FIG. 5
1. An apparatus for use in the treatment of skin mycoses, said apparatus comprising:
 an applicator including at least two RF electrodes on opposite sides of a digit nail plate and/or nail bed and operative to apply at least one form of energy selected from a group consisting of RF energy, light radiation energy and ultrasound energy to at least one of a nail plate and tissue normally covered by a nail plate to heat said nail plate and tissue to a temperature sufficient to affect skin mycoses pathogens; and
 at least one of heat monitoring mechanism operative to receive and analyze temperature of said tissue normally covered by the nail plate.

2. The apparatus according to claim 1, wherein said light radiation energy is within a wavelength between 400nm and 2000nm.

3. The apparatus according to claim 1, wherein said applicator also comprises at least two RF electrodes operative to apply RF energy to the skin, the distance between said electrodes being adjustable.

4. The apparatus according to claim 1, wherein the distance between said applicator RF electrodes is automatically adjustable so that said electrodes come to rest on opposite sides of a digit nail plate and/or nail bed tissue when said digit is fully inserted into said applicator.

5. The apparatus according to claim 4, wherein said RF electrodes are spring-biased.
6. The apparatus according to claim 2, wherein said RF energy is applied by an applicator comprising at least one RF electrode.

7. The apparatus according to claim 2, wherein said RF energy is applied by a plurality of voltage-applying-elements arranged in a spaced apart pattern.

8. The apparatus according to claim 2, wherein said RF energy is applied in continuous or pulse mode.

9. The apparatus according to claim 1, wherein the heat generated in said tissue is sufficient to affect said mycoses pathogens without causing substantial unwanted injury to the tissue to be treated and surrounding tissue.

10. The apparatus according to claim 1, wherein said ultrasound energy is applied by an applicator comprising at least one ultrasound transducer applied to the tissue at an adjustable angle.

11. The apparatus according to claim 1, wherein the ultrasound energy is applied by an applicator comprising at least one ultrasound transducer operative to emit ultrasound beams applied to the tissue at an angle of incidence to cause propagation of at least a portion of the emitted beams in a desired tissue layer.

12. The apparatus according to claim 1, wherein the ultrasound energy is applied by an applicator comprising at least one ultrasound transducer operative to apply ultrasound energy to tissue normally covered by a nail plate and generate heat in said tissue sufficient to affect said pathogens.
13. The apparatus according to claim 1, wherein the ultrasound energy is applied by an applicator comprising at least one ultrasound transducer operative to at least one of emit and receive ultrasound beams into and from said tissue and communicate to a controller emitted and received beam signals, so that said controller may analyze changes in propagation speed of said beams through said tissue to determine changes in temperature thereof.

14. The apparatus according to claim 1, wherein said apparatus also includes at least one temperature change indicators selected from a group consisting of impedance and ultrasound wave propagation speed.

15. The apparatus according to claim 1, wherein at least one of said RF electrodes includes at least one carrier having on one surface thereof a pattern of a plurality of voltage-applying-elements arranged in a spaced apart pattern.

16. The apparatus according to claim 1, wherein at least one of said RF electrodes includes at least one carrier having on one surface thereof a pattern of a plurality of voltage-applying-elements arranged in a spaced apart pattern and a controller operative to employ said RF electrode to bring about progression of a heated linear zone between said elements through said nail bed tissue forming a linear sweeping heating wave effect across said tissue normally covered by a nail to affect said mycoses pathogens.

17. The apparatus according to any of the preceding claim 16, wherein the time interval between consecutive sweeping tissue heating wave effects applied to said same heated linear zone is longer than the thermal relaxation time of human skin.
18. The apparatus according to claim 1, wherein also comprising at least one sensor operative to sense temperature and at least one temperature change indicating indicator selected from a group consisting of impedance and ultrasound wave propagation speed.

19. The apparatus according to claim 1, wherein frequency of said RF energy is in a range between 300 KHz and 40 MHz.

20. A method for use in the treating of skin mycoses, said method comprising: applying at least two RF energy applying electrodes to opposite sides of a digit nail plate and/or tissue normally covered by a nail plate so that the shortest path of travel of electrical current induced by voltage between said RF electrodes is through a segment of nail bed tissue alone; generating an RF induced current to heat at least tissue normally covered by a nail plate to a temperature sufficient to affect skin mycoses pathogens.

21. The method according to claim 20, wherein also comprising irradiating said tissue normally covered by a nail and generating heat in said tissue sufficient to affect said mycoses pathogens.

22. The method according to claim 20, further comprising irradiating through a nail plate tissue located beneath said nail plate and further heating it.

23. The method according to claim 20, wherein heating said tissue to a temperature level sufficient to substantially thermally affect mycoses pathogens without causing substantial unwanted injury to the tissue to be treated.
24. The method according to any of the preceding claims 20 through 22, wherein said energy is supplied in continuous and pulse form.

25. The method according to claim 20, wherein also applying ultrasound energy to said tissue normally covered by a nail and generating heat in said tissue sufficient to affect said mycoses pathogens.

26. The method according to claim 20, wherein also receiving and analyzing temperature and temperature changes.

27. The method according to claim 20, wherein also employing ultrasound to emit and receive ultrasound beams into and from said tissue and analyzing changes in propagation speed of said beams through said tissue to determine changes in temperature thereof.

28. The method according to any one of the preceding claims 26 and 27, wherein also comprising adjusting treatment parameters in accordance with said changes a predetermined treatment protocol.

29. The method according to claim 22, wherein also generating a tissue heating sweeping wave effect across said tissue normally covered by a nail plate to affect said mycoses pathogens.

30. The method according to claim 29, wherein the time interval between consecutive sweeping tissue heating wave effects applied to said same heated linear zone is longer than the thermal relaxation time of human skin.
31. The method according to any one of the preceding claims 20 through 22, wherein applying said energy in pulse form with a time interval between consecutive sweeping tissue heating wave effects applied to said same heated linear zone is longer than the thermal relaxation time of human skin

32. The method according to any one of the preceding claims 20 through 22, further comprising applying ultrasound energy to said tissue layer normally covered by a nail plate and generating heat in said tissue sufficient to affect skin mycoses pathogens.

33. The method according to claim 22, wherein also generating a tissue heating sweeping wave effect across said tissue normally covered by a nail plate to affect said mycoses pathogens.

34. The method according to claim 33, wherein the time interval between consecutive sweeping tissue heating wave effects applied to said same heated linear zone is longer than the thermal relaxation time of human skin.

35. The apparatus according to claim 1, wherein when said electrodes rest on opposite sides of said nail plate the shortest path of travel of electrical current induced by voltage between said RF electrodes is through a segment of nail bed tissue alone.

36. The apparatus according to claim 1, wherein said applicator also comprising a base and a cover, operative to comfortably accommodate a subject's digit and having an aperture in said cover so that to allow tissue to be treated to be exposed to light energy applied through said aperture when a subject's digit is fully inserted in said applicator.