wo 2013/063218 A1 || F T 0O 00 00 T

(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(19) World Intellectual Property
Organization
International Bureau

(43) International Publication Date
2 May 2013 (02.05.2013) WIPOIPCT

é 0O 0PN
é (10) International Publication Number

\

WO 2013/063218 Al

(51

eay)

(22)

(25)
(26)
(30)

1

(72

74

International Patent Classification:
HO4L 12/26 (2006.01)

International Application Number:

International Filing Date:

Filing Language:
Publication Language:

Priority Data:

(81) Designated States (uniess otherwise indicated, for every
kind of national protection available). AE, AG, AL, AM,
AO, AT, AU, AZ, BA, BB, BG, BH, BN, BR, BW, BY,
BZ, CA, CH, CL, CN, CO, CR, CU, CZ, DE, DK, DM,

PCT/US2012/061844 DO, DZ. EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, GT,
HN, HR, HU, ID, IL, IN, IS, JP, KE, KG, KM. KN, KP,
25 October 2012 (25.10.2012) KR, KZ, LA, LC, LK, LR, LS, LT, LU, LY, MA, MD,
. ME, MG, MK, MN, MW, MX, MY, MZ, NA, NG, NI,
English NO, NZ, OM, PA, PE, PG, PH, PL, PT, QA, RO, RS, RU,
English RW, SC, SD, SE, SG, SK. SL, SM, ST, SV, SY, TH, TJ,
T™, TN, TR, TT, TZ, UA, UG, US, UZ, VC, VN, ZA,

IM, ZW.

Us

61/551,203 25 October 2011 (25.10.2011)

(84) Designated States (uniess otherwise indicated, for every

Applicant: FOURTH WALL MEDIA, INC. [US/US]; kind of regional protection available). ARIPO (BW, GH,
45925 Horseshoe Drive, Suite 100, Dulles, VA 20166 GM, KE, LR, LS, MW, MZ, NA, RW, SD, SL, SZ, TZ,
(US). UG, ZM, ZW), Eurasian (AM, AZ, BY, KG, KZ, RU, TJ,

Inventor: SLOTHOUBER, Louis, P.; Leesburg, VA

TM), European (AL, AT, BE, BG, CH, CY, CZ, DE, DK,
EE, ES, FL FR, GB, GR, HR, HU, IE, IS, IT, LT, LU, LV,

(US). MC, MK, MT, NL, NO, PL, PT, RO, RS, SE, SI, SK, SM,
Agents: KARMELEK, Alison et al.; Intellectual Property TR), OAPI (BF, BJ, CF, CG, CI, CM, GA, GN, GQ, GW,
Department, Hunton & William LLP, 2200 Pennsylvania ML, MR, NE, SN, TD, TG).

Avenue, NW, Washington, DC 20037 (US).

Published:
— with international search report (Art. 21(3))

(54) Title: NETWORK BANDWIDTH REGULATION USING TRAFFIC SCHEDULING

ETV PLATFORM SERVER (EPS) |20

‘ APACHE HTTP SERVER (TCP) }/220

HTTPICP
210
TM SERVER (UDP}

HEADEND
HUBS AND HFC NODES

| |

HFCNODE ‘ ‘ HFC NODE }/300‘ HFC NODE ‘

THUDP SET-TOP BOYES

L

|40

TMCLIENT }/’“U

|-~410
EBIF USER AGENT

SET-TOP BOX(STB)

FIG. 1

(57) Abstract: Disclosed herein are systems and methods for regulating net-
work bandwidth by means of monitoring network traftic, predicting network
loads, and scheduling tratfic utilizing traffic reporting and bandwidth reserva-
tion mechanisms. These systems and methods may reduce network conges-
tion and support more efficient processing by network applications. Traftic
reporting may comprise broadcasting control messages to network nodes in-
dicating appropriate times to send and receive messages. Network nodes may
use traffic reports (e.g., control messages) to proactively regulate their use of
the network. Bandwidth reservation may allow network nodes to do product-
ive processing while waiting to send and receive data, and may decrease
mean wait times. Reservations may be implemented in a synchronous or
asynchronous manner. In an exemplary embodiment, the reservation mechan-
ism may emulate a traditional stream socket API. Embodiments enabling en-
hanced TV applications to run more effectively over cable TV out-of-band
networks are described.

WO 2013/063218 PCT/US2012/061844

NETWORK BANDWIDTH REGULATION
USING TRAFFIC SCHEDULING

Field of the Disclosure

[0001] The invention relates generally to systems and methods for regulating
network bandwidth. More specifically, various exemplary embodiments relate to
traffic reporting and bandwidth reservation mechanisms.

Background

[0002] With the continued proliferation of communications networks; from the
Internet to cable TV, IPTV, mobile broadband, WiFi, and home networks; and an
ever-growing demand for data to be sent over these networks; concerns about network
congestion are becoming more pervasive. As fast as larger pipes can be provided,
user demand threatens to fill them. Best-effort mechanisms for data delivery like
those underpinning the Internet often prove insufficient.

[0003] Network congestion concerns may be particularly serious for narrow,
asymmetrical channels such as the out-of-band (OOB) channel of a cable TV
network. OOB cable channels are increasingly strained by requirements to handle
traffic generated by enhanced TV applications such as those implemented using the
Enhanced TV Binary Interchange Format (EBIF) or Open Cable Application Platform
(OCAP) standards. Such traffic may include voting and polling data, user preference
and statistics traffic, t-commerce information, and other data. Data delivery over DSL
and mobile broadband networks faces similar challenges.

[0004] To address the problem of network congestion over band-limited
networks, various approaches have been described. Some include: packet dropping
(via “tail drop” or Active Queue Management), TCP congestion avoidance, Explicit
Congestion Notification, window shaping, traffic shaping (i.e., packet delaying),
Quality of Service (QoS) schemes, and related bandwidth reservation techniques.

1

WO 2013/063218 PCT/US2012/061844

[0005] What is needed are systems and methods for regulating network bandwidth
to reduce congestion in a way that allow nodes to continue processing while waiting
to send and receive data and without requiring long messages, excessive handshaking,
or other QoS-type overhead.

Summary of the Disclosure

[0006] In various exemplary embodiments, systems and methods may be provided
for regulating network bandwidth comprising monitoring network traffic, predicting
network loads, and scheduling traffic utilizing traffic reporting and bandwidth
reservation mechanisms. Traffic reporting may comprise broadcasting control
messages to network nodes indicating appropriate times to send and receive messages.
Network nodes may use traffic reports (e.g., control messages) to proactively regulate
their use of the network. Reservations may be implemented in a synchronous or
asynchronous manner. The reservation mechanism may emulate a traditional stream
socket APL.

[0007] In another exemplary embodiment, in addition to the traffic report
broadcast, client nodes may make bandwidth reservations before sending or receiving
messages or other data.

[0008] In some exemplary embodiments, systems and methods may provide
bandwidth regulation and lightweight Transmission Control Protocol (TCP)
functionality over User Datagram Protocol (UDP) in a digital cable TV out-of-band
(OOB) network wherein an Enhanced Television (ETV) Platform Server
communicates via Hypertext Transfer Protocol (HTTP) payloads interchanged using
UDP with multiple Set-Top Boxes (STBs) running Enhanced TV Binary Interchange

Format (EBIF) User Agents,

WO 2013/063218 PCT/US2012/061844

[0009] Other embodiments include networks that utilize TCP and other protocols;
networks such as in-band cable TV, DSL, and cellular/mobile networks; and networks
based on other architectures and components.

[00010] In another exemplary embodiment, bandwidth reguiation may be
implemented by an EBIF User Agent in a way that may be transparent to EBIF
applications. In other embodiments, the traffic schedule may be exposed to network
applications, which can then use the disclosed traffic scheduling mechanisms and
adjust user-facing behavior appropriately.

[00011] In another exemplary embodiment, a bandwidth regulation server may be
responsive to external events (e.g., time-of-day or time-of-year bandwidth predictions,
breaking news alerts indicating likely traffic storms) to be appropriately managed.
[00012] It is to be understood that both the foregoing general description and the
following detailed description are exemplary and explanatory only, and are not
restrictive of the invention as claimed. The accompanying drawings constitute a part
of the specification, illustrate certain embodiments of the invention and, together with
the detailed description, serve to explain the principles of the invention.

Brief Description of the Drawings

[00013] The invention can be more fully understood by reading the following
detailed description together with the accompanying drawings, in which like reference
indicators are used to designate like elements, and in which:

[00014] Figure 1 is an exemplary architecture diagram depicting an embodiment of
a system for providing bandwidth regulation in a cable system’s out-of-band network.
{00015] Figure 2 is an exemplary architecture diagram depicting an embodiment of
a Traffic Management Server according to an exemplary embodiment of the present

invention.

WO 2013/063218 PCT/US2012/061844

[00016] Figure 3 is an exemplary architecture diagram depicting a programmer’s
view of an embodiment of a Traffic Management Client according to an exemplary
embodiment of the present invention.

[00017] Figure 4a is a flowchart depicting a prior art TCP/STREAM socket
implementation of HTTP.

[00018] Figure 4b is a flowchart depicting a synchronous (blocking) virtual socket
implementation of HTTP according to an exemplary embodiment of the present
invention.

[00019] Figure 4c is a flowchart depicting an asynchronous (non-blocking) virtual
socket implementation of HTTP according to an exemplary embodiment of the
present invention.

[00020] Figure 5a is a graphical representation of an exemplary Info Packet.
[00021] Figure 5b is a graphical representation of an exemplary Data Packet.
[00022] Figure 5c is a graphical representation of an exemplary ACK Packet.
[00023] Figure 5d is a graphical representation of an exemplary Probe Packet.
{00024] Figure 6a is graphical representation of a virtual socket structure.
[00025] Figure 6b is graphical representation of a virtual socket table structure.
[00026] Figure 6c¢ is graphical representation of a reservation queue structure.
[00027] Figure 7ais a graph depicting a simulation of a network load without
bandwidth regulation.

[00028] Figure 7b is a graph depicting a simulation of a network load with
bandwidth regulation.

[00029] Figure 7c is a graph depicting the difference between simulated network
loads with and without bandwidth regulation.

Detailed Description of the Disclosure

WO 2013/063218 PCT/US2012/061844

[00030] As illustrated in Figure 1, the present disclosure relates to network
bandwidth regulation using traffic scheduling in the context of Traffic Management
(TM) systems 100 and methods. More specifically, an exemplary embodiment is
disclosed in the context of a digital cable TV out-of-band (OOB) network wherein an
Enhanced Television (ETV) Platform Server 200 communicates via Hypertext
Transfer Protocol (HTTP) payloads interchanged using User Datagram Protocol
{UDP) with multiple Set-Top Boxes (STBs) 400 running Enhanced TV Binary
Interchange Format (EBIF) User Agents 410. In addition to providing bandwidth
regulation, the disclosed TM systems 100 and methods may provide lightweight
Transmission Control Protocol (TCP) functionality using UDP supporting guaranteed
delivery, packet sequencing, flow control, and data compression.

[00031] Systems and methods described herein may also be appropriate for use
with traffic utilizing TCP and other protocols; for other networks such as in-band
cable TV, DSL, and cellular/mobile networks; and for networks based on other
architectures and components.

[00032] In the present exemplary embodiment, the TM systems 100 and methods
take into account the following characteristics of digital cable QOB networks:
[00033] Asymmetry - downstream network bandwidth (headend to STB) is greater
than upstream;

[00034] Low Bandwidth - bandwidth in either direction is measured in Kbps, not
Mbps:

[00035] High Latency - tunneling Internet Protocol (IP) over a Hybrid Fiber-
Coaxial (HFC) network generates delays;

[00036] UDP preferred over TCP - saves bandwidth and time, and not all cable

OOB networks provide TCP;

WO 2013/063218 PCT/US2012/061844

[00037] HTTP Dominates - most traffic is modeled on HTTP request/response, but
there may be exceptions;

[00038] Request/Response Dichotomy - most traffic consists of data moving in one
direction or the other and the request direction tends to carry much less data;

[00039] Fragility - upstream congestion may crash the OOB network and STBs on
the network;

[00040] Mixed Foreground/Background - Some requests need a timely reply
whereas others do not.

Assumptions and Definitions

[00041] To facilitate description of the current exemplary embodiment, the
following assumptions about the underlying network may be made:

[00042] Cable OOB networks use IPv4 exclusively, not IPv6;

[00043] IP packet headers occupy 20 bytes;

[00044] UDP packet headers occupy 8 bytes;

[00045] Media Access Control (MAC) Layer cells have a payload of at least 34
bytes (size varies);

[00046] The maximum UDP message size that can fit in one MAC cell, along with
28 bytes of IP and UDP headers, is 34 - 28 = 6 bytes. This drives the size of TM
packet headers;

[00047] The total upstream bandwidth per Hybrid Fiber Coax network node (HFC
Node, i.e., demodulator) is 256 Kbps, shared by 500 to 2000 STBs;

[00048] Slotted Aloha networks have a theoretical maximum efficiency of 36.8%
due to collisions;

[00049] The total downstream bandwidth per modulator is 2 Mbps, shared by up to

32,000 STBs;

WO 2013/063218 PCT/US2012/061844

[00050] The performance of the current embodiment may be based on the
following numeric constants that may be used in implementations. Representative
values are noted, subject to change based upon experimentation and the characteristics
of deployed environments:

[00051] MTU - Maximum Transmission Unit (i.e., UDP packet size) for TM
upstream traffic may be 244 Bytes or 1952 bits. This allows one MTU to fit in exactly
6 MAC cells (272 bytes), including 28 bytes of IP and UDP header. 99% of all
upstream messages should fit in 1 MTU. Downstream, the MTU may be larger, up to
a maximum of 987 bytes;

[00052] SLOT - The time required to send one MTU at 256 Kbps, or 0.008
seconds (8 milliseconds};

[00053] SLOTS_PER_SECOND - A constant 125 (i.e., 1000 ms/sec / 8
ms/SLOT);

[00054] Slot ID - A 6-byte unsigned integer (or larger) that uniquely identifies one
SLOT (i.c., 8 millisecond time slice) since 01/01/2000 at 00:00:00. That is, a Slot ID
of 0 refers to the 8 millisecond time slice starting at 01/01/2000 at 00:00:00.000, and
ending at 01/01/2000 at 00:00:00.008; Slot ID 2 refers to the next time slice,
beginning at 01/01/2000 at 00:00:00.008 and ending at 01/01/2000 at 00:00:00.016,
and so on. For example, the Slot ID of the 34th SLOT for the date-time of 5/8/2010
3:21:04 AM is 40825508034, The Slot ID of the first SLOT representing the 100 year
anniversary second of this date is 242007908000;

{00055] VPORT - The actual port number (1962) used for all TM traffic. This

number has been registered to BIAP, Inc.;

WO 2013/063218 PCT/US2012/061844

[00056] VSEND_WASTE - The maximum number of milliseconds between
packets that a data sending function (e.g., vsend()) should continue to block. Initially
set to 100 milliseconds;

[00057] VSEND_TRIES - The maximum number of packet resends that vsend()
should attempt before returning. Initially set to 5.

[00058] VRECV_WASTE - The maximum number of milliseconds that a data
receiving function (e.g., vrecv()) should continue to block waiting for a data packet.
Initially set to 100 milliseconds.

Traffic Management Architecture

[00059] Figure 1 is an exemplary architecture diagram depicting an embodiment of
a system 100 for providing bandwidth regulation in a cable system’s OOB network.
The depicted TM Client 420 and TM Server 210 components may provide TCP-like
functionality over UDP with built-in bandwidth regulation.

{00060] The embodiment may consist of one or more ETV Platform Servers (EPS)
200 located at a cable operator headend communicating with multiple STBs 400
located at customer premises connected through a plurality of Hubs (not shown) and
HFC Nodes 300 in a tree and branch topology. The EPS 200 may comprise a TM
Server 210 which may be a high-performance UDP proxy server that relays incoming
TM/UDP traffic consisting of HTTP payloads to an Apache HTTP Server 220 via
HTTP/TCP and then relays HTTP/TCP responses back to the originating STB 400 via
TM/UDP through the intermediate HFC Nodes 300 and Hubs.

[00061] STBs (i.e., client nodes) 400 may comprise an EBIF User Agent 410
utilizing a TM Client 420 to support the data networking needs of EBIF applications
(not shown) running on the STBs 400. The TM Client component 420 may be a static

library that mimics a standard stream socket Application Programming Interface

WO 2013/063218 PCT/US2012/061844

(API) for TCP networking, providing for multiple simultaneous “virtual” stream
sockets and connections while using only a single actual datagram socket/port.
[00062] The indicated TM/UDP protocol may use a simple packet fragmentation,
sequencing, and acknowledgement scheme to guarantee message delivery.
Bandwidth regulation may be controlled by the TM Server 210 which may monitor
upstream traffic to predict network loading, and broadcast control messages to STBs
400 that tell TM Clients 420 how to schedule upstream messages (e.g., via bandwidth
reservations). Downstream bandwidth regulation may be accomplished entirely
within the TM Server 210.

[00063] Given the architecture depicted in Figure 1, there may be three operational
modes supported, only one of which may be used for any particular cable operator.
Which mode is supported may depend on: (a) the availability of a continuous trickle
of downstream bandwidth for UDP broadcast of load information to STBs 400, and
(b) permanent allocation of one socket/port on the client system. These modes may
be:

[00064] Mode 1 - When both (a) and (b) are available, the TM Server 210 may
broadcast info packets (see below) to all STBs 400 periodically, e.g., every 10
seconds and more often during heavy load conditions. This should require about 30
bps (0.03 Kbps);

[00065] Mode 2 - When (a) is available, but not (b), and the TM Client 420 must
wait for an info packet before sending any message, these packets must be sent more
frequently. This should require about 270 bps (0.27 Kbps);

[00066] Mode 3 - When (a) is not available, probe packets (described below) must

be used to “test the waters™ before sending every message. This may cause brief

WO 2013/063218 PCT/US2012/061844

bandwidth spikes beyond the configured limits, and is therefore less desirable than the
other modes.

Traffic Management Server

[00067] Figure 2 is an exemplary architecture diagram depicting an exemplary
embodiment of a Traffic Management (TM) Server 210.

[00068] The TM Server 210 may be a high-performance UDP to TCP relay server
that implements the TM guaranteed delivery protocol and OOB bandwidth regulation.
Incoming connections and data may be received via a UDP Listener process 214 and
the connection/packet may be placed as a task on an agenda 218. As depicted by the
dashed lines in Figure 2, the agenda 218 may be read by several processes.

[00069] A connection may be implicitly “opened” whenever a data or probe packet
arrives with a new combination of IP address, Port, and ConnID (see Packet Formats
section below) header fields. Child processes 216, which may each implement
multiple worker threads, may process these packets as they arrive, reassembling them
in the proper order into the original messages, and returning ACK packets to the client
as necessary. Completed messages may then be sent to the Apache HTTP Server 220
via a standard HTTP/TCP/IP connection. The HTTP response from Apache may then
be returned to the corresponding client via the “open” virtual connection (i.e., via
downstream data packets).

[00070] The bandwidth regulation process 212 may monitor incoming packets in
real time. This information and its rate of change may be used to estimate loading
trends. From this estimate, a corresponding Send Probability may be computed. This
Send Probability and clock synchronization information may be periodically
broadcast via UDP to all TM Clients 420.

Traffic Reporting

10

WO 2013/063218 PCT/US2012/061844

[00071] This section describes an exemplary method for communicating load
information to TM Clients 420.
[00072] The TM Server 210 and TM Clients 420 may manage upstream QOB
bandwidth by spreading out the time used to send messages. Every message may be
broken down into fixed-sized data packets and each packet may be bounded by a
random delay. For example, if the current global send probability (i.¢., variable
send_probability) is 32767, the delay (in SLOTs) may be calculated to be:
[00073] tm_random{) % (131072.0 / 32768 + 0.5)

= tm_random() % 4
[00074] which results in a value between O and 3. For example, if #m_random()
returns 446, then 446 % 4 = 2. A call to a channel/slot reservation function on a TM
Client 420 would return the reservation delay of 16 milliseconds to the caller (i.e., 8 *
2, where each SLOT is 8 milliseconds). This information may also be used to update
a reservation_slot variable with the delay of 2 to the current Slot ID value. This is
interpreted to mean that the first virtual connection in a reservation queue maintained
by the TM Client 420 has a packet to send in 16 milliseconds (i.e., 2 SLOTs) from
now. At that time, a subsequent call to the reservation function will see that the
reserved time has arrived and return a O to the caller, who will then send the message.
A send_probability value may be set as follows:
[00075] (i) It is initialized to a default value of 16,387.
[00076] (2) In Modes 1 and 2, its value is received directly from info packets
broadcast by the TM Server 210. This value supersedes any older send_probability
value. In Mode 3, a probe packet is sent as soon as possible to generate a

corresponding ACK packet.

11

WO 2013/063218 PCT/US2012/061844

[00077] (3) Every ACK packet contains an update of the send_probability value.
This value supersedes any older send_probability value.

[00078] (4) Every time a sent packet acknowledgement times out (i.e., the packet is
not acknowledged), the send_probability value is halved (minimum of 1). Every
second which passes without a send_probability being halved in this way,
send_probability is caused to be increased by 100, to a maximum value of 16,387.
[00079] As described above, Mode 1 generates a broadcast stream of info packets
requiring about 0.03 Kbps of downstream bandwidth. Mode 2 requires 0.27 Kbps.
Depending on the mode, the client should start listening for info packets as soon as
possible after a true socket is available.

Random Number Generation

[00080] This section presents an exemplary implementation of a random number
generator (i.e., tm_random() and tm_randomize()) suitable for calculating message
delays and other needs of various exemplary embodiments of the present invention:

static uint32 tm_seed = 19610508;

uint32 tm_random{) {

const uint32 a = 16807;

const uint32 m = 2147483647;

const uint32 g = 127773; /*m /oa *f
const uint32 r = 2836; /*m % a */

int32 lo, hi, test;

hi = tm_seed / q;

lo

tm_seed % g;

12

WO 2013/063218 PCT/US2012/061844

test = a * lo - r * hi;

if (test > 0)

tm_seed = test;
else
tm seed = test + m;

return tm_ geed;

void tm_randomize(uint32 s) {
tm_seed = s;

}
{00081] #m_randomize(<ip_address>) should be called exactly once on startup,
where <ip_address> is the uint32 (4-byte) value of the IPv4 address of the STB.
Client Clock Synchronization
[00082] This section describes an exemplary method of client clock
synchronization suitable for various exemplary embodiments of the present invention.
[00083] Info packets broadcast from the TM Server 210 may contain timing
synchronization information along with send_probability updates. The timing
information may come in two fields of the info packet:
[00084] SynchSecond (1-byte) - A value in the range 0..119 identifying which
second the packet was sent according to the server clock. The value is an offset from
the start of the most recent even-numbered minute.
[00085] SynchPhase (1-byte) - The number of SLOTSs (0..124) that elapsed in the

synchronizing second before sending this packet.

i3

WO 2013/063218 PCT/US2012/061844

[00086] For example, if the time at which an info packet is constructed on the TM
Server 210 is 13:23:43.728 GMT, including fractions of a second, the value assigned
to the SynchSecond field would be 103. Since the minute value, 23, is odd, the most
recent even-numbered minute is 22. The offset from 13:22:00 to 13:23:43 1s 01:43, or
103 seconds.

[00087] Once the second has been identified, the remaining 0.728 seconds (728
milliseconds) must be accounted for. Assuming one SLOT occupies 0.008 seconds (8
milliseconds), the number of slots is calculated as 728 / 8 = 91. This value (e.g., 91)
is assigned to the SynchPhase field in the info packet.

[00088] Every time the TM Client 420 receives an info packet, it may perform the
following steps to update a time_offset_msec variable:

[00089] (1) Calculate the current date/time (GMT) as seconds since some epoch in
floating point variable current_time.

[00090] (2) Calculate the time defined by the two fields found in the info packet
(GMT) as seconds since the same epoch, in floating point variable synch_time.
[00091] (3) Calculate the floating point variable synch_offset_msec =
(synch_time - current_time) * 1000, the latest offset in milliseconds.
[00092] (4) Settime_offset_msec = time_offset_msec * 0.9 +
synch_offset_msec * 0.1. This generates a slow moving average of the time
offset as conditions change over time. Prior to receiving any info packets, initialize
time_offset_msec to zero (0).

[00093] In Mode 1, it may not be necessary to update time_offset_msec with every
info packet. One update per minute may be sufficient. In Mode 2, this time offset

may preferably be calculated for every info packet.

14

WO 2013/063218 PCT/US2012/061844

[00094] Whenever the “current time” is referenced, it may be assumed to be the
current time of the STB (GMT) plus the time_offser_msec value scaled to the
appropriate time units (i.e., time_offset_msec * 1000, if “current time” is reported in
seconds).

Traffic Management Client

[00095] Figure 3 is an exemplary architecture diagram depicting a programmer’s
view of an embodiment of a Traffic Management Client 420 according to an
exemplary embodiment of the present invention. It shows how a TM Client 420 may
be utilized by an EBIF User Agent 410 to provide traffic management services for
multiple EBIF Apps 430 by utilizing Socket Mediation capabilities of STB
Middleware 440 along with other capabilities of the Hardware and Operating System
(0/S) 450 provided by the client device (e.g., STB) 400. As will be further described,
the TM Client 420 may utilize standard STREAM socket APIs, provide both
synchronous and asynchronous modes for bandwidth regulation using traffic
scheduling, allow both client and server connections, support multiple “virtual”
sockets/ports, provide guaranteed delivery, provide data compression, and impose no
a priori bandwidth restrictions.

Network APIs

[00096] Figure 4a is an exemplary flowchart depicting a prior art TCP/STREAM
socket implementation of HTTP that may be used by a networking client. Upon
starting (step 500), socker(}) may be called to obtain a new socket id (step 502). Next,
a connection with a server defined by an IP address and port number may be obtained
by calling connect() (step 504). The request string may then be sent to the server by
means of a send() function (step 506), possibly requiring multiple calls to send() to

process the entire request (step 508). After all the data has been sent (i.e., sent all? =

15

WO 2013/063218 PCT/US2012/061844

Yes (step 508)), a call may be made to recv() to wait for a response (step 510). As
with send() (steps 506, 508), multiple calls to recv() may be required to retrieve the
entire HTTP response (i.c., iterate until received all? = Yes) (step 512). Finally,
close() may be called to close the connection (step 516), after which the process stops
(step 518). Additionally, it may occur that the entire HTTP response is not received,
but the connection is closed (step 514). In this instance, close() may be called (step
516) to stop the process (step 518). Implementing this type of synchronous HTTP
client will be known by a person of ordinary skill in the art.

[00097] Figures 4b and 4c depict exemplary embodiments of virtual socket
implementations of HTTP according to an exemplary embodiment of the present
invention. The flowchart in Figure 4b depicts a synchronous (blocking) version. The
flowchart in Figure 4c depicts an asynchronous (non-blocking) version.

[00098] As shown in these figures, standard stream socket API calls may have
virtual equivalents (e.g., send(} 506 becomes vsend()} 612 enabling programmers to
use stream sockets in a familiar way. A small number of additional functions may
exist as indicated by the shaded blocks. According to various exemplary
embodiments of the present invention, all upstream traffic may preferably be
scheduled based on the current load conditions of the network., When the network
load is low, data may be sent quickly, if not immediately. When network load is
higher, therc may be delays. The TM Client 420 can estimate the expected delay
from the return value of vreserve() 606 and decide how to proceed, or not proceed,
and use the intervening cycles for other tasks.

[00099] The indicated API calls may be provided via a static library and prototyped
in a C header file (.h). Such a header file may #define macros that map the traditional

stream socket APIs to their Traffic Management analogues. Such macros would allow

16

WO 2013/063218 PCT/US2012/061844

existing socket code to work with Traffic Management systems and methods,
requiring only minor changes for scheduling of send calls and asynchronous
processing.

[000100] The following paragraphs provide detail of the virtual calls depicted in
Figures 4b and 4c in the context of the disclosed steps. For every API call described,
parameter and return types would typically reference the same types used in the
traditional socket APIs, thus they are not described here. Names beginning with the
letter “v” are specific to the systems and methods described herein. It is assumed that
the standard (i.e., non-TM) socket APIs are also available, such as Atoni(), ntohl,
getaddrinfo(), etc. Other traditional socket APIs may not have analogs when using
Traffic Management, such as poll(), select(), and shutdown().

[000101] Figure 4b is an exemplary flowchart depicting a synchronous (blocking)
virtual socket implementation of HTTP according to an exemplary embodiment of the
present invention.

[000102] After the process starts (step 600), the first call may be vsocket() to
allocate a virtual socket descriptor (step 602). The descriptor returned by this
function may be used for subsequent calls to viisten(), vbind(), vsend(), and other
functions. Implementation in a TM Client 420 may include allocating a new empty
virtual socket structure in a virtual socket table and returning a table index of that
entry as a virtual socket descriptor. In Mode 2, this call may also cause the opening
and initialization of #m_socket so it can begin to listen for info packets.

[000103] In the next step, the requesting node may call vconnect(} (step 604) to
connect a virtual socket to a TM Server 210. Relevant parameters to pass to
veonnect() 604 may include the virtual socket descriptor and the IP address and port

number of the server to connect to. If the calling program wishes to specify what

17

WO 2013/063218 PCT/US2012/061844

local port is used for the connection, a call to vbind() may be made (not depicted in
Figure 4b). vbind() may associate a specified virtual socket descriptor with the local
IP address and an explicit local port number. The virtual socket’s port number may
be stored in a virtual socket structure table entry indexed by the virtual socket
descriptor. If vbind() has not been previously called on the socket descriptor, the
indicated socket descriptor may be automatically bound to the local node’s IP address
and a random local port. This should be acceptable if the cailing node is not a server,
since the node likely does not care which local port is used. Once the virtual socket is
connected, vsend() and vrecy() can be called as needed to send and receive data. The
server’s host IP address and port may be stored in a virtual socket table for a virtual
socket structure indexed by sockfd.

[000104] Next, a call to vreserve() (step 606) may be made to make a reservation to
send data upstream. vreserve() 606 may accept a virtual socket descriptor (vsockfd)
and return the number of milliseconds to wait before sending a message (using
vsend()). When vreserve{) 606 returns zero (i.e., ready to send? = Yes (step 608)), the
message can be sent with minimal probability of being blocked. While waiting for a
reserved slot, the calling program may perform other tasks. vreserve() 606 may be
called periodically to check on reservation status.

[000105] In the next step, vsend() may be used to send a message to the server
previously connected via the virtual socket returned by the vsocket() call (step 612).
vsend() 612 may accept parameters as input indicating the connected virtual socket
descriptor (vsock), a pointer to a buffer contain the data to be sent (buf), and the
number of bytes to send (len). It may return the number of bytes actually sent.
Similar to the traditional send() call depicted in Figure 4a (step 506), vsend()} is a

synchronous (i.e., blocking) call, and may return before all data has been sent (i.e.,

18

WO 2013/063218 PCT/US2012/061844

sent all? = No (step 614)). Thus, vsend() may be called repeatedly in conjunction with
additional calls to vreserve() (steps 612 and 614). For large messages, or when the
network is heavily loaded, this will likely be the case.

[000106] If vsend() 612 is called and no reservation is found for the specified virtual
socket, vsend() 612 may call vreserve() 606 internally, and block (i.e., sleep) until the
reservation arrives, and then begin sending. If vsend() 612 is called without a
reservation, or before vreservef} 606 returns zero, vsend() 606 may block until it can
send data. In such cases, the intervening time, possibly several seconds, will be
wasted.

[000107] Upstream message scheduling may occur on the first call to vreserve() 606
for a given message, or on a call to vsend() 612 when no reservation has been made
for the virtual socket in question. The vsend() 612 API may not actually send data for
a virtual socket until: (a) a reservation exists in a reservation table for that virtual
socket, and (b) the Slot ID in reservation_slot matches the current Slot ID. The
message scheduling process may function as follows.

[000108] Assuming a call is made to vreserve (vsocker_descriptor}).

[000109] (1) Calculate the Slot ID of the current time, where current_slot_id
= #_of_whole_seconds_since_01/01/00_00:00:00 * 125 +
fraction_of_current_second / 0.008.

[000110] (2) If vsocket_descriptor is found at position X in a reservation queue, set
queue_pos = X, and skip to step 5. Otherwise, set queue_pos =

size_of reservation_ gueue + 1.

[000111] (3) If queue_pos == 1 (ie., the queue is empty), set

reservation _slot = current_slot_id + {(tm_random(} %

(131072.0 / send probability + 0.5}.

19

WO 2013/063218 PCT/US2012/061844

[000112] (4) Add vsocket_descriptor to the reservation queue.

[000113] (5)Return (8 * (reservation_slot - current_slot_id)

* queue_pos) as the result of vreserve().

[000114] Referring back to Figure 4b, after all data has been sent using vsend() (i.e.,
sent all? = Yes (step 614)), a call may be made to vrecy() to receive a message from a
server via a previously connected virtual socket (step 616). The vrecy() call (step
616) may accept input parameters indicating the connected virtual socket descriptor
(vsock), a pointer to a receive data buffer (buf), and the size of the receive data buffer
in bytes (len). It may return the number of bytes actually received or zero (0} if the
virtual connection to the server closes for any reason. Since the number of bytes
actually received may be less than the size of the buffer, vrecv() 616 may be called
repeatedly until the entire message has been received (i.e., received all? = Yes (step
618)). If all the data has not been received (i.e., received all? = No (step 618)) and the
connection with the server was not closed (i.e., connect closed? = No (steo 620)),
vrecv() may be called again (step 616).

[000115] The implementation of vrecv() 616 may be similar to vsend() 612, except
that in the vrecv() 616 case the TM Client 420 must generate the appropriate ACK
packets and send them back to the TM Server 210. Also, because vrecv() 616 can
operate asynchronously, it should return to the caller after VRECV_WASTE
milliseconds have elapsed without receiving a data packet from the TM Server 210, or
when the provided receive buffer has been filled.

[000116] Returning to Figure 4b, if all the data has been received (i.e., received all?
= Yes (step 618)) or it is determined that the server connection was closed (i.e.,
connect closed? = Yes (step 620)), the client node may call vclose() to close the

virtual socket (step 622) and the process stops (step 624). Since there may be a small

20

WO 2013/063218 PCT/US2012/061844

number of available virtual sockets, it is important to close them when not needed.
Implementation of vclose() 622 may entail freeing a Virtual Socket structure in a
Virtual Socket Table indexed by vsockfd.

[000117] The synchronous (blocking) HTTP transaction depicted in Figure 4b may
be sufficient for many applications that do not need to do additional processing while
waiting for a response to be received. But for applications which must perform other
tasks while waiting for data, an asynchronous (non-blocking) callback mechanism
may be implemented as depicted in Figure 4c. This asynchronous mechanism may be
different from the known select APL, but may be much simpler to use and to
implement.

{000118] Referring now to Figure 4c, the initial steps are identical to those in Figure
4b. Upon starting the process (step 600), vsocket() is called to allocate a virtual
socket descriptor (step 602). Then vconnect() is called (step 604) to connect a virtual
socket to a TM Server 210.

[000119] Next, vasynch() is called to associate a virtual socket with an asynchronous
callback function (step 605). This function may accept a virtual socket descriptor
(vsockfd) acquired via vsocket() and a reference to a callback function that references
vsockfd, a message code (msg), and any activity-specific information (data). All
future activity on the virtual socket (e.g., errors, reservations, received data, etc.) will
invoke the callback function and specify an appropriate msg code identifying the
activity. Msg codes may be:

[000120] VAERROR - Check verrno for the actual error code.

[000121] VARESOPEN - A reservation opened via vreserve() is now open. Send

data via vsend().

21

WO 2013/063218 PCT/US2012/061844

[000122] VAGOTDATA - Data has been received for this virtual socket. Call
vrecv() to get it.

[000123] VAGOTCONN - A new connection has arrived on this virtual socket. Call
accept() to get it.

[000124] Implementation of vasynch() 605 may entail storing the virtual socket’s
callback function in the virtual socket structure table entry indexed by the virtual
socket descriptor. If a connection has been established, and a message sent upstream,
ConnlD in the packet header may be used to identify the receiving virtual socket. For
alert messages, the header space for ConnID and SeqNum may be co-opted by the TM
Server 210 and used to store a port number. This port may be used to identify the
bound socket to receive the alert (see the Packet Formats section below for more
information about ConnID, SeqNum, and packet headers).

[000125] Continuing with Figure 4c, after vasynch() is called (step 605), a call to
vreservef) may be made to make a traffic reservation on the indicated socket (step
606), and the process stops (step 607).

[000126] As shown in Figure 4c, the sending and receiving processes are
asynchronous, relying on a callback function (i.e., my_callback()) to start each
process. The dotted arrows in the figure denote periods of time when other tasks may
be performed between callback activations. Specifically, the process of sending data
starts (step 609) with a callback function indicated by my_callback() (step 610),
followed by a call to vsend() (step 612), and then the process stops (step 613). The
process for receiving data is similar. It starts (step 615) with a callback function (i.e.,
my_callback() 610) followed by the same data receiving steps described in Figure 4b.

vrecv() may be called (step 616) until all data is received (step 618) or the server

22

WO 2013/063218 PCT/US2012/061844

connection is closed (step 620), then a call to velose() (step 622) may be made and
processing stops (step 624).

[000127] Two additional functions not depicted in Figures 4b or 4c that may be
useful include viisten() and accept{). The viisten() call may be used by a node
needing to act as a server to listen for incoming connections on an indicated (i.e.,
passed in) bound virtual socket (vsockfd). Such functionality may be appropriate for
nodes waiting for a connection from an application server (e.g., for alert messages).
Before calling viisten(), calls to vsocket() and vbind() should be made to allocate the
virtual socket and define the port to listen on {(respectively). Because synchronous
listening may make no sense in many applications (e.g., STBs in an OOB cable
network), a call to async() may be needed to make the virtual socket asynchronous.
The viisten() call will return immediately, and the asynchronous callback function will
be invoked with a VGOTCONN message when a connection arrives. A vaccept() call
may be defined and used to accept such new connections. Any asynchronous virtual
socket bound to a port via vbind() will receive VGOTCONN messages when a
connection arrives. The vaccept() call may accept the connection and return a new
synchronous virtual socket descriptor that can be used for sending and receiving data.
The original listening socket descriptor, vsockfd, may remain unchanged, and still
listening. The virtual socket descriptor returned by vaccepi() may be closed using
vclose() when no longer needed.

[000128] In another exemplary embodiment of a virtual socket implementation of
HTTP according to an exemplary embodiment of the present invention, the
reservation functions provided by vreserve() 606 may be included in vsend(} 612 and
vrecv() 616, and a vreserve() 606 call not provided. In this embodiment, in addition

to vsend() 612 and vrecv() 616 returning the number of bytes sent or received

23

WO 2013/063218 PCT/US2012/061844

(respectively), each call would transparently make a bandwidth reservation and return
a negative number representing the number of milliseconds until a send or receive slot
is available in cases when data cannot be immediately sent or received. This may be
advantageous for use in blocking implementations of vrecv(} 616 by allowing
additional processing to occur on a client node while waiting to receive data in a way
similar to that shown in the vreserve() 606 - vsend() 612 loop depicted in Figure 4b.
It may also simplify the API by eliminating one non-standard call (vreserve() 606).
Packet Formats

[000129] To manage multiple kinds of traffic on a single pipe, an exemplary
embodiment of the present invention may define four distinct message packet types as
specified below in relation to Figures 5a — 5d. These may comprise the TM/UDP
protocol indicated in Figure 1.

Info Packet

[000130] Figure 5a is a graphical depiction of an exemplary Info packet 700. The
TM Server 210 may broadcast these small UDP messages to all STBs 400
simultaneously to communicate information about system load conditions and timing
synchronization. Info packets 700 may comprise:

[000131] PacketType 702 (1-byte) - A constant that identifies a valid TM packet,
and may specify which of the four types it is. All TM PacketType values 702 may
contain the high order 6 bits 0xA8, which can be used as a filter mask. The low order
2 bits vary by packet type. For Info packets 700, these bits are 0x00 making the value
for Info packet 700 PacketType 0xA8 & 0x00 = OxA8.

[000132] SynchSecond 704 (1-byte) - A value in the range 0..119 identifying which
second the packet was sent according to the server clock. The value may be an offset

from the start of the most recent even-numbered minute.

24

WO 2013/063218 PCT/US2012/061844

0001331 SynchPhase 706 (1-byte) - The number of SLOTS (0..124) that elapsed in
the synchronizing second before sending this packet.

[000134] SendProb 708 (2-bytes) - A 16 bit number that may be used to calculate
the random delay imposed on every outgoing packet.

Data Packet

[000135] Figure 5b is a graphical depiction of an exemplary Data packet 710. Data
sent upstream may be broken into such MTU-size packets, each small enough to be
transmitted within a single SLOT. Downstream data may use the same packet format,
but the downstream MTU size may be larger. Data packets may comprise:

[000136] PacketType 712 (1-byte) - A constant that identifies a valid TM packet,
and may specify which of the four types it is. For Data packets 710 the PacketType
value 712 is OxA9.

[000137] ConniD 714 (1-byte) — A unique connection ID corresponding to a virtual
socket associated with every virtual connection.

[000138] SegNum 716 (1-byte) - The value of this field may depend on the position
of the packet in the message (see the Flags field), as follows:

[000139] (1) IF this is the first packet in the message AND the number of packets is
> 1, this value is the total number of packets in the message (1..256), minus 1 (this
means the maximum upstream message size is 256 * (MTU — 4), or 61,440 bytes).
[000140] (2) ELSE IF this is the last packet in the message, this value defines the
size of this packet’s payload (1.MTU-4), minus 1 (this means the receive does not
know the actual message size until receiving the last packet, but an estimate based on
packet count wastes at most MTU — 5 bytes, or 0.39%).

[000141] (3) ELSE, this value is the sequence number of the packet, minus 1.

[000142] Flags 718 (1 byte) - A bit vector containing the following bit flags:

25

WO 2013/063218 PCT/US2012/061844

[000143] FirstPacket — Set (e.g., = 1) if this is the first packet in the message.
[000144] LastPacket - Set (e.g., = 1) if this is the last packet in the message.
[000145] Resend - Set (e.g., = 1) if this is not the first time this packet is sent.
[000146] Alert - Set (e.g., = 1) if this is an “alert” message originating on the
server side.

[000147] The remaining 4 flag bits may be reserved for future use.

[000148] For server originating messages (i.c., alerts), an IP address may be used to
identify a STB 400. The header space for ConnID 614 and SegNum 616 are combined
to provide 2 bytes where the TM Server 210 may store a port number. The port is
then used to identify which virtual connection receives the alert, based on port
binding. Alert messages are identified via the Alert bit in the Flags field 618. The
entire alert message must fit within (downstream MTU - 5) bytes.

[000149] Regarding the “minus 1” in the definitions of SegNum 616, an exemplary
message always consists of between 1 and 256 packets, but one byte represents
integers between 0 and 255. So the SegNum value 616 is always one less than the
value it represents.

ACK Packet

[000150] Figure 5c is a graphical depiction of an exemplary ACK packet 720.
Reception of a data packet 710 may be acknowledged by sending back one of these
packets. ACK packets 720 may comprise:

[000151] PacketType 722 (1-byte) - A constant that identifies a valid TM packet,
and may specify which of the four types it is. For ACK packets 720 the PacketType
value 722 is OxAA.,

[000152] ConnID 724 (1-byte) - The ConniD value 714 from the received data

packet 710.

26

WO 2013/063218 PCT/US2012/061844

[000153] SoFarCt 726 (1-byte) - The number of packets of the message received so
far before the first missing packet.

[000154] ACKBits 728 (1-byte) - Acknowledgement of up to 8 packets after packet
SoFarCt. As with all transmitted data, it may be in network byte order, with the first
packet after SoFarCr acknowledged by the high-order bit, and the 8th packet after
SoFarCt acknowledged by the low-order bit.

[000155] SendProb 729 (2-bytes) - A 16 bit number used to calculate the random
delay imposed on every outgoing packet.

Probe Packet

[000156] Figure 5d is a graphical depiction of an exemplary Probe packet 730.
Ordinarily, all data packets 710 in a message, except the last packet, must contain the
maximum size payload (MTU - 6). This facilitates estimating packet size. However,
when load information is unavailable, the first packet of the message may need to be
sent as a probe, to get load information in the corresponding ACK. Probe packets 730
may preferably be small, and fit within one MAC cell payload (34 bytes). Hence,
probe packets 730 contain the same 6 bytes of header information as the first data
packet of a message (with PacketType = 0xAB) 732, but without the payload. The
SeqNum value 736 counts only the subsequent 1 to 256 data packets, and does not
count the probe as a packet in any buffer length calculations (refer to the TM Server
section for a description of further use of the probe data in predicting network load).
TM Client Data

[000157] Figures 6a — 6¢ depict structures that may be used in an exemplary
embodiment of the TM Client 420 to support the described API. Those and other data
types and variables that may be utilized by the TM Client 420 (not depicted in the

figures) may be as follows:

27

WO 2013/063218 PCT/US2012/061844

[000158] (1) A Virtual Socket Structure 810, as depicted in Figure 6a, may contain
all information needed to implement a virtual stream socket. This may include state
information 812, port binding 813, asynchronous callback information 814, remote
host TP 815 and port 816, and information about current messages being processed
817.

[000159] (2) A tm_socket variable may contain an actual datagram socket
descriptor, bound to port VPORT, used for listening for incoming messages. This
socket should remain open as long as the client node agent or application (e.g.. EBIF
User Agent 410) is active, if possible. Otherwise, the socket may be opened and
initialized as needed. Typically this socket is created via standard socket APIs.
However, in some implementations, other socket acquisition APIs may be provided.
[000160] (3) A send_probability variable may contain a value representing the send
probability used by vreserve(} 606 to schedule packet transmissions via vsend()612.
Rather than representing the probability as a floating-point number (i.e., a value
between 0 and 1), this value may be more conveniently represented as the product of
the send probability and 65,536, rounded up to the nearest integer. The value
contained in this variable may be sent out by the TM Server 210 in both Info 700 and
ACK packets 720.

[000161] (4) A Virtual Socket Table 820, as depicted in Figure 6b, may be a table
(i.e., array, list, etc.) containing S virtual socket structures 810, where S is
implementation specific based on available space, but is at most 16 according to the
current exemplary embodiment. A socket ID is an index (e.g., 1..S or 0..5-1) into this
table, as is the ConnlD (i.e., connection ID) field 714, 724, 734 in TM packet headers.

Socket ID may also be known as a Virtual Socket Descriptor.

28

WO 2013/063218 PCT/US2012/061844

[000162] (5) A vermo variable may be used by TM virtual sockets to report errors to
programmers. This variable may be in addition to the errmo variable used by standard
socket APIs.

[000163] (6) A Reservation Queue 800, as depicted in Figure 6¢, may be an array
(queue) of reservations, each identifying a virtual socket 820 that has a packet to send.
Whenever a new packet is added to the Reservation Queue 800, or the first packet in
the queue is sent, the time to send the next packet in the queue may be calculated and
stored in reservation_slot. This calculation is given in the definition of
reservation_slot, below, where current_slot_ID refers to the Slot ID at the time of
calculation.

[000164] (7) A reservation_slot variable may be the Slot ID (or equivalent) in which
the next packet is to be sent (see Reservation Queue). Whenever a new
send_probability arrives at the client via either ACK 720 or Info packets 700, the
value of reservation_slot must be re-calculated.

regervation_slot = current_slot ID + {(tm_random()

{131072.0 / send_probability + 0.5))
[000165] (8) A time_offset_msec variable may indicate a time offset, that when
added to the internal clock time (GMT) on a client node (e.g., STB), synchronizes the
time with the TM Server 210 and with other client nodes. Accurate times are needed
to correctly calculate Slot IDs and for other capabilities that may be required.
Guaranteed Delivery of Messages
[000166] The following paragraphs provide more detail about an exemplary
embodiment for implementing the guaranteed delivery of messages. First, details are

provided about vsend() 612 in the context of Mode 1, assuming a reservation aiready

29

WO 2013/063218 PCT/US2012/061844

exists for the specified virtual socket and the reserved Slot ID has arrived. Then there
is a description of additions that may be necessary for the other modes.

[000167] As noted above, since vsend() 612, like its BSD socket counterpart,

send()506, is not guaranteed to send the entire message in one call, it will block until
the message (or partial message) is sent. This may not be an issue with send() 506.
But since various exemplary embodiments of the present invention may spread
message packets out over time to avoid slot collisions, an application could be
blocked for many seconds waiting for vsend() 612 to return. For this reason, vsend()
612 will return control back to the caller if the reservation time for a data packet is
large. When the entire message is not sent, vsend() 612 may create a reservation for
the next vsend() 612 call based on the current send_probability value.

[000168] In one exemplary implementation, vsend(} 612 may break the message
down into packets of (MTU — 5) bytes (or less for the last packet), and send the
packets as scheduled by vreserve() 606. Processing vsend(vsockei_descriptor,
message_ptr, message_length) may occur as follows:

[000169] (1) Set data_sent = -1, and set resend_count = 0.

[000170] (2) Set wait_time = vreserve(vsocket_descriptor).

[000171] (3) IF wait_time > VSEND_WASTE, set verrno = VSENDLATER, and
return data_sent.

[000172] (4) IF resend_count >= VSEND_TRIES, set vermo = VMAXRESENDS,
and return data_sent.

[000173] (5) IF wait_time > 0, sleep for wait_time milliseconds, then go back to step
2.

[000174] (6) IF the message currently in progress for vsocket_descriptor is in send

state, and its message buffer contains message_ptr{message_length], skip to step 8.

30

WO 2013/063218 PCT/US2012/061844

[{000175] (7) Initialize the message progress data for vsocket_descriptor in the
Virtual Socket Table (see discussion associated with Figure 6b).

[000176] (8) IF all packets of the message have not yet been sent once, construct the
next packet to send, update the virtual socket structure accordingly, and skip to step
11.

[000177] (9) If all sent packets have not yet been acknowledged, re-construct the
lowest-numbered unacknowledged packet, setting the resend flag bit, update the
message structure accordingly, increment resend_count, and skip to step 11.
[000178] (10) Update the Virtual Socket’s message information, and return
message_length.

[000179] (11) Wait for the next SLOT boundary, if necessary, and send the
(re)constructed packet.

[000180] (12) Set data_sent = SoFarCt * (MTU —4), and go back to step 2.
[000181] This definition of vsend(} 612 assumes that the receipt of both Info 700
and ACK packets 720 are being handled via asynchronous signaling interrupts while
vsend() 612 is processing. In particular, it assumes that Info packets 700 are updating
send_probability 708 and reservation_slot, and that ACK packets 720 ar¢ updating the
SoFarCt 726, and ACKBits 728 fields in the virtual socket structure 810 defined by
ConnID 724. There is no need for every data packet to be acknowledged by an ACK
packet 720. In fact, the frequency of ACKs 720 may be inversely proportional to the
rate of change in server load (i.e., send_probability) and the rate of reception of out-
of-sequence packets. Ideally, under light load, an ACK 720 may be sent for every 4th
received packet. In various exemplary embodiments, the only requirement may be
that an ACK packet 720 must be generated for both the first and last packet of a

message.

31

WO 2013/063218 PCT/US2012/061844

[000182] In Mode 2, nothing in the above changes, except that tm_socket is not
allocated and bound to port VPORT until a virtual socket is opened with vsockey()
602, and vreserve() 606 will block until an Info packet 700 is received to define
send_probability 708.

[000183} In Mode 3, vreserve() 606 and/or vsend() 612 must send a Probe packet
730 for the message, assuming send_probability is the Default Send Probability value,
and receive an ACK packet 720 for the probe (providing an actual Send Probability
value) before proceeding. Failure to receive this probe’s ACK 720 before a short
timeout (e.g., 3 seconds) causes the call to fail, and set an appropriate error in verrno.
Virtual Sockets

[000184} The following paragraphs further describe an exemplary embodiment of a
Virtual Sockets implementation.

[000185] Traffic Management according to various exemplary embodiments of the
present invention may endeavor to satisfy the following requirements using a single
datagram socket (i.e., the im_socket descriptor):

[000186] (1) Mimic the effect of multiple stream sockets;

[000187] (2) Listen for Info packets 700 that are broadcast from the TM Server 210;
and

[000188] (3) Listen for alert messages that are unicast from application servers to
the client node (e.g., STB 400). This is true in all three modes. The only difference is
how long a datagram socket is held upon the start of listening.

[000189] The TM Client APIs, other than vsend() 612 and vrecy() 616, may not do
anything with #m_socket. Instead, they may modify information in the Virtual Socket
Table 820 (or Reservations Queue 800) that are subsequently used when sending or

receiving data packets. For example, when an ACK packet 720 or Data packet 710 is

32

WO 2013/063218 PCT/US2012/061844

received, header fields in the packet may be_: matched with data in the Virtual Socket
Table 820 to determine which socket, and thus which callback function, is the actual
recipient of the packet.

[000190] The assigned tm_socket is bound to VPORT (i.e., 1962) and “listens” for
incoming traffic via the signaling mechanism. The packer_type field 702, 712, 722,
732 of incoming packets is examined, both to filter out non-TM packets, and to
appropriately handle the various packet types that might be received. Info packets
700 may be handled internally by the TM Server 210 and TM Client 420 as disclosed
in the Traffic Reporting and Client Clock Synchronization sections. ACK 720 and
Data 710 packets (other than alerts) may contain a ConnlD field 714, 724 (an index
into the Virtual Socket Table) that identify the virtual socket connection to which the
packet belongs. Alert message may be identified by a Flag field bit, Alert, and the
ConnID and SeqNum bits are combined to define a 2-byte port number; the virtual
socket bound to that port number is the recipient of the message.

[000191] The TM Client 420 may rely on asynchronous I/O signaling (SIGIO) to
invoke the various TM internal routines when there is activity (or errors) on the
tm_socket socket. For example, the TM asynchronous callback function associated
with a virtual socket (via vasync() 605) may be invoked by signal handlers.

[000192] Various exemplary embodiments for the sending and receiving of data are
described in more detail in the Guaranteed Delivery of Messages section.

Message Data Compression

[000193] One idiosyncrasy of the cable QOB networking context is that 99% of the
traffic may consist of HTTP messages. Thus, a simple, static compression method

can generate significant savings. A static table-based scheme, similar to the

33

WO 2013/063218 PCT/US2012/061844

following, may be employed to compress all messages prior to transport.
Decompression should be straightforward.

char *stringl[128] = {

HTTP”, / Add other HTTP keywords */
“CONTENT-LENGTH", /* Add other header strings */
“amp; ¥, /* Add other entitiesgs */

amr”, / add other IAM keywords */
“\Nr\n”, /* Add other common multi-char strings */

/* NEED 123 MORE STRINGS */
/* Once all the strings are defined, a */
/* faster switch-based lookup mechanism */

/* can be implemented */

static char output [MAX_MSG];

static int outlen;

void compress(char *message, int inlen) {

int pos, code;

outlen = 0;
for {(pos=0; pos<inlen; code<0?pos++:0) {
for (code=0; code<l128; code++} {
if ({code{0] == messagel[pos])
&& 'strncemp (& {(message([pos]), stringlcede],

strlen(stringl[code]))

34

WO 2013/063218 PCT/US2012/061844

}

) Ao
output [outlen++] = (char) -code;

break;

}

/* result is in ‘output’, with length ‘outlen’ */

[000194] This compression scheme is intended to not corrupt binary data. Thus it

may also be appropriate for non-HTTP protocols that may not always send text data.

Calculating Send Probability

[000195] The following paragraphs describe an exemplary method for calculating a

send probability value.

[000196] The interface between the TM Server 210, which handles actual

communication with TM Clients 420, and the bandwidth regulation code may be

implemented using a single API call:

[000197] int got_packet (int size, int isOutOfOrder);:

[000198] Whenever the TM Server 420 receives a packet from any client, it should

call got_packet() immediately. The size of the packet (i.e., header + payload) may be

passed in the size parameter. If the sequence number of the packet is not the expected

value (i.e., the previous sequence number + 1), then a non-zero (TRUE) value may be

passed in isQutOfOrder, otherwise a 0 (FALSE) value may be passed in this

parameter.

[000199] The return value of got_packer() may be either 0, or a positive, non-zero

integer. If the return value is 0, no further action is required. However, if the value is

35

WO 2013/063218 PCT/US2012/061844

non-zero, the return value should be used as the new Send Probability, and be
communicated to all TM Clients 420 via ACK 720 and Info packets 700.

[000200] In an exemplary embodiment, the Send Probability value may be the ratio
between a target bandwidth (per HFC Node), and the expected bandwidth (per HFC
Node) for the immediate future. The target bandwidth is simply the configured
maximum bandwidth (per HFC Node) multiplied by a small adjustment factor (e.g.,
0.9) to keep the result just below the maximum. The expected bandwidth is the
number of “active” STBs (i.e., client nodes) in each HFC Node that will be sending
more packets. This may be estimated as 2 * P/ SPy4, where P is the calculated
average number of packets received per SLOT, and SP,y4 is the previous value of Send
Probability.

[000201] Additionally, an adjustment factor, K, may be periodically calculated to
account for inaccuracies in system configuration values, and occasional transient
effects.

Broadcast Frequency of Info Packets

[000202] The following paragraphs describe an exemplary method for determining
the broadcast frequency of Info packets 700.

[000203] The frequency of Info packet 700 generation may be driven by the return
value of got_packet(). Whenever this function returns a non-zero value, a new Info
packet 700 should be broadcast. Care should be taken to prevent too frequent or
spurious generation of Info packets 700 broadcasts.

[000204] Specifically, got_packet{) may return a non-zero send_probability value to
disseminate via another Info packet broadcast whenever:

[000205] (a) 10 seconds have passed since the last Info packet broadcast, OR

36

WO 2013/063218 PCT/US2012/061844

[000206] (b) At least 0.5 seconds have passed since the last Info packet broadcast
AND out-of-order packets are being seen, OR
[000207] (c) At least 0.5 seconds have passed since the last Info packet broadcast
AND the packets / second rate is trending upward.
[000208] Otherwise, got_packet() may return a zero (0) and the prior value of
send_probability remains valid.
Simulation of Bandwidth Regulation
[000209] This section presents a description of a simulation of an exemplary
embodiment of the bandwidth regulation method according to an exemplary
embodiment of the present invention. A description of how the simulation was
conducted is presented along with a description of the results as depicted in Figures 7a
-Tc.
[000210] The simulation includes a modeling of a QPSK network wherein a TM
Server 210 communicates with multiple TM Clients 420 via the network. The QPSK
network model monitors the upstream and downstream throughput, and throws away
packets in either direction that exceed bandwidth limits.
[000211] As the throughput approaches the theoretical bandwidth limit, the
probability of packet loss approaches 1. Letting the theoretical maximum packet
throughput upstream be (1/e) * 256,000 bps = 94,000 bps, and
assuming the aggregate size of all upstream packets (including TM headers, and 28
bytes of UDP/IP headers) is Sbytes (ors = S * 8 bits), then the probability of
the next packet being lost (and totally ignored) is given by: Ppacker_1oss (8) = (8
/ 94,000). Programmatically, the following IF condition tests for this:

if ((tm_random() % 94000) < s) {

: /* Packet is LOST */

37

WO 2013/063218 PCT/US2012/061844

} else {
; /* Process the Packet */

}
[000212] In the simulation results depicted in Figures 7a — 7c, a large (configurable}
number of STBs 400 and HFC Nodes 300 were simulated for all 125 SLOTSs in each
second of a configurable test period, there set to 1 hour.
[000213] Figure 7a is a graph depicting a simulation of a network load without
bandwidth regulation in which the raw bandwidth load (per HFC Node 300) is
averaged over each second of a 1 hour simulation.
[000214] Figure 7b is a graph depicting a simulation of a network load with
bandwidth regulation, configured for a maximum of 40 Kbps per HFC Node 300,
when exposed to the same raw bandwidth traffic as in Figure 7a. Note that the
average traffic load is now capped at 40 Kbps, and the periods of high loading are a
few seconds longer, in each case.
[000215]) Figure 7c is a graph depicting the difference between simulated network
loads with and without bandwidth regulation. This graph overlays the two previous
graphs and includes a line indicating a 60-second running average for the bandwidth
managed traffic. This line shows the beneficial impact of the bandwidth regulation
aspect of various exemplary embodiments of the present invention, as described
herein.
[000216] Embodiments, or portions of embodiments, disclosed herein may utilize
any of a wide variety of technologies including a special purpose computer, a
computer system including a microcomputer, mini-computer, or mainframe, for
example, a programmed microprocessor, a micro-controller, a peripheral integrated

circuit element, a CSIC (Customer Specific Integrated Circuit) or ASIC (Application

38

WO 2013/063218 PCT/US2012/061844

Specific Integrated Circuit) or other integrated circuit, a logic circuit, a digital signal
processor, a programmable logic device such as a FPGA, PLD, PLA or PAL, or any
other device or arrangement of devices that is capable of implementing any of the
steps of the processes described herein.

[000217] Itis to be appreciated that a set of instructions (e.g., computer software)
that configures a computer operating system to perform any of the operations
described herein may be contained on any of a wide variety of media or medium, as
desired. Further, any data that is processed by the set of instructions might also be
contained on any of a wide variety of media or medium. That is, the particular
medium (e.g., memory) utilized to hold the set of instructions or the data used in the
embodiments described herein may take on any of a variety of physical forms or
transmissions, for example. Illustratively, the medium may be in the form of a
compact disk, a DVD, an integrated circuit, a hard disk, a floppy disk, an optical disk,
a magnetic tape, a RAM, a ROM, a PROM, a EPROM, a wire, a cable, a fiber,
communications channel, a satellite transmissions or other remote transmission, as
well as any other medium or source of data that may be read by a computer.

[000218] It is also to be appreciated that the various components described herein,
such as a computer running executable computer software, may be located remotely
and may communicate with each other via electronic transmission over one or more
computer networks. As referred to herein, a network may include, but is not limited
to, a wide area network (WAN), a local area network (LAN), a global network such as
the Internet, a telephone network such as a public switch telephone network, a
wireless communication network, a cellular network, an intranet, or the like, or any
combination thereof. In various exemplary embodiments, a network may include one,

or any number of the exemplary types of networks mentioned above, operating as a

39

WO 2013/063218 PCT/US2012/061844

stand alone network or in cooperation with each other. Use of the term network
herein is not intended to limit the network to a single network.

[000219] It will be readily understood by those persons skilled in the art that the
present invention is susceptible to broad utility and application. Many embodiments
and adaptations of the present invention other than those herein described, as well as
many variations, modifications, and equivalent arrangements, will be apparent from
or reasonably suggested by the present invention and foregoing description thereof,
without departing from the substance or scope of the invention.

[000220] While the foregoing illustrates and describes exemplary embodiments of
this invention, it is to be understood that the invention is not limited to the
construction disclosed herein. The invention can be embodied in other specific forms

without departing from its spirit or essential attributes.

40

WO 2013/063218 PCT/US2012/061844

Claims:

1. A method for regulating communication network bandwidth, the method
comprising:

monitoring data traffic over a network using a centralized traffic management
server, wherein the traffic management server continuously monitors a sample of
incoming packets sent by at least one client node;

predicting network loads, wherein the traffic management server computes a
load information based on a frequency, a rate of change, and a content of the sample
of incoming packets;

scheduling network traffic, wherein the traffic management server and the at
least one client node exchange a message to determine a scheduled time for an
upcoming transmission of a data packet; and

transmitting data, wherein the at least one client node transmits the data packet

over the network at the scheduled time.

2. The method of claim 1 further comprising retransmitting the data
packet if necessary, wherein the at least one node retransmits the data packet if an

acknowledgement is not received from the traffic management server.

3. The method of claim 1, wherein the network is an interactive digital cable

television network,

4. The method of claim 3, wherein the cable television network comprises an

enhanced television platform server communicating via an out-of-band channel using

41

WO 2013/063218 PCT/US2012/061844

Hypertext Transfer Protocol (HTTP) over User Datagram Protocol (UDP) with a

plurality of set-top boxes.

5. The method of claim 4, wherein the set-top boxes run interactive
applications implemented using the Enhanced TV Binary Interchange Format (EBIF)

running on an EBIF user agent.

6. The method of claim 1, wherein the traffic comprises at least one of:
interactive application communication, voting and polling data, television usage data,

user preference and statistics traffic, and t-commerce information.

7. The method of claim 1, wherein the scheduling and the transmitting
compriscs:

setting a send-probability value in response to network traffic conditions on
the traffic management server;

transmitting the send-probability value and clock synchronization information
from the traffic management server to the at least one client node;

utilizing the send-probability value and synchronization information at the at
least one client node to compute a randomized data transmission time;

transmitting a data packet by the at least one client node at the computed
randomized data transmission time;

generating and sending an acknowledgement packet by the traffic
management server to the at least one client nodes wherein the acknowledgement
indicates success of a previous transmission and provides a new send-probability

value for a next transmission; and

42

WO 2013/063218 PCT/US2012/061844

retransmitting the data packet by the at least one client node at a new data

transmission time if an acknowledgement packet was not received.

8. The method of claim 7, wherein the send-probability value is inversely
proportional to a window of time in which the next packet should be sent, the
randomized data transmission time is a random time within the window, and each of
the acknowledgement packet and data packet are transmitted on discrete timeslot

boundaries within the window.

9. The method of claim 7, wherein the send-probability value is progressively
increased at the at least one client node as time passes without transmission errors and

acknowledgement timeouts.

10. The method of claim 7, wherein the send probability is decreased in

response to at least one of: a transmission error and an acknowledgement timeout.

11. The method of claim 7, wherein the transmitting send-probability value
and clock synchronization information from the traffic management server is done via

a periodic broadcast to the at least one client node.

12. The method of claim 7, wherein the transmitting send-probability value

and clock synchronization information from the traffic management server is done via

narrowcast to at least one individually-addressed client node.

43

WO 2013/063218 PCT/US2012/061844

13. The method of claim 7, wherein the transmitting send-probability value
and clock synchronization information from the traffic management server occurs
after the at least one client node has sent a probe data packet to the traffic

management server requesting a right to transmit the data packet.

14. The method of claim 1, wherein the network is an in-band cable

television, DSL, or mobile broadband network.

15. The method of claim 1, wherein the network utilizes User Datagram

Protocol (UDP) or Transmission Control Protocol (TCP).

16. The method of claim 1, wherein the traffic management server serves as a
UDP-10-TCP relay server converting at least one UDP packet comprising traffic

management information into at least one TCP packet.

17. The method of claim 2, wherein a traffic management client running on
the at least one client node manages the scheduling of traffic and transmitting of data,

and retransmitting of data in support of client applications.

18. The method of claim 17, wherein the traffic management client mimics a
standard stream socket Application Programming Interface for the client application,
providing for multiple simultaneous virtual stream sockets and connections while

using a single datagram socket or port.

44

WO 2013/063218 PCT/US2012/061844

19. The method of claim 17, wherein the transmitting and retransmitting of
data are implemented in a synchronous manner such that the client application waits

for the scheduled data transmission time before sending the data,

20. The method of claim 17, wherein the transmitting and retransmitting of
data are implemented in an asynchronous manner such that a call-back is issued by
the traffic management client to the client application when the network is ready for

data transmission.

21. The method of claim 2, wherein the scheduling, transmitting, and
retransmitting steps are exposed to at least one application running on the at least one

client node and are used to adjust a user-facing behavior.

22. The method of claim 2, wherein the transmitting and retransmitting of
data further comprises compressing the data using a static table, wherein a plurality of
standard HTTP message elements having strings values are each assigned a table
index, the indexes are transmitted in lieu of the string values, and the string values are

reconstructed upon receipt by utilizing the static table.

23. The method of claim 1, further comprising a bandwidth regulation server
that is proactively responsive to an external event, the external event selected from: a
time-of-day bandwidth load, a time-of-year bandwidth load, and a breaking news

alert.

45

WO 2013/063218 PCT/US2012/061844

24. A system for regulating communication network bandwidth, the system
comprising:
a network;
at least one client node
a centralized traffic management server configured to:
monitor data traffic over the network, wherein the traffic management
server continuously monitors a sample of incoming packets sent by the least one
client node;
predict network loads, wherein the traffic management server
computes a load information based on a frequency, a rate of change, and a content of
the sample of incoming packets; and
schedule network traffic, wherein the traffic management server and
the at least one client node exchange a message to determine a scheduled time for an

upcoming transmission of a data packet.

46

WO 2013/063218 PCT/US2012/061844

112

ETV PLATFORM SERVER (EPS) _—200

APACHE HTTP SERVER (TCP) 20

A

3
HTTP/TCP

Y

910
TM SERVER (UDP) —|

A
S . HEADEND
HUBS AND HFC NODES
A 4 Y A
HFC NODE HeeNope W HFC NODE
A
TMUDP SET-TOP BOXES
Y 400
MeLENT T
-0
EBIF USER AGENT
SET-TOP BOX (STB)

SUBSTITUTE SHEET (RULE 26)

WO 2013/063218 PCT/US2012/061844
2/12
APACHE HTTP SERVER (TCPIIP) 220
A A
TRAFFIC MANAGEMENT (TM) SERVER
AGENDA | ..
CONNECTION [~
________ CONNECTION | _____ oo, | _-210
! I i i
L2 274 |26 |
Y / / Y ¥ \ \Ai
BANDWIDTH uDp CHILD CHILD
REGULATION | | LISTENER | | WORKER | | WORKER
PROCESS PROCESS | | PROCESS | | PROCESS

A A

/

A

OUT-OF-BAND ETHERNET (UDP/IP)

FIG. 2

SUBSTITUTE SHEET (RULE 26)

WO 2013/063218

PCT/US2012/061844

312

400

0~

EBIF EBIF EBF | 430
APP APP APP
|40
EBIF USER AGENT
STB MIDDLEWARE |- 440
SOCKET MEDIATION
HARDWARE AND O/S | ~44(

FIG. 3

SUBSTITUTE SHEET (RULE 26)

WO 2013/063218 PCT/US2012/061844

4/12

C smr W I e

4

sockeT) W

RECEIVED
ALL?

Y

connecT) M

CONNECT

)
. SEND) 506 CLOSED?
NO 508 CLOSE() <
516
YES Y
PRIOR ART

SUBSTITUTE SHEET (RULE 26)

WO 2013/063218 PCT/US2012/061844

5/12

C swr 0 }

Recy) b0

A

Y

vsocker) 8%

Y

VCONNECT) 8%

RECEIVED
ALL?

A

o VREGERIE

0

CONNECT
CLOSED?

VCLOSE([«

NO

SENTALL?

FIG. 4B

SUBSTITUTE SHEET (RULE 26)

WO 2013/063218 PCT/US2012/061844

6/12

C s W

\

vsookeT) (04 F LB 0 P calsick 1o

VCONNECT) | B%

- - —————————— - ——————y

S VASYNGH

Y

VRESERVE) |-606

FIG. 4C

SUBSTITUTE SHEET (RULE 26)

WO 2013/063218 PCT/US2012/061844

7112
700
PACKETTYPE (1) = 0XAB 70
SYNCHSECOND (1) T
SYNCHPHASE (1) 106
SENDPROB (2 708
710
PACKETTYPE (1) = 0XA T2
CONND (1) Sl
SEQNUM (1) 716
FLAGS (1) 4718
PAYLOAD
79
(1. NMTU=-4) 1

SUBSTITUTE SHEET (RULE 26)

WO 2013/063218 PCT/US2012/061844

8/12
}20
PACKETTYPE (1) = OXAA v,
CONNID (1) Salls
SOFARCT (1) 118
728
ACKBITS (1) 1
SENDPROB (2) 119
}30
PACKETTYPE (1) = 0XAB 1732
CONNID (1) 173
SEQNUM (1) 4736
FLAGS (1) 1138

SUBSTITUTE SHEET (RULE 26)

WO 2013/063218

9/12
SOCKET STATE 812
LOCAL PORT BINDING /:12
ASYNCCALLBACK T
REMOTE HOST IP 4815
REMOTEHOSTPORT 116
MESSAGELISTPIR 181
VIRTUAL
SOCKET
STRUCT
0 VIRTUAL SOCKET STRUCT 110
1 VIRTUAL SOCKET STRUCT
2 VIRTUAL SOCKET STRUCT
S VIRTUAL SOCKET STRUCT {810
0 VIRTUALSOCKET D 820
1 VIRTUALSOCKET ID
2 VIRTUALSOCKET ID
R VIRTUALSOCKET ID gzl

SUBSTITUTE SHEET (RULE 26)

PCT/US2012/061844

il

PP

800

PCT/US2012/061844

WO 2013/063218

10/12

9eqt

1916

T

e leie

V. 9l

dNOH ASNE ONIYINA SANOJ3S

WEe 101 9981 9/ 99¢)

I ___—

%l

0¢

4

09

—

08

001

0zl

(4NOH ASNE) JAON ¥3d QYO HLAIMANYE MV

0Fl
sdqy

SUBSTITUTE SHEET (RULE 26)

PCT/US2012/061844

WO 2013/063218

11112

9%EE

161€ 916¢

RAALLAAS

9L 955

d/ 9l

dNOH ASNE ONIYNA SANOJS

WEC 961 9481 9v9l

vl 161 o

10

96 18¢

A _

Ll

(4NOH ASNE) NOILYIN93Y HLAIMANYE HLIM JAON ¥3d QY01

001
sday

SUBSTITUTE SHEET (RULE 26)

PCT/US2012/061844

WO 2013/063218

12112

9. 9l

dNOH ASNE ONIYNAG SANOJ3S
192 6c1€ %R 15¢ :NN :\om €08l 66 19E1

e

B:

616 189 e €L L8l

JOVH3AY ILNNIN LW/E A3LVINO --

QYOTHLQIMANYE Q3LYINOR —
avOTHLAIMONYE MY —

(sdgyor 404 aIHNDIANOD)
INFWIOYNYIN HLAIMONYE 40 LOVdNI

(sdgy) JQON ¥3d HLAIMANYS

0¢

114

09

08

001

0cl

vl

SUBSTITUTE SHEET (RULE 26)

INTERNATIONAL SEARCH REPORT International application No.
PCT/US 12/61844

A. CLASSIFICATION OF SUBJECT MATTER
IPC(8) - HO4L 12/26 (2012.01)
USPC - 370/235

According to International Patent Classification (IPC) or to both national classification and [PC

B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols)
USPC: 370/235; IPC(8): HO4L 12/26 (2012.01)

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched
USPC: 370/229, 235; 709/223, 224; IPC(8): HO4L 12/26 (2012.01)

Electronic data base consulted during the international search (name of data base and, where practicable, search terms used)
DialogWeb (347,348,349,351,371,652,654); Google (Scholar, Web, Patents); PatBase.

Search Terms: BANDWIDTH, COMMUNICATE, NETWORK, TRAFFIC, MONITOR, MANAGE, PACKET, CLIENT, NODE, LOAD,
FREQUENCY, SCHEDULE, TRANSMIT, SEND, EXCHANGE, MESSAGE, ACKNOWLEDGE, STREAM SOCKET, etc.

C. DOCUMENTS CONSIDERED TO BE RELEVANT

Category* Citation of document, with indication, where appropriate, of the relevant passages Relevant to claim No.

Y US 6,578,077 B1 (Rakoshitz et al.) 10 June 2003 (10.06.2003), entire document, especially col. | 1-24
3, In 16-37; col. 3, In 61 to col. 4, In 20; col. 5, In 66 to col. 6, In 13; col. 6, In 30-47; col. 9, In 18-
48; col. 10, In 48-57; col. 15, In 9-15

Y US 6,452,915 B1 (Jorgensen) 17 September 2002 (17.09.2002), entire document, especially 1-24
col. 3, In 25-26; col. 5, In 46-60; col. 10, In 48 to col. 11, In 6; col. 11, In 20-45; col. 12, in 30-52;
col. 14, In 27-48; col. 15, In 9-15; col. 17, In 42 to col. 18, In 6; col. 18, In 11-22, 37-46; col. 20,
In 19-35; col. 23, In 26-48; col. 29, In 36 to col. 30, In 31; col. 37, In 47-55; col. 41, In 51-61; col.
42, In 9-18; col. 45, In 58-67; col. 54, In 17-28; col. 60, In 37-44; col. 64, In 37-52

Y US 2009/0063983 A1 (Amidon et al.) 05 March 2009 (05.03.2009), entire document, especially | 5, 12
para [0004], {0081}, [0121]
US 6,658,010 B1 (Enns et al.) 02 December 2003 (02.12.2003), entire document 1-24
US 2005/0174938 A1 (Richardson et al.) 11 August 2005 (11.08.2005), entire document 1-24
US 2010/0220622 A1 (Wei) 02 September 2010 (02.09.2010), entire document 1-24
[:l Further documents are listed in the continuation of Box C. D
* Special categories of cited documents: “T” later document published after the international filing date or priority
“A” document defining the general state of the art which is not considered date and not in conflict with the apghc;mon but cited to understand
to be of particular relevance the principle or theory underlying the invention
“E” earlier application or patent but published on or after the international «X” document of particular relevance; the claimed invention cannot be
filing date considered novel or cannot be considered to involve an inventive
“L” document which may throw doubts on priority claim(s) or which is step when the document is taken alone

:ltegatjor:astsztr)lllél; ;h ec?gg‘lj')c ation date of another citation or other “Y” document of particular relevance; the claimed invention cannot be

pe pe considered to involve an inventive step when the document is

“O” document referring to an oral disclosure, use, exhibition or other combined with one or more other such documents, such combination
means being obvious to a person skilled in the art

“P” document published prior to the international filing date but later than « &

the priority date claimed document member of the same patent family

Date of the actual completion of the international search Date of mailing of the international search report
13 December 2012 (13.12.2012) 2 8 D E C 20‘]2
Name and mailing address of the ISA/US Authorized officer:
Mail Stop PCT, Attn: ISA/US, Commissioner for Patents Lee W. Young
P.O. Box 1450, Alexandria, Virginia 22313-1450
o PCT Helpdesk: 571-272-4300
Facsimile No. 571.273.3201 PCT OSP: 571.272-7774

Form PCT/ISA/210 (second sheet) (July 2009)

	Page 1 - front-page
	Page 2 - description
	Page 3 - description
	Page 4 - description
	Page 5 - description
	Page 6 - description
	Page 7 - description
	Page 8 - description
	Page 9 - description
	Page 10 - description
	Page 11 - description
	Page 12 - description
	Page 13 - description
	Page 14 - description
	Page 15 - description
	Page 16 - description
	Page 17 - description
	Page 18 - description
	Page 19 - description
	Page 20 - description
	Page 21 - description
	Page 22 - description
	Page 23 - description
	Page 24 - description
	Page 25 - description
	Page 26 - description
	Page 27 - description
	Page 28 - description
	Page 29 - description
	Page 30 - description
	Page 31 - description
	Page 32 - description
	Page 33 - description
	Page 34 - description
	Page 35 - description
	Page 36 - description
	Page 37 - description
	Page 38 - description
	Page 39 - description
	Page 40 - description
	Page 41 - description
	Page 42 - claims
	Page 43 - claims
	Page 44 - claims
	Page 45 - claims
	Page 46 - claims
	Page 47 - claims
	Page 48 - drawings
	Page 49 - drawings
	Page 50 - drawings
	Page 51 - drawings
	Page 52 - drawings
	Page 53 - drawings
	Page 54 - drawings
	Page 55 - drawings
	Page 56 - drawings
	Page 57 - drawings
	Page 58 - drawings
	Page 59 - drawings
	Page 60 - wo-search-report

