficult for a scientist to provide good guesses
about the best bioactive pose for each molecule and that
it is desirable to provide a method where the model can
be refined to generate new molecular orientations and
conformations even though the initial guesses may be
mediocre. This invention is also based on the observa-
tion that almost all of the chemical interactions
between molecules of interest to biochemistry and
medicinal chemistry are based entirely on surface inter-
actions so that the predictive model would best utilize
a surface-based representation of molecular shape.

One aspect of the invention is directed towards
an iterative process that produces better models. In
many binding interactions between molecules, not all of
the characteristics of the molecule considered are of
equal importance. Using a modeling approach permits the
user to focus on the salient features of the molecules.
This aspect of the invention is directed towards a
method for predicting activity of molecules with respect
to a chemical function based on known activities of a
plurality of molecules. Each molecule has one or more
conformations and orientations, and each combination of
a conformation and an orientation defines a pose of a
molecule. The method comprises selecting one or more
poses from possible poses of each molecule as the
initial poses of a training set. A model is then
constructed with model parameters for predicting
activity of poses with respect to said chemical function
and model parameter values are then set. The activities
of at least some of the initial poses in the training
set are predicted using the model and the model
parameter values. The predicted activities of at least

- some of the initial poses of molecules are then compared

to the known activities of such molecules. The model

parameter values are then modified based on a prior
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comparison between predicted activities of poses in the
set and their known activities to minimize the
differences between the predicted activities of said at
least some of the poses of molecules in the set and the
known activities of such molecules. The poses of the
molecules are also modified or re-selected so as to
obtain an updated training set of enhanced poses with
higher predictive value than poses in the set prior to
the modifying step. The model and modified model
parameter values are then used to predict the activity
of additional molecules whose activity is unknown.

In the preferred embodiment, the model
parameter values and poses are modified iteratively
until the model parameter values as well as the poses
both converge before the model and the modified model
parameter values are used to predict the activity of the
molecules whose activity is unknown. For each molecule,
the pose having the highest predicted activity is the
best pose of the molecule. Preferably, the model para-
meter values are modified based on a prior comparison
between predicted activities of only the best pose or
poses for each molecule in the set and their known
activities.

Another aspect of the invention is directed
toward a shape~based approach to modeling biological
activity. This aspect is directed towards a method for
predicting activity of molecules with respect to a
chemical function based on known activities of a
training set of molecules. Each molecule in the set has
one or more poses as defined above. The method
comprises extracting a set of feature values from each
of the poses of molecules in the training set, said
feature values related to said activity. The extracting
step includes the following two steps: creating a
surface representation of each of the poses of each of

the molecules in the training set and obtaining a
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feature value between at least one sampling point and a point on
the surface representation of each of the poses. A model is
then constructed for predicting activity of poses with respect
to the chemical function using the feature values and the model
is then used to predict the activity of a molecule not in the
training set. In the preferred embodiment, the feature value is
obtained by determining the minimum distance between said at
least one point and the surface representations of the poses.

Yet another aspect of the invention is directed
towards a general machine-learning method for predicting
Characteristics of an object based on known characteristics of a
plurality of other objects. Each object has one or more
representations. The method comprises selecting one or more
representations from possible representations of each of the
other objects as the initial representations, constructing a
model for predicting characteristics of the representations, and
predicting the characteristics of at least some of the initial
representations using the model and comparing the predicted
characteristics of initial representations of the other objects
to their known characteristics. For each of the other objects,
the representation that has better characteristics than other
representations of the same object defines the best
representation of the object. The method further comprises
modifying the model based on a prior comparison between
predicted characteristics of the best representations of the
other objects and their known characteristics to minimize the
differences between the predicted characteristics of said best
representations of the other objects and their known
characteristics. The last step involves using the modified
model to predict characteristics of an object not in the
training set.

In another aspect, the invention provides a method of
classifying objects into one of a plurality of categories, in
response to example objects from those categories. 1In a
preferred embodiment, this method includes selecting initial
exemplars ("poses") for those categories, constructing a model
in response to those poses, and revising the model by altering
parameters and by selecting new poses in response to differences
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between the model and data from actual classification of new

objects into those categories. Objects may be
characters and categories may be known letters
Objects may be speech fragments and categories

units such as consonants, vowels, syllables or

written

or symbols.

may be linguistic
words. Objects

may be pictures and categories may be known physical images.
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Brief Description of the Drawings

Fig. 1 is a flow diagram of a molecular shape
learning system to illustrate the invention.

Fig. 2 is a schematic illustration of four
different molecules, each with one or more different
orientations and conformations or poses to illustrate
the bootstrap procedure of Fig. 1.

Fig. 3 is a schematic view of the van der Waals
surface representations of atoms on a surface of a pose.

Fig. 4 is a schematic illustration of a pose of
a molecule and a number of points around the surface
representation to illustrate a point based system for
feature extraction.

Fig. 5A is a schematic view of a ray-based
feature extraction system to illustrate the invention.

Fig. 5B is a schematic view of a pose of a
molecule and a ray-based feature extraction system to
illustrate such system.

Fig. 5C is a schematic view of one or more
poses of four different molecules to illustrate the ray-
based feature extraction systen.

Fig. 6A 1is a graphical illustration of a
Gaussian function to illustrate the invention.

Fig. 6B is a schematic view of a ray-based
feature extraction system and tolerance boxes to
illustrate the relationship between ,activity of the

‘molecule and its feature values along the rays of the

ray-based system.

Fig. 6C is a schematic view of the ray-based
feature extraction system and tolerance boxes in
relation to a pose to illustrate the invention.

Fig. 7 is a flow chart illustrating iterative
model parameter modification and reposing of molecules
in order to illustrate the preferred embodiment of the
invention.
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Figs. 8A-8C and 9A-C are two sets of figures each set
showing a molecule undergoing re-orientation and re-conformation
to illustrate the preferred embodiment of the invention.

Fig. 10 is a schematic view illustrating a method for
finding the minimum distance between the sampling point and the
van der Waals surfaces of atoms of a molecule to illustrate the
invention.

Fig. 11 is a crude diagram of learned requirements for
musk odor activity to illustrate an example applying the
invention of this application.

Figs. 12A-12F are graphical illustrations of six
different molecules showing the relations between their
structures and activities to illustrate the invention.

Fig. 13 is a schematic view of a portion of a 16 x 16
grid to illustrate a machine-learning method for predicting
characteristics of objects to illustrate another aspect of the
invention.

Fig. 14 is a flow chart to illustrate the aspect of
the invention of Fig. 13.

Figure 15 shows a set of feature points used in a
method of point placement.

Figure 16 shows determination of a feature relating to
a polar atom.

Figure 17 shows a method of initial molecule
alignment.

Figure 18 shows a neural network embodiment of the
activity model.

Figure 19 shows a model of each input node of the
neural network.

General Description of the Preferred Embodiment
A novel modeling approach is proposed using a
surface-based representation of molecular shape that employs
neural network learning techniques to derive robust predictive
models. Trained models predict the bioactive shape of molecules
and can be readily interpreted to guide the design of new active
compounds. The method is demonstrated on musk odor perception,

a problem believed to be determined by subtle steric
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representation that characterizes surface shape such that

structurally diverse molecules exhibiting similar surface

characteristics are treated as similar;

a new
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machine learning methodology that can accept multiple
orientations and conformations of both active and
inactive molecules; and an iterative process that
applies intermediate models to generate new molecular
orientations to produce better predictive models. The
method is first outlined, then predictive results are
presented, and lastly the details of the method are
described.

The procedure begins by conducting a search for
low energy conformations of the training molecules.
This provides a pool of energetically accessible shapes
for each molecule. They are then placed into a set of
initial orientations that coarsely align the gross shape
and electrostatically important regions of the
molecules. From these starting poses, we extract
feature values using either the point-based or ray-based
feature extraction method. These feature values (along
with the known activities of the corresponding
molecules) are then provided as input to a neural
network, which is trained to construct an initial model
of activity. To improve predictive performance, we
apply the learned model to automatically compute
additional discriminative molecular poses. The model is
refined using the new poses, and the process iterates
until it converges on a best model and a best pose for
each molecule. Activity predictions for new molecules
are then obtained by applying the final model. As in
the training process, the model automatically computes
the best conformation and orientation for each molecule
-- the predicted biocactive pose. It can be visualized
in three dimensions to identify required, allowed and

disallowed regions of space around a candidate molecule.

Detailed Description of the Preferred Embodiment
The invention will now be described in detail

by reference to figures. Fig. 1 is a flow chart showing



WO 94/28504 ‘ PCT/US94/05877

10

15

20

25

30

35

10

the overall structure of the systemn. In order to
predict the activity of molecules not yet synthesized or
for which not much is known with respect to a particular
chemical function, such as binding to a particular
receptor, one would first start with molecular struc-
tures and assay values of known molecules with known
activities with respect to such chemical function. This
is accomplished in the first step 20 in Fig. 1 by
gathering the training data. Such data is subsequently
used in a learning model which is refined to generate
consistent hypotheses to explain the training data.
However, in order to make the learning process more
efficient, it is desirable to employ a bootstrap
procedure 22. This procedure is illustrated in Fig. 2
in three steps: finding the conformers, posing the
conformers and selecting initial poses from the poses to
form an initial training set. After the training set is
formed, the set is used in a learning step 24 to refine
a system which is then used to predict (26) the activity
of a molecule not in the training set.

As shown in Fig. 2, the training data includes
data on four different molecules, where molecules 1 and
2 are active with respect to a particular chemical
function and molecules 3 and 4 are inactive with respect
to such function. As known to those skilled in the art,
biologically active molecules can take on different
shapes known as conformers or conformations defined by
the internal torsion angles of the rotatable bonds in
the molecule. As shown in Fig. 2, molecules 1 and 4
each have only one conformer, molecule 2 two conformers
and molecule 3 three conformers. 1In order to increase
the computational efficiency in learning, it is
desirable to choose only the conformations that are best
in confirming or refuting the learning model.

The first step in this selection involves

posing the molecule. A pose of a molecule is defined by
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its conformation (internal torsion angles of the
rotatable bonds) and orientation (three rigid rotations

and translations). This mathematically defines the pose
of the molecule. First, a conformer of an active
molecule is chosen and its pose is first fixed. As

shown in Fig. 2, molecule 1 is chosen and its pose 30 is
fixed. Then the conformers of the other molecules are
realigned to match pose 30, such as in the realignment
of conformer 32 along arrow 34. Conformer 36 of
molecule 3 is moved along all three dimensions until it
overlaps as much as possible pose 30 as shown in Fig. 2.
In chemical terms, this is analogous to permitting the
molecule to rotate, translate and alter its conformation
to achieve its best possible fit to the binding site.
The rotation, translation and alteration in the internal
torsion angles of the rotatable bonds in a molecule is
referred to herein as reposing of the molecule.

In other words, since the fixed pose of
molecule 1 known to have high activity is used as the
reference for reposing the remaining molecules, this
crudely simulates the process of reposing the other
molecules to achieve the best possible fit to the
binding site. The reposed conformers of molecules 2, 3
and 4 are shown in Fig. 2 in the category labeled
"posed". The above-described process can be performed
using a number of software packages available commer-
cially, such as Catalyst from BioCAD, Foster City,
California, and Batchmin available from Columbia
University, New York City, New York.

The learning process 24 now begins with a
selection of only some of the poses to be in the
training set. 1In other words, poor matches are dropped
for computational efficiency in the subsequent learning
process. For example, two of the poses of molecule 3
have been dropped to arrive at a training set of five

selected poses as shown in Fig. 2. In making the
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selection, various properties of the four molecules
known to chemists may be used, including physical and
chemical properties such as shape, electrostatic
interaction, solvation and biophysical properties.
Before the selected poses may be used for
training, the relevant features of these poses are first
extracted. The COMFA methodology described in U.S.
Patent No. 5,025,388, for example, employs a three-
dimensional lattice structure and extracts the relevant
features by calculating the steric and electrostatic
interaction energies between a probe atom placed at each
of the lattice intersections and the molecule. As indi-
cated above, the receptor site in a binding interaction
"sees" only the surfaces and not the interior of a
molecule. By choosing a three-dimensional lattice and
modeling the learning process based on the interaction
energies between these lattice points and the molecule,
the COMFA methodology has failed to focus in on the
critical portion of the molecule, namely its surface.
Consequently, extraneous data not particularly relevant
to binding interactions may be included and may
compromise the subsequent learning process and cause it
to give incorrect weight to critical surface features.
The feature extraction methods of this invention

overcome such defects.

Surface Representation

This invention envisions creating a surface
representation of each of the poses and then obtaining
a feature value between at least one sampling point and
a point on the surface representation of each of the
poses. Fig. 3 is a schematic illustration of a portion

of a surface of a molecule with five atoms whose nuclei

"are at 42-50 at such surface portion. The van der Waals

surface of each of the five atoms is first found. The

van der Waals surfaces of adjacent atoms would inter-
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sect; thus, the van der Waals surface 42' of atom with
nucleus at 42 intersects surface 44' of atom with
nucleus at 44 at ridge 52. The portions of surfaces
42', 44' that extend outwards from ridge 52 are then
taken as a surface representation of the molecule around
atoms with nuclei at 42 and 44. Thus, the curved
surface 60, having a number of ridges such as ridge 52
at the intersections of adjacent van der Waals surfaces,
is a surface representation of the portion of the
molecule shown in Fig. 3.

As known to those skilled in the art, the
electron density around each atom can be represented as
a Gaussian function of distance from the nucleus of the
atom where the peak of such Gaussians would more or less
coincide with the van der Waals radius of the atom. A
surface representation of the portion of the molecule
shown in Fig. 3 can then be obtained by summing the
Gaussian functions for all the five atoms with nuclei at
42-50 where the sum function also has a peak surface
that would more or less coincide with surface 60. The
surface representation arrived at using the van der
Waals surfaces of the atom has been found to be adequate
and easy to find for most purposes for modeling
biological and chemical activity whereas the sum of the
Gaussian approach gives a scientifically more rigorous
representation of such surface. The details of finding
the van der Waals surfaces of atoms and calculations
involving a surface such as surface 60 are known to
those skilled in the art and will not be explained in
detail here; although an improved method of calculating
the minimum distance between such surface and a sampling
point is discussed below. Similarly, the Gaussian
distributions for the atoms and method for summing them
are also known to those skilled in the art and will not
be explained in detail here. Other than van der Waals

and Gaussian surface representations, other types of
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surface representation are possible, such as a Connolly
surface. See, M.J. Connolly, J. Appl. Cryst., 16, 548
(1983).

Feature Extraction

The feature values, including steric,
electrostatic or other feature values may be extracted
by first specifying at least one sampling point and then
obtaining a feature value between such sampling point
and a point on the surface representation of each of the
poses. In the preferred embodiment, the point is
outside but near the molecular surface and the feature
value is extracted by determining, for example, the
minimum distance between such sampling point and the
surface representation of the pose. For simplicity, a
surface representation of a pose determined in the
manner above will be referred to simply as the surface
of the pose. An electrostatic feature value may be
extracted as the electrostatic interaction between a
probe atom placed at such sampling point and the pose.
Alternatively, the electrostatic feature value may be
the sum of the Coulomb force interactions between the
probe atom and atoms of the pose surface. The above-
described approach will be referred to herein as the
point-based feature extraction approach. Preferably, a
number of sampling points are chosen surrounding the
poses. In other words, the same sampling points are
used to extract features from each of the poses in the
training set. To arrive at a common set of sampling
points, one may select the points by reference to the
averaged position of the poses in the training set.

Fig. 4 is a schematic illustration of a number
of sampling points 62 surrounding the surface of a pose
64, which may be an averaged position of the poses in
the set. If the fine features of portion 64' of the

pose are deemed to be particularly important for the
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activity of the pose, the density of sampling points 62
may be increased surrounding such portion as illustrated
in Fig. 4. Point based feature extraction has the
advantage that the feature values (minimum distances,
electrostatic interaction, ...) will not change abruptly
upon changing the orientation or conformation of the
pose. Also, when differentiability of the feature
values with respect to orientation and conformational
parameters is important, point based feature extraction
gives rise to feature values which are differentiable
functions of the orientation and conformational para-
meters. The steric feature values may simply comprise
the minimum distance between each of the sampling points
and the surface representation of the molecule, such as
a', b', c', d', e' as shown in Fig. 4. The electro-
static feature values may comprise the electrostatic
interaction energies or sums of Coulomb forces between
a probe atom placed at each of the sampling points and
the molecule. Other feature values may be extracted in
a similar manner.

Another possible feature extraction method is
a ray-based method as illustrated in Figs. 5A-5C. 1In
ray-based feature extraction, first one or more points
are chosen, such as point 72, preferably located inside
the molecular surface, and a number of rays with fixed
directions are chosen, such as rays 74a, 74b, 74c, 744
diverging from point 72. The points at which the
surface representation of the molecule intersects these
rays would yield the steric feature values a, b, ¢, d as
illustrated in Fig. 5B. Thus, the four rays intersect-
ing the surface of pose 76 intersect the pose surface at
distances a, b, ¢, d from point 72 so that the set of
feature values representing pose 76 is [a, b, c, d,
.-.]i a, b, ¢, d being the steric feature values. As
shown in Figs. 5B, 5C, pose 76 of molecule 1 has feature

values (a, b, c, d, ...). The two poses of molecule 2
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and the single pose of each of molecules 3 and 4 each has a set
of feature values representing it as illustrated in Fig. 5C.

Feature Point Placement

Figure 15 shows a set of feature points used in a
method of point placement.

In a preferred embodiment, a set of feature points
1501 may be selected with reference to the selected pose of the
molecule 1502. The molecule 1502 is represented as an
nondirected graph, where the atoms 1503 of the molecule are
points of the graph and where the bonds 1504 between atoms are
vertices of the graph. A set of terminal atoms 1503 (ignoring
hydrogen atoms) are selected by examination of the molecule
1502.

For each terminal atom 1503, a potential feature point
1505 is placed in line with the bond 1504 associated with that
terminal atom 1503. The potential feature point 1505 is placed
a selected distance 1506 (preferably 2 angstroms) away from the
terminal atom 1503 along the line of the bond 1504. The
selected distance 1506 is selected by analogy to the mean
diameter of a carbon atom, and may be selected to be a different
distance in response to the chemistry of the set of molecules
1502 under investigation. 1In a preferred embodiment, the p
parameter is initialized to the same value as the selected
distance 1506.

A set of feature points 1501 is selected as follows:
Each new molecule 1502 is selected in turn. For each molecule
1502, each pose of that molecule 1502 is selected in turn. For
each pose, each terminal atom 1503 is selected in turn. For
each terminal atom 1503, the potential feature point 1505 is
placed.

If the potential feature point 1505 is less than a
selected distance 1507 (preferably 2 angstroms) away from a
nearest feature point 1501 already selected, the potential
feature point 1505 is not selected. Otherwise, the potential
feature point 1505 is added to the set of selected feature
points 1501. In the case where no feature points 1501 have been
selected yet, the first potential feature point 1505 is always
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distance 1507 is selected by analogy to the mean diameter of a
carbon atom, and may be selected to be a different distance in
response to the chemistry of the set of molecules 1502 under
investigation. A preferred number of feature points 1501 is
about 200 to about 600.

It would be clear to those skilled in the art, after
perusal of this application, that feature points 1501 could be
selected from the set of potential feature points 1505 in other
ways, including (a) selection of feature points 1505 to
represent clusters of potential feature points 1505, or (b)
selection of feature points 1505 to completely span the set of
potential feature points 1505 without being closer than the
selected distance 1507. It would also be clear to those skilled
in the art, after perusal of this application, that such other
ways would be workable within the context of this application,

and are within the scope and spirit of the invention.

Polar Features

Figure 16 shows determination of a feature relating to
a polar atom.

In a preferred embodiment, a selected feature includes
the distance 1601 from a feature point 1501 to the center of a
feature atom 1602. The feature atom 1602 is selected to be a
polar atom with a selected sign (i.e., an electron acceptor atom
having a positive sign, or an electron donor atom having a
negative sign), other than a hydrogen atom 1604. Where there
are polar atoms of opposite sign, nonpolar atoms 1603, or
hydrogen atoms 1604 between the feature point 1501 and the
feature atom 1602, the presence of those other atoms is not used
in computing the distance from the feature point 1501 to the
feature atom 1602.

In a preferred embodiment, a distance 1601 from the
feature point 1501 to the center of the feature atom 1602 is
determined, but this distance 1601 may be adjusted in response
to the size of the feature atom 1602, if the size of the feature
atom 1602 is greatly different from that of a carbon atom. The
featuré may also be adjusted in response to an estimated
hydrogen bonding strength of the feature atom 1602, e.g., by
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hydrogen bonding strength. An additional feature may also be
determined relating to an angular direction 1605 from the
feature point 1501 to the feature atom 1602.

Initial Molecule Alignment

Figure 17 shows a method of initial molecule
alignment.

In a preferred embodiment, when two molecules each
have multiple poses, it is generally desirable to initially
align the molecules with each other so that predicted activity
for a first molecule is best related to predicted activity for a
second molecule.

At a step 1701, feature points 1501 are selected.

At a step 1702, the set of training molecules is
sorted by activity.

At a step 1703, a pose for the next molecule having
the greatest activity is selected for alignment. The alignment
of the first molecule is presumed to be already selected, so on
the first execution of this step, the second molecule is
selected for alignment.

At a step 1704, a lowest energy conformation of the
selected molecule is aligned with each previous molecule (i.e.,
each molecule that has greater activity). This step is
performed as follows:

A set of parameters for alignment of the molecule are
determined. A distance metric is determined between the
selected molecule and each previous molecule, equal to the sum
of absolute values of differences between feature values. A
minimization procedure (such as gradient descent or simulated
annealing) is performed to alter the parameters to minimize the
distance metric to below a selected threshold d. Once the
distance metric falls below d, no further minimization is
performed.

At a step 1705, the previous molecule that has a
smallest distance from the selected alignment of the selected

molecule is determined. All conformations of the selected

" molecule are aligned to this previous molecule.
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At a step 1706, a new set of feature points 1501 are
selected in response to the new alignments of all molecules.

At a step 1707, it is determined if there are any
degenerate alignments remaining. If not, the alignment process
is halted. Otherwise, the process continues with step 1702.

Form of the Model

Once features have been extracted for each initial
pose in the initial training set, these features are input to a
parameterized mathematical model (neural network) to produce an
activity prediction. Let V (M, P) be the vector of n features
extracted to represent molecule M in pose P. Let the kth
component of this vector be denoted V (M, P)j.

During training, the optimal values for the model
parameters are determined. It will be understood that the scope
of this invention includes a wide range of mathematical models,
including linear models and nonlinear models. In the preferred
embodiment, the model has the form:

Activity (V(M,P)) = Sigmoid [:}:l UsF5 (V5, VM,P), R, 6)] (1)

where

m is the number of weights

sigmoid (X) = 1/(1 + exp (-X))

exp is the exponential function (whose base e is the base of the
natural logarithm)

U; is a real-valued weight and

n
F; (Vy, V(M,P), U, 6) = Sigmoid [% ViiG(VIM,P) 5, ;. 65)1 (2)
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(V (MI P)_i_ 'J-i)z

G(V(Mr P).i' u’.i' Ui)-exp— 3
201'

L; is a real-valued location parameter
o, is a real-valued width parameter

~ The parameters of this model are:

u; (j=1...n)
v (3=1...n, i=1...m)

Ky (i=1...m)

o; (i=1...m).

n

In this embodiment, the function G is a
Gaussian-like function that will produce large values
when the measured feature V (M, P);, is near to L; and
smaller values when the measured feature is distant from
Bi- The value of o; controls how rapidly the value of
G decreases as V (M, P), moves away from k;. Fig. 6A
shows a sketch of the shape of the G function.

Given an initial set of training poses, the
training process is initialized by providing starting
values for each of the parameters. In the preferred
embodiment, the values of u; and V;; are set to small
random positive values in the range from 0.0 to 0.2; pu;
is initialized to be a small amount (1.0) less than the
mean of the values of V (M, P); for all molecules and
poses in the training data set. The value of o, is
initially set to a value of 0.25. The value of n, the
number of intermediate sigmoids, is initialized to 1.
If inadequate predictions are obtained, n can be
increased and the model re-trained until a sufficient
value of n is found.

Fig. 6B provides a graphical interpretation of
the model applied to ray-based features. Each Gaussian

G (V (M,P);, i;, 0;) can be approximately viewed as a box
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lying along the ray at a location determined by M;. The size

(length) of the box is determined by ©;. If the values of Vjy;

are positive (for each value of j), then this indicates that in
order to exhibit activity, it is desirable that the molecular
surface pass through this box. For example, box 82 lies at a
position H; along ray 74a. This size of the box is determined

by 0;. As shown in Fig. 6C, molecule 1 falls inside all of the
boxes 82, 84, 86 and 88, so (assuming the Vj; are all positive),

it will have very high predicted activity. If the values of Vsi

are negative for some ray i, then the box represents a region
where the molecular surface should not be located. This is how
the model represents excluded regions for the molecular surface.

Because contributions are weighted and summed by the
sigmoid functions, a molecule can still have fairly high
predicted activity even if its surface does not pass through all
of the desirable boxes. Notice that the predicted activity of a
molecule will vary as the pose of the molecule varies. For each
pose, the molecular surface can intersect the various rays at
different points, and hence produce different feature values.
The final predicted activity of each molecule is determined by
the pose that gives the highest predicted activity among all
poses considered for that molecule according to the final
learned model.

The discussion in the preceding paragraphs has focused
on steric features, but the same mathematical model applied

equally well to electrostatic features. The values of W; and o;

for an electrostatic feature i describe an interval (“BOX”) of
desirable or undesirable values for the feature (depending on
the values of Vj;). 1In fact, the same mathematical model is
applicable to other biological activity types including but not

limited to affinity, agonism, potency, receptor selectivity and
tissue selectivity.

Neural Network Embodiment
Figure 18 shows a neural network embodiment of the
activity model.
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In a preferred embodiment, the neural network 1801
comprises three layers of nodes. An output layer 1802 comprises
a single output node 1803, that produces a single output signal
1804 that represents the prediction of activity for the
molecule. A second layer 1805 comprises a set of three
intermediate nodes 1806, each of which is coupled to the output
node 1803. An input layer 1807 comprises a set of input nodes
1808, each is which is coupled to one of the three intermediate
nodes 1806.

Each input node 1808 is coupled to a feature value
1809 for the molecule, and each feature value 1809 is one of
three types. A first type of feature value 1809 comprises a
steric feature value; second type of feature value 1809
comprises a feature value for a polar atom that is a hydrogen
acceptor; a third type of feature value 1809 comprises a feature
value for a polar atom that is a hydrogen donor.

In a preférred embodiment, each one of the three
intermediate nodes 1806 may be trained separately, using only
those feature values 1809 coupled to that intermediate node
1806. After each one of the three intermediate nodes 1806 is
trained separately, the neural network 1801 is trained for all
three intermediate nodes 1806 together using backpropagation or
another known method for training neural networks.

Feature Pruning

In a preferred embodiment, selected feature values
1809 are pruned (removed from the set of feature values 1809)
after the neural network 1801 is trained.

As described herein, each input node 1808 comprises a
Gaussian function 1901 and a sigmoid function 1902. After the
neural network 1801 is trained, each input node 1808 is examined
for each molecule to determine whether that input node 1808
causes the predicted activation value output by the neural
network 1801 is be closer to or farther away from the actual
activation value.

1f an input node 1808, including both the Gaussian
function 1901 and the sigmoid function 1902, makes the predicted
activation value less accurate than just the Gaussian function
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1901, the sigmoid function 1902 part of the input node 1808 is
removed.

If the Gaussian function 1901 part of an input node
1808 makes the predicted activation value less accurate for more
than 50% of the molecules in the training set (i.e., the input
node 1808 has a prediction capability that is worse than
chance), the entire input node 1808 is removed.

The neural network 1801 is then retrained without
those input nodes 1808 or parts of input nodes 1808 that have

been removed.

R i i r r

In an alternative embodiment without confidence
measures, a regularization process, described herein, may be
used in addition to the backpropagation training process.
However, the regularization process is not necessary when using
confidence measures.

In the regularization procedure, in addition to the
backpropagation training process, the z parameter of each
Gaussian function may be reduced by a small decrement, such as
.01, during each training pass. The small decrement should be
small enough that it has little effect on the z parameter for
any Gaussian feature that is not irrelevant (and therefore is
occasionally incremented by the backpropagation training
process). The small decrement should also be large enough that
its cumulative effect is that the z parameter for any Gaussian
feature that is truly irrelevant (and therefore is never
incremented by the backpropagation training process) eventually
becomes a large negative value.

In the event that the neural network 1801 provides
inadequate predictions of molecular activity, additional layers
of intermediate nodes 1806 may be inserted between the second
layer 1805 and the output layer 1802. These additional layers
may comprise a set of intermediate nodes 1806 that are coupled
to all the intermediate nodes 1806 of the previous layer (e.g.,
the second layer 1805) and to the output node 1803.
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Neural Network Input Laver
Figure 19 shows a model of each input node of the

neural network.

In a preferred embodiment, each input node 1807
computes a sum of two functions of its input feature value 1808
-- (a) a Gaussian function 1901, and (b) a sigmoid function
1902. The Gaussian function 1901 and the sigmoid function 1902
are summed to produce a unified function 1903 of the input
feature value 1808.

The unified function 1903 approximates the interaction
energy between the molecule and the receptor site, because it
has a maximum at the preferred distance, drops off to zero at
substantially larger distances, and becomes highly negative at
substantially smaller distances. This models the likely
behavior of the molecule at the receptor site. The Gaussian
function 1901 models the maximum at the preferred distance and
the drop-off to zero at substantially larger distances, while
the sigmoid function 1902 models the highly negative interaction
at substantially smaller distances (where the molecule would
likely contend with the receptor site for occupying physical
space) .
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Training the Model
The training of the model will now be described

in reference to Fig. 7. Fig. 7 is a flow chart
illustrating in more detail the learning step 24 and
prediction step 26 of Fig. 1.

In the preferred embodiment, the sampling
points 62 are chosen by reference to an average surface
representation obtained by averaging the surface repre-
sentations of the poses in the training set. Thus, if
surface representation 64 is an averaged surface repre-
sentation of all the poses, then the sampling points 62
are chosen by reference to such surface. The averaging
process to obtain the average representation of a set of
poses is known to those skilled in the art.

As explained above in reference to Fig. 2, an
initial set of poses is selected to form the training
set in order to train the model (block 100}). Then the
initial values for the parameters n, Kir 04, vy, and y;
are chosen (block 102). The feature values of the poses
in the training set are extracted as described above.
However, it will be understood that the training system
of the invention is not limited to the point-based or
ray-based feature extraction methods above. Then the
predicted activity of each of the poses in the training
set is calculated using the model and the parameter
values set initially by using, for example, the equa-
tions above. For each molecule, the pose with the
highest predicted activity is chosen as the best pose of
the molecule (block 106). Then the parameter values set
initially for feature i are modified to minimize the
differences between the predicted and actual activities
of preferably only the best poses of the molecules.

When receptor sites are present in the vicinity
of the molecules used for training, it is known that the
presence of such sites would influence the orientation

and conformations of molecules present so that in actual
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fact, the molecules would repose under such influence to
attempt to conform to the pose with the highest
activity. Therefore, the above-described step in block
108 of training the model by reference to only the best
poses of molecules resembles the physical process. It
is of course possible to modify the parameter values in
reference to poses in addition to or other than the best
poses; all such variations are within the scope of the
invention.

If p; is the predicted activity of a particular
pose j and a,

j
function for the training set of poses can be formed by

its actual activity, then an error

the following equation:

m
Error Function-Y. (p;-a,)?
£

where m is the total number of poses (preferably only
the best poses) in the set in reference to which the
parameter values are to be modified. A wide variety of
computational methods may be applied to minimize the
error function with respect to the parameters of the
model (e.qg., Y, Ve My, 04, n). Such methods are known
to those skilled in the art and will not be described
here. 1In the preferred embodiment, the gradient of the
error function with respect to these parameters (except
for n) is computed, and gradient descent methods are
applied. Other methods such as conjugate gradient,
Newton methods, simulated annealing, and genetic
algorithms may also be used and are within the scope of
the invention.

After the differences between predicted and
actual activities of poses (e.g., best poses) have been
minimized, such as by minimizing the above error

function, such differences are compared to preset
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thresholds (diamond 110). If the differences are below
the preset threshold or thresholds, one concludes that
the process has converged and proceeds to the step in
block 112. If not, then one returns to block 106 to
calculate the predicted activities of poses in the
training set by reference to the modified parameter
values and again choose the best pose for each molecule
having the highest predicted activity. The parameter
values are again modified to minimize differences
between predicted and actual activities of best poses.
This loop is repeated until the differences are found to
be below preset threshold or thresholds and the same
best poses are chosen every time.

Then the molecules are reposed to maximize
their activities and from the possible poses after the
reposing, poses are chosen to form a new training set
(block 112), a process such as that illustrated in Fig.
2 above. Instead of reposing the molecules, it is
possible to simply re-select from the initial set of
poses to form the training set of poses, as illustrated
in Fig. 2. However, it is believed to be preferable to
repose the molecules in order to form a new training
set. The new training set is compared to the prior
training set to see whether the changes to the poses are
below certain set threshold or thresholds (diamond 114).
If the changes are found to be below the threshold(s),
then the process of training the model is completed and
one proceeds to the prediction step in block 116. 1If
the changes to the poses are not below the threshold or
thresholds, (diamond 114), then one returns to block
104. Since the orientation and conformation of the
poses may have changed, these new poses will have
different feature values from those in the original
training set. Therefore, the feature extraction step
needs to be repeated. The process of reposing is

illustrated in Figs. 8A-8C and 9A-9C by reference to a
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ray-based system. As shown in Figs. 8A, 8B, molecule 3
is reposed by first re-orienting the molecule with
respect to the sampling points (br to the rays in the
ray-based system). When the parameter values of the
model are modified, the positions of the boxes in Fig.
8 have been modified so that they are not the same as
the positions of the boxes in the prior application of
the model to the molecule. Therefore, molecule 3 has
been re-oriented to best fit its surface portions within
the tolerance boxes with positive weighting factors and
to avoid boxes with negative weighting factors as shown
in Fig. 8B. Then the internal torsion angles of the
rotatable bonds are altered to re-conform the molecule
to again best fit the surface portions of the molecule
within the modified boxes as shown in Fig. 8C. Molecule
3 is known to have low activity. As illustrated in Fig.
8C, the molecule cannot be maneuvered to fit into one of
the tolerance boxes. This may cause the calculated
predicted activity of molecule 3 to be low as well so
that the model is confirmed. Molecule 4 is re-oriented
and re-conformed in a manner similar to that for
molecule 3. As shown in Fig. 9C, molecule 4 can be
reposed so that its surface portions fit within all the
tolerance boxes of the model. This may cause molecule
4 to have a high predicted activity, contrary to the
known low activity of the molecule. If this happens,
this may cause the error function to exceed the preset
threshold(s) so that the parameter values would have to
be modified again as described above for the inner loop
in blocks 106, 108 and diamond 110.

The above-described process makes good use of
the salient feature of poses of inactive as well as
active molecules. The above-described reposing process
with aligned and conformed poses of active molecules to
maximize the activities and to repose the inactive

molecules to be in the best position to refute the
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model. Thus, in order for the model to pass the above-
described testing process, it will predict the inactiv-
ity of poses of inactive molecules even though these
have been realigned and reconfirmed to be in the best
position to "fool" the model, while at the same time
confirming the activity of the active molecules.

In the preferred embodiment, gradient search
methods are also used for reposing the training
molecules to maximize their predicted activities as
functions of the orientation and conformational
parameters.

For both the point-based and ray-based feature
extraction methods used in conjunction with either the
van der Waals or Connolly surfaces, the extracted
features are differentiable functions of the orientation
and conformational parameters. Furthermore, the model
(as represented by the equations above) is a differen-
tiable function of the values of the extracted features.
Hence, by applying the chain rule, it is possible to
compute the gradient of the predicted activity with
respect to the orientation and conformational parameters
and apply gradient-based search to find poses that
maximize predicted activity. However, other kinds of
models and other methods of feature extraction may not
satisfy this property, in which case other computational
methods (e.g., simulated annealing, linear programming)
could be applied to find poses that maximize predicted
activity. It is understood that the scope of the
invention includes all methods for finding such poses.

Instead of reposing the molecules, it is
possible to simply re-select the best poses from the
original set of poses formed prior to the selection step

in block 100. It is found, however, that reposing the

- molecules rather than re-selecting from existing poses

greatly reduces the error of prediction as indicated in

Table 1 below in regard to a musk model.
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The trained model and the ultimate parameter
values may then be used to predict the activity of a new
molecule with unknown activity (block 116). Thus,
again, feature values are extracted from the poses of
the molecule and the predicted activities of the poses
are calculated to find the best pose with the highest
activity. Thus, the model not only enables the user to
predict the activity of the molecule not in the training
set but also predict its best poses. Its feature values
in comparison with the parameter values would indicate
which surface portions have the desirable properties in
regard to a chemical function and which surface portions
have undesirable properties in regard to such function.
This is illustrated in more detail in Figs. 12A-12F and
the accompanying description below. In fact, the model
may be used to search a database of molecules with
unknown activity and predict the activities of their
poses. Poses of these molecules may be modified to
alter their predicted activities.

In Fig. 7 above, the model parameter values are
optimized in an inner loop before the molecules are
reposed or poses reselected in an outer 1loop. Such
embodiment is efficient because reposing molecules
requires large numbers of calculations. It will be
understood, however, that the optimization can be
performed in ways different from that described above
and are within the scope of the invention. For example,
it is possible to maximize the activity by reposing in
an inner loop before the model parameter values are
optimized to minimize the differences between predicted
and actual activities of best poses in an outer loop.
The two optimizZation processes may also be intertwined.

In the above-described point based feature
extraction using a van der Waals surface representation
of atoms, it will be simpler not to have to first

calculate the surface representations of the entire
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molecule but simply to determine the closest distance
between a particular sampling point and find the atom
whose van der Waals surface will be at the closest
distance to such sampling point. In order to determine
the nearest atomic surface to a sampling point, one way
requires computing the distance between the sampling
point and the van der Waals sphere computed for each
atom in the molecule separately. For each atom in the
molecule, the distance d between a sampling point p with
coordinates (px, py, pz) and the van der Waals sphere of
radius r for an atom with a center at ¢ with coordinates
(cx, cy, cz) is:
d = sqrt ( (px-cx)’ + (py-cy)’ + (pz-cz)?) - r
This requires computing a square root, for each possible
atom, which is very expensive. Another aspect of the
invention provides a much more efficient way to compute
this distance d, based on the observation that it is
cheaper to compute the square of the distance than to
compute the distance itself. The nearest-atom
computation operates in two passes on each feature. 1In
the first pass, we find the minimum distance squared to
atomic centers. The atom with the minimum distance to
atomic center is not necessarily the atom with the
minimum distance to the van der Waals surface, however.
Therefore, in the second pass, the distance to the van
der Waals surface distance is determined only for atoms
that are "close™ to the minimum distance squared. It is
noted here that the distance to the van der Waals
surface distance cannot be computed in distance squared
space, because of the subtraction of the van der Waals
radius. In the second pass, '"close" is computed in
terms of the difference between the radius of the atom
with the minimum distance squared to center and the
maximum possible atomic radius.

Specifically, in reference to Fig. 10, suppose

the atom with the minimum distance squared to its center
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130 has distance d' to the sampling point 134 and radius
r. Suppose the atom in the molecule centered at 132
with the maximum radius has radius r_,,. Then an atom
center (e.g. 132) of another atom could in principle be
up to d'+r . -r away and have the same distance to the
van der Waals shell viewed from point 134 as the atom
centered at 130. So we want to look at all atoms close
to center 130 but whose distance squared to atomic
center is within (d'+rmx—r)2 away. Thus, in the second
pass, we look at atoms in the vicinity of 130 with van
der Waals radii between r and r,, using a square root
calculation.

Example
The relationship between the model parameter

values and the poses of the molecules may be displayed
visually using computer graphics to aid biochemical
design as in the musk odor prediction problem described
below. Thus, the parameter values ki, 0; and weighting
factor Vi discussed above may be displayed on a screen
of a monitor as well as a surface of a molecule. The
model parameter values may be illustrated by octagonal
patches near the surface of the molecule where each
feature was measured. Each patch is colored according
to whether the measurement found the surface to be too
close, too far, or about right. These three values are
computed by thresholding the Gaussian corresponding to
each feature. Clearly, a Gaussian with a wide ¢ will
allow a broader range of distance measurements to count
as "about right."

When the surface 1is too far from the
measurement point, there may be room to modify the
molecule to add additional bulk to the molecule. When
the surface is too close to the measurement point, there
may be need to modify the molecule to trim bulk from the
molecule.
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Thus, the pattern of colored patches may guide
the medicinal chemist in choosing the parts of the
molecule which should be made larger or smaller to
improve the activity of the molecule.

The problem of musk odor prediction has been
the focus of many modeling efforts. Musk odor is a
specific and clearly identifiable sensation, although
the mechanisms underlying it are poorly understood.
These molecules typically have a single hydrogen-bond
acceptor on a roughly ellipsoidal hydrocarbon. Musk
odor is determined almost entirely by steric effects.
A single methyl group change can account for a
significant change in musk odor.

To test the invention's ability to predict
subtle steric interactions, we studied a set of 102
diverse structures in several chemical classes collected
from published studies. Only those compounds for which
published assay values agreed were used. The data set
contained 39 aromatic, oxygen-containing molecules with
musk odor and 63 homologs that lacked musk odor. Each
molecule was conformationally searched using a Monte
Carlo procedure. Some molecules possessed flexible
sidechains and exhibited a sizeable number of conforma-
tions (ranging from 2 to over 250), many of which
significantly changed the overall shape of the molecule.
Because all molecules were assayed as racemic mixtures,
dll stereoisomers of each molecule were 1likewise
searched and included in the data set. The final
dataset contained 6,953 conformathons of the 102

molecules.
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True Pos. False Neg. True Neg. False Pos. % Correct
Adaptive alignment 36 3 57 6 9112.8)
Fixed alignment 36 3 47 16 8113.9)
Teble 1. Predictive accuracy of musk model in a 20-fold cross-validation hold-out test

(standard error is in brackets).

We performed a 20-fold cross-validation test of
predictive performance. The molecules in the data set
were partitioned into twenty random subsets. Twenty
models were trained, with one of these subsets excluded
from the training data during each execution. The model
constructed in each execution was then tested to see how
well it could predict the withheld molecules, and the
results were totalled. Overall predictive performance
using is 91% (see Table 1). 1In Table 1, "True Pos."
means that a molecule which is active is confirmed to be
active, "False Neg." means that an active molecule is
erroneously predicted to be inactive, "True Neg." means
that an inactive molecule is predicted to be inactive,
and "False Pos." means that inactive molecules are
erroneously predicted to be active. A model constructed
using fixed molecular alignments results in predictive
performance of 81% -- the model-directed realignment
(i.e., reposing) aspect of the invention substantially
improves performance. The primary requirements of musk
activity discovered by applying the invention are
crudely illustrated in Fig. 11 (the actual learned
hodels are sensitive to approximately fifty specific
surface regions). Molecules must have a hydrogen bond
acceptor at the appropriate geometry (positions 1 or 2),
and the right amount of hydrophobic bulk at positions A,
B and C. This model is consistent with other models of
musk odor activity, but it was learned exclusively from
a general surface-based representation of shape.

Predictive models must be able to extrapolate

beyond the structural classes analyzed during model
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generation to be useful for molecular design. Random
hold-out tests, such as cross-~validation, do not test
this ability because they mix all structural classes in
both the training and test data. To test extrapolation
ability, we conducted a series of class-holdout experi-
ments in which all molecules of a given structural class
were withheld during training and then evaluated during
testing. This simulates the situation in which chemists
wish to apply a learned model to guide the synthesis of
a new class of compounds. Table 2 shows four classes,
the largest of which is class 2. Class 1 has a
substantially different arrangement of hydrophobic bulk.
Classes 2 and 4 have molecules with different hydrogen-
bonding geometries. Each class represents a structural
type that a chemist might choose as a synthetic target.

Cross-class predictive performance ranges from
71% to 100% and in all cases benefit substantially by
using adaptive alignment (i.e., iterative reposing and
model parameter value modification) -- the error-rate
drops by more than half. A more useful criterion in
assessing performance than percent correctly predicted
above or below a fixed threshold is the quality of the
ranking of the molecules as measured by the number of
molecules that are misranked. The neural-network
produces a value on the interval [0,1], and test
molecules are ranked by this score. A ranked 1list is
perfect if all active molecules are ranked higher than
all inactive molecules. The number of misranked
molecules is the minimum number of molecules that need
to be eliminated from the ranked list to produce a list
with a perfect ranking. This is different from other
rank scores because the musk data contains only binary
assay values but the invention makes real-valued
predictions. By this measure, with adaptive alignment,
predictive performance is very high, ranging from 86% to

100%. Performance on class 4 is the poorest and seems
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to be related to the non-planar geometry of the ether
component of these molecules.

Structurat
Class: (1)4-substituted (2)1- (3)6-substituted(4) benzopyrans
dihydroindanes indanones tetrahydronapthalenes

Number of molecules 13 21 27 14
True positives 7 9 4
False negatives 0 0 4 3
True negatives 6 13 13 S
False positives 0 2 0 1
Percent correct

(adaptive alignment) 100(0.0] 9016.5}1 85(6.8) 71012.1
Percent correct

(fixed alignment) 8519.9) 7619.31 7418.4) 57113.2)
Number misranked (1] 1 1 2
Percent correct

(by ranking) 100(0.0) 9514.81 961(3.8} 86(9.31

Table 2. Predictive accuracy of musk model across structural classes. MNumbers in brackets
are standard error. The counts reported in rows 2-4 are for adaptive alignment.

Previous studies of musk odor on similar
molecules using atom-based approaches have produced
similar levels of predictive accuracy in cross-validated
predictive tests, ranging from 90% (std. err. 6.7) to
93% (std. err. 6.4). However, none of these studies has
reported predictive results across chemical classes or
has employed molecular properties that could easily be
interpreted to guide design of new compounds.

To illustrate the system's ability to provide
detailed guidance in molecular design, additional models
were trained while withholding specific pairs, triplets,
and quadruplets of molecules that differed by single
methyl group additions and deletions. Fig. 12A-12F
depicts six molecules, each processed by a model. The
molecules are displayed in their most active predicted
poses (chosen by the model) with a Connolly surface.
M.J. Connolly, J. Appl. Cryst., 16, 548 (1983). The

patches on each surface correspond to the sget of
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features selected by the model. The surface has an
acceptable steric interaction if it has a gray patch at
that location. White patches indicate areas that should
be increased in size, and black patches indicate areas
whose size should be decreased.

The method's ability to provide detailed
guidance in molecular design is demonstrated in Figs.
12A-12F. Only black, gray and white patches are shown
in these figures since color patches cannot be repro-
duced in patent drawings. Figs. 12A-12D display four
molecules in their predicted poses as chosen by a model
trained on the remaining ninety-eight molecules. Each
molecule is displayed as a Connolly surface. The rela-
tive musk odor strength of these four hold-out molecules
is known. The patches on each surface correspond to the
features selected by the model during training. The
surface has a good steric interaction if it has a gray
patch at that location. White patches indicate areas
that should be increased in size, and black patches
indicate areas whose size should be decreased. Fig. 12A
displays a correctly predicted inactive molecule, and
the white patches suggest that activity could be
increased by adding bulk near the arrow (corresponding
to area A in Fig. 11). Fig. 12B shows the molecule
resulting from the addition of a methyl group at this
point, correctly predicted to have musk odor. From this
molecule, which has only moderate musk odor intensity,
the indicated region (corresponding to area B of Fig.
11) 1is predicted to benefit from additional bulk.
Either adding a methyl group to the aromatic ring, shown
in Fig. 12C, or changing the methyl group added to Fig.
12A to an ethyl, achieves this result. Both the
molecules in Figs. 12C, 12D have greater musk odor than
molecule in Fig. 12B, as predicted.

Figs. 12E, 12F show the application of another
model, constructed by withholding the pair of molecules
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shown. Fig. 12A, the black patches suggest an unfavor-
able interaction (indicated by the arrow). This can be
directly remedied by removal of the corresponding methyl
group. The result is a correctly predicted molecule
with strong musk odor, shown in Fig. 12B. Another
approach is to remove the methyl substituent on the
aromatic ring that is responsible for the ketone's
unfavorable orientation. This results in a molecule of
medium musk strength (not shown) . Several other
examples of guided design on molecules from different
structural classes in this data set were observed.

What follows is a detailed description of
predictive model generation from a set of molecules and
assay values. We first discussed the surface repre-
sentation, then the neural-network learning algorithm,
then the adaptive alignment procedure. Consider a
molecule in a particular conformation at a particular
location and orientation in space. This situation is
defined by the internal torsion angles of the rotatable
bonds, and the three rigid rotations and translations.
This mathematically defines the pose of the molecule.
From each pose p of a molecule m, we generate a high-~
dimensional vector of features V(m,p) for purposes of
activity prediction. Each element of the feature vector
characterizes a portion of the smoothed van der Wall's
surface of the molecule.

Our goal is to predict the activity of a
molecule as a function of the feature vector. However,
because there are infinitely many poses of molecule,
there are infinitely many feature vectors. Let A(V(m,p)
denote the predicted activity of molecule m in pose p.
The predicted activity for m is defined to be the
maximum of these predictions over all possible (low
enerdgy) poses: MaXow energy pA (V(M,P)) . In chemical terms,

this is analogous to permitting the molecule to rotate,
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translate and alter its conformation to achieve the best
possible fit to the binding site.

To achieve this maximization, we conduct a
conformational search for each molecule to identify its
low-energy conformations. Each of these conformers is
placed in a starting pose, and the learning algorithm is
applied to construct a model A(V(m,p)). For the appli-
cation reported here, initial poses were chosen such
that their aromatic rings were tightly aligned and their
oxygens were properly positioned to form a hydrogen bond
with an assumed H-bond donor atom (34, 35). This pro-
duced an acceptable coarse alignment of the molecules.
The model computes a weighted sum of non-linear
functions, which can be cascaded, whose parameters can
be estimated to achieve a mapping from input molecular
features to an output activity value. The activity of
musks was encoded as 0.982 and the activity of non-musks
was encoded as 0.018. A molecule was predicted to be a
musk if the model computed its activity to be greater
than 0.5. Such models are called neural networks
because of the analogy to biological neural networks
where the '"neurons" compute non-linear functions based
on weighted and summed input ("synaptic connections")

from other neurons. Our model is of the form:

n

vy 2 Gl V(my, P))
k-1

Max

A(ml) - peP

Sigmoid

m
Y F
=1

where F, G are non-linear functions. The vectors Vi,
j=0...m and w,, k=l...n are vectors of adjustable
weights. The set P is the set of poses generated thus
far. The model is trained by an iterative weight
adjustment procedure that seeks to minimize error using
gradient-based search, called error back-propagation.
D.E. Rumelhart, G.E. Hinton, R.J. Williams, in "Parallel
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Distributed Processing: Explorations in the Micro-
structure of Cognition," D.E. Rumelhart, J.L.
McClelland, and the PDP Research Group, Eds. (MIT
Press/Bradford, Cambridge, MA. 1986), Vol. 1:

Foundations. For each molecule, only the pose giving
the highest predicted activity (using the current model)
is used to update the weight vectors.

In each iteration, after the neural network
model has been trained, it is applied to each molecule
m; to find the pose p, that maximizes the predicted
activity of m;, by performing rigid rotations and trans-
lations. This is accomplished by computing the gradient
of the predicted activity with respect to the pose and
employing gradient search methods. The poses computed
in this fashion for the active molecules are precisely
those poses that serve to confirm the model -- they
cause the active molecules to aligh more tightly with
each other along those portions of the molecular surface
that are important for activity prediction. The poses
computed for inactive molecules are precisely those
poses that best refute the model. Hence, we see that
this algorithm applies a simple form of the scientific
method of conjecture and refutation until a model is
found that cannot be refuted. To attain convergence, at
most five iterations of model-building and pose genera-
tion were required. The advantage of this approach is
that only a small fraction of the infinite space of
possible poses needs to be explicitly considered, and
yet the resulting model is robust with respect to a much
wider range of poses of the molecules. It also makes
good use of negative data.

This adaptive approach to posing molecules is
a major departure from previous methods. Any method
that attempts to measure subtle shape differences among
molecules must measure molecular properties (e.qg.,

interatomic distances, occupancy of binding sites) that
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vary with pose. Previous methods assume that the
correct poses of molecules can be selected before a
predictive model is constructed. Models constructed
from standard fixed poses may not give accurate predic-
tions for new molecules. New molecules must be placed
in the appropriate pose based on intuition or ad hoc
procedures that may behave poorly, especially with
molecules from novel structural classes. Our approach,
in contrast, uses the constructed model to guide the
generation of the correct poses, so that molecules are
aligned along those surface regions that are most
predictive of activity differences.

We have demonstrated a new method for activity
prediction and molecular design using a surface-based
representation of molecular shape that exhibits high
predictivity and extrapolates well across structural
classes. Automatic selection of conformations and
adaptive alignment of molecules was shown to substan-
tially improve predictive performance. Three-dimen-
sional visualization of models guided structural changes
of molecules that enhanced biological activity. The
surface—basedmolecularrepresentationyieldedexcellent
cross-class predictive performance, a capability which
is critical for advancing drug design into new
structural classes. The model was able to resolve the
effects of very subtle surface changes.

Where the known activities of the molecules are
expressed in quantitative terms, the above-described
model can be readily applied using the quantitative
Known activities. Where the activities are non-
numerical, such as in the musk study above, musk
strength prediction is somewhat complicated. The
reported strengths are discrete non-numerical values;
for example, "extremely strong" and "fairly weak."
There are about ten such values. How do we map "medium

strength"” to a number?
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We could use an arbitrary mapping, 1like
"odorless" is .1 and "very weak" is .2 and "weak" is .3,
and so on. But there is a potential problem. There is,
in some sense, a '"right" answer. Assuming no hidden
units, the output is essentially a linear sum of the
feature inputs. There may not be any linear weighting
that gets very close to an arbitrary assignment of
numbers to strengths. The curve is kinked. The system
will devote a lot of effort to trying to unkink it.

As an alternative, we let the system figure out
what the true assignment of discrete categories to
numerical values is. The target value for each category
is initialized arbitrarily, with correct ordering, as
above. But then it can float. We backpropagate the
error term for each category into the target value for
the category. So, during training, we periodically look
at the output of the model for all the "medium" musks
and take the average, say .56. Then we adjust the
target for "medium" molecules from its current value
(say .52) in the direction of the average. This reduces
the error for all the medium molecules (since the error
is computed as the difference between the actual and
target values).

The learning rate parameter for this
backpropagation has to be set low, so that the system
does not thrash trying to fix gross errors in the model
by adjusting the target values.

It may be necessary to permanently wire the
extreme values ("odorless" and "extremely strong") to .1
and .9 to avoid having the system reduce error by
collapsing the scale.

It is possible that for various reasons (e.qg.,
bad assays), even with a low learning rate the targets
could cross (so that, e.g., "medium" got to be higher
than "fairly strong"). We could fix this by adding a
l/r2 "repulsive force" to the targets, so that in the
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target update phase as two targets got close to each other, they
would be held apart. (This would also have the side effect of
preventing scale collapse.)

This level of indirection between the reported assay
values and the system’s target values can also be used to make
assay values reported from different sources commensurable.

This applies to both numerical and non-numerical assays.
Commonly, one paper in the literature will report assay values
for one set of molecules and another paper will report assay
values for another set. Particularly, if the sets are disjoint,
these values may not be commensurable, since the assays
typically were performed under somewhat different conditions.
Now, we have the correct ordering for the assay values on a per-
source basis (and also the within-source relative magnitudes, in
the case of numerical data). The target-score adjustment code
will respect that, but between papers, one can let the system do
as it pleases and decide, for example, that one paper is .05 is
equivalent to other’'s 2.7.

nfidence Estimator

In a preferred embodiment, an confidence estimate is
determined simultaneously with a prediction of molecular
activity. A concept underlying the confidence estimate is that
the model can only predict well for features that it has seen a
reasonable number of times in training molecules with that
feature. Accordingly, a confidence estimate is determined for
each prediction for each molecule in response to the feature
values of that molecule.

For each feature value of the molecule, a nearest
neighbor value is determined in response to the closeness of the
feature value to the difference from closest value for that
feature in the training set. 1In a preferred embodiment, the
nearest neighbor value is an absolute value of that difference.
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For each feature value of the molecule, an outlier
value is determined in response to the difference of the feature
value from the mean value for that feature in the training set.
In a preferred embodiment, the outlier value is an absolute
value of that difference.

For each feature value of the molecule, a weight is
assigned to the feature value in response to its importance in
predicting activity of molecules in the training set. 1In a
preferred embodiment, the weight is inversely proportional to
the z score for the Gaussian function 1901 associated with that
feature value.

A confidence estimate for a molecule is formed in
response to the nearest neighbor wvalue, the outlier value, and
the weight for each feature value for that molecule. 1In a
preferred embodiment, the nearest neighbor value and outlier
value are summed, and the weighted average of such sums for all
feature values is determined, where each sum for a feature value
is weighted by the weight assigned to that feature value.

Generality of the Invention

Two aspects of the invention descried above, the
method of iterative reposing objects to produce better models
and the method of training a model when each object has multiple
representations, are applicable not only to biological activity
modeling but also to many other problems including handwriting
recognition. We illustrate this with the task of handwritten
character recognition.

Computer methods for automatically recognizing
handwritten characters would be extremely useful in several
fields including the reading of zip codes on envelopes, dollar
amounts on personal checks, and handwritten characters on pen-
based computers. An accepted way of representing handwritten

letters for
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automated recognition is to take a digital picture of
each letter. The picture represented in the computer
by, for example, a 16 x 16 grid of binary values (a part
of which is shown in Fig. 13). These two hundred fifty-
six values become the features that can be input into a
general purpose classification algorithm, such as a
neural network. As with the molecules discussed above,
each character can be defined to have a "pose." For
example, a character can rotate or translate in two
dimensions as well as be scaled larger or smaller. The
pose of a character can be defined by a set of
parameters (e.g., two rotational parameters, two
translational pafameters, and one scale parameter).

Let us first consider how the general machine
learning method of learning from multiple representa-
tions could be applied to this task. Suppose we wish to
automatically recognize instances of the letter 'A.' a
training set could be constructed consisting of a large
number of digitized handwritten 'A's as well as a large
number of other characters and symbols from which the
'A's need to be discriminated. Then the general
procedure shown in Fig. 14 could be applied.

First (block 200), a neural network model for
'A' could be initialized. Each of the N different
characters and symbols forms a training object. Then
(block 202), for each object in the training set, a set
of poses could be generated by computing several
different combinations of rotations, translations, and
scalings of each character (set 1, ..., set N).
Features (e.g. 256 values in a 16 by 16 grid) would be
extracted (block 204) and then the neural network model
would be applied to predict whether each of the
representative poses was an instance of the letter 'A!
(block 206). Based on the predicted scores, one or more
best representative poses of each object in the training
set would be selected, and the neural network model
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would be trained to predict correctly whether each pose
was an instance of the letter 'A.' If the model and the
choices of best representations do not change substan-
tially from previous iterations (block 21), then the
process terminates. Otherwise, the current model is
applied to all of the poses of each object in the
training jset (block 206) to again select one or more
best representations for each object.

Once the model « and the  choice of
representations converges, the learned model can be
applied to predict whether or not new objects are
instances of the 1letter 'A! (block 212). The same
procedure could be applied to construct recognizers for
each of the other letters of the alphabet, the digits,
punictuation symbols, and so on.

Now that we have described how the general
machine learning method could be applied to character
recognition, let us consider how the method of dynamic
reposing (not shown in Fig. 14) could also be applied to
this problem. The method is exactly analogous to Fig.
7. As above, we begin with a training set consisting of
a large number of digitized handwritten 'A's as well as
a large number of other characters and symbols from
which the 'A's need to be discriminated. Rather than
generating many different poses of each character, we
would compute initial poses by rotating, translating,
and scaling the characters in the training set so that
they all had approximately the same orientation and
size. This corresponds to block 100 of Fig. 7. Then a
neural network training procedure is carried out (blocks
108, 110). After training the model, the key component
of this aspect of the invention would be applied. The
current trained model would be used to guide the
reposing of each of the training set characters (block
112) in an attempt to maximize the predicted output of
the neural network (i.e., to maximize the likelihood
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that the network would predict that each character was an ‘A’).
The resulting poses would then be used as input for another
iteration of retraining the model. This process would be
repeated until the model and the poses ceased to change
significantly.

To apply the learned model to determine whether a new
character is an instance of the letter ‘A’ (block 116), the new
character would be reposed to maximize the predicted output of
the neural network. If this predicted output exceeded a preset
threshold, the character would be classified as an ‘A,’
otherwise it would be not be classified as an ‘A.’ 1If several
models had been learned (e.g., one for each letter), then the
new character would be reposed separately for each model, and
the model that gave the highest predicted output would be
applied to classify the new character.

\ As with molecules, the advantage of this aspect of the
invention over prior methods is that rather than attempting to
classify the characters in their starting poses (which are
somewhat arbitrary), the invention reposes the characters so
that they adopt poses most informative for recognition (i.e.,
poses that accentuate those aspects of the letter ‘A’ that are
shared among all instances of ‘A’s and not shared by instances
of other characters).

It will be understood that these two aspects of the
invention do not require that a neural network learning
procedure be employed. They can be applied with any procedure
that constructs predictive models. It will also be understood
that these two aspects of the invention are not limited to
problems of assigning objects into a discrete set of classes
(e.g., active vs. inactive, ‘A’ vs. ‘B’ vs. ‘C’ etc.). The
methods can also be applied to tasks, such as drug activity
prediction, in which the model must predict a real-valued
property of the objects.

Further Applications

Those skilled in the art would recognize, after

perusal of this application, that the invention is also
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-applicable to a wide variety of other problems, including:

the general problem of classifying objects into one of
a plurality of categories, in response to data about
those objects and in response to example objects from
those categories; |

classifying written characters as one of a set of
known letters or symbols, in response to image, time
and pressure data about those written characters;

classifying speech fragments as one of a set of
linguistic units such as consonants, vowels, syllables
or words, in response to data about pitch, tone, and
volume of those speech fragments; and

classifying pictures as one of a set of physical
images, in response to image data about those physical
images.
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The invention has been described by reference
to various embodiments. It will be understood that
various modifications and changes may be made without
departing from the scope of the invention which is to be

5 limited only by the appended clainms.
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WHAT IS CLAIMED IS:
1. A method for designing a molecule, said method
comprising

selecting a plurality of molecules, each one of said
molecules having at least one pose;

selecting a training set having a pose for each one of
said molecules;

constructing a model for determining a predicted
result of an assay for a measure of activity relating to a set
of desired physical properties for said molecule, and for
determining a confidence measure for said predicted result;

operating said model for a first pose of a first
molecule in said training set to produce a predicted result and
a confidence measure for said first pose;

operating said model for a second pose of said first
molecule to produce a predicted result and a confidence measure
for said second pose;

conditionally modifying said model in response to a
difference between said predicted result and a result of an
actual said assay conducted for said molecule;

conditionally modifying said training set to replace
said first pose with said second pose in response to a
difference between said predicted result for said first pose and
said predicted result for said second pose;

repeating said steps of operating said model for said
first and second poses, and conditionally modifying said model
and said training set, until a predetermined condition is
reached;

operating said model for a pose of a new molecule,
said new molecule not being in said training set, to produce a
predicted result and a confidence measure for said new molecule;

conditionally conducting an assay for said new
molecule in response to said predicted result and said
confidence measure;

repeating said steps of operating said model for a
pose of a new molecule and conditionally conducting an assay for
said new molecule, until a predetermined condition is reached.
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(f) predicting the activities of at least some
of said enhanced poses in the updated set using the
modified parameter values and comparing the predicted
activities of enhanced poses of molecules to the known
activities of such molecules; and

(g) repeating steps (d) and (f) prior to step
(e), wherein step (d) is repeated based on a prior
comparison between predicted activities of poses in the

updated set and their known activities.

3. The method of claim 2, wherein step (g) is
carried out until there is no substantial change in the
model parameter values and the enhanced poses.

4. The method of claim 1, wherein said
modifying step employs gradient descent in modifying the

poses and the model parameter values.

5. The method of claim 1, wherein said
modifying step in (d) first iteratively modifies the
model parameter values until the differences between the
predicted activities of said at least some of the
enhanced poses of molecules and the known activities of
such molecules are minimized to arrive at a set of
modified model parameter values and then iteratively
modifies the poses to maximize their activities and to

obtain enhanced poses.

6. The method of claim 5, wherein each time
after poses of molecules in the training set have been
modified, said modifying step in (d) iteratively
modifies the model parameter values until the
differences between the predicted activities of said at
least some of the enhanced poses of molecules and the
known activities of such molecules are minimized to

obtain a set of modified parameter values, so that any
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pose modification thereafter will be in accordance with

said set of modified parameter values.

7. The method of claim 1, wherein the pose of
each molecule in the set that has higher predicted
activity than other poses in the set of the same
molecule defines the best pose of such molecule, and
wherein said model parameter values are modified in step
(d) based on a prior comparison between predicted
activities of the best poses in the set and their known
activities to minimize the differences between the
predicted activities of said at least some of the best
poses of molecules in the set and the known activities
of such molecules.

8. The method of claim 1, said model
constructing step including extracting a set of feature
values from each of said initial poses related to said
activity and setting an initial value for each of the

features to be some of the model parameter values.

9. The method of claim 8, said model
constructing step further including setting initial mean
and standard deviations of a feature value and a
Gaussian-like function representing a contribution to
predicted activity of a pose as a function of said
feature value in relation to its initial mean and
standard deviations.

10. The method of claim 9, wherein said model
constructing step further includes setting a positive or

negative weighting factor for said Gaussian function.

11. The method of claim 1, wherein an error
function is defined for each pose, said function being

a difference between the predicted activity of such pose
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of a molecule and the known activity of such molecule,
wherein said modifying step includes deriving a total
error function indicating the sum of the individual
error functions of each of some of the poses and
changing the model parameter values to minimize the

total error function.

12. The method of claim 11, wherein said
modifying step employs gradient based steps to minimize
the error function.

13. The method of claim 1, wherein said pose
modifying step in step (d) modifies the poses as
functions of parameters including orientation and

conformation parameters.

14. The method of claim 13, wherein said
functions are differentiable and said pose modifying
step includes differentiating the functions with respect
to orientation and conformation parameters.

15. The method of claim 1, further comprising
setting a set of ordered numerical values according to
a preset order to represent the known activities of said
plurality of molecules, wherein said modifying step (d)
also includes adjusting the set of ordered numerical
values while retaining the preset order to reduce the
differences between the predicted activities of said at
least some poses of molecules in the initial or an
updated training set and the known activities of such
molecules.

16. The method of claim 1, further comprising,
prior to the selecting step, searching for conformers of
the molecules in the training set and aligning the con-

formers relative to one another to form possible poses.
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17. The method of claim 1, wherein said using
step (e) also indicates which conformer of said molecule
not in the training set would have the highest predicted
activity with respect to said chemical function.

18. The method of claim 1, wherein said using
step also indicates which properties of said molecule
not in the training set would have effects on its
predicted activity with respect to said chemical

5 function.

19. The method of claim 1, further comprising
visually displaying relationship between poses of
molecules and model parameter values using computer
graphics.

20. The method of claim 19, further comprising
modif&ing said poses with respect to the model parameter
values displayed to modify the predicted activities of
the poses.

21. The method of claim 1, wherein said using
step includes searching a database of molecules with

unknown activities and predicting their activities.

22. The method of claim 1, wherein said model
constructing step includes setting a sigmoid function
representing a contribution to predicted activity of a
pose as a sum of the weighted Gaussians of one or more

5 individual feature values.

23. The method of claim 22, wherein said model
constructing step further includes setting another
sigmoid function representing the overall predicted
activity of a pose as a weighted sum of the sigmoid

5 functions.
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24. A method for predicting activity of
molecules with respect to a chemical function based on
known activities of a training set of molecules, said
molecules in the set each having one or more
conformations and orientations, each combination of a
conformation and an orientation defining a pose of a
molecule, said method comprising:

extracting a set of feature values from each of
said poses of molecules in the training set, said
feature values related to said activity, said extracting
step including the following steps:

(a) creating a surface representation of
each of the poses of molecules in the training set; and

(b) obtaining a feature value between at
least one sampling point and a point on said surface
representation of each of the poses;

constructing a model for predicting activity of
poses with respect to said chemical function using said
feature values; and

using the model to predict the activity of a
molecule not in the training set.

25. The method of claim 24, wherein said
creating step creates said representations by finding
van der Waals surface representations of atoms on the
surface of each of the poses.

26. The method of claim 25, wherein said
finding step includes: '

finding a first atom of the molecule with its
center at a minimum distance to a sampling point using
a squared distance function;

finding a set of atoms in the vicinity of the
first atom whose van der Waals radii are larger than
that of the first atom, if any; and
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determining from a square root function which
of the atoms in the set has a van der Waals surface
closer to the sampling point than that of the first
atom, if any.

27. The method of claim 24, wherein said
creating step creates said representations by summing
Gaussian surface representations of atoms on the surface

of each of the poses.

28. The method of claim 24, said obtaining
step including determining the distances between said at
least one point and the surface representations along
predetermined directions.

29. The method of claim 24, said obtaining
step including:

determining the minimum distance between said
at least one point and the surface representations of
the poses.

30. The method of «claim 29, further
comprising:

selecting a plurality of points around said
surface representations; and

determining the minimum distance between each
of said points and the surface representations of the

poses.

31. The method of claim 30, wherein said
points selecting step includes:

forming an average surface representation of
substantially all the poses; and

selecting a plurality of points around said

average surface representation.



WO 94/28504 PCT/US94/05877

10

15

20

25

49

32. The method of claim 24, said feature

values including a steric or electrostatic value.

33. The method of claim 24, further comprising
visually displaying relationship between poses of
molecules and said model using computer graphics.

34. The method of claim 33, further comprising
modifying said poses with respect to the model displayed
to modify the predicted activities of the poses.

35. A method for arriving at a model for
predicting activity of molecules with respect to a
chemical function based on known activities of a
training set of molecules, said molecules in the set
each having one or more conformations and orientations,
each combination of a conformation and an orientation
defining a pose of a molecule, said method comprising:

(a) selecting one or more poses from possible
poses of each molecule as the initial poses of a
training set;

(b) constructing a model with parameters for
predicting activity of poses with respect to said
chemical function and setting model parameter values;

(c) predicting the activities of at least some
of said initial poses in the training set using the
model and said model parameter values and comparing the
predicted activities of initial poses of molecules to
the known activities of such molecules; and

(d) modifying said model parameter values based
on a prior comparison between predicted activities of
poses in the set and their known activities to minimize
the differences between the predicted activities of said
at least some of the poses of molecules in the set and
the known activities of such molecules, and also

modifying or selecting poses of the molecules to obtain
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an updated training set of enhanced poses with greater
predicted activities than poses in the set prior to the
modifying step.

36. A method for predicting characteristics of
an object based on known characteristics of a plurality
of other objects, said other objects each having one or
more representations, said method comprising:

(a) selecting one or more representations from
possible representations of each of said other objects
as the initial representations;

(b) constructing a model for predicting
characteristics of the representations;

(c) predicting the characteristics of at least
some of said initial representations or an updated set
of representations using the model and comparing the
predicted characteristics of initial representations of
said other objects to the known characteristics of such
other objects, wherein for each of said other objects,
the representation that has better characteristics than
other representations of the same object defines the
best representation of such object;

(d) modifying said model based on a prior
comparison between predicted characteristics of the best
representations of said other objects and their known
characteristics to minimize the differences between the
predicted characteristics of said best representations
of the other objects and the known characteristics of
such objects; and

(e) using the modified model to predict the
characteristics of an object not in the training set.

37. The method of claim 36, further
comprising:

(f) repeating steps (c) and (d) prior to step
(e}, wherein step (c) is repeated based on a prior



WO 94/28504 PCT/US94/05877

10

15

20

25

30

51

comparison between predicted characteristics of at least
some of the representations of each object and the known

characteristics of those objects.

38. A method for predicting characteristics of
an object based on known characteristics of a plurality
of other objects, said other objects each having many
representations, each representation called a pose and
being defined by the object and values of one or more
parameters defining pose parameters, said method
comprising:

(2) selecting one or more poses from the
possible representations of each of said other objects
as the initial poses;

(b) constructing a model for predicting
characteristics of the objects from one or more poses of
the objects; :

(c) predicting characteristics of at least
some of said initial poses or enhanced poses using the
model and comparing the predicted characteristics of the
initial poses of said other objects to the known
characteristics of such other objects, wherein for each
of said other objects the pose that has better predicted
characteristics than other poses of the same object
defines the best pose of such object;

(d) modifying said model based on a prior
comparison between predicted characteristics of the best
poses of said other objects and their known characteris-
tics to minimize the differences between the predicted
characteristics of said best poses of the other objects
and the known characteristics of such objects;

(e) computing an updated set of enhanced poses
by computing new pose parameters for each object such
that the resulting pose is predicted by said model to
have improved characteristics;
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(f) repeating steps (c), (d), and (e) one or
more times; and

(9) applying the modified model to predict the
35 characteristics of an object not in the training set.
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