発明名称: 有効生物防除方法、ならびに有害生物防除用薬剤組成物および有害生物防除剤セット

発明の名称: 有害生物防除方法、ならびに有害生物防除用薬剤組成物および有害生物防除剤セット

Abstract: Provided are a method by which various pests can be controlled even at low dosage with no problems in safety; and a pharmaceutical composition for controlling pests and a pest control agent set, which are suitable for use in said method. This method comprises applying 3-endo-[2-propoxy-4-(trifluoromethyl)phenoxy]-9-[trifluoromethyl]-2-pyridyloxy]-9-azabi cyclo[3.3.1]nonane or a salt thereof, along with (Z)-4-(3,5-dichlorophenyl)-4,5-dihydro-5-(trifluoromethyl)-3-isoaxazo lyl-N-[methoxycimino]methyl]-2-methylbenzimidazole or a salt thereof, b a subject, and controls pests.
明細書

発明の名称:
有害生物防除方法、ならびに有害生物防除用薬剤組成物および有害生物防除剤セット

技術分野

【0001】本発明は、有害生物防除方法、ならびに有害生物防除用薬剤組成物および有害生物防除剤セットに関する。より詳細に、本発明は、安全性に問題がなく、低薬量でも様々な有害生物を防除することができる方法、ならびにその方法に使用するに通した有害生物防除用薬剤組成物および有害生物防除剤セットに関する。

本願は、2016年5月11日に出願された日本国特許出願第2016−95067号に対し優先権を主張し、その内容をここに援用する。

背景技術

【0002】従来から、多数の殺虫・殺ダニ活性を有する化合物が提案されている。しかし、提案されたほとんどの化合物は、その効力が不十分であったり、薬剤抵抗性問題によりその使用が制限されたり、また、植物体に薬害や汚染を生じさせたり、あるいは人畜魚類等に対する毒性が強かったりすることから、必ずしも満足できるものでなかった。このような状況の中、特許文献1は、ある特定の構造を有する環状アミン化合物が優れた殺虫・殺ダニ活性を有することを開示している。また、特許文献2は、ある特定の構造を有するイソオキサゾリン置換ベンズアミド化合物が殺虫・殺ダニ剤として有用であることを開示している。

先行技術文献

特許文献

【0003】特許文献1:WO 2011/078081 A1
特許文献2:WO 2007/026965 A1

発明の概要
発明が解決しようとする課題

白明の課題は、安全性に問題がなく、低薬量でも様々な有害生物を防除することができる方法、ならびにその方法に使用するのに適した有害生物防除用薬剤組成物および有害生物防除剤セットを提供することである。

課題を解決するための手段

上記課題を解決すべく鋭意研究した結果、以下の形態を包含する本発明を完成するに至った。

すなわち、本発明は、以下の形態を包含するものである。

1）3エンド[2プロポシシ4（トリフルオロメチル）エノキシ]9[5（トリフルオロメチル）2ピリジルオキシ]9アザビシクロ[3.3.1]ノナンまたはその塩を、（Z）4[5（3.5ジクロロフェニル）4.5ジヒドロ5（トリフルオロメチル）3イソオキサゾリル]N（メトキシミノ）メチル]2メチルベンゾアミドまたはその塩とともに、対象物に施用することを含む有害生物防除方法。

2）有害生物が虫またはダニである（1）に記載の有害生物防除方法。

4）有害生物が虫またはダニである（3）に記載の有害生物防除用薬剤組成物。
2 メチルベンズアミドまたはその塩を含有する薬剤組成物とを混ぜずに一つに纏めてなる有害生物防除剤セット。

(6) 有害生物が虫またはダニである (5) 記載の有害生物防除剤セット。

発明の効果

本発明の有害生物防除方法によれば、より少ない薬量でより安全に、虫やダニなどの有害生物を防除することができる。本発明の有害生物防除用薬剤組成物および有害生物防除剤セットは、本発明の有害生物防除方法において好適に用いることができる。特に本発明の有害生物防除用薬剤は、農園芸用殺虫・殺ダニ剤組成物として好適に用いることができる。

発明を実施するための形態

本発明の有害生物防除方法は、化合物Aを化合物Bとともに、対象物に施用することを含むものである。

化合物Aは、3_エンド_ [2_プロポキシ_4_ (トリフルオロメチル)フエノキシ]_9 [5_ (トリフルオロメチル)_2_ピリジノキシ]_9 およびリチックロ[3_3_1]ノナン (以下、化合物(I)ということがある。)
または化合物(I)の塩である。化合物(I)は、式(I)で表される化合物 (CAS No.: 1332838-1) および一般名: acynonapyr) である。化合物(I)は特許文献1などに記載の方法で製造することができる。

化合物(I)の塩は、農園芸学的に許容される塩であれば、特に制限されない。例えば、塩酸、硫酸などの無機酸の塩;酢酸、乳酸などの有機酸の塩;リ

![Diagram](I)
チウム、ナトリウム、カリウムなどのアルカリ金属の塩；カルシウム、マグネシウムなどのアルカリ土類金属の塩；鉄、銅などの遷移金属の塩；トリエチルアミン、トリプチルアミン、ピリジン、ヒドラジンなどの有機塩基の塩；アンモニアの塩などを挙げることができる。化合物(I)の塩は、化合物(I)から公知の方法によって製造することができる。

化合物Bは、(Z) _ 4 _ [5 _ (3, 5 _ 二クロロフェニル) _ 4, 5 _ 二ヒドロ_ 5 _ (トリフルオロメチル) _ 3 _ イソオキサソリル] _ N _ [(メトキシイミノ)メチル] _ 2 _ メチルベンズアミド(以下、化合物(II)ということがある。)または化合物(II)の塩である。化合物(II)は、式(II)で表される化合物(CAS No. : 928783-29-3、一般名 : Luxatemamide)である。化合物(II)は、特許文献2などに記載の方法で製造することができる。

【画2】

化合物(II)の塩は、農薬学的に許容される塩であれば、特に制限されない。例えば、塩酸、硫酸などの無機酸の塩；酢酸、乳酸などの有機酸の塩；リチウム、ナトリウム、カリウムなどのアルカリ金属の塩；カルシウム、マグネシウムなどのアルカリ土類金属の塩；鉄、銅などの遷移金属の塩；トリエチルアミン、トリプチルアミン、ピリジン、ヒドラジンなどの有機塩基の塩；アンモニアの塩などを挙げることができる。化合物(II)の塩は、化合物(II)から公知の方法によって製造することができる。

本発明の方法に用いられる化合物Bに対する化合物Aの質量比(化合物A / 化合物B)は、特に制限されないが、好ましくは1:0:0:0/1 _ 1/1、0:0:0、より好ましくは1:0:0/1 _ 1/100、更に好ましくは1:0/1 _ 1/10、特に好ましくは1/1_10/1である。
発明の方法においては、化合物Aまたは化合物Bの原体をそのまま用いることもできるが、化合物Aを含む薬剤組成物、化合物Bを含む薬剤組成物または化合物Aと化合物Bを含む薬剤組成物（以下、これら3つを「薬剤組成物」と総称することがある。また、化合物Aと化合物Bを含む薬剤組成物を有害生物防除用薬剤組成物」ということがある。）にして用いることが好ましい。薬剤組成物は、公知の形態に製剤化してなるものであってもよい。製剤化によって、一般的の農薬または動物薬のとり得る形態、例えば、水和剤、粒剤、粉剤、錠剤、乳剤、油溶剤、懸濁剤、懸濁液、フロアブレ、マイクロカプセル、アゾール、噴射剤、噴霧剤、蒸霧剤、加熱蒸散剤、燃焼剤、ベイト剤などにすることができる。また、多孔セラミック板、不織布、紙などの基材に化合物Aおよび/または化合物Bを含浸させたものであってもよい。

薬剤組成物に含まれる、化合物Aと化合物Bの合計量は、剤型に応じて若干異なるが、薬剤組成物に対して、通常0.1〜8.0質量％である。

乳剤、液剤、水和剤（例えば、顆粒水和剤）、水性懸濁剤又はマイクロエマルジョン等の剤型においては、化合物Aと化合物Bの合計含有量は、薬剤組成物に対して、好ましくは1〜8.0質量％、より好ましくは10〜50質量％である。

油剤、粉剤等の剤型においては、化合物Aと化合物Bの合計含有量は、薬剤組成物に対して、好ましくは0.1〜50質量％、より好ましくは0.1〜20質量％程度である。

粒剤、錠剤、ジャンボ剤等などの剤型においては、化合物Aと化合物Bの合計含有量は、薬剤組成物に対して、好ましくは0.5〜50質量％、より好ましくは0.5〜10質量％である。

薬剤組成物には、各種添加剤または担体が含まれているよい。担体は、剤型に応じて、固体担体、液体担体、および気体担体から適宜選択して用いることができる。

固体の製剤において使用される添加剤および担体としては、大豆粉、小麦
粉などの植物性粉末、珪藻土、瞬灰石、石こう、タルク、ベントナイト、バイロフィライト、クレーなどの鉱物性微粉末、安息香酸ソーダ、尿素、芒硝などの有機および無機化合物などを挙げることができる。

[0022] 液体の製剤において使用される溶剤としては、ケロシン、キシレンなどの石油系の芳香族炭化水素、シクロヘキサン、シクロヘキサノン、ジメチルホルムアミド、ジメチルスルホキシド、アルコール、アセトン、トリクロロエチレン、メチルイソプロピルケトン、鉱物油、植物油、水などを挙げることができる。

[0023] 噴射剤に製剤化する際に使用される気体担体としては、ブタンガス、LPG、ジメチルエーテル、炭酸ガスなどを挙げることができる。

[0024] 毒餌の基材としては、穀物粉、植物油、糖、結晶セルロースなどの餌成分；ジブチルヒドロキシトルエン、ノルジヒドログアイレチン酸などの酸化防止剤；デヒドロ酢酸などの保存料；トウガラシ末などの子供やペットによる誤食防止剤；チーズ香料、タマネギ香料などの害虫誘引性香料などを挙げることができる。

[0025] 薬剤組成物において均一かつ安定な形態をとるために、必要に応じ界面活性剤を添加することができる。添加することができる界面活性剤は特に制限されない。例えば、ポリオキシエチレンが付加したアルキルフエニルエーテル、ポリオキシエチレンが付加したアルキルエーテル、ポリオキシエチレンが付加したアルキルエーテル、ポリオキシエチレンが付加したソルビタン高級脂肪酸エステル、ポリオキシエチレンが付加したトリステリフルフェニルエーテルなどの非イオン性界面活性剤、ポリオキシエチレンが付加したアルキルフエニルエーテルの硫酸エステル塩、アルキルベンゼンスルホン酸塩、高級アルコールの硫酸エステル塩、アルキルナフタレンスルホン酸塩、ポリカルボン酸塩、リグニンスルホン酸塩、アルキルナフタレンスルホン酸塩のホルムアルデヒド総合物、イソプチレン—無水マレイン酸共重合体などを挙げることができる。

[0026] 薬剤組成物は、本発明の目的を阻害しない範囲で、必要に応じて、殺菌剤
、殺虫・殺ダニ剤、殺線虫剤、植物調節剤、共力剤、肥料、土壌改良剤、動物用飼料などを含有していてもよい。

[0027] 殺虫・殺ダニ剤、殺線虫剤、殺土壌害虫剤、および駆虫剤の具体例を以下に示す。

[0028] （1）アセチルコリンエステラーゼ阻害剤：

（a）カーパメート系：アラニカルブ、アルシカルブ、ベンジオカルブ、ベンフラカルブ、ブトカルボキシム、ブトキシカルボキシム、カルパリル、カルボフラン、カルボスルファン、エチフェンカルブ、フェノブカルブ、ホルメタネート、フラトカルブ、イソプロカルブ、メチオカルブ、メソミル、オキサミル、ピリミカルブ、プロピカル、チョジカルブ、チオフェノックス、トリアザメート、トリメタカルブ、XMC、キシリルカルブ、フィチノカルブ、MIPC、MPMC、MTMC、アルドキシカルブ、アリキシカルブ、アミノカルブ、ブフェンカルブ、クロエトカルブ、メタムナトリウム、ブロメカルブ；

[0029] （b）有機リン系：アセフェート、アゾメチホス、アシンホス-エチル、アシンホス-メチル、カズサホス、クロルエトキシホス、クロルフェンビンホス、クロルメホス、クロルピリホス、クロルビリホス-メチル、クマホス、シアノホス、ジェメトン-S・メチル、ダイアジノン、ジクロルホス/DVDP、ジクロトホス、ジェトエート、ジメチルビンホス、ジスルホトン、EPN、エチオニ、エトプロホス、ファムフール、フエナミホス、フエニトロチオン、フェンチョン、ホスチアゼート、ヘプテノホス、イミシアホス、イソフェンホス、イソカルポホス、イソキサチオン、マラチオン、メカルバム、メタミドホス、メチダチオン、メビンホス、モノクロトホス、ナレド、オメトエート、オキシジェメトン-メチル、パラチオン、パラチオン-メチル、フェントエート、ホレート、ホサロン、ホスメット、ホスファミドン、ホキシム、ピリミホス-メチル、プロフェノホス、プロベタムホス、プロフィホス、ピラクロホス、ピリダフェンチオン、キナルホス、スルホテップ、デブビリンホス、テメホス、テルブホス、テトラクロルビンホス、チオメトン、トリアゾホス、トリクロ
ルホン、パミドチオン；プロモホス・エチル、BRP、カルボフェノチオン、シァノフェンホス、CYAP、ジメトン・S-メチルスルホン、ジアリホス、ジクロフェンチオン、ジオキサンベンゾホス、エトリムホス、フェンスルホチオン、フルピラゾホス、ホノホス、ホルモチオン、ホスメチラン、イサホス、ヨードフェンホス、メタクリホス、ビルミホス-エチル、ホスホカルブ、プロバホス、プロトエート、スルブロホス。

(2) GABA-作動性塩素イオンチャネルアンタゴニスト：クカルデン、エンドスルファン、エチブロール、フィブロニル、ピラフロール、ビルブロール、カンフェクロル、ヘプタクロル、ジエノクロル。

(3) ナトリウムチャンネルモジュレーター：アクリナトリン、d-シス-トランスアレリン、d-トランスアレリン、ビフェントリン、ビオアレリン、ビオアレリンS-シクロペンチル異性体、ビオレスメトリン、シクロブロトリン、シフエノトリン[(1R)-トランス異性体]、デルタメトリン、エンペントリン[(EZ)-(1R)-異性体]、エスフェンパレート、エトフェンブロックス、フェンプロバトリン、フェンバレート、フルシトリネート、フルメトリン、タウフルパリネート、ハルフェンブロックス、イミブリトリン、カデスリン、ベルメトリン、フェノトリン[(1R)-トランス異性体]、ブラレトリン、ビルラスタム、レスメトリン、シラフルオフェン、テフスリシン、テトラメスリン、テトラメトリン[(1R)-異性体]、トラロメトリン、トランスフルトリン；アレリン、ビルトリン、ビルトリン1、ビルトリン11、プロフルトリン、ジメフルトリン、ピオエタノメトリン、ピオベルメトリン、トランスペルメトリン、フェンフルトリン、フェンピリトリン、フルプロシトリネート、フルフェンブロックス、メトフルトリン、プロトリフェンブト、ビレスマトリン、テラレトリン。

(4) ニコチン性アセチルコリン受容体アゴニスト：アセタミプリド、ク
ロチアニジン、ジノテフラン、イムダクロプロビル、ニテンピラム、ニチアシ
ン、チアクロプロビル、チアメトキサム、スルフォキサフロール、ニコチン、
フルピラジフロン。
(5) ニコチン性アセチルコリン受容体αロステリックモジュレーター：
スピネトラム、スピノサド。
(6) クロライドチャンネル活性化剤：アバメクチン、エマメクチン安息
香酸塩、レビメクチン、ミルベメクチン；イベルメクチン、セラメクチン、
ドライメクチン、エプリノメクチン、モキシデクチン、ミルベマイシン、ミル
ベマイシンオキシム。
(7) 幼若ホルモン様物質：ヒドロブレン、キノブレン、メソブレン、フ
エノキシカルブ、ピリプロキシフェン；ジオフェノラシン、エポフェノナノン、
トリブレン。
(8) その他非特異的阻害剤：臭化メチル、クロルビクリン、フッ化スル
フリル、ホウ砂、吐酒石。
(9) 同翅目選択的摂食阻害剤：フロニカミド、ビメトロジン、ビリフル
キナゾン。
[0032] (10) ダニ類生育阻害剤：クロフエンテジン、ジフロビダジン、ヘキシ
チアゾクス、エトキサゾール。
(11) 微生物由来昆虫中腸内膜破壊剤：バチルス・チューリンゲンシス
亜種イズラエレンシ、バチルス・スファエリクス、バチルス・チューリンゲン
シス亜種アイザウイ、バチルス・チューリンゲンシス亜種クルスタキ、バ
チルス・チューリンゲンシス亜種テネプトリオニス、Bt作物タンパク質：Cry
1Ab、Cry1Ac、Cry1Fa、Cry1A。105、Cry2Ab、Vip3A、mCry3A、Cry3Ab、Cry3Bb
、Cry34Ab1/Cry35Ab1。
(12) ミトコンドリアATP合成酵素阻害剤：ジアフェンチウロン、アゾ
シクロチン、シヘキサチン、酸化フェンプタスズ、プロパルギット、テトラ
ジホン。
(13) 酸化的リン酸化脱共役剤：クロルフエナビル、スルフラミド、DN0
C: ピナパクリル、ジノブトン、ジノカップ。
(14) ニコチン性アセチルコリン受容体チャンネルブロッカー: ベンスルタップ、カルタップ塩酸塩;ネライーストシシン;チョスルタップーナトリウム塩、チオシクラム。
(15) キチン合成阻害剤: ビストリフルロン、クロルフルアズロン、ジフルベンズロン、フルシクロックスロン、フルフェノックスロン、ヘキサフルロン、ルフェヌロン、ノパルロン、ノビフルムロン、テフルベンスロン、トリフルムロン、ププロフェジン、フルアズロン。
(16) 双翅目脱皮がかく乱剤: シロマジン。
(17) 脱皮ホルモン受容体アゴニスト: クロマホホジド、ハロフエンジド、メトキシホホジド、テフホエフジド。
(18) オクトバミン受容体アゴニスト: アミトラズ、デミジトラズ、クロルジメホルム。
(19) ミトコンドリア電子伝達系複合体III阻害剤: アセキノシル、フルクリピリム、ヒドラメチルノン。
(20) ミトコンドリア電子伝達系複合体I阻害剤: フエナザキ、フェンプロキシメート、ピリミジフェン、ピリダベン、テフホエンビラド、トルフェンビラド、ロテノン。

[0033] (21) 電位依存性ナトリウムチャネルブロッカー: インドキサカルブ、メタフルミゾン。
(22) アセチルCoAカルボキシラーゼ阻害剤: スピロジクロフェン、スピロメシフェン、スピロテトラマト。
(23) ミトコンドリア電子伝達系複合体IV阻害剤: リン化アルミニウム、リン化カルシウム、ホスフィン、リン化亜鉛、シアニド。
(24) ミトコンドリア電子伝達系複合体II阻害剤: シエノピラフェン、シフルメトフェン、ピフルブミド。
(25) リアノジン受容体モニュレーター: クロラントラニリブロール、シアントラニブロール、フルベンジアミド、シクラニリブロール、テトラニ
リプロール。

(26) 混合機能オキシダーゼ阻害剤化合物：ビペロニルプトキシド。

(27) ラトロフィリン受容体作用薬：デブシベプチド、環状デブシベプチド、24員環状デブシベプチド、エモデブシド。

(28) その他の剤（作用機構が未知）：アザジラクチン、ペンゾキシメート、ピフエナゼート、プロモブロピレート、キノメチオネート、クリオライト、ジコホル、ピリダリル、ベンクロチアゾン、硫酸、アミドフリュメット、1,3-ジクロロプロペン、DCIP、フェニソプロモレート、ベンゾメート、メタアルデヒド、クルロンジェレート、クロチアゾン、ジシクラニル、フェノキサクリム、フェントリフアニル、フルペンジミン、フルフエナジン、ゴシップルア、ジャポニルア、メトキサジアゾン、石油、オレイン酸カリウム、テトラスル、トリアラセン、アフィドピロペン（afidopyropen）、フロメトキシン、フルフィプロール（flufiprole）、フルエンスルフォン、メベルフルスリン、テトラメチルフルスリン、トラピピリル、ジメフルスリン、メチルネオデカンアミド：フルララネル、アフォキソナネル、フルキサメタミド、5-(5-(3,5-ジクロロフェニル)5-トリフルオロメチル-4,-5-ジヒドロイソキサゾール-3-イール)ペンゾニトリル（CAS: 943137-49-3）、プロフラニリド、その他のメタジアミド類。

[0034] (29) 駆虫剤：

(a) ベンズイミダゾール系：フェンベンダゾール、アルベンダゾール、トリクラベンダゾール、オキシベンダゾール、メベンダゾール、オクスフェンダゾール、バーベンダゾール、フルベンダゾール：フェバンテル、ネットビミン、チオファネート：チアベンダゾール、カンベンダゾール；

(b) サリチルアミド系：クロサンテル、オキシクロザニド、ラフォキサニド、ニクロサミド；

(c) 置換フェノール系：ニトロキシニル、ニトロスカネイト；

(d) ピリミジン系：ピランテル、モランテル；
イミダゾチアゾール系:
レバミソール、テトラミソール；

テトラヒドロピリミジン系:
プラジカンテル、エブシブランテル；

その他の殺虫薬:
シクロジェン、リアニア、クロルスロン、メトロニダゾール、テミジトラゾール、ビベラジン、ジェチルカルバマシン、ジクロロフェン、モネパンテル、トリベンジミジン、アミダンテル；チアセタルサミド、メロルサミン、アルセナマイド。

[0035]殺菌剤の具体例を以下に示す。

（1）核酸生合成阻害剤:
(a) RNAポリメラーゼⅠ阻害剤:ベナラキシル、ベナラキシル-M、フララキシル、メタラキシル、メタラキシル-M、オキサジキシル、クロジラコン、オフレース；
(b) アデノシンデアミナーゼ阻害剤:プビリメート、ジメチリモール、エチリモール；
(c) DNA/RNA合成阻害剤:ハイメキサゾール、オクチリノン；
(d) DNAトポイソメラーゼⅡ阻害剤:オキソリン酸。

[0036]有糸核分裂阻害剤および細胞分裂阻害剤:
(a) β-チูブリン重合阻害剤:ベノミル、カルベンダジム、クロルフエナゾール、フベリダゾール、チアベンダゾール；チオフマネート、チオファネートメチル（thiophanate-methy）；ジエトフェンカルブ；ゾキサミド；エタポキサム；
(b) 細胞分裂阻害剤:ベンシクロノ；
(c) スペクトリン様タンパク質の非局在化阻害剤:フルオピコリド。

[0037]呼吸阻害剤:
(a) 複合体ⅠNADH酸化還元酵素阻害剤:ジフルメトリム；トルフェンピラド；
(b) 複合体Ⅱコハク酸脱水素酵素阻害剤:ベノダニル、フルトランイル、メブロニル；イソフエタミド；フルオピラム；フェンフラム、フルメシクロックス；カルボキシリン、オキシカルボキシリン；チフルサミド；ベンゾピピンジ

フルピル、ピキサフェン、フルキサピロキサド、フラメトピル、イソピラム、ベンフルフェン、ベンチオピラド、セダキサン；ポスカリド；
(c) 複合体 III ユピキノールオキシダーゼQo阻害剤：アゾキシストロピン、クモキシストロピン、クメトキシストロピン、エノキシストロピン、フルフエノキシストロピン、ピクオキシストロピン、ピラオキシストロピン；ピラクロストロピン、ピラメストロピン、トリクロビリカルプ；クレソキシム-メチル、トリフロキシストロピン；ジモキシストロピン、フエナミンストロピン、メトミノストロピン、オリサストロピン；ファモキサドン；フルオキサストロピン；フェンアミドン；ビリペンカルプ；
(d) 複合体 III ユピキノール還元酵素Q1阻害剤：シアルフアミド；アミスルプロム；
(e) 酸化的リン酸化的脱共役剤：ピナパクリル、メブチルジノカップ、ジノカップ；フルアジナム；フェリムゾン；
(f) 酸化的リン酸化阻害剤（ATP合成酵素の阻害剤）：フェンチンアセテート、塩化フェンチン、水酸化フェンチン；
(g) ATP生産阻害剤：シルチオフォム；
(h) 複合体 III :チロクローム bc1 (ユピキノン還元酵素)のQx(未知)阻害剤 : アメトクトラジン。

[0038] (4) アミノ酸およびタンパク質合成阻害剤
(a) メチオニン生成合成阻害剤 : アンドブリム、シブロジニル、メバニピリム、ピリメタニル；
(b) タンパク質合成阻害剤 : ブラストサイジン-S；カスガマイシン、カスガマイシン塩酸塩；ストレプトマイシン；オキシテトラサイクリン。

[0039] (5) シグナル伝達阻害剤 ;
(a) シグナル伝達阻害剤 : キノキシフェン、ブロキナジド；
(b) 減弱圧シグナル伝達におけるMAP・ヒストジンキナーゼ阻害剤 : フェンピクロニル、フルジオキソニル；クロゾリメート、イプロジオン、ブロシミドン、ピンクロソリン。
（6）脂質および細胞膜合成阻害剤:
（a）りん脂質合成、メチルトランスフェラーゼ阻害剤：エジフェンボス、イブロペンボス、ピラゾホス：イソプロチオラン;
（b）脂質の過酸化剤：ビフェニル、クロロンブ、ジクロラン、キンドゼン、テクナゼン、トルクロホスメチル：エトリジアゾール；
（c）細胞膜に作用する剤：ドデモルフ、プロバモカルブ、プロバモカルプ酸塩、ブンチン、ブンプロピモルフ、ダルプ塩酸塩、プロバモカルブホセチレート、プロチオカルブ；
（d）病原菌細胞膜を乱す微生物：パチルズプチリス菌、パチルスピュチリスQST713株、パチルズスピチュリスFZB24株、パチルズスピチュリスMBI600株、パチルズスピチュリスD747株；
（e）細胞膜を乱す剤：ゴセイカプテ（ディーティリー）の抽出物。

（7）細胞膜のステロール生成合成阻害剤:
（a）ステロール生成合成におけるC14位の脱メチル化阻害剤：トリホリン；ビリフェノックス、ピリイソキサゾール、フエナルモル、フルルブリミドール、ヌアリモル；イマザリル、イマザリル硫酸塩、オキスポセチナゾール、ペフラソエート、プロクロラズ、トリフルミゾール、ピニカナゾール；
アザカナゾール、ピテルタノール、プロモカナゾール、シプロカナゾール、ジクロブトラゾール、ジフェノカナゾール、ジニコナゾール、ジニコナゾール-M、エボキシカナゾール、エタカナゾール、フェンプカナゾール、フルキコナゾール、フルシラゾール、フルトリオール、フルカナゾール、フルカナゾール＝シス、ヘキサカナゾール、イミペンカナゾール、イプカナゾール、メトカナゾール、ミクロブタニル、ベンカナゾール、プロピカナゾール、キングカナゾール、シメカナゾール、テプカナゾール、テトラカナゾール、トリアジメゾール、トリアジメゾール、トリチカナゾール：プロチオカナゾール、ポリカナゾール；
（b）ステロール生成合成におけるΔ14還元酵素およびΔ8→Δ7イソメラーゼの阻害剤：
アルジモルフ、ドデモルフ、ドデモルフ酢酸塩、フェンプロビモルフ、ト
リデモルフ；フェンプロビジン、ピベラリン；スピロキサミン；
(c) ステロール生合成系のC4位脱メチル化における3-ケト還元酵素阻害剤
：フェンヘキサミド；フェンビラザミン；
(d) ステロール生合成系のスクワレンエボキシダーゼ阻害剤 : ビリブチカルプ；ナフチフェン、テルピナフィン。

[0042] (8) 細胞壁合成阻害剤

(a) トレハラーゼ阻害剤 : バリダマイシン；
(b) キチン合成酵素阻害剤 : ポリオキシン、ポリオクソリム；
(c) セルロース合成酵素阻害剤 : ジメトモルフ、フルモルフ、ビリモルフ；ベンチアバリカルブ、イプロバラリカルブ、トルプロカルブ、パリフエナレート；マンジプロバミド。

[0043] (9) メラニン生合成阻害剤

(a) メラニン生合成の還元酵素阻害剤 : フサライド；ビロキロン；トリシクラゾール；
(b) メラニン生合成の脱水酵素阻害剤 : カルプロバミド；ジクロシメット；フエノキサニール。

[0044] (10) 宿主植物の抵抗性誘導剤

(a) サリチル酸合成経路に作用する剤 : アシベンゾラル-S-メチル；
(b) その他 : プロベナゾール；チアジニル；イソチアニル；ラミナリン；オオイタドリ抽出液。

[0045] (11) 作用性が不明な剤 : シモキサニール、ホセチルアルミニウム、リン酸（リン酸塩）、テクロフタラム、トリアゾキシド、フルスルファミド、ジクロメジン、メタスルホカルブ、シフルフェナミド、メトラフエノン、ビロオフェノン、ドジン、ドジン遊離塩基、フルチアニール。

[0046] (12) 多作用点を有する剤 : 銅（銅塩）、ポルード液、水酸化銅、銅ナフタレート、酸化銅、オキシ塩化銅、硫酸銅、硫黄、硫黄製品、多硫化カルシウム；ファーバム、マンコゼブ、マネブ、マンカッパー、メチラム、ポリカーバメート、プロビネブ、チラム、ジネブ、ジラム；キャプラタン、カプタ
ホール、フオルベット、クロロタロニル、ジクロフルアンモ、トリフルアノミド、ヴァザチン、イミノクタジン酢酸塩、イミノクタジナルベシル酸塩、アーナジン、ジチアノン、キノメチネート、フオルイミド。

(13) その他の剤: DBEDC、フオルオフオルベット、ヴァザチンアセテート、ビス (8-キノリノラート）鋼 (II)、ブロバミシン、クロロピクリン、シクロフラン、アグロバクテリウム、ベトキサジン、ジフエニルアミン、メチルイソチアネート（MITC）、ミルデママイシン、カブサイシン、クフラネブ、シプロスルファミド、ダゾメート、テバカルプ、ジクロフエン、ジフエニゾクワット、ジフエンゾクワットメチルスルホネート、フルメトベール、ホセチルノルシウム、ホセチルナトリウム、イルママイシン、ナタマイシン、ニトリタールイソプロピル、オキサモカルプ、ブロバモシンナトリウム、ビロールニトリシン、テブフロキシン、トルニフアミド、ザリラミド、アルゴフェーズ（A Lgphase）、アミカルチアソール（Amiearth iazo I）、オキサチアピプロリン（Oxathiapiprolin）、メチラム亜鉛、ベンファゾール、トリクラミド、ユニコナゾール、ミルデママイシン、オキシフェンチシン（Oxyfenth ox）。

植 物 調 転 剤 の 具 体 例 を 以 下 に 示 す。
アブジシン酸、カイネチシン、ベンジルアミノブリン、1,3－ジフエニルウレア、ホルクロルフェヌロン、チジアズロン、クロルフェヌロン、ジヒドロゼアチン、ジベレリン A、ジベレリン A 4、ジベレリン A7、ジベレリン A 3、1－メチルシクロプロパン、N－アセチルアミノエトキシシビルグリシン（別名:アビグリシン）、アミノキシン酸、硝酸塩、塩鉄コバルト、1 AAC、4 － CPA、クロプロップ、2，4 － D、MCPB、インドール－3－酪酸、シクロプロップ、フエチオール、1－ナフチルアセトアミド、エチクロセート、クロキシンホッカック、マレイン酸ヒドロジド、2，3，5－トリヨード安息香酸、サリチル酸、サリチル酸メチル、(－)－ジャスモン酸、ジャスモン酸メチル、(＋)－フェニストリゴール、(＋)－フェニストリゴール、(＋)－オロバンコール、(＋)－ソルゴラクトン、4－オキソ－4－(2－フェニ
ルエチルアミノ酪酸；エテホン、クロルメコート、メピコートクロリド、ベンジルアデニン、5-アミノレプリン酸。

[0049] 本発明の方法の実施形態としては、例えば、化合物Aを含有する薬剤組成物と化合物Bを含有する薬剤組成物とをそれぞれ用意し、それらを対象物に同時にもしくは時をほとんど間けず前後して施用すること；化合物Aを含有する薬剤組成物と化合物Bを含有する薬剤組成物とをそれぞれ用意し、それらを混ぜ合わせて、得られた混合物を対象物に施用すること；化合物Aおよび化合物Bを含有する薬剤組成物を用意し、それを対象物に施用すること；などを挙げることができる。

[0050] 本発明の有害生物防除剤セットは、化合物Aを含有する薬剤組成物と化合物Bを含有する薬剤組成物とを混ぜずに一つに纏めてなるものである。本発明の有害生物防除剤セットは、対象とする有害生物の防除に適した化合物Aと化合物Bの比率にすることができ容易になっており、化合物Aを含有する薬剤組成物と化合物Bを含有する薬剤組成物とを別個独立にそれぞれを用意する手段を省くことができる。本発明の有害生物防除剤セットには、化合物Aを含有する薬剤組成物および化合物Bを含有する薬剤組成物に加えて、対象とする有害生物の防除に適した他の薬剤、例えば、殺菌剤、殺虫・殺ダニ剤、殺線剤、植物調節剤、共力剤、肥料、土壤改良剤、動物用飼料などを含有する薬剤組成物（製剤化されていてもよい。）を混ぜずにひとつに纏めてなるものであることが好ましい。さらに、本発明の有害生物防除剤セットには、計量用のカップやスポイト、混合用の槽、手袋、マスクなどがセットになっていてもよい。

—纏めにする形態は特に制限されない。例えば、袋、箱、ボトル、缶などに各薬剤組成物を別々に収納し、それらを一つの袋、箱などの入れ物に一緒に収納したものを挙げることができる。

[0051] 本発明の有害生物防除用薬剤組成物は、化合物Aと化合物Bとを含有するものである。本発明の有害生物防除用薬剤組成物は、化合物Aと化合物Bが所定の比率で混ぜ合わせられているので、化合物Aを含有する薬剤組成物
および化合物Bを含有する薬剤組成物の計量、混合などの手間を省くことができる。本発明の有害生物防除用薬剤組成物は、剤型に応じて、袋詰め、ボトル詰め、箱詰め、缶詰めなどして、保管若しくは搬送することができる。

【0052】本発明の方法は、特に制限されないが、例えば、水和剤、乳剤、フロアプレル剤、水溶剤および粒子水和剤は水で所定の濃度に希釈して、溶解液、懸濁液あるいは乳濁液にして植物あるいは土壌に散布することで施用することができる。粉剤・粒剤は植物あるいは土壌にばら撒くことで施用することができる。毒餌、防ダニシートなどの製剤は所望の場所に置いたり、吊るしたりすることで施用することができる。エアゾール、霧霧剤などの気体製剤は、スプレーなどの装置を用いて施用することができる。さらに、公知の獣医学的手法（局部、経口、非経口または皮下投与）で施用することができる。獣医学的手法としては、錠剤、カプセル、飼料混入などにより動物に経口的に投与する方法；浸漬液、坐薬、注射（筋肉内、皮下、静脈内、腹腔内など）などにより動物に投与する方法；油性または水性液剤を噴霧、ポアオン、スポットオンなどにより局所的に投与する方法；樹脂に外部寄生虫防除剤を練り込み、前記混練物を首輪、耳札などの適当な形状に成形し、それを動物に装着し局所的に投与する方法；などが挙げられる。

【0053】本発明の方法による施用と、同時にまたは時をほとんど開けずに前後して、前述した、殺菌剤、殺虫・殺ダニ剤、殺線虫剤、植物調節剤、共力剤、肥料、土壌改良剤、動物用飼料などを対象物に施用してもよい。

【0054】対象物への施用量は、特に限定されるものではなく、防除対象の種類、防除時期等に応じて、適宜設定することができる。例えば、ウシ、ブタなどの家畜類、イヌ、ネコなどのペット類の動物に寄生するダニ類の防除のために、例えば、宿主動物1kgに対して、化合物Aと化合物Bの合計量が、0.01〜1000mgの割合となるようにして施用することができる。

【0055】施用の対象物としては、穀物類 ;野菜類 ;根菜類 ;イモ類 ;果樹類、茶、コーヒー、カカオなどの樹木類 ;牧草類 ;芝類 ;花弁類 ;観葉植物 ;ウサなどの植物を挙げることができる。施用対象物としての植物は、原種、変種、
改良品種、栽培品種、突然変異体、ハイブリッド体、遺伝子組換え体（GMO）などによって制限されない。本発明の方法においては、植物全体に施用してもよいし、葉、茎、柄、花、蕾、果実、種子、スプラウト、根、塊茎、塊根、苗条、挿し木などの植物の一部に施用してもよい。各種の農業害虫およびダニ類を防除するために、種子処理、茎葉散布、土壌施用、水面施用などを行うことができる。

また、施用の対象物としては、外部寄生虫の宿主動物と成り得る：イス、ネコなどの愛玩動物、愛玩鳥：ウシ、ウマ、ブタ、ヒッジなどの家畜：家禽などの温血動物：ミツバチ、クワガタ、カプトムシなどの昆虫を挙げることができる。

本発明の方法によって防除可能な有害生物は、特に制限されない。例えば、衛生害虫、貯蔵害虫、衣類害虫、家屋害虫、寄生虫、動物害虫などを挙げることができる。これらには、ダニ類が含まれ、殺虫剤に殺ダニ方法として使用できる。

本発明の方法は、防除の対象となる有害生物の全ての発育ステージにおいて行うことができる。例えば、卵、若虫、幼虫、蛹、成虫に対して本発明の方法を行うことができる。

防除の対象となる害虫の例を以下に示す。

(1) チョウ目（Lepidoptera）のチョウまたは蛾
例えば、
(1-a) アメリカシロヒトトリ（Hyphantria cunea）、クサゴマダラヒトトリ（Lemrya impalilis）などのヒトトリガ科（Arctiidae）の蛾；
(1-b) ナシチビガ（Bucculatrix pyrivorella）などのチビガ科（Bucculatricidae）の蛾；
(1-c) モモンシクイガ（Carposina sasakii）などのシンクイガ科（Carposinidae）の蛾；
(1-d) ウタヘリクロノメイガ（Diaphania indica）、アメリカウリノメイガ（Diaphania latipennalis）などのシアファニア属種（Diaphania spp.）、アラノメイ
ガ（Ostrinia furnacalis）、ヨーロピアンコーンボーラー（Ostrinia nubilalis）, およびニカメイガ（Ostrinia scapularis）などのオストリニ亜属種（Ostrinia spp.）; およびニカメイガ（Chilo suppressa）, コブノメイガ（Cnaphala crocistmediana）, モモノゴマダラノメイガ（Conogethes punctiferalis）, サウスウェスタンコーンボーラー（Diatraea grandiosella）, クワノメイガ（Lyphiodes pyloalis）, クマタンボ（Hellum unda）, シバツグ（Parapediasiateterrella）などのその他の属種のツトガ科（Crambidae）の蛾;

（1-e）イモキバガ（Heyloto grammatraianella）, ワタアカミムシ（Pectinophoragossypiiella）, ヤガイモキ（Xylela）（Phthorimaeacoerculella）, シトトロガ（Sitotrogaceraeella）などのキバガ科（Gelechiidae）の蛾;

（1-f）ヤモギダシャク（Ascotis selena）などのシャクガ科（Geometridae）の蛾;

（1-g）チヤノホソガ（Caloptiliatheivora）, ミカンハモグリガ（Phylloniscitrella）, キンモンホソガ（Phyllonorycterringionella）などのホソガ科（Gracillariidae）の蛾;

（1-h）セセリチョウ（Hesperidae）のチョウ, 例えば, イチモンジセセリ（Parnaraguttata）;

（1-i）カレハガ（Lasiocampidae）の蛾, イェエマオヤケレ（MaLacosomaenusetria）;

（1-j）ドクガ（Lymantriidae）の蛾, 例えば, リマントリア属種（Lymantria spp.）の, マイマイガ（Lymantriadispar）, ノンネマイマイ（Lymantriamonacha）;

その他属種の, チャドクガ（Euproctispseudoconserva）, ヒメシロモンドウガ（Orgiathylella）;

[0059]（1-k）モグリガ（Lyoniidae）の蛾, 例えば, リオネチア属種（Lyometia spp.）の, モモハモグリガ（Lyometiaclerkella）, キンモンハモグリガ（Lyometiaprunifoliella）, マリンテラ属種（Spodopterança）
pp.)の、スジキリヨトウ (Spodoptera depravata)、サザンアーミーワーム (Spodoptera eridania)、シロイチモジョトウ (Spodoptera exigua)、ツマジログサヨトウ (Spodoptera frugiperda)、アブリカヨトウ (Spodoptera littoralis)、ハスマノヨトウ (Spodoptera littoralis)：

オートグラファ属種 (Autographa spp.) の、ガマキンウワバ (Autographa gamma)、タマナキウワバ (Autographa nigrisigna)：

アグロチス属種 (Agrotis spp.) の、タマナガ (Agrotis ipsilon)、カブラヤガ (Agrotis segetum)：

ペリコペリム属種 (Heicoverpa spp.) の、オオタカゴガ (Heicoverpa armigera)、タコタガ (Heicoverpa assula)、コットンボーリワーム (Heicoverpa zea)：

ペリオチス属種 (Heiorthis spp.) の、ウタキバガ (Heiorthis armigera)、ニセアメリカタバコ (Heiorthis virescens)：

その他属種の、ナカジロシタバ (Aedia leucoma)、ミツモンキウワバ (Chenopila agnata)、アケビコノハ (Eudocima tyrannus)、ヨトウガ (Mamestona brassicae)、アヲヨトウ (Mythimna separata)、フタオピコヤガ (Naranga aenescens)、マッキリガ (Pano lis japonica)、ニセタマナガ (Peridroma saucia)、ソイビーンソウ (Pseudopilia incudens)、イラクサギンウワバ (Trichopilia japonica)：

(1-m) コブカ科 (Noidea) の蛾、例えば、ミスジアオリナガ (Earias insulana)：

(1-n) シロチョウ科 (Pieridae) のチョウ、例えば、モンシロチョウ属種 (Pieris spp.) のオオモンシロチョウ (Pieris brassicae)、モンシロチョウ (Pieris rapae crucivora)：

(1-o) コナガ科 (P Luteidae) の蛾、例えば、アクロレピオブシス属種 (Arcolepiopsisspp.)の、ネギコガ (Arcolepiopsis sapporensis)、ヤマノイモコガ (Arcolepiopsis suzuki)：

その他属種の、コナガ (P Lutea xylostes ella)：
(1-P) メイガ科（Pyralidae）の蛾、例えば、スジマダラメイガ（Cadra cautella）、モロコシマダラメイガ（Elasmopha Lpus lignose lucia）、シロイチモノマダラメイガ（Elia a zinckene a）、ハチノスツリガ（Galleria me Lione lucia）。

(1-q) スズメガ科（Sphingidae）の蛾、例えば、マンジユカ属種（Manduca spp.）の、トマトホーンワーム（Manduca quinquemaculata）、タバコホーンワーム（Manduca sexta）。

[0060] (1-r) ニセマイガ科（Stathmopodidae）の蛾、例えば、カキノヘタムシガ（S tathmopoda masinissa）。

(1-s) ヒロズコガ科（Tineidae）の蛾、例えば、イガ（Tinea trans lucens）。

(1-t) ハマキガ科（Tortricidae）の蛾、例えば、アドキソフィエス属種（Adoxophyes spp.）の、チヤノコカクモノハマキ（Adoxophyes honmai）、リンゴコカクモノハマキ（Adoxophyes orana）。

アルチブス属種（Archips spp.）の、リンゴモンハマキ（Archips breviplicatus）、ミダレカクモノハマキ（Archips fuscocupreanus）。

その他属種の、トウヒノシントメハマキ（Choristoneura fumiferana）、コドリンガ（Cydia pomone lucia）、ブドウホソハマキ（Eupoecilia ambiguella）、ナシヒメシンクイ（Graphopho gutca mo Lesta）、シャマキ（Homona magnana）、マメシンクイ（Legum inivora glycinivora lucia）、ホソヤメハマキ（Lobesia botrana）、マメヒメサヤマシガ（Matsumuraeases phaseoloides）、トピハマキ（Pandemis heparana）、テンギハマキ（Sparganothia pilichi）。

(1-u) スガ科（Yponomeutidae）の蛾、例えば、リンゴヒメシンクイ（Argyresthia conjuge lucia）。

[0061] (2) アザミウマ目（Thysanoptera）害虫

(2-a) ウダアザミウマ科（Ph Laothripidae）の、例えば、カキクダアザミウマ（Pont icu Lothrips diospyros lucida）。

(2-b) アザミウマ科（Thripidae）の、例えば、フランクリニエラ属種（Fran...）
kliniella spp. の、ヒラズハナアザミウマ（Frankliniella intonsa）、ミカンキイロアザミウマ（Frankliniella occidentalis）;
トリプス属種（Thrips spp.）の、ミナミキイロアザミウマ（Thrips palmi）、
ネギアザミウマ（Thrips tabaci）;
その他属種の、クロトンアザミウマ（He othrips haemorhoidalis）、チヤノキイロアザミウマ（Sc nitothrrips dorsalis）。

(3) カメムシ目（Hemiptera）の害虫
(3-A) 噛吻亜目（Archaeorhyncha）
(3-A-a) ウンカ科（Deiphidae）の、例えば、ヒメトビウンカ（Laodes Laphax striata）、
トビイロウンカ（Ni laparvata lugens）、クロブツノウンカ（Pe rkinsiella saccharicida）、セジロウンカ（Sogate llafurcifera）。

(3-B) 噛吻亜目（Uy peorhyncha）
(3-B-a) ヨコバイ科（Cicadellidae）の、例えば、エンボアスカ属種（Emo asca spp.）の、ジャガイモヒメヨコバイ（Empoasca fabae）、
カキノヒメヨコバイ（Empoasca nipponica）、
ツマムシヒメヨコバイ（Empoasca onuki）,
マメノヒメドリヒメヨコバイ（Empoasca saka ii）;
その他属種の、フタテンヒメヨコバイ（Arboridia apicalis）、ミドリナガヨ コバイ（B a l c u t a m a l t u s）、フタテンオオヨコバイ（Epiacanthus stramin eus）、
ヒメフタテンヨコバイ（Macroteles striifrons）、ツマムシヒメヨコバイ（Nephotettix cineticeps）。

(3-C) カメムシ亜目（Heteroptera）
(3-C-a) ホソヘリカメムシ科（A Lygaeidae）の、例えば、ホソヘリカメムシ（R iiptortus c Lavatus）;
(3-C-b) ヘリカメムシ科（Coreidae）の、例えば、ホソハリカメムシ（C Letu s punc tiger）、ウモヘリカメムシ（Leptocorisa chinensis）;
(3-C-c) ナガカメムシ科（Lygaeidae）の、例えば、アメリカコパネナガカメムシ（Blissus leucopeterus）、
カンシャコパネナガカメムシ（Cave Lerius sacccharivarus）、
コパネヒヨウトンナガカメムシ（Togo hemipterus）；
(3-C-d) カスミカメムシ科（Miridae）の、例えば、クロトビカスミカメ（Halticus insulatus）、サビヨロスミカメ（Lygus lineolaris）、コットンフリーホッパー（Psuedatomoscelis sericatus）、ナガムギカメスミカメ（Stenotus rubrotinctus）、イネホソミドリカメスミカメ（Trigonotylus caelestis）

(3-C-e) カメムシ科（Pentatomidae）の、例えば、ネサラ属種（Nezara spp.）の、オクサカメムシ（Nezara antennata）、ミナミオオカメムシ（Nezara viridula）

シラホシカメムシ属種（Eysarcoris spp.）の、トケシラホシカメムシ（Eysarcoris aeneus）、オトケシラホシカメムシ（Eysarcoris lewisi）、シラホシカメムシ（Eysarcoris ventralis）

その他属種の、プチヒガカメムシ（Do Lycoris baccarum）、ナガメ（Eurydema rugosum）、ツヤオカメムシ（Glaucias subpunctatus）、サギカメムシ（Ha Lyoomorphha halys）、クイチモンジカメムシ（Pizodorus hybneri）、チャバネオカメムシ（Plautia cossota）、イネクロカメムシ（Scotinophora lurida）

(3-C-f) ホシカメムシ科（Pyrhocorisidae）の、例えば、アカホシカメムシ（Dysdercus cingulatus）

(3-C-g) ヒメヘリカメムシ科（Rhapalidae）の、例えば、アカヒメヘリカメムシ（Rhopalus mscu latus）

(3-C-h) キンカメムシ科（Scutelleridae）の、例えば、ムギチャイロカメムシ（Eurygaster integriceps）

(3-C-i) グンバイムシ科（ Tingidae）の、例えば、ナシグンバイ（Stephanitis nashi）

[0066] (3-D) 腹吻亜目（Sternorrhyncha）

(3-D-a) カサアブラムシ科（Ade Lgidae）の、例えば、カラマッカサアブラムシ（Ade Lges laricis）

(3-D-b) コナジラミ科（Aleyrodidae）の、例えば、ベミシア属種（Bemisia spp.）の、シルバーリーフコナジラミ（Bemisia argentifolii）、タバココナジラ
ミ(Bemisia tabaci)：
その他属種の、ミカントゲコナジラミ(Aleurocanthus spiniferus)、ミカンコナジラミ(Dia Leurodes citri)、オシッコナジラミ(Tria leurodes vaporaria):

[0067] (3-D-c) アブラムシ科(Aphididae)、例えば、アフィス属種(Aphis spp.)の、マメアブラムシ(Aphis craccivora)、マメクロアブラムシ(Aphis fabae)、イチゴネアブラムシ(Aphis forbesi)、ワタアブラムシ(Aphis gossypii)、ヨーロッパリンゴアブラムシ(Aphis pomi)、ニワトコアブラムシ(Aphis sambuci)、ユキナガアブラムシ(Aphis spiraecola)；
ルパロシファム属種(Rhopa losiphum spp.)の、トウモロコシアブラムシ(Rhopalosiphum maidis)、ムギクピレアブラムシ(Rhopalosiphum padina)；
ジサフィス属種(Dysaphis spp.)の、オオバコアブラムシ(Dysaphis plantaginea)、ギシギシネアブラムシ(Dysaphis radicola)；
マクロシファム属種(Macrosteles spp.)の、ムギヒゲナガアブラムシ(Macrosteles pruni)、チューリップヒゲナガアブラムシ(Macrosteles euphorbiaceae)；
ミズス属種(Myzus spp.)の、ニワウメクロコブアブラムシ(Myzus cerasi)、モモアカアブラムシ(Myzus persicae)、カウリコブアブラムシ(Myzus sordidus)；
その他属種の、エンドウヒゲナガアブラムシ(Acrythosiphon pisum)、ジャガイモヒゲナガアブラムシ(Au Lacorhynchus solani)、ムギワラギクオマルアブラムシ(Brachycaudus helichrysi)、ダイコンアブラムシ(Brevicoryne brassicae)、イチゴケガサアブラムシ(Chaetosiphon fragaefolii)、モモコフキアブラムシ(Hya Loperus pruni)、チシャマドリアアブラムシ(Hyperomyzus lactucae)、ニセダイコンアブラムシ(Lipaphis erysimi)、ソラマメヒゲナガアブラムシ(Megoura viciae)、ムギウスイロアブラムシ(Metopolophium dirhodum)、レタスアブラムシ(Nasonovia ribis-nigri)、ホップイホトアブラムシ(Phorodon humuli)、ムギヒゲナガアブラムシ(Schizaphis graminum)、ムギヒゲナガアブラムシ(Schizaphis graminum)、ムギヒゲナガアブラムシ(Schizaphis graminum)、ムギヒゲナガアブラムシ(Schizaphis graminum)、ムギヒゲナガアブラムシ(Schizaphis graminum)。
アブラムシ（Sitobion avenae）、コミカンアブラムシ（Toxoptera aurantii）

(3-D-d) カタカイガラムシ科（Coccidae）の、例えば、セロプラスター属種（Cerop lastes spp.）の、ツノロムシ（Ceroplastes ceriferus）、ルピーロムシ（Ceroplastes rubens）

(3-D-e) マルカイガラムシ科（Diaspidae）の、シュダラカスビス属種（Pseudaulacaspis spp.）の、クワシロバイガラムシ（Pseudaulacaspis pentagona）、ウメシロバイガラムシ（Pseudaulacaspis prunicolor）

ウナスビス属種（Unaspis spp.）の、マサキナカイガラムシ（Unaspis euonymyi）、ヤノネカイガラムシ（Unaspis yanoneanis）

その他属種の、アカマルカイガラムシ（Anionideae aurantii）、ナシマルカイガラムシ（Comstockaspis perniciosa）、チコノハカイガラムシ（Fiorinia theae）、チャノマルカイガラムシ（Pseudaulia idae paeoniae）

(3-D-f) ウタフキカイガラムシ科（Margarodidae）の、例えば、オオワラシカイガラムシ（Drosicha corpus lenta）、イセリアカイガラムシ（Icethya pursha）

(3-D-g) ネアブラムシ科（Phyloxeridae）の、例えば、ブドウネアブラムシ（Viteus vitifoli）

(3-D-h) コナカイガラムシ科（Pseudococcidae）の、例えば、ブラノコッカス科（Pseudococcus spp.）の、ミカンコナカイガラムシ（Pseudococcus citri）、フジコナカイガラムシ（Pseudococcus kuraunhi）

その他属種の、ナスコナカイガラムシ（Phenacoccus solani）、クサコナカイガラムシ（Pseudococcus comstocki）

(3-D-i) キジラミ科（Psyllidae）の、例えば、ブスルラ属種（Psylla spp.）の、リンゴキジラミ（Psylla maia）、ナシキジラミ（Psylla pyrisuga）

その他属種の、ミカンキジラミ（Diaphoreina citri）

(4) コウチュウ目（Co Leptotera）の害虫

(4-a) シバムシ科（Anobiidae）の、例えば、タバコシバムシ（Lasioderma bosal）
(4-b) オツシブミ科（Atte Labidae）の、例えば、ドロハマキチョッキリ（Byctiscus betulae）、モモチョッキリゾウムシ（Rhytites heros）;
(4-c) ナガシンクイムシ科（Bostichidae）の、例えば、ヒラタキクイムシ（Lyctus brunneus）;
(4-d) ミツギリゾウムシ科（Brentidae）の、例えば、アリモドキゾウムシ（Cytae formicarius）;
(4-e) タマムシ科（Buprestidae）の、例えば、アカバナガタマムシ（Agrilus sinuatus）;
(4-f) カミキリムシ科（Cerambycidae）の、例えば、ゴマダラカミキリ（Anoplophora maia iaca）、マツノマダラカミキリ（Monochamus a lternatus）、キボシカカミキリ（Psacothea hilaris）、プドウトラカミキリ（Xylopterus pyrum）;
(4-g) ハムシ科（Chrysomelidae）の、例えば、ブルクス属種（Bruchus spp.）の、エンドウマメソウムシ（Bruchus pisorum）、ソラマメソウムシ（Bruchus rufimanus）;
（ジプロモチカ属種（Dibrachys spp.）の、ノーザンコーンリーツウム（Dibrachys barberi），サザンコーンリーツウム（Dibrachys undecimpunctata），ウエスタンコーンリーツウム（Dibrachys virgifera）;
（フィロトレタ属種（Phyloptera spp.）の、ノミトビヨリムシ（Phyloptera nemorum），キスジノミハムシ（Phyloptera striolata）;
その他属種の、ウリハムシ（Au Lacophora lamora us）、アズキソウムシ（Callo sobruchusich ineus），カメノコハムシ（Cassida nebu losa）、テンサイトビハムシ（Chaeotocnema concinnna），コロラドハムシ（Leptotinotarsa decemlineata），イネクビホソハムシ（Ou Lema oryzae），ナスガスネトピハムシ（Psyloides angusticollis）;
[0070] (4-h) テントコムシ科（Coccinellidae）の、例えば、エピラクナ属種（Epi lachna spp.）の、インケンテントウ（Epilachna varivestis），ニジユウホシテントウ（Epilachna viginti ooctopunctata）;
(4-i) ゾウムシ科（Curculionidae）の、例えば、アントノムス属種（Anthonomus spp.）の、ワタミゾウムシ（Anthonomus grandis）八ナシハナゾウムシ（Anthonomus pomorum）；
シトフィルス科（Sitophilus spp.）の、グラナリーウィートル（Sitophilus granarius）、コクゾウムシ（Sitophilus zeamais）；その他属種の、イネゾウムシ（Echinoconulus squameus）、イモゾウムシ（Euscepes postfasciatus）、マツアナキゾウムシ（Hylobius abietis）、ツリファリファタコゾウムシ（Hypera postica）、イネミズゾウムシ（Lissohop rus oryzophi lus）、キンケクブトゾウムシ（Oti orychnclus sulcatus）、アカシシヒコフキゾウムシ（Sitona lineatus）、シバオサゾウムシ（Sphenophorus venatus）；

(4-j) コメツキシムシ科（E Lateridae）の、例えば、メラノッケ属種（Me Lanotus spp.）の、マルクビクシコメツキ（Me Lanotus fornum i）、カンシャクシコメツ（Me lanotus tamsuyens is）；

(4-k) ケシキスイ科（Nitidulidae）の、例えば、ヒメヒラタケシキスイ（Ep uraea domi na）；

(4-l) コガネムシ科（Scarabaeidae）の、例えば、アノマラ属種（Anoma la spp.）の、ドウガネブイブイ（Anoma la cuprea）、ヒメコガネ（Anoma La rufocupa rea）；その他属種の、キンイロハナムグリ（Cetonia aurata）、コアオハナムグリ（Gamet is ju cunda）、ナガチャコガネ（Heptop hy la picea）、ヨーロッパコフキコガネ（Me Lo Lontha melolontha）、マメコガネ（Pop ia ja ponia）；

(4-m) キクウムシ科（Sco Lytidae）の、例えば、ヤツバキクイ（Lps typographus）；

(4-n) ハネカクシ科（Staphylinae）の、例えば、オバアリガタハネカクシ（Paederusf useipes）；

(4-o) ゴミシダマシ科（Tenebrionidae）の、例えば、チャイロコメノゴミシダマシ（Tenebr io molitor）、コクヌストモドキ（Tr ibo lum castaneum）；

(4-p) コクヌスト科（Trogossitidae）の、例えば、コクヌスト（Tenebroid
(5) ハエ目 (Diptera) の害虫

(5-A) ハエ亜目 (Brachycera)

(5-A-a) ハモグリバエ科 (Agromyzidae) の、例えば、リリオマイサ属種 (Liriomyza spp.) の、ナスハモグリバエ (Liriomyza bryon iae), ネギハモグリバエ (Liriomyza chinensis), トマトハモグリバエ (Liriomyza sativae), マメハモグリバエ (Liriomyza trifolii) ；
その他属種の、ナモグリバエ (Chromatomyia horticola), イネハモグリバエ (Agromyza oryzae) ；
(5-A-b) ハナバエ科 (Anthomyiidae) の、例えば、デリア属種 (Delia spp.) の、タネバエ (Delia platura), キャベツハナバエ (Delia radicum) ；その他属種の、テンサイモグリバエ (Pegomya cunicularia) ；
(5-A-c) ショウジヨウバエ科 (Drosophilidae) の、例えば、ショウジヨウバエ (Drosophila spp.) の、キイロショウジヨウバエ (Drosophila melanogaster) ；
(5-A-d) ミギバエ科 (Ephydridae) の、例えば、イネヒメハモグリバエ (Hydrellia griseola) ；
(5-A-e) ハネオレバエ科 (Psiiidae) の、例えば、ニンジンサビバエ (Psiloptera rosae) ；
(5-A-f) ミバエ科 (Tephritidae) の、例えば、バクトロセラ属種 (Bactrocera spp.) の、ヴリミバエ (Bactrocera cucurbitae) ；ミカンコミバエ (Bactrocera dorsalis) ；
ラゴレチス属種 (Rhagoletis spp.) の、ヨーロッパオオトウミバエ (Rhagoletis cerasi), リンゴミバエ (Rhagoletis pomonella) ；
その他属種の、チチュウカイミバエ (Ceratitis capitata), オリーブミバエ (Dacus oleae) ；

(5-B) 力亜目 (Nematocera)

(5-B-a) タマバエ科 (Cecidomyiidae) の、例えば、ダイズサタマバエ (As
【0073】

（6）昆虫目（Orthoptera）の害虫

(6-a) 代虫科（Acrídidae）の、例えば、スキャトセール・カ属種（Schistocerca spp.）の、アメリカイナズト（Schistocerca americana）、ナカトビバトゥ（Schistocerca gregaria）。

その他属種の、オーストラリア・トリバト（Chorticaetes term inifera）、モロッコイナゴ（Dociostaurus maroccanus）、トノサマバト（Locusta migratoria）、ブラウンイナゴ（Locustana pardina）、アカトビバトゥ（Nomadacris septemfasciata）、コバネイナゴ（Oxya yezoensis）。

(6-b) コオロギ科（Gryllidae）の、例えば、ヨーロッパイエコロギ（Acheta domestica）、エンマコロギ（Telegryllus emma）。

(6-c) ケラ科（Gryllotalpidae）の、例えば、ケラ（Gryllotalpia orientalis）。

(6-d) キリギリス科（Tettigoniidae）の、例えば、クラズミユマ（Tachycines asynamorus）。

【0074】

（7）ダニ類（Acarina）

（7-A）無気門目（Astigmata）のコナダニ類（Acarididae）

(7-A-a) コナダニ科（Acaridae）のダニ、例えば、リソギルホス属種（Rhi zoglyphus spp.）の、ネダニ（Rhi zoglyphus echinopus）、ロピンネダニ（Rhi zoglyphus robini）。

ケナガコナダニ属種（Tyrophagus spp.）の、オンシッケナガコナダニ（Tyrophagus neiswander i）、オケナガコナダニ（Tyrophagus per nicous）、ケナガコナダニ（Tyrophagus putrescentiae）、ホウレンソウケナガコナダニ（Tyrophagus similis）。

その他属種、アシプトコナダニ（Acarus siro）、ムギコナダニ（A Leurog Ly phus ovatus）、ニセケナガコナダニ（Mycetoglyphus fung lorum）。
前気門目（Prostigmata）のカニ類（Acari）
(7-B-a) ハダニ科（Tetranychidae）のダニ、例えば、ブリオビア属種（Bryobia spp.）の、タタキハダニ（Bryobia praetiosa）、ミセタハダニ（Bryobia rubripalpis）ハダニ（Bryobia rubripalpis）。
エオテトラニクス属種（Eotetranychus spp.）の、コウノシロハダニ（Eotetranychus asiaticus）、アンズハダニ（Eotetranychus boreus）、エノキハダニ（Eotetranychus celtis）、ミチノクハダニ（Eotetranychus geniculatus）、ミヤゲハダニ（Eotetranychus kankita）、リイハダニ（Eotetranychus pruni）。
シエカハダニ（Eotetranychus shii）、スミスハダニ（Eotetranychus smithii）、スギナミハダニ（Eotetranychus suginamensis）、クルミハダニ（Eotetranychus uncatus）。
オリゴニクス属種（Oligonychus spp.）の、スギノハダニ（Oligonychus hondoensis）、ピコハダニ（Oligonychus ilicis）、カラマツハダニ（Oligonychus karamatus）、マンコハダニ（Oligonychus mangiferus）、サトウキビハダニ（Oligonychus orthius）、アボガドハダニ（Oligonychus persea）、エノスキハダニ（Oligonychus pustulosus）、イネハダニ（Oligonychus shinkajiri）、トマッハダニ（Oligonychus ununguis）。
テトラニクス属種（Tetranychus spp.）の、ミカンハダニ（Panonychus citri）、クワオハダニ（Panonychus mori）、リンゴハダニ（Panonychus ulmi）。
アボニクス属（Aponychus spp.）の、イトマキハダニ（Aponychus corpusae）、タイリクハダニ（Aponychus firmianae）。
ミドリハダニ（Sasanychus spp.）の、ミドリハダニ（Sasanychus akitanus）、ヒメミドリハダニ（Sasanychus pusillus）。

シゾテトラニクス属（Shizotet ranychus spp.）のタケスゴモリハダニ（Shizotet ranychus celar tus）、ケナガスゴモリハダニ（Shizotet ranychus longus）、スキスユモリハダニ（Shizotet ranychus miscanthi）、ヒメササハダニ（Shizotet ranychus recki）、ヤナギハダニ（Shizotet ranychus schizopus）；
その他属種の、カタバミハダニ（Tetranychina hartii）、ナミケナガハダニ（Tuckeria paviformis）、ケウスハダニ（Yezonychus sapporensis）；

[0076] (7-B-b) ヒメハダニ科（Tenuipalpidae）のダニ、例えば、ブレピルブス属種（Brevipalpus spp.）の、ブドゥヒメハダニ（Brevipalpus lewisi）、チャノヒメハダニ（Brevipalpus obtusus）、ミナミヒメハダニ（Brevipalpus phoenicis）、サボテンヒメハダニ（Brevipalpus russulus）、オンシヒメハダニ（Brevipalpus californicus）；

テニールブス属種（Tenuipalpus spp.）の、ランヒメハダニ（Tenuipalpus pacificus）、カキヒメハダニ（Tenuipalpus zhizhishviliae）；

その他属種の、バイナップルヒメハダニ（De Luchotet ranychus floridanus）；

(7-B-c) フシダニ科（Eriophyidae）のダニ、例えば、アセリア属種（Aceria spp.）の、カキサビダニ（Aceria diospyri）、イチジクマンサビダニ（Aceria ficus）、クリフシダニ（Aceria japonica）、クロフシダニ（Aceria kukko）、カーネーションサビダニ（Aceria paraphyta）、シバハマキフシダニ（Aceria zoysiae）；

エリオフィエイエス属種（Eriophyes spp.）の、ニセナシサビダニ（Eriophyes chibaensis）、ウメフシダニ（Eriophyes emarginata）；

アクロブス属種（Acu lops spp.）の、トマトサビダニ（Acu Lops lycopersici）、ミカンサビダニ（Acu Lops pulexass）；

アクルス属種（Acu Lus spp.）の、モモサビダニ（Acu Lus fockeii）、リンゴサビダニ（Acu Lus schlechtendalii）；
その他属種の、チヤノナガサビダニ（Acaphya Ul a theavagrans）、チヤノサビダニ（Ca lacarus carinatus）、ブドウハモダリダニ（Co lomerus vitis）、ブドウサビダニ（Ca lep i trimerus vitis）、ナシサビダニ（Epitrimerus pyr i）、キンモクサビダニ（Paraphytoptus kikus）、マキサビダニ（Paraca Laca rus podocarp i）、リュウキユウミカンサビダニ（Phy locus grata citri）；
(7-B-d) ホコリダニ科（Transonemidae）のダニ、例えば、タルソネムス属種（Taronemus spp.）の、スジブトホコリダニ（Taronemus bilobatus）、アシボソホコリダニ（Taronemus waitei）；
その他属種の、シクラメンホコリダニ（Phytonemus pal lidus）、チヤホコリダニ（P o lyphagotarsonemus latus）；
(7-B-e) ハシリダニ科（Pentha Leidae）のダニ、例えば、ヘンタレウス属種（Pentha leusspp.）の、ハクサイダニ（Pentha Leus erythrocepha lus）、ムギダニ（Pentha leus maj or）。

[0077] 防除の対象となる外部寄生虫としては、宿主動物の背、脛下、下腹部、内肢部などに寄生して動物から血液やフケなどの栄養源を得て生息するもの、および宿主動物の背、臀部などに飛来して動物から血液やフケなどの栄養源を得て生息するものを包含する。外部寄生虫としては、例えば、ダニ類、シラミ類、ノミ類、カ、サシバエ、ニクバエなどを挙げることができる。外部寄生虫の具体例を以下に示す。
（1）ダニ類（Acar i）
ワクモ科（Dermanyss i dae）のダニ、オオサシダニ科（Macronyss i dae）のダニ、トゲダニ科（Lae Lapidae）のダニ、ヘギダニ科（Var roidae）のダニ、ヒメダニ科（Argas i dae）のダニ、マダニ科（Ix odidae）のダニ、キユウセンヒセンダニ科（Psoropt i dae）のダニ、ヒゼンダニ科（Sarcopt i dae）のダニ、トリヒゼンダニ科（Knemidokopt i dae）のダニ、ニキビダニ科（Demod i dae）のダニ、ツッガムシ科（Trombic u lidae）のダニ。
（2）シラミ目（Phth i rapterta）
ケモノシラミ科（Haematop inidae）のシラミ、ケモノホソジラミ科（Linogna
(2) その他の害虫
ゴキブリ類 (Blattodea)、シロアリ類 (termite)、クモ類 (Araneae)、ムシ類 (Hymenoptera)、カタクリ類 (Phyllopodidae) のハチ、カワラベジタ類 (Siphonaptera) のノミ、藻・アカバニ類 (Diptera) のハエ、ワササ類 (Hemiptera) の昆虫、カサゴ類 (Odonata) の昆虫。
カデ類 (cet ipede) 、ヤスデ類 (millipede) 、甲壳類 (Crustacea) 、南京虫 (Cimex lectularius)。

実施例

以下に本発明の有害生物防除用薬剤組成物の製剤処方を若干示すが、添加物および添加割合は、これら実施例に限定されるべきものではなく、広範囲に変化させることが可能である。製剤処方中の部は質量部を示す。

製剤 1 （水和剤）
化合物A 20部、化合物B 20部、珪藻土53部、高級アルコール硫酸エステル4部、およびアルキルナフタレンスルホン酸塩3部を均一に混合して微細に粉砕して、有効成分40％の水和剤を得る。

製剤 2 （乳剤）
化合物A 15部、化合物B 15部、キシレン33部、ジメチルホルムアミド30部、およびポリオキシエチレンアルキルアルキルエーテル7部を混合し溶解させて、有効成分30％の乳剤を得る。

製剤 3 （乳剤）
化合物A 2.5部、化合物B 2.5部、ジメチルホルムアミド9.3.6部、およびポリオキシエチレンアルキルアルキルエーテル1.4部を混合し溶解させて、有効成分5％の乳剤を得る。

製剤 6 （粒剤）
化合物A 2.5部、化合物B 2.5部、タルク40部、クレー38部、ベントナイト10部、およびアルキル硫酸ソーダ7部を均一に混合して微細に粉砕し、次いで造粒して、直径0.5〜1.0mm、有効成分5％の粒剤を得る。

製剤 7 （粒剤）
化合物A 2.5部、化合物B 2.5部、クレー73部、ベントナイト20部、ジオクチルスルホサクシネートナトリウム塩1部、ならびにリン酸カリウム1部をよく粉砕混合し、これに水を加えてよく練り合せ、その後、造粒乾燥して有効成分5％の粒剤を得る。
製剤 8 （懸濁剤）
化合物 A 5 部、化合物 B 5 部、ポリオキシエチレンアルキルアリルエーテル 4 部、ポリカルボン酸ナトリウム塩 2 部、グリセリン 10 部、キサンタンガム 0.2 部、および水 73.8 部を混合し、粒度 3 μm 以下になるまで湿式粉砕し、有効成分 10% の懸濁剤を得る。

製剤 9 （顆粒）
化合物 A 2.5 部、化合物 B 2.5 部を有機溶媒に溶解させて溶液を得、該溶液をカツリン 94 部およびホワイトカーポン 1 部の上に塗霧し、次いで溶媒を減圧下蒸発させて顆粒を得る。この顆粒は動物の餌と混合して使用することもできる。

製剤 10 （注入剤）
化合物 A 0.5 部、化合物 B 0.5 部、およびラッカセイ油 99 部を均一に混合し、次いで滅菌フィルターによりろ過滅菌することによって注入剤を得る。

製剤 11 （ポアオン剤）
化合物 A 2.5 部、化合物 B 2.5 部、ミリスチン酸エステル 10 部、およびイソプロパノール 85 部を均一に混合してポアオン剤を得る。

製剤 12 （スポットオン剤）
化合物 A 5 部、化合物 B 5 部、パルミチン酸エステル 10 部、ならびにイソプロピルアルコール 80 部を均一に混合してスポットオン剤を得る。

製剤 13 （スプレー剤）
化合物 A 0.5 部、化合物 B 0.5 部、プロピレングリコール 10 部、ならびにイソプロピルアルコール 89 部を均一に混合してスプレー剤を得る。

次に、本発明の有害生物防除用薬剤組成物の作用効果を説明する。

（評価試験用の乳剤の調製）
化合物 A および/または化合物 B 5 部、ジメチルホルムアミド 93.6 部、ならびにポリオキシエチレンアルキルアリルエーテル 1.4 部を混合し
溶解させて、有効成分5%の乳剤（I）を調製した。

ただし、乳剤調製時において、化合物A及び化合物Bを併用する場合におけるそれらの化合物の配合割合は、試験1では、化合物A/化合物Bを10/1とし、試験例2では1/1とした。

（試験1）チヤハマキに対する効力試験

乳剤（I）を水で稀釈し表1に示す濃度の乳剤希釈液1a〜3aを得た。

前記乳剤希釈液に茶葉を10秒間浸漬した。乳剤希釈液から茶葉を取り出し、風乾した。その後、シャーレに茶葉を移し、それにチヤハマキの幼虫5頭を放した。シャーレを温度25℃、湿度65%の恒温室内に置いた。放虫から3日間経過したときに、成虫の生死を調査した。試験は2反復で行った。

乳剤希釈液1a〜3aについてチヤハマキに対する効力試験を行った結果を表1に示す。また、コルピーの式に基づいて理論殺虫率Eを算出し、表1に示した。

コルピーの式:

\[
E (\%) = \frac{X + Y - XXY}{100}
\]

\[
X : \text{化合物Aを単独で使用して成る薬液で処理した場合の実測殺虫率 (％)}
\]

\[
Y : \text{化合物Bを単独で使用して成る薬液で処理した場合の実測殺虫率 (％)}
\]

\[
E : \text{化合物Aと化合物Bを併用して成る薬液で処理した場合の理論殺虫率 (％)}
\]

[表1]

<table>
<thead>
<tr>
<th></th>
<th>乳剤希釈液</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1a</td>
</tr>
<tr>
<td>化合物A 濃度 (ppm)</td>
<td>50</td>
</tr>
<tr>
<td>化合物B 濃度 (ppm)</td>
<td>0.5</td>
</tr>
<tr>
<td>実測殺虫率 (%)</td>
<td>80</td>
</tr>
<tr>
<td>理論殺虫率 (%)</td>
<td>40</td>
</tr>
</tbody>
</table>
[0097]（試験２）ミカンハダニに対する効力試験

乳剤(I)を水で希釈し表2に示す濃度の乳剤希釈液1b〜3bを得た。

シャーレにミカン葉を入れ、その葉の上にミカンハダニ雌成虫10頭を接種した。

前記乳剤希釈液を回転散布帯にて前記ミカン葉に散布した。該ミカン葉を、温度25℃、湿度65%の恒温室内に置いた。散布から1日間経過したときに、成虫の生死を調査した。試験は2反復で行った。

乳剤希釈液1a〜3aについてミカンハダニに対する効力試験を行った結果を表2に示す。また、コルビーの式に基づいて理論殺虫率Eを算出し、表2に示した。

[0098]（表2）

<table>
<thead>
<tr>
<th></th>
<th>乳剤希釈液</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1b</td>
</tr>
<tr>
<td>合物A 濃度(ppm)</td>
<td>1</td>
</tr>
<tr>
<td>合物B 濃度(ppm)</td>
<td>1</td>
</tr>
<tr>
<td>実測殺虫率(%)</td>
<td>68</td>
</tr>
<tr>
<td>理論殺虫率(%)</td>
<td>31</td>
</tr>
</tbody>
</table>

[0099]以上の結果から、本発明の有害生物防除方法によると、化合物Aまたは化合物Bが本来的に有する防除効果を相乗的に増大させることがわかる。
請求の範囲

[請求項1] 3_エンド_[2_プロポキシ_4_（トリフルオロメチル）フェニキシ]_9_[5_（トリフルオロメチル）_2_ビリジルオキシ]—9_—アゾビシクロ[3.3.1]ノナンまたはその塩を、（Z）_4_—[5_（3,5—ジクロロフェニル）]—4_—ジヒドロ_5_—（トリフルオロメチル）_3_イソオキサジリル]—N_【（メトキシイミノ）メチル】_2_メチルベンゾアミドまたはその塩を含む有害生物の防除剤セツト。

[請求項2] 有害生物が虫またはダニである請求項1に記載の有害生物の防除方法。

[請求項3] 3_エンド_[2_プロポキシ_4_（トリフルオロメチル）フェニキシ]_9_[5_（トリフルオロメチル）_2_ビリジルオキシ]—9_—アゾビシクロ[3.3.1]ノナンまたはその塩と、（Z）_4_—[5_（3,5—ジクロロフェニル）]—4_—ジヒドロ_5_—（トリフルオロメチル）_3_イソオキサジリル]—N_【（メトキシイミノ）メチル】_2_メチルベンゾアミドまたはその塩とを含有する有害生物防除用薬剤組成物。

[請求項4] 有害生物が虫またはダニである請求項3に記載の有害生物防除用薬剤組成物。

[請求項5] 3_エンド_[2_プロポキシ_4_（トリフルオロメチル）フェニキシ]_9_[5_（トリフルオロメチル）_2_ビリジルオキシ]—9_—アゾビシクロ[3.3.1]ノナンまたはその塩を含有する薬剤組成物と、（Z）—4—[5—（3,5—ジクロロフェニル）]—4_—ジヒドロ_5_—（トリフルオロメチル）_3_イソオキサジリル]—N_【（メトキシイミノ）メチル】_2_メチルベンゾアミドまたはその塩を含有する薬剤組成物を混ぜずに一つに纏めてなる有害生物防除剤セツト。

[請求項6] 有害生物が虫またはダニである請求項5に記載の有害生物防除剤セツト。
INTERNATIONAL SEARCH REPORT

International application No.

PCT / JP2 017 / 01740

A. CLASSIFICATION OF SUBJECT MATTER

A01N 3/8 0 (2006.01)i, A01N43 / 90 (2006.01)i, A01P7/ 02 (2006.01)i, A01P7/ 04 (2006.01)i

According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols)

A01N 3 / 80, A01N4 3 / 90, A01P7 / 02, A01P7 / 04

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

Electronic data base consulted during the international search (name of data base and, where practicable, search terms used)

CAplus / REGI STRY (STN)

C. DOCUMENTS CONSIDERED TO BE RELEVANT

<table>
<thead>
<tr>
<th>Category</th>
<th>Citation of document, with indication, where appropriate, of the relevant passages</th>
<th>Relevant to claim No.</th>
</tr>
</thead>
</table>

* Further documents are listed in the continuation of Box C. ☐ See patent family annex.

Date of the actual completion of the international search

09 June 2017 (09.06.17)

Date of mailing of the international search report

20 June 2017 (20.06.17)

Name and mailing address of the ISA/Authorised officer

Japan Patent Office, 3-4-3, Kasumigaseki, Chiyoda-ku, Tokyo 100-8915, Japan

Telephone No.
<table>
<thead>
<tr>
<th>Category</th>
<th>Citation of document, with indication, where appropriate, of the relevant passages</th>
<th>Relevant to claim No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>WO 2008/126795 AI (Nippon Soda Co., Ltd.), 23 October 2008 (23.10.2008), claims; examples</td>
<td>1-6</td>
</tr>
<tr>
<td>A</td>
<td>WO 2007/026965 AI (Nissan Chemical Industries, Ltd.), 08 March 2007 (08.03.2007), claims; examples</td>
<td>1-6</td>
</tr>
<tr>
<td>A</td>
<td>JP 2008-239611 AI (Nissan Chemical Industries, Ltd.), 09 October 2008 (09.10.2008), claims; examples</td>
<td>1-6</td>
</tr>
<tr>
<td></td>
<td>(Family: none)</td>
<td></td>
</tr>
</tbody>
</table>
A. 発明の属する分野の分類 (国際特許分類 (I P C))
Int.Cl. A01N43/80 (2006. 01) i , A01N43/90 (2006. 01) i , A01P7/02 (2006. 01) i , A01P7/04 (2006. 01) i

B. 調査を行った分野
調査を行った最小限資料 (国際特許分類 (I P C))
Int.Cl. A01N43/80, A01N43/90, A01P7/02, A01P7/04

最小限資料以外の資料で調査を行った分野に含まれるるもの
日本国実用新案公報 1922-
日本国公開実用新案公報 1971-2
日本国実用新案登録公報 1996-
日本国登録実用新案公報 1994-2

国際調査で使用した電子データベース (データベースの名前、調査に使用した用語)
CAplus/REGISTRY (STN)

C. 関連すると認められる文献

引用文献のカテゴリーハ
引用文献名 及び一部の箇所が関連するときは、その関連する箇所の表示 関連する請求項の番号

関連する文献

" ➥ パテントファミリーに関する別紙を参照。"

* 引用文献のカテゴリーハ
** 特に関連のある文献ではなく、一般的な技術水準を示すもの
*** 国際出願 相互の出願または特許であるが、国際出願の日以降に公表されたもの
**** 特に関連のある文献であって、当該文献のみで発明の新規性又は進歩性がないと考えられるもの
***** 特に関連のある文献であって、当該文献と他の1以上の文献との、当業者にとって自明である組合せによって進歩性がないと考えられるもの

国際調査を完了した日
09. 06. 2017

国際調査報告の発送日
20. 06. 2017

国際調査機関の名称及びあて先
日本国特許庁 (I SA / J P)
郵便番号 100 - 8915
東京都千代田区霞が関二丁目4番3号

特許庁審査官 権限のある職員)
緒形 友美
電話番号 03- 3581- 1101 内線 3443

様式 PCT / I SA / 210 (第2ページ) (2015年1月)
C（続き）、関連すると認められる文献

<table>
<thead>
<tr>
<th>引用文献のカテゴリ</th>
<th>引用文献名及び一部の箇所が関連するときは、その関連する箇所の表示</th>
<th>関連する請求項の番号</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>JP 2008-239611 A（日産化学工業株式会社）2008.10.09, 特許請求の範囲、実施例（ファミリーなし）</td>
<td>1-6</td>
</tr>
</tbody>
</table>

様式 PCT/ISA/210（第2ページの続き）（2015年1月）