(54) 发明名称
用于通过音频轨道提供触觉效果的触觉设备和方法

(57) 摘要
本发明的实施方式包括处理器和具有触觉输出设备的触觉输出设备的系统。所述处理器被配置为接收到音频文件，自所述音频文件生成的触觉文件，其包括第一声道和第二声道，所述第一声道具有第一组控制参数以生成第一触觉效果，所述第二声道具有第二组控制参数以生成第二触觉效果，并且所述处理器被配置为输出包括用于所述触觉效果的所述第一组控制参数和所述第二组控制参数的控制信号。所述触觉输出设备被配置为从所述处理器接收所述控制信号并且向所述触觉输出设备输出所述触觉效果。在一种实施方式中，所述触觉输出设备被连接至双向板机并且所述控制参数将所述板机在相反方向上移动。在另一实施方式中，所述控制参数向用户输入元件生成触觉效果的不同时间轴。
1. 一种系统，包括：
处理器，所述处理器被配置为接收包括用于触觉效果的控制参数的文件并且输出包括用于所述触觉效果的所述控制参数的控制信号，其中所述文件是音频文件或由所述音频文件生成的触觉文件；和
触觉外围设备，所述触觉外围设备包括触觉输出设备，其中所述触觉输出设备被配置来从所述处理器接收所述控制信号并且将所述触觉效果输出至所述触觉外围设备。
2. 如权利要求1所述的系统，其中所述处理器包括被配置为解码所述文件的所述控制参数的软件。
3. 如权利要求2所述的系统，其中所述音频文件是WAV文件。
4. 如权利要求1所述的系统，其中所述音频文件经由声音信号的移位被产生。
5. 如权利要求4所述的系统，其中所述声音信号是单声道音频信号或立体声音频信号。
6. 如权利要求1所述的系统，其中所述音频文件是通过混合多个单声道轨道而产生的交错文件。
7. 如权利要求1所述的系统，其中所述触觉输出设备被连接至所述触觉外围设备的双向板机并且所述音频文件包括第一声道和第二声道，所述第一声道具有将所述板机在第一方向上移动的控制参数，所述第二声道具有将所述板机在第二相反方向上移动的控制参数。
8. 如权利要求1所述的系统，其中所述触觉外围设备包括多个触觉输出设备，所述处理器被配置为接收多个文件，每个文件包括用于所述多个触觉输出设备中的一个的触觉效果的控制参数并且每个文件是音频文件或由所述音频文件生成的触觉文件。
9. 如权利要求1所述的系统，其中所述触觉输出设备被连接至所述触觉外围设备的用户输入元件并且所述音频文件包括第一声道和第二声道，所述第一声道具有控制参数来为所述用户输入元件产生触觉效果的第一时间轴并且所述第二声道具有控制参数来为所述用户输入元件产生触觉效果的第二时间轴。
10. 如权利要求9所述的系统，其中所述第一时间轴包括所述用户输入元件的振动并且所述第二时间轴包括所述用户输入元件的振动。
11. 如权利要求9所述的系统，其中所述用户输入元件是双向板机、操纵杆、或按钮中的一个。
12. 如权利要求9所述的系统，其中所述处理器被置于主机计算机中。
13. 如权利要求1所述的系统，其中所述处理器被置于所述触觉外围设备中。
14. 一种系统，包括：
处理器，所述处理器被配置为接收包括第一声道和第二声道的文件，所述第一声道具有第一组控制参数来产生第一触觉效果，所述第二声道具有第二组控制参数来产生第二触觉效果，并且所述处理器被配置为输出包括用于所述触觉效果的所述第一组控制参数和所述第二组控制参数的控制信号，其中所述文件是音频文件或由所述音频文件生成的触觉文件；和
触觉外围设备，所述触觉外围设备包括触觉输出设备，其中所述触觉输出设备被配置为从所述处理器接收所述控制信号并且将所述触觉效果输出至所述触觉外围设备。
2
15. 如权利要求 14 所述的系统，其中所述音频文件由声音信号的移位而产生。
16. 如权利要求 14 所述的系统，其中所述触觉输出设备被连接至所述触觉外围设备的
双向板机并且所述第一组控制参数将所述板机在第一方向上移动并且所述第二组控制参
数将所述板机在第二相反方向上移动。
17. 如权利要求 14 所述的系统，其中所述触觉输出设备被连接至所述触觉外围设备的
用户输入元件并且所述第一组控制参数向所述用户输入元件产生触觉效果的第一时间轴
并且所述第二组控制参数向所述用户输入元件产生触觉效果的第二时间轴。
18. 一种用于向触觉外围设备提供触觉效果的方法，其中所述方法包括以下步骤：
生成包括第一声道和第二声道的音频文件，所述第一声道具有第一组控制参数来产生
第一触觉效果，所述第二声道具有第二组控制参数来产生第二触觉效果；
将所述音频文件发送至处理器，其中所述处理器被配置为接收所述音频文件并且输出
包括用于所述触觉效果的所述第一组控制参数和所述第二组控制参数的控制信号，所述控
制信号被配置为由所述触觉外围设备的触觉输出设备接收，所述触觉输出设备被配置为将
所述触觉效果输出至所述触觉外围设备。
19. 如权利要求 18 所述的方法，其中所述生成音频文件的步骤包括移位音频信号。
20. 如权利要求 18 所述的方法，其中生成音频文件的步骤包括混合多个单声道轨道。
用于通过音频轨道提供触觉效果的触觉设备和方法

【0001】相关申请的交叉引用

【0002】本申请要求享有于2014年6月9日提交的美国临时专利申请序列号62/009,898
和于2015年6月1日提交的美国正式专利申请序列号14/727,465的权利，其全部内容在
各方面通过引用被包含在本文。

技术领域

【0003】本发明的实施方式涉及用于提供触觉效果或反馈的系统和方法。

【0004】发明背景

【0005】由于面向休闲玩家的营销、和由此产生的来自休闲玩家的参与，视频游戏和虚拟
现实系统已得到更为流行。在典型的实施方式中，计算机系统在显示器设备上向用户显示
视觉或图形环境。用户可以通过从接口设备输入命令或数据来与显示的环境交互。计算
机响应于用户对移动的操纵器（manipulandum）（如操纵杆手柄）的操作来更新环境并
且通过使用显示器屏向用户提供视觉反馈。

【0006】常规的视频游戏设备或控制器使用视觉和听觉提示向用户提供反馈。在一些接口
设备中，动觉反馈（如活动和抵抗性触觉反馈）和/或触觉反馈（如振动、纹理、和热度）
同样被提供给用户，这些更一般地统称为“触觉反馈”或“触觉效果”。触觉反馈可以提供增
强和简化用户界面的提示。例如，振动效果、或振动触觉效果，可以有益于向电子设备的用
户提供指示来向该用户警告提示事件，或提供真实的反馈来创造模拟或虚拟环境中更大的
感觉沉浸。用于游戏和其他设备的常规触觉反馈系统一般地包括用于生成触觉反馈、被附
接至控制器/外围设备的外壳的致动器或触觉输出设备。更具体地，接口设备的电机或其
他致动器被设在控制器内并且被连接至控制计算机系统。计算机系统从接口设备接收传感
器信号并且向致动器发送合适的触觉反馈控制信号。致动器然后向控制器提供触觉反馈。
计算机系统因此可以向用户传达物理感觉以及和其他视觉和听觉反馈。

【0007】现有对触觉反馈系统的需求，所述触觉反馈系统提供此前不存在的触觉效果的
变形来为用户提供更沉浸的和愉悦的体验。

发明内容

【0008】本发明的实施方式涉及包括处理器和具有触觉输出设备的触觉外围设备的系统。
所述处理器被配置为接收包括用于触觉效果的控制参数的文件并且输出包括用于所述触
觉效果的所述控制参数的控制信号。所述文件是音频文件或由的所述音频文件生成的触觉文
件。所述触觉输出设备被配置为从所述处理器接收所述控制信号并且向所述触觉外围设备
输出所述触觉效果。

【0009】本发明的实施方式还涉及包括处理器和具有触觉输出设备的触觉外围设备的系
统。所述处理器被配置为接收包括第一声道和第二声道的文件，所述第一声道具有第一组
控制参数来生成第一触觉效果，所述第二声道具有第二组控制参数来生成第二触觉效果，
并且所述处理器被配置为输出包括用于所述触觉效果的所述第一组控制参数和所述第二
组控制参数的控制信号。所述文件是音频文件或由所述音频文件生成的触觉文件。所述触觉输出设备被配置为从所述处理器接收所述控制信号并且向所述触觉外围设备输出所述触觉效果。

[0010] 本发明的实施方式还涉及向触觉外围设备提供触觉效果的方法。所述方法包括生成音频文件的步骤和向处理器发送所述音频文件的步骤。所述音频文件包括第一声道和第二声道，所述第一声道具有第一组控制参数来生成第一触觉效果，所述第二声道具有第二组控制参数来生成第二触觉效果。所述处理器被配置为接收所述音频文件并且输出包括用于所述触觉效果的所述第一组控制参数和所述第二组控制参数的控制信号，所述控制信号被配置为由所述触觉外围设备的触觉输出设备接收，所述外围设备的触觉输出设备被配置为向所述触觉外围设备输出所述触觉效果。

附图说明
[0011] 如在附图中示出的，本发明的前述及其他特征和优点将从以下本发明的实施方式的描述中变得明显。附图被包含的本文中并且构成本说明书的一部分，附图进一步地用于解释本发明的原理并且使得相关领域的技术人员可以制造和使用本发明。附图不按比例绘制。
[0012] 图 1 为根据本发明的实施方式、用于向触觉外围设备提供触觉反馈的系统的块图。
[0013] 图 2 为图 1 的系统的示意图，其中所述触觉外围设备为触觉操纵杆。
[0014] 图 3 和图 4 为根据本发明的实施方式的触觉外围设备的立体图，其中所述触觉外围设备为手柄游戏控制器。
[0015] 图 5 示出图 3 和图 4 的游戏控制器的块图。
[0016] 图 6 为根据本发明的实施方式、用于向触觉外围设备提供触觉反馈的系统的立体图，其中所述触觉外围设备为可以与平板计算机一起使用的游戏平板控制器。
[0017] 图 7 示出图 6 的系统的块图。
[0018] 图 8 示出根据本发明的实施方式，用于向触觉外围设备提供触觉效果的系统的块图，其中音频文件包括第一声道和第二声道，所述第一声道具有第一组控制参数来生成第一触觉效果，所述第二声道具有第二组控制参数来生成第二触觉效果。
[0019] 图 9 示出用于生成图 8 的所述音频文件的音频编辑器程序的示例屏幕截图。
[0020] 图 10A 为图 3 的所述触觉外围设备的扳机的侧视图，其中，仅出于示意的目的，所述扳机被从所述触觉外围设备移除并且所述扳机被示出输出图 8 的所述第一触觉效果。
[0021] 图 10B 为图 3 的所述触觉外围设备的扳机的侧视图，其中，仅出于示意的目的，所述扳机被从所述触觉外围设备移除并且所述扳机被示出输出图 8 的所述第二触觉效果。
[0022] 图 11 示出根据本发明的实施方式，用于向触觉外围设备的多个触觉输出设备提供触觉效果的系统的块图，其中每个音频文件包括至少一个声道，所述至少一个声道具有第一组控制参数来为每个各自的触觉输出设备生成触觉效果。
[0023] 图 12 示出触觉外围设备的触觉预览工具的示例屏幕截图，所述触觉外围设备具有编-time的控制参数来为每个触觉输出设备生成触觉效果，其中所述控制参数经由音频文件为每个各自的触觉输出设备生成。
图 13 显示用于生成具有用于触觉效果的一组控制参数的音频文件的自定义移位环境。
图 14 为示出根据本发明的实施方式，用于判定和传输来自主机计算机的触觉信号的方法的流程图，其中呈现的触觉效果通过使用如本文中描述的一个或多个音频文件被编程或生成。

具体实施方式
参考附图，现在描述本发明的特定实施方式，其中相同参考编号指示相同或功能地相似的元件。以下详细描述在本质上仅为示例性的并且不旨在限制本发明或本发明的应用和使用。另外，没有任何意图由前述技术领域、背景、发明内容或以下详细描述中呈现的任意表述的或暗指的理论来限制。此外，尽管以下描述主要地指向游戏设备和用于游戏设备的控制器，但是本领域的技术人员将认识到本描述同样地适用于其他虚拟现实系统和用于所述虚拟现实系统的外围设备。

本发明的实施方式涉及包括处理器和具有触觉输出设备的触觉外围设备的系统。根据本发明的实施方式，所述实施方式将相关于附图在本文中更加详细地描述，包括用于触觉效果的控制参数的音频轨迹或文件被生成。所述处理器被配置为接收所述音频文件、或从所述音频文件生成的触觉文件，并且输出包括用于所述触觉效果的所述控制参数的控制信号。所述触觉输出设备被配置为从所述处理器接收控制信号并且向所述触觉外围设备输出所述触觉效果。

包括用于触觉效果的控制参数的音频文件可以被用于多个类型的触觉外围设备。如图 1 至图 7 中示出的那些。具体地，图 1 为根据本发明的实施方式，用于向触觉外围设备提供触觉反馈的系统 100 的块图并且图 2 为图 1 的系统的示意图。在图 1 至图 2 的实施方式中，触觉外围设备 102 为仅具有单一的操纵器 122 的触觉操纵杆。但是，本领域内的技术人员将认识到所述触觉操纵杆仅仅是触觉外围设备的示例实施方式并且具有其他配置、形状、尺寸的触觉外围设备可以被使用。例如，如在本文中将更加详细地描述的，所述触觉外围设备可以是如图 3 至图 5 中示出的用于游戏系统的双手游戏控制器 302（其具有与当前可用的视频游戏控制器系统中的许多“游戏手柄”相似的形状和尺寸）, 如图 6 至图 7 中示出的可以与平板计算机 604 一起使用的触觉外围设备 602，或具有用户输入 (UI) 元件的其他控制器，例如，但不限于，触屏和接触表面、电话、个人数字助理 (PDA)、平板电脑、计算机、游戏外围设备和用于本领域技术人员公知的虚拟现实系统的其他控制器。

参考图 1 至图 2 的实施方式，触觉外围设备 102 与主机计算机或计算机系统 104 通信。所述主机计算机或计算机系统 104 被配置为在显示器 106 上向用户生成虚拟环境。主机计算机 104 可以包括视频游戏控制器、移动设备，或包含被配置为在显示器上向用户生成虚拟环境的处理器的任意其他类型的计算机系统。如图 2 的块图中所示，主机计算机 104 包括主机处理器 108、存储器 110，和显示器 106。主机计算机 104 执行存储在存储器 110 中并且被主机处理器 108 执行的软件应用。主机处理器 108 可以是任意类型的通用处理器，或可以是专门设计用于提供触觉效果信号的处理器。主机处理器 108 可以是操作整个主机计算机 104 的同一处理器，或可以是单独的处理器。主机处理器 108 可以决定向触觉外围设备 102 发送何种触觉效果并且以何种顺序发送所述触觉效果。存储器 110 可以是任意类型的
存储器设备或计算机可读介质，例如但不限于随机存取存储器 (RAM) 或只读存储器 (ROM)。存储器 110 还可以被定位在主机处理器内部，或者是内部和外部存储器的任意组合。

【0030】主计算机 104 通过有线或无线方式被连接至显示器 106。显示器 106 可以是向用户提供图形信息的任意类型的介质，这包括但不限于显示器、电视屏、等离子体、LCD、投影仪、或任意其他显示器设备。在一种实施方式中，如本领域内公知的，主计算机 104 是游戏设备控制器和显示器 106 是被连接至游戏设备控制器的显示器。在另一实施方式中，如本领域内技术人员公知的，主计算机 104 和显示器 106 可以被组合成单一设备。

【0031】在图 1 至图 2 中所示的实施方式中，主计算机 104 通过有线或 USB 连接 103 与触觉外围设备 102 通信。但是，在其他实施方式中，触觉外围设备 102 可以使用本领域内技术人员公知的其他有线通信或无线通信方式与主计算机 104 通信。这可以包括但不限于串行或蓝牙连接。

【0032】如图 2 中最好地示出的，触觉外围设备 102 包括外壳或基座 120 和操纵器或用户输入设备 122，所述操纵器或用户输入设备 122 可以以一个或多个自由度移动。操纵器 122 从外壳 120 延伸。尽管图 2 所示的操纵杆为所述触觉外围设备的所述操纵器，但是将被本领域内普通技术人员理解的是，本公开不被限于操纵杆操纵器，而是还包括以整体或部分以一个或多个自由度可移动的任意设备。本领域技术人员将认识到，所述操纵杆仅仅是控制器的操纵器的示例性实施方式，并且，如本文中将更加详细地描述的，具有其他配置的操纵器（例如扳机、按钮、或其他用户输入元件）可以被使用。

【0033】额外参考图 1，触觉外围设备 102 包括本地处理器 112、本地存储器 114、操纵器传感器 123、和至少一个致动器或触觉输出设备 118。触觉外围设备 102 可以可选地被配置为不包括本地处理器 112，其中来自触觉外围设备 102 的所有输入 / 输出信号直接被主计算机 104 使用和处理。如将在本文中将更加详细地解释的，本地处理器 112 被连接至触觉输出设备 118 来基于来自主机计算机 104 的高级监管或流命令来向所述触觉输出设备 118 提供触觉效果。与主计算机 108 类似，本地处理器 112 同样可以决定发送何种触觉效果并且以何种顺序来发送所述触觉效果。此外，如果触觉外围设备 102 包括一个以上触觉输出设备，本地处理器 112 可以决定哪个触觉输出设备将接收所述触觉效果信号。另外，与主机计算机 104 的存储器 110 类似，本地存储器 114 可以是任意类型存储器的设备或计算机可读介质，例如但不限于随机存储器 (RAM) 或只读存储器 (ROM)。本地存储器 114 还可以被定位在所述本地处理器中，或者是内部和外部存储器的任意组合。

【0034】如上所述，触觉外围设备 102 的操纵器 122 可以以一个或多个自由度物理地移动。例如，用户可以向前、向后、向左或向右地移动所述操纵器 122。当用户移动操纵器 122 时，操纵器传感器 123 检测所述操纵器的移动和 / 或位置并且将传感器信号传输至本地处理器 112。本地处理器 112 然后将所述传感器信号通信或传输至主机计算机 104。基于接收到的传感器信号，主计算机 104 执行视频游戏内的行动并且更新所述虚拟环境。以另一方式来陈述，触觉外围设备 102 的操纵器 122 的移动代表来自用户的输入，所述输入允许用户与在主计算机 104 上运行的软件应用交互，包括但不限于与第一人称射击、第三人称角色交互、车辆相关游戏或计算机模拟相关的视频游戏。操纵器 122 的移动可以向主计算机 104 提供对应于计算机生成的图形对象（例如光标或其他图像）、或由主计算机 104 通过显示器 106 显示的一些其他图形对象、或控制虚拟角色或游戏角色 (avatar)（如人、车辆）、
可以是在游戏或计算机模拟中找到的一些其他实体的移动的输入。

从操纵器传感器 123 接收传感器信号外，本地处理器 112 还接收与将从触觉输出设备 118 输出的触觉效果相关的来自主计算机 104 的高级监控或流命令。本地处理器 112 然后基于来自主计算机 104 的高级监控或流命令向触觉输出设备 118 提供控制或驱动信号。例如，在操作中时，电压幅值和持续时间从主计算机 104 流向触觉外围设备 102，其中信息通过本地处理器 112 被提供至触觉输出设备 118。主机计算机 104 可以向本地处理器 112 提供高级命令，如将由触觉输出设备 118 输出的触觉效果的类型（例如，振动、晃动、止动、弹出，等等），其中本地处理器 112 指令触觉输出设备 118 将被输出的所述触觉效果的特定特征（例如，幅值、频率、持续时间，等等）。本地处理器 112 可以从连接到本地处理器 112 的本地存储器 114 中读取所述触觉效果的类型、幅值、频率、持续时间、或其他特征。根据游戏行为和从主计算机 104 接收的控制信号，本地处理器 112 可以向触觉输出设备 118 发送控制或驱动信号来产生多个触觉效果或感觉中的一个，包括振动，止动、纹理、晃动或弹出。

触觉输出设备 118 可以是如虚拟现实系统的领域中普通技术人员公知的惯性或自动致动器。可能的触觉输出设备包括但不限于偏心旋转质量（ERM）致动器（其中偏心质量和电机移动）、线性共振致动器（LRA）（其中附接至弹簧的质量被来回驱动）、压电致动器、电磁致动器（其中偏心质量由电机移动）、振动触觉致动器、惯性致动器、弹性致动器、相应的变形的电活性聚合物、用于改变刚度的机构、静电摩擦（ESF）、超声表面摩擦（USF）、或其他合适类型的致动设备。可能的触觉输出设备还包括前阵列中的多种类型的致动器的组合。在另一实施方式中，所述触觉输出设备可以使用动觉触觉反馈，包括（例如）改变操作器 122 和/或外壳 120 的刚度/阻尼的螺纹管、在操作器 122 和/或外壳 120 内改变尺寸的小空气袋，或形状改变材料。

如此前所述，触觉外围设备 102 仅仅是触觉外围设备的示例性实施方案并且具有其他配置、形状，和尺寸的触觉外围设备可以被使用。例如，图 3 至图 5 显示可以在本发明的实施方案中使用的触觉外围设备 302 的另一实施方案。图 3 和图 4 为触觉外围设备 302 的不同立体图，其中所述触觉外围设备为手持游戏控制器，而图 5 显示在进一步地包括主计算机 104 和显示器 106 的游戏系统 300 中使用的触觉外围设备 302 的块图。触觉外围设备 302 的外壳 324 被形状设计为容易地适应于被惯用左手的用户或惯用右手的用户双手紧握该设备。本领域的技术人员将认识到触觉外围设备 302 仅仅是一个可在视频游戏控制器系统的许多“游戏手柄”具有类似形状和尺寸的控制器的示例性实施方案，并且具有用户输入元件、形状，和尺寸的其他配置的控制器可以被使用，包括但不限于以下控制器：Wii 远程或 Wii U 控制器、索尼六轴（SixAxis™）控制器或索尼 Wand 控制器、Xbox 控制器或类似控制器，以及形状设计如现实生活对象（如网球拍、高尔夫球杆，棒球棒、和类似物）和其他形状的控制器。

触觉外围设备 302 包括多个用户输入元件或操纵器，包括操纵杆 322、按钮 330，和扳机 332。如本文中使用的，用户输入元件指代接口设备，如扳机、按钮、操纵杆，或类似物，其被用户操作来与主计算机 104 交互。如可以在图 3 至图 4 中所看到的并且被本领域内技术人员公知的，每种用户输入元件的一个以上个并且另外的用户输入元件可以被包括在触觉外围设备 302 上。因此，例如，扳机 332 的当前描述不将触觉外围设备 302 限于单一扳
机。进一步地，图5的块图示出操纵杆322、按钮330、和扳机332中的每一个均仅有一个。但是，本领域内的技术人员将理解，如上所述，多个操纵杆、按钮、和扳机，以及其他用户输入元件可以被使用。

[0039] 如在图5的块图中可以看出的，触觉外围设备302包括定向（targeted）致动器或触觉输出设备来直接地驱动触觉外围设备302的用户输入元件中的每一个以及一个或多个一般或震动（rumble）触觉输出设备326、328，所述触觉输出设备326、328被连接至外壳324并定位使得用户的手大体地被定位在其处。更为具体地，操纵杆322包括与其连接的定向致动器或触觉输出设备318A，按钮330包括与其连接的定向致动器或触觉输出设备318B，并且扳机332包括与其连接的定向致动器或触觉输出设备318C。除多个定向触觉输出设备外，触觉外围设备302包括与其用户输入元件中的每一个连接的位置传感器。更为具体地，操纵杆322包括与其连接的位置传感器323，按钮330包括与其连接的位置传感器331，并且扳机332包括与其连接的位置传感器333。本地处理器312被分别地连接至定向触觉输出设备318A、318B、318C以及操纵杆322、按钮330和扳机332的位置传感器323、331、333。响应于从位置传感器323、331、333接收到的信号，本地处理器312指令定向触觉输出设备318A、318B、318C将导向或定向的效果分别直接地提供给操纵杆322、按钮330和扳机332。此类定向效果是可辨识的或与由一般触觉输出设备326、328沿控制器的整体生成的一般或震动触觉效果可区分。由于多个形态被同时地使用，例如，视频、音频，和触觉，总的效果使触觉效果向用户提供对游戏的更深的沉浸感。与触觉外围设备102和主机计算机104类似，触觉外围设备302被连接至具有显示器106的主机计算机104并且与其通信。触觉外围设备302的本地处理器312被连接至每个触觉输出设备以基于来自主机计算机104的高级监管或流命令向其提供触觉效果。触觉外围设备302的触觉输出设备可以是本文中列出的，用于触觉外围设备102的触觉输出设备118的任意类型的致动器。

[0040] 图6至图7示出根据本发明的另一实施方式的触觉外围设备602，其中触觉外围设备602是可以与平板计算机604一起使用的玩游戏平板控制器。平板计算机604可以被专门地设计用于游戏活动（如从雷蛇公司（Razer Inc.）获得的），或者可以是公知的并且在市场上可获得的平板计算机，如苹果平板电脑（Apple® Ipad®），Kindle® Fire® 平板电脑，和三星银河平板电脑（Samsung® Galaxy Tab®）。触觉外围设备602包括对接部640和手柄642、644，所述对接部640被配置为接收平板计算机604，所述手柄642、644上放置有操纵器用于用户控制平板计算机604上的游戏。对接部640将触觉外围设备602连接至平板计算机604使得用户在手柄642、644上的活动（如按压按钮、移动操纵杆、按压扳机，等等）在平板计算机604上玩游戏时产生动作。

[0041] 手柄642、644包括典型的操纵器或在控制器上见到的用户输入元件。操纵器将相关于手柄644被描述。但是，本领域内的技术人员将认识到相同或类似操纵器可以在手柄642上使用。特别的，手柄644包括操纵杆622，按钮630，和扳机632。如在图6中可以看出的和本领域技术人员公知的，这些用户输入元件中的每一种的一个以上个可以被包括在每个手柄624、644上。进一步地，如上相关于一般或震动触觉输出设备326、328所描述的，手柄642、644包括附接在其上的一个一般或震动触觉输出设备626、628且被定位使得用户的手被大体地定位用于向手柄642、644提供一般或震动的触觉效果。
[0042] 如图 7 的块图中所示，触觉外围设备 602 包括通过对接部 640 与平板计算机 604 通信的本地处理器 612。图 7 的块图示出操纵杆 622、按钮 630、和扳机 632 中的每一种均只有一个。但是，如上所描述的，本领域内技术人员将理解多个操纵杆、按钮、和扳机、以及其他用户输入元件可以被使用。本地处理器 612 被分别地连接至定向触觉输出设备 618A、618B、618C 以及操纵杆 622、按钮 630、和扳机 632 的位置传感器 623、631、633。响应于从位置传感器 623、631、633 接收到的信号，本地处理器 612 指令定向触觉输出设备 618A、618B、618C 直接地分别地向操纵杆 622、按钮 630、和扳机 632 提供导向或定向效果。触觉外围设备 602 的本地处理器 612 被连接至每个触觉输出设备以基于来自主机计算机 604 的高级监管或流命令向其提供触觉效果。触觉外围设备 602 的触觉输出设备可以是本文中列出的、用于触觉外围设备 102 的触觉输出设备 118 的任意类型的致动器。

[0043] 无论哪种触觉外围设备配置或实施方式被使用，系统的主机处理器和/或本地处理器被配置为接收音频轨道或文件，所述音频轨道或文件包括用于将经过触觉外围设备的触觉输出设备输出的触觉效果的控制参数。以另一方式来陈述，音频轨道或文件被用作向系统的主机处理器和/或本地处理器传递或提供触觉效果的方式。本质上，用于一个或多个触觉效果的控制参数被编码在音频轨道或文件中并且然后被提供或传输至系统的主机处理器和/或本地处理器。在一种实施方式中，所述音频轨道或文件可以是 WAV 文件或具有可以包括一个或多个独立音频声道的音频提供的其他文件。例如，音频轨道或文件可以是包括一个或多个独立音频声道的视频文件（如 MOV 文件）。所述音频轨道或文件可以具有单音或单声道的音频格式、立体声或立体声的音频格式、或多声道音频格式。如本文中将相关于图 12 更加详细地解释的，在用于一个或多个触觉效果的控制参数被编码在一个音频轨道或文件上后，所述音频轨道或文件可以在被提供或传输给系统的主机处理器和/或本地处理器前被转换成特定于触觉的文件或格式（如 HAPT 文件）。以另一方式来陈述，尽管最初被编码在音频轨道或文件上，但是在不背离本发明的范围的情况下，触觉效果可以后续地被转换成触觉文件（例如，具有特定于触觉的格式的文件，如 HAPT 文件），所述触觉文件不包括音频成分。在处理器上的软件解码所述音频轨道或文件，或解码来自所述音频轨道或文件生成的触觉文件，并且引导所述触觉外围设备的触觉输出设备根据所述控制参数输出所述触觉效果。

[0044] 更为具体地，使用音频轨道或文件 850 来提供触觉效果将相当于图 8 被更加详细地描述。图 8 示出根据本发明的实施方式、用于向触觉外围设备提供触觉效果的系统的块图。仅出于示意性的目的，使用音频轨道或文件来提供触觉效果将相当于触觉外围设备 302 和具有如上所述的定向触觉输出设备 318C 的扳机 332 被更加详细地描述。但是，将被本领域内普通技术人员理解的是，使用音频轨道或文件来提供触觉效果可以被类似地应用于触觉外围设备 102、触觉外围设备 602、或具有如视频游戏领域内公知的另一配置的触觉外围设备。进一步地，将被本领域内普通技术人员所理解的，使用音频轨道或文件来提供触觉效果可以被类似地应用于触觉外围设备的其他用户输入元件，例如，分别具有定向触觉输出设备 318A、318B 的按钮 330 和操纵杆 332、和/或具有震动触觉输出设备 326、328 的外壳 324。进一步地，在本发明的另一实施方式中，使用音频轨道或文件来提供触觉效果可以被类似地应用于触觉外围设备本身来导致或引导其运动。

[0045] 在该实施方式中，音频轨道或文件 850 包括第一声道 852 和第二声道 854，所述
说明书

第一条 谈道 852 具有第一组合置参数来生成将经由触觉外接设备 302 的触觉输出设备 318C 输出的第一触觉效果 858, 所述第二条 谈道具有第二组控置参数来生成将经由触觉外接设备 302 的触觉输出设备 318C 输出的第二触觉效果 860。音频轨道或文件 850 是 WAV 文件或包括由音频混合过程生成的两个独立音频声道（第一条 谈道 852 和第二条 谈道 854）的其他声音文件。音频混合是多个源音频信号被结合成一个或多个声道的过程。在该过程中, 源信号的电平、频率成分、力度、和 / 或全景位置 (panoramic position) 可以被操作。如本文中将更加详细地描述的, 当根据本文中的实施方式在被用于提供触觉效果时, 源信号被操作从而将特定触觉效果传达给触觉外接设备的触觉输出设备。

[0046] 在图 8 的实施方式中, 音频轨道或文件 850 包含具有两个独立音频声道 (例如, 第一条 谈道 852 和第二条 谈道 854) 的立体声或立体声的音频格式。立体声或立体声的音频格式通过使用两个独立的音频声道 (例如, 左声道和右声道) 被实现, 所述两个独立的音频声道将经由两个扬声器 (例如, 左扬声器和右扬声器) 被输出, 其输出方式使得生成如自然听觉中的从相反方向听到的声音的印象。尽管示出具有两个独立的音频声道, 音频轨道或文件 850 可以具有多个声道音频格式, 其中所述音频轨道或文件包括两个以上独立的音频声道。进一步地, 音频轨道或文件 850 可以具有单声道或单声道的音频格式, 其仅具有将从一个位置被输出, 经常以声道为中心的单个声道。

[0047] 在本发明的实施方式中, 音频轨道或文件 850 经由源信号的移位 (panning) 生成。以另一方式来陈述, 音频轨道或文件 850 经由在音频混合过程中使用的移位工具来生成或编辑。音频混合过程中的移位是将声音信号（单声道的或立体声或对）分布成由移位控制设置确定的立体或多声道场。可以被使用的示例移位工具包括在商业音频编辑套件或程序中可用的移位特征, 如 Pro Tools, Logic Pro, Audition, Audacity, Sony SoundForge, Ableton Live, 或 Bitwig Studio, 以及在商业视频编辑器中可用的移位特征, 包括 (例如) 但不限于 Premiere Pro 或 Avid 软件。

[0048] 图 9 显示用于生成图 8 的音频文件的音频编辑器程序的示例屏幕截图。更为具体地, 图 9 为通过单声道源信号 962 的移位被生出的音频轨道或文件 850 的屏幕截图 961。移位特征 964 被用来将单声道源信号 962 分布或分离成两个声道, 即, 第一条 谈道 852, 具有所述第一组控制参数以生成将经由触觉外接设备 302 的触觉输出设备 318C 输出的所述第一触觉效果 858; 声道第二条 谈道 854, 具有所述第二组控制参数以生成将经由触觉外接设备 302 的触觉输出设备 318C 输出的所述第二触觉效果 860 声道。除移位外, 每个声道上的信号的电平、频率成分、力度、和 / 或全景位置还可以经由音频编辑器程序被操作。例如, 音频编辑器程序的铅笔工具可以被用来编辑所述两个声道。所述铅笔工具可以被用于音量自动化、移位自动化、和波形操作。自动化使得混合更加精确并且节省大量时间, 同时重新绘制或操作波形允许程序员生成不寻常效果以及更正轨道上的缺陷。

[0049] 尽管声道 852, 854 在本文中被描述为经由移位工具被生成, 移位工具不是分布或分隔源声音信号的单一实施方式。在本发明的另一实施方式中, 声道 852, 854 由多个单声道组成, 所述各个单声道是被混合成一个交错的 (interleaved) WAV 文件。

[0050] 在一个实施方式中, 第一和第二触觉效果 858, 860 被配置为将触觉外接设备 302 的板机 332 在相反方向移动。更为具体地, 参考图 10A 和图 10B 中示出的板机 332 的侧视图, 板机 332 为双向板机, 其可以通过定向触觉输出设备 318C 被向内和向外地移动。图 10A
和图10B为触觉外制设备302的扳机332的侧视图，由于仅示意性的目的，所述机机被从触觉外制设备上移除，其中图10A示出扳机332输出触觉效果858和图10B示出扳机332输出第二触觉效果860。来自第一声道852（参见图8）的第一组控制参数将扳机332向如由方向箭头966所示的第一或向内方向移动并且来自第二声道854（参见图8）的第二组控制参数将扳机332向如由方向箭头966所示的第二或向外方向移动。以另一方式来陈述，当应用于扳机332时，来自音频轨道或信件850的第二声道854的第二触觉效果860将扳机向外地推动或移动，这引起阻力，同时来自音频轨道或信件850的第一声道852的第一触觉效果858将扳机向内拉动或移动，这引起减少阻力。将扳机向外地推动或移动引起阻力，因为人的手指仅能向内地移动扳机，同时将扳机向内拉动或移动引起减少阻力，这有助于传达止动（detent）。每组控制参数或触觉效果将导致对用户的不同感觉。例如，第一触觉效果858有效于突出用于生成减少阻力的感觉的向内地或向下地拉动的运动，而第二触觉效果860有效于生成阻力感觉的向内或向上推动的运动。使用推动或拉动效果很大程度上基于环境、动画、和触觉输出设备的强度。强触觉输出设备可以在整个动画中作为暗示现实通过推动效果来模仿推动动画，而相对较弱的触觉输出设备则使用短的拉动来给用户的头脑制作错觉处于推动动画的最末端。在另一示例中，每30毫秒在向外地推动扳机332和向内地拉动扳机332之间改变可以被用来生成或模拟射击效果。

【0051】在另一实施方式中，第一和第二触觉效果858、860在不同时间和平/或根据不同感测的条件或状态将被输出至扳机332的触觉效果的不同时间轴。来自第一声道852（参见图8）的第一组控制参数是被应用于扳机332的触觉效果的第一时间轴或序列并且来自第二声道854（参见图8）的第二组控制参数为将被应用于扳机332的触觉效果的第二时间轴或序列。例如，在一种实施方式中，将被应用于扳机332的触觉效果的第一时间轴或序列可以包括扳机332的振动而将被应用于扳机332的触觉效果的第二时间轴或序列可以包括扳机332的止动（detent）。为了向扳机332传达或指示振动效果，声道852的源信号可以被操作来代表具有预定周期（如10毫秒）的周期信号。当经由定向触觉输出设备318C被应用于触觉外制设备302的扳机332时，10毫秒周期（10毫秒启动、10毫秒间隙，重复）导致扳机的振动。为了向扳机332传达或指示止动效果，声道854的源信号可以被操作来包括暂时效果，其中扳机332被向内地和/或向内地拉动或移动用于生成或引起如以上相关于图10A描述的减少阻力。止动通过使用短、强的信号脉冲来生成。如果另一纹理或效果被同时启用，信号将需要在正被启用的初始效果的相反方向被生成。可选地，其他效果可以是静音（全部或在止动效果的两边至少30毫秒）并且短的推动信号脉冲可以被发送（经常在5-30毫秒范围）。由触觉输出设备318C输出的触觉效果可以被包括但不限于不同程度的振动、不同方向的止动、或其他类型的触觉效果。因此，当生成或编程音频轨道或信件850时，商业音频编辑程序的多功能性可以被使用生成具有多时间轴的触觉效果。控制参数经由音频编辑程序内的移位或其他工具被映射至第一和第二声道852、854，并且每个声道的控制参数指示将被应用于扳机332的触觉效果的类型、量、和频率。

【0052】一旦音频轨道或信件850如想要的被生成或编程，音频轨道或信件850被发送或以其他方式被传输至主计算机104的主机处理器108和/或触觉外制设备302的本地处理312。生成或编程的音频轨道或信件850被存储在任意类型的存储器设备或计算机可读介质上。应用（如游戏应用）引起音频轨道或信件850从存储器设备或计算机可读介质上。
质加载并且被传输至触觉外围设备。进一步地，如相关于图 12 所描述的，触觉预览工具可以被用于将来自音频轨道或文件 850 的触觉效果在被传输至主机计算机 104 的主机处理器 108 和 / 或触觉外围设备 302 的本地处理器 312 之前被视觉化和 / 或修改。主机计算机 304 的主机处理器 308 和 / 或触觉外围设备 302 的本地处理器 312 被配置为接收音频轨道或文件 850（或如相关于图 12 所述的接收来自音频轨道或文件 850 被转换的特定于触觉的文件），并且包括被配置为解码来自音频轨道或文件 850 的第一组控制参数和第二组控制参数的软件（或如相关于图 12 所述的自音频轨道或文件 850 被转换的特定于触觉的文件的控制参数）。用于板机 332 的定向触觉输出设备 318C 的触觉效果可以然后被考虑编程在主机计算机 304 的主机处理器 308 和 / 或触觉外围设备 302 的本地处理器 312 上。这些触觉效果可以构成状态和触觉效果改变的预定映射。例如，预定映射系统可以指示编程的触觉效果的存在时间轴或序列基于检测到的状态被启用。如果判定检测到的状态具有关联的触觉效果，然后主机处理器 108 和 / 或本地处理器 312 输出关联的控制信号，所述关联的控制信号包括用于关联的触觉效果的第一和 / 或第二组控制参数。

【0053】 主机计算机 304 的主机处理器 308 和 / 或触觉外围设备 302 的本地处理器 312 被配置为向定向触觉输出设备 318C 输出包括用于触觉效果的控制参数的控制或驱动信号。例如，当在操作中时，电压幅值和持续时间源自主机或本地处理器，其中信息被提供给定向触觉输出设备 318C。控制或驱动信号指令定向触觉输出设备 318C 将被输出的触觉效果的特定特征（例如，幅值、频率、持续时间、等等）。板机 332 的定向触觉输出设备 318C 被配置为接收来自主机处理器 108 和 / 或本地处理器 312 的控制信号并且将触觉效果输出至触觉外围设备。作为示意性示例，如果用户在一个角色或一些其他图形对象并且然后在虚拟环境中遭遇爆炸，相关联的触觉效果可以是震动。在这种情况下，主机处理器 108 和 / 或本地处理器 312 向定向触觉输出设备 318C 发送控制信号来提供合适的触觉效果，在该示例中，所述合适的触觉效果是具有特定强度的震动。

【0054】 使用音频文件 850 为板机 332 提供或编程触觉效果保护用于向触觉外围设备提供触觉效果的工具链和工作流程。更为具体地，与其为每个触觉输出设备使用时间密集性（time-intensive）自定义程序编写的触觉效果，使用音频文件 850 能简化板机 332 的触觉效果的生成以及生成用于音频编辑器程序的插件工具或应用的过程，因为音频文件被生成的音频编辑器程序提供触觉效果的视觉化。此外，使用音频文件 850 允许多时间轴的灵活性来快速地生成复杂多样的触觉效果。

【0055】 图 11 说明用于向触觉外围设备 302 的多个触觉输出设备提供触觉效果的系统的块图。触觉效果可以由用于每个触觉输出设备的单独的音频文件组成，以提供空间触觉效果，其中不同触觉效果经由单独的或不同触觉输出设备被输出。仅出于示意性目的，使用音频轨道或文件来提供触觉效果将如上所述相关于触觉外围设备 302 和操纵杆 322、按钮 330、具有定向触觉输出设备 318A、318B、318C 的板机 332 被更多详细地描述。但是，将被本领域内普通技术人员所理解的，使用音频轨道或文件来提供触觉效果可以类似地被应用于触觉外围设备 102、触觉外围设备 602、或具有在视频游戏领域内公知的另一配置的触觉外围设备。

【0056】 更加具体地，多个音频文件 1150A、1150B、1150C、1150D、1150E 包括至少一个声道（图 11 中未示出），所述至少一个声道具有一组控制参数以经由每个各自的触觉输出设备 318A、
318B、318C、326/328 生成各自的触觉效果 1156,1, 1156,2, 1156,3, 1156,4。以另一方式来陈述，音频文件 1150,包括至少一个声道，所述至少一个声道具有一组控制参数来生成将经由触觉外围设备 302 的定向触觉输出设备 318A 被输出至操纵杆 322 的触觉效果 1156,5。类似地，音频文件 1150,包括至少一个声道，所述至少一个声道具有一组控制参数来生成将经由触觉外围设备 302 的定向触觉输出设备 318B 被输出至按钮 330 的触觉效果 1156,6。类似地，音频文件 1150,包括至少一个声道，所述至少一个声道具有一组控制参数来生成将经由触觉外围设备 302 的定向触觉输出设备 318C 被输出至机 332 的触觉效果 1156,7。类似地，音频文件 1150,包括至少一个声道，所述至少一个声道具有一组控制参数来生成将经由触觉外围设备 302 的震动触觉输出设备 326,328 中的一个被输出至外壳 324 的触觉效果 1156,8。如关于音频文件 850 所描述的，每个音频文件 1150,1, 1150,2, 1150,3, 1150,4 可以包括一个以上的声道。例如，每个音频文件 1150,1, 1150,2, 1150,3, 1150,4 可以包括由音频混合过程生成的两个独立的音频声道。

[0057] 在本发明的实施方式中，音频文件 1150,1, 1150,2, 1150,3, 1150,4 中的两个或多个可以经由音源信号的移位来生成。以另一种方式来陈述，音源文件 1150,1, 1150,2, 1150,3, 1150,4 中的两个或多个可以经由在音频混合过程中使用的声音工具来生成和编码。例如，移位工具可以被用来快速生成多个声道音频格式来适用于多个触觉输出设备的设备。单声道音源信号可以被用来被分割或分布到两个或多个轨道。每个轨道包括一组控制参数来生成将被触觉输出设备中的一个输出的触觉效果。此外或作为替换物，音源文件 1150,1, 1150,2, 1150,3, 1150,4 中的两个或多个可以经由在音频混合过程中使用的铅笔工具来生成和编码。铅笔工具将被用来生成关于移位、波形、音调、强度和类似物的快速形状。铅笔工具也可以被用来生成以相同顺序和强度发生规则密度或在相同周期内具有随机化的强度或音量的随机纹理。[0058] 在本发明的一个实施方式中，主机计算机 304 的主处理器 308 和 / 或触觉外围设备 302 的本地处理器 312 被配置为直接地接收音频文件（例如，音源文件 850 或音源文件 1150,1, 1150,2, 1150,3, 1150,4）并且被配置为解码音频文件的控制参数。在本发明的另一实施方式中，触觉预览工具可以被用于在触觉效果被传输至主机计算机 304 的主处理器 308 和 / 或触觉外围设备 302 的本地处理器 312 之前的触觉效果的视觉化和 / 或修改。例如，图 12 中示出用于预览和 / 或修改来自音频文件（例如，音源文件 850 或音源文件 1150,1, 1150,2, 1150,3, 1150,4）的触觉效果的控制参数的触觉预览工具的示例屏幕截图 1270。以另一种方式来陈述，触觉效果的控制参数经由用于每个各自触觉输出设备的音频文件被生成。屏幕截图 1270 包括新建按钮 1272, 导入按钮 1274, 和导出按钮 1276。新建按钮 1272 打开空白效果模板并且使得用户通过将一个或多个音频文件放置在不同轨道并且结合它们来生成新的效果。导入按钮 1274 打开窗口允许用户为可用的触觉输出设备（例如，在本实施方式中，可用的触觉输出设备包括左扳机、中扳机、右震动器、和左震动器）中的每一个导入一个或多个音频文件。用户将可以指定输出目录及名称。导出按钮 1276 将来自一个或多个音频文件（例如，音源文件 850 或音源文件 1150,1, 1150,2, 1150,3, 1150,4）的控制参数转换成用于在触觉外围设备上重放的预定触觉文件格式。因此，一旦导出按钮 1276 被使用，触觉效果不再被编码到音频文件或格式（例如，WAV 文件）而是触觉效果被转换成不包括音频成分的特属于触觉的文件或格式，如 HAPT 文件。

[0059] 生成屏幕截图 1270 的触觉预览工具允许触觉效果视觉化从而使得在最终效果通
过传输至主机计算机 304 的主机处理器 308 和 / 或触觉外围设备 302 的本地处理器 312 被整合至视频游戏前，用户可以感觉并且修改触觉效果库。更为具体地，当触觉预览工具被打开时，触觉预览工具显示用于触觉输出设备中的每一个的单独轨道。每个轨道是当前被音频文件生成或被编码至音频文件的编程触觉效果或控制参数的视觉呈现。所述视觉化使得用户直观地理解编程触觉效果如何被编写并且它们如何在不同触觉输出设备间播放。

例如，图 12 示出经由定向触觉输出设备 318C 用于右扳机 332 的第一和第二编程触觉效果 858,860 和经由右震动触觉输出设备 326 用于外壳 324 的编程触觉效果 1278。第一和第二编程触觉效果 858,860 （即，如上相关于图 10A 和图 10B 描述的“推动”和“拉动”效果）被以不同颜色显示。

[0060] 当轨道经由播放或开始按钮 1280 被播放时，进度条 1282 播放或填充并且轨道本身同样被填充颜色。单个轨道或触觉输出设备可以经过每个轨道上的“M”按键被静音。此举非常有益，因为其允许选择性地回放特定触觉输出设备。例如，当震动效果被播放时，很难自觉地识别细微的扳机效果。将震动轨道静音使得用户仅体验扳机效果。

[0061] 生成屏幕截图 1270 的触觉预览工具可以进一步地被用于经由效果属性菜单 1284 自定义或调节整体效果的强度或音量。触觉效果的强度或音量可以经由强度滑块 1286 图形地被修改，其修改特定于触觉的文件（例如，HAP 文件）而不是所述特定于触觉的文件被生成的源音频文件（例如，WAV 文件）。经由强度滑块 1286 强度设置还将改变在屏幕截图 1270 上显示的视觉呈现。效果属性菜单 1284 还包括扳机投放滑块 1288。扳机或扳机 332 的激活点可以经由触觉投放滑块 1288 被图形地修改，其是抑制点、或阶段点、或触觉效果开始播放的行进点。

[0062] 如上所述，用于提供触觉效果的音频轨道或文件可以使用商业音频编辑套件或程序来生成，例如但不限于 Pro Tools、Logic Pro、Audition、Audacity、Sony SoundForge、Ableton Live 及 Bitwig Studio 以及在商业视频编辑器中可获得的移位特征，例如但不限于 Premier Pro 或 Avid。但是，在本发明的另一实施方式中，自定义音频编辑程序可以被开发用于提供触觉效果。例如，图 13 示出用于生成具有用于触觉效果的一组控制参数的音频文件的自定义移位环境。在图 13 中，工作区 1371 包括模拟定位基底或接收点 1373。一维发射器或声道 1375 和 / 或多维发射器或声道 1377 被配置为围绕模拟的接收点 1373，并且然后移位效果 1379 通过按想要的绘制出触觉效果 1381 的运动路径而生成。移位效果 1379 将触觉效果 1381 分布于如由用户绘制的声道 1375、1377 间。因此，如图 13 中所示，触觉效果 1381 经由移位效果 1379 分布至多声道。

[0063] 图 14 为示出根据本发明的实施方式，用于判定和传输来自主计算机的触觉信号的方法的流程图，其中生成的触觉效果经由使用如本文中描述的一个或多个音频文件被编程或生成。在一种实施方式中，图 14 的流程图的功能性被存储在主机部件的存储器中的软件实施并且由主机处理器执行，和 / 或由触觉外围设备的存储器存储并且由本地处理器执行。在其他实施方式中，该功能性可以经由使用特定用途集成电路 (ASIC)、可编程门阵列 (PGA)、现场可编程门阵列 (FPGA)、或硬件和软件的任意结合被硬件执行。

[0064] 在步骤 1490，主机或本地处理器判定状态是否有变化。在一种实施方式中，该变化可以是用于游戏或模拟的虚拟空间内的变化。如一示例，用户可以正在移动一角色或一些其他图形对象并且然后在虚拟环境中遭遇爆炸。角色移动和 / 或遭遇爆炸（或作为触觉效
果源或起因的其他地方), 可以是状态的改变。在另一实施方式中, 该改变可以是由位置传感器 323,331,333 中的一个感应到的位置或状态。如上所述, 操纵杆 322 包括与之连接的位置传感器 323, 按钮 330 包括与之连接的位置传感器 331, 和扳机 332 包括与之连接的位置传感器 333。本领域内的普通技术人员将理解, 状态的改变不限于以上陈述的示例。[0065] 在步骤 1492, 主机或本地处理器然后判定状态变化的关联的触觉效果。例如, 在用户控制虚拟角色并且该角色遭遇虚拟对象 (如爆炸) 的情形下, 此类遭遇可以具有关联的触觉效果。振荡。判定是否有状态变化的关联触觉效果的过程可以以多种方式进行。如果被判定状态改变具有关联的触觉效果, 则触觉信号被发送。如果被判定状态的改变不具有关联的触觉效果, 然后不会发送触觉信号。在一种实施方式中, 主机计算机 104 访问状态改变的预定映射以及由一个或多个音频文件形成的触觉效果。例如, 所述预定映射系统可以指示编程触觉效果的特定时间轴或序列基于检测到的状态被播放。如果判定检测到的状态具有关联的触觉效果, 然后主机或本地处理器输出包括用于关联的触觉效果的控制参数的关联的控制信号。[0066] 在步骤 1494, 主机或本地处理器通过使用具有关联触觉信息的控制信号将触觉信息传输至合适的定向输出设备。如前所述的, 触觉信息的传输可以通过有线或无线通信进行。定向触觉输出设备被配置为从主机或本地处理器接收控制信号并且将触觉效果输出至触觉外围设备的各自的用户输入元件 (例如, 操纵杆、按钮、扳机) 或外壳。[0067] 尽管根据本发明的多种实施方式已在上面被描述, 应当理解的是, 它们以示意的方式和仅作为示例被呈现, 并且不是限制。对相关领域技术人员来说明显的是, 可以在不背离本发明的精神和范围的情况下作出多种形式和细节的改变。因此, 本发明的宽度和范围不应当被上述示例实施方式中的任意所限制, 而应当仅根据所附属权利要求及其等同物限定。还应被理解的是, 本文中讨论的每个实施方式的每个特征, 和本文中引用的每个引用文件的每个特征可以与任意其他实施方式的特征结合使用。本文中讨论的所有专利和公开物的全部内部通过引用被包含在本文中。
图 6
图 7
图 8
图10B
图 11
图 13
图14