METHOD FOR INHIBITING NEW TISSUE GROWTH IN BLOOD VESSELS IN A PATIENT SUBJECTED TO BLOOD VESSEL INJURY

Inventors: David M. Stern, Great Neck, NY (US); Ann Marie Schmidt, Franklin Lakes, NJ (US); Steven Marso, Shawnee, KS (US); Eric Topol, Chagrin Falls, OH (US); Michael Lincoff, Orange Village, OH (US)

Assignees: The Trustees of Columbia University in the City of New York, New York, NY (US); The Cleveland Clinic Foundation, Cleveland, OH (US)

Notice: Subject to any disclaimer, the term of this patent is extended or adjusted under 35 U.S.C. 154(b) by 0 days.

Filed: Aug. 20, 2007

Prior Publication Data

Related U.S. Application Data
Continuation of application No. 09/687,528, filed on Oct. 13, 2000, now abandoned.

Int. Cl.
A01N 3/18 (2006.01)
C07K 14/00 (2006.01)
A61K 39/395 (2006.01)

U.S. Cl. 514/2; 530/350; 424/131.1

Field of Classification Search 514/2; 530/350; 424/131.1

See application file for complete search history.

References Cited

U.S. PATENT DOCUMENTS
5,698,531 A 12/1997 Nabel et al.
5,843,102 A 12/1998 Kalmann et al.
6,071,514 A 6/2000 Grinnell et al.
6,555,340 B1 4/2003 Schmidt et al.
6,563,015 B1 5/2003 Stern et al.
7,081,241 B1 7/2006 Schmidt et al.

FOREIGN PATENT DOCUMENTS
WO WO 97/00585 7/1997
WO WO 97/39121 10/1997
WO WO 97/39125 10/1997

OTHER PUBLICATIONS
Tommsinig et al., 2005, Current Protein and Peptide Science, vol. 6, p. 23-34.*

Primary Examiner—Shin-Lin Chen
Attorney, Agent, or Firm—John P. White; Cooper & Dunham LLP

ABSTRACT

This invention provides for a method for inhibiting new tissue growth in blood vessels in a subject, wherein the subject experienced blood vessel injury, which comprises administering to the subject a pharmaceutically effective amount of an inhibitor of receptor for advanced glycation endproduct (RAGE) so as to inhibit new tissue growth in the subject's blood vessels. The invention also provides for method for inhibiting neointimal formation in blood vessels in a subject, wherein the subject experienced blood vessel injury, which comprises administering to the subject a pharmaceutically effective amount of an inhibitor of receptor for advanced glycation endproduct (RAGE) so as to inhibit neointimal formation in the subject’s blood vessels. The invention also provides a method for preventing exaggerated restenosis in a diabetic subject which comprises administering to the subject a pharmaceutically effective amount of an inhibitor of receptor for advanced glycation endproduct (RAGE) so as to prevent exaggerated restenosis in the subject.

4 Claims, 2 Drawing Sheets
OTHER PUBLICATIONS

Stern et al., U.S. Appl. No. 08/592,070, filed Jan. 26, 1996, including the pending claims.

Schmidt et al., U.S. Appl. No. 11/891,680, filed Aug. 9, 2007, including the pending claims.

Stern et al., U.S. Appl. No. 12/009,572, filed Jan. 18, 2008, including the pending claims.

* cited by examiner
Figure 1. Neointimal Area

mm²

P = 0.01

0.08

Control

S-RAGE
Figure 2. Neointima to Media Ratio

Control

S-RAGE

P = 0.005

1.43

0.83
1. METHOD FOR INHIBITING NEW TISSUE GROWTH IN BLOOD VESSELS IN A PATIENT SUBJECTED TO BLOOD VESSEL INJURY

This application is a continuation of U.S. Ser. No. 09/687, 528, filed Oct. 13, 2000 now abandoned.

BACKGROUND OF THE INVENTION

Throughout this application, various publications are referenced by number. Full citations for these publications may be found listed at the end of the specification immediately preceding the claims. The disclosures of these publications in their entirety are hereby incorporated by reference into this application in order to more fully describe the state of the art as known to those skilled therein as of the date of the invention described and claimed herein.

It is well-established that the incidence of diabetes is rising sharply in the United States and worldwide. Despite aggressive efforts to optimize and achieve strict control of hyperglycemia in affected subjects, the leading cause of death in patients with diabetes remains coronary artery disease (70% of all case fatalities).

In persons with coronary artery stenosis, one form of therapeutic intervention involves percutaneous revascularization (angioplasty) (PTCA). Prior registry data demonstrated that between 15-25% of patients undergoing PTCA have a history of diabetes mellitus. Although there have been great strides in the field of cardiovascular medicine in the last 15 years, there has been little done to improve the outcomes of persons with diabetes and atherosclerotic coronary artery disease. This was most recently clearly demonstrated in a number of recent studies (1-3), including the BARI investigations and the studies comparing the NHANES I and NHANES II cohorts. Comparing two epidemiologic surveys, investigators showed a marked improvement in cardiovascular and rated outcomes for patients without a history of diabetes. There was an overall 21.1% and 12.6% risk reduction in all cause mortality in non-diabetic men and women, respectively. In contradistinction, there was only a 1.2% reduction in all cause mortality for diabetic men, and a surprising 15.2% increase in all cause mortality for diabetic women. Similar to the NHANES epidemiologic surveys, patients with diabetes seem to be a higher risk cohort of patients following PTCA interventions. Another example of the heightened risk of vascular disease in diabetes of medical urgency concerns the response to angioplasty as illustrated by the BARI study in which patients with diabetes displayed poorer results from angioplasty than from bypass surgery largely because of accelerated restenosis. From the results of these studies, the view has emerged that diabetic patients are at a heightened risk for angiographic and clinical restenosis, late myocardial infarction, late mortality, and need for future revascularization procedures. In a study retrieved from one of our institutes (Mid America Heart Institute) involving over 25,000 patients, we found that diabetic patients have a nearly two-fold increase in in-hospital mortality following both elective and urgent PTCA interventions. The in-hospital mortality rate was 0.8% compared with 1.4% for non-diabetic and diabetic patients undergoing elective PTCA, respectively; p<0.001. Similarly, the in-hospital mortality rate was 6.9% compared with 12.7% for non-diabetic and diabetic patients undergoing PTCA for acute myocardial infarction, p<0.001.

SUMMARY OF THE INVENTION

This invention provides for a method for inhibiting new tissue growth in blood vessels in a subject, wherein the subject experienced blood vessel injury, which comprises administering to the subject a pharmaceutically effective amount of an inhibitor of receptor for advanced glycation endproduct (RAGE) so as to inhibit new tissue growth in the subject’s blood vessels.

The invention also provides for method for inhibiting neointimal formation in blood vessels in a subject, wherein the subject experienced blood vessel injury, which comprises administering to the subject a pharmaceutically effective amount of an inhibitor of receptor for advanced glycation endproduct (RAGE) so as to inhibit neointimal formation in the subject’s blood vessels.

The invention also provides a method for preventing exaggerated restenosis in a diabetic subject which comprises administering to the subject a pharmaceutically effective amount of an inhibitor of receptor for advanced glycation endproduct (RAGE) so as to prevent exaggerated restenosis in the subject.

BRIEF DESCRIPTION OF THE FIGURES

FIG. 1. Blockade, using soluble (s) RAGE, suppresses neointimal expansion after carotid artery injury. Fatty Zucker rats were subjected to carotid artery injury as described herein. Rats received either sRAGE or vehicle, albumin, one day prior to injury, and the subsequent 6 days after injury. Rats were sacrificed on day 21 after injury and histologic analysis performed for assessment of neointimal area. Results are reported in mm².

FIG. 2. Blockade of RAGE, using sRAGE, results in decreased neointima/media ratio after carotid artery injury. Fatty Zucker rats were subjected to carotid artery injury as described above. Rats received either sRAGE or vehicle, albumin, one day prior to injury, and the subsequent 6 days after injury. Rats were sacrificed on day 21 after injury and histologic analysis performed for assessment of neointimal and medial area. Results are reported as the ratio of the neointimal to medial ration.

DETAILED DESCRIPTION OF THE INVENTION

This invention provides for a method for inhibiting new tissue growth in blood vessels in a subject, wherein the subject experienced blood vessel injury, which comprises administering to the subject a pharmaceutically effective amount of an inhibitor of receptor for advanced glycation endproduct (RAGE) so as to inhibit new tissue growth in the subject’s blood vessels.

The invention also provides for method for inhibiting neointimal formation in blood vessels in a subject, wherein the subject experienced blood vessel injury, which comprises administering to the subject a pharmaceutically effective amount of an inhibitor of receptor for advanced glycation endproduct (RAGE) so as to inhibit neointimal formation in the subject’s blood vessels.

The invention also provides a method for preventing exaggerated restenosis in a diabetic subject which comprises administering to the subject a pharmaceutically effective amount of an inhibitor of receptor for advanced glycation endproduct (RAGE) so as to prevent exaggerated restenosis in the subject.

In one embodiment of the invention, the subject is a non-human animal, a transgenic non-human animal or a human.

In another embodiment of the invention, the subject has undergone an angioplasty procedure or has undergone surgery to implant a stent in a blood vessel.
In another embodiment of the invention, the inhibitor is a molecule having a molecular weight from about 500 daltons to about 100 kilodaltons. In another embodiment of the invention, the inhibitor is an organic molecule or an inorganic molecule. In another embodiment of the invention, the inhibitor is a polypeptide or a nucleic acid molecule. In another embodiment of the invention, the inhibitor is soluble receptor for advanced glycation endproduct.

In another embodiment of the invention, the inhibitor is an antibody which specifically binds to receptor for advanced glycation endproduct.

In one embodiment of the invention, the inhibitor is administered to the subject by bolus injection, intraperitoneal injection, i.v., oral administration, topical application to the blood vessel, coating of a device to be placed within the subject, coating of an instrument used during a procedure upon the subject which results in blood vessel injury, or contacting blood of the subject during extracorporeal circulation.

In another embodiment of the invention, the device to be placed within the subject is a stent or an angioplasty balloon.

In one embodiment of the invention, the inhibitor is administered to the subject at a rate from about 2 μg/kg/hr to about 100 μg/kg/hr.

In one embodiment of the invention, the inhibitor is coated onto a stent used during an angioplasty of the subject.

In another embodiment of the invention, the subject is suffering from diabetes, acute thrombotic stroke, venous thrombosis, myocardial infarction, unstable angina, abrupt closure following angioplasty or stent placement, or thrombosis as a result of peripheral vascular surgery.

In another embodiment of the invention, the administering is carried out via injection, oral administration, topical administration, adenovirus infection, liposome-mediated transfer, intravenous administration, intraperitoneal injection, bolus injection, topical application to the blood vessel cells of the subject, or microinjection.

The present invention also provides for a method for determining whether a compound inhibits new tissue growth in a blood vessel in a subject, wherein the blood vessel has been subjected to injury, which comprises: (a) administering the compound to a non-human animal which has undergone blood vessel injury; (b) determining whether the non-human animal has inhibited new tissue growth or inhibited neointimal formation in said blood vessel when compared to new tissue growth or neointimal formation in an injured blood vessel in an identical non-human animal which was not administered the test compound; wherein a decrease in new tissue growth or a decrease in neointimal formation in the non-human animal to which the compound was administered indicates that the test compound inhibits new tissue growth or neointimal formation in the injured blood vessel in the subject.

In one embodiment of the invention, the compound is an organic molecule or an inorganic molecule. In another embodiment of the invention, the compound is a polypeptide or a nucleic acid molecule. In another embodiment of the invention, the compound is soluble receptor for advanced glycation endproduct. In another embodiment of the invention, the compound is an antibody which specifically binds to receptor for advanced glycation endproduct.

In one embodiment of the invention, the non-human animal is a pig, a bovine, a canine, a rat, a mouse, a sheep or a primate. In another embodiment of the invention, the non-human animal is a non-human diabetic animal model. In another embodiment of the invention, the non-human animal is a Zucker fatty rat.

In one embodiment of the invention, the subject is a human. In one embodiment of the invention, the inhibitor is a molecule having a molecular weight from about 500 daltons to about 100 kilodaltons. In another embodiment of the invention, the inhibitor is an organic molecule or an inorganic molecule. In another embodiment of the invention, the inhibitor is a polypeptide or a nucleic acid molecule. In another embodiment of the invention, the inhibitor is soluble receptor for advanced glycation endproduct. In another embodiment of the invention, the inhibitor is an antibody which specifically binds to receptor for advanced glycation endproduct.

In one embodiment of the invention, the inhibitor of RAGE is soluble receptor for advanced glycation endproduct (RAGE).

The present invention provides for a method for determining whether a compound inhibits new tissue growth in a blood vessel in a subject, wherein the blood vessel has been subjected to injury, which comprises: (a) administering the compound to a non-human animal which has undergone blood vessel injury (e.g., has undergone a stent implant or an angioplasty); (b) determining whether the non-human animal has inhibited new tissue growth or inhibited neointimal formation in said blood vessel when compared to new tissue growth or neointimal formation in an injured blood vessel in an identical non-human animal which was not administered the test compound; wherein a decrease in new tissue growth or a decrease in neointimal formation in the non-human animal to which the compound was administered indicates that the test compound inhibits new tissue growth or neointimal formation in the injured blood vessel in the subject.

In one embodiment of the invention, the blood vessel of the subject is a macrovascular structure. For example, the blood vessel is the aorta, the carotid artery, or a femoral artery or vein.

In one embodiment of the invention, the compound is a molecule having a molecular weight from about 500 daltons to about 100 kilodaltons. In one embodiment of the invention, the compound is an organic molecule or an inorganic molecule. In one embodiment of the invention, the compound is a polypeptide or a nucleic acid molecule.

In one embodiment of the invention, the inhibitor of RAGE is soluble RAGE.

DEFINITIONS

As used herein, “treating” encompasses management and care of a patient for the purpose of combating the disease, condition, or disorder and includes the administration of a compound of the present invention to prevent the onset of the symptoms or complications, alleviating the symptoms or complications, or eliminating the disease, condition, or disorder.

As used herein, “neointimal formation” encompasses new tissue growth in a blood vessel.

“DNA sequence” is a linear sequence comprised of any combination of the four DNA monomers, i.e., nucleotides of adenine, guanine, cytosine and thymine, which codes for genetic information, such as a code for an amino acid, a promoter, a control or a gene product. A specific DNA sequence is one which has a known specific function, e.g., codes for a particular polypeptide, a particular genetic trait or affects the expression of a particular phenotype.

“Genotype” is the genetic constitution of an organism.

“Phenotype” is a collection of morphological, physiological and biochemical traits possessed by a cell or organism that results from the interaction of the genotype and the environment.
“Phenotypic expression” is the expression of the code of a DNA sequence or sequences which results in the production of a product, e.g., a polypeptide or protein, or alters the expression of the zygote’s or the organisms natural phenotype.

In another embodiment, the administering is carried out via injection, oral administration, topical administration, adenovirus infection, liposome-mediated transfer, topical application to the cells of the subject, or microinjection.

In the practice of any of the methods of the invention or preparation of any of the pharmaceutical compositions an “therapeutically effective amount” is an amount which is capable of alleviating the symptoms of the disorder of memory or learning in the subject. Accordingly, the effective amount will vary with the subject being treated, as well as the condition to be treated. For the purposes of this invention, the methods of administration are to include, but are not limited to, administration cutaneously, subcutaneously, intravenously, parenterally, orally, topical, or by aerosol.

The “non-human animals” of the invention include vertebrates such as rodents, non-human primates, sheep, dog, cow, amphibians, reptiles, etc. Preferred non-human animals are selected from the rodent family including rat and mouse, most preferably mouse.

U.S. Pat. No. 5,879,380, issued Mar. 9, 1999 to Kalman, et al., entitled “Assembly for treating blood vessels and a method therefor” is incorporated herein by reference. This patent describes some procedures which are undertaken to treat stenosis in patients and which lead to blood vessel injury.

U.S. Pat. No. 5,843,102, issued Dec. 1, 1998, to Kalman, et al., entitled “Instrument for loosening and cutting through the intima of a blood vessel, and a method thereof” is incorporated herein by reference. This patent describes some procedures which are undertaken to treat stenosis in patients and which lead to blood vessel injury.

U.S. Pat. No. 5,591,225, issued Jan. 7, 1997 to Okuda, entitled “Composite artificial blood vessel” is hereby incorporated herein by reference. This patent describes an artificial blood vessel which could be coated or implanted with the inhibitors described herein in order to carry out the methods for inhibiting neointimal formation in an injured blood vessel of a subject.

The present invention provides a method of treatment for patients undergoing a procedure which causes tissue injury to the patient’s blood vessels (e.g., angioplasty or stent placement). Said treatment is a therapy comprising administration of an inhibitor of RAGE, wherein the inhibitor inhibits the binding of RAGE to its ligand. It is known that RAGE binds to several ligands, such as AGEs and certain proteins which are family members of the S100/calgranulin family (e.g., EN-RAGE, S100B).

In one embodiment, the subject is suffering from diabetes, acute thrombotic stroke, venous thrombosis, myocardial infarction, unstable angina, abrupt closure following angioplasty or stent placement, or thrombosis as a result of peripheral vascular surgery.

U.S. Pat. No. 6,071,514, issued Jun. 6, 2000 to Grinell, et al., entitled “Methods for treating thrombotic disorders” is hereby incorporated herein by reference. This patent describes methods for treating thrombotic disorders. It also describes methods of administering compounds to subjects suffering from such disorders.

Nucleotide and Amino Acid sequences of RAGE

The nucleotide and protein (amino acid) sequences for RAGE (both human and murine and bovine) are known. The following references which recite these sequences are incorporated by reference:

Neep er et al., J. Biol. Chem., 267:14998-15004, 1992

RAGE sequences (DNA sequence and translation) from bovine, murine and homo sapien are listed hereinafter. These sequences are available from GenBank as are other sequences of RAGE from other species:

LOCUS BOVRAGE 1426 bp mRNA MAM 09-DEC-1993 DEFINITION Cow receptor for advanced glycosylation end products (RAGE) mRNA, complete cds.

ACCESSION M91212VERSION M91212.1 GI:163650

KEYWORDS RAGE; cell surface receptor.

SOURCE Bos taurus cDNA to mRNA. ORGANISM Bos taurus. Eukaryota; Metazoa; Chordata; Craniata; Vertebrata; Euteleostomi; Mammalia; Eutheria; Cetartiodactyla; Ruminantia; Pecora; Bovidae; Bovinae; Bos.

JOURNAL J. Biol. Chem. 267, 14998-15004 (1992)

MEDI LINE 92340547 REFERENCE 2 (bases 1 to 1426) AUTHORS Shaw, A. TITLE Direct Submission JOURNAL Submitted (15-APR-1992) A. Shaw, Department of Cellular and Molecular Biology, Michigan State University, West Point, Pa. 19486

USAFEATURES Location/Qualifiers source 1 . . . 1426/organism="Bos taurus" /db_xref="taxon:9913"/tissue_type="lung" CDS 10 . . . 1260/standard_name="RAGE"/codon_start=1/product="receptor for advanced glycosylation end products"/protein_id="AAA03575.1"/db_xref="GI:163651"/translation="
LOCUS HUMRAGE 1391 bp mRNA PRI 09-DEC-1993
DEFINITION Human receptor for advanced glycosylation end products (RAGE) mRNA, partial.
ACCESSION M91211.1 VERSION M91211.1 GI:190845
KEYWORDS RAGE; cell surface receptor.
SOURCE Homo sapiens cDNA to mRNA.
ORGANISM Homo sapiens Eukaryota; Metazoa; Chordata; Craniata; Vertebrata; Euteleostomi; Mammalia; Eutheria; Primates; Catarrhini; Hominidae; Homo.
REFERENCE 1 (bases 1 to 1391)
AUTHORS Neepere, M., Schmidt, A. M., Brett, J., Yan, S. D., Wang, F., Pan, Y. C., Elliston, K., Stern, D. and Shaw, A.
TITLE Cloning and expression of a cell surface receptor for advanced glycosylation end products of proteins
JOURNAL, J. Biol. Chem. 267, 14998-15004 (1992)
MEDINE 92340547
REFERENCE 2 (bases 1 to 1391)
AUTHORS Shaw, A.
TITLE Direct Submission
JOURNAL Submitted (15-APR-1992) A. Shaw, Department of Cellular and Molecular Biology, Merck Sharp and Dohme Research Laboratories, West Point, Pa. 19486 USA
FEATURES Location/Qualifiers source 1 . . . 1391/ organism="Homo sapiens"/db_xref="taxon:9606"/ tissue_type="lung"/ standard_name="RAGE"/codon_start=1/ product="receptor for advanced glycosylation end products"/protein_id="AAA03574.1"/db_xref="GI:190846"/translation=""
LOCUS MUSRECEP 1348 bp mRNA ROD 23-AUG-1994
DEFINITION Mouse receptor for advanced glycosylation end products (RAGE) gene, complete cds.
ACCESSION L33412VERSION L33412.1 GI:532208
KEYWORDS receptor for advanced glycosylation end products.
SOURCE Mus musculus (strain BALB/c, sub_species domesticus) (library: lambda gt10) male adult lung cDNA to mRNA.
ORGANISM Mus musculus Eukaryota; Metazoa; Chordata; Craniata; Vertebrata; Euteleostomi; Mammalia; Eutheria; Rodentia; Sciuropodonta; Muridae; Murinae; Mus.
REFERENCE 1 (bases 1 to 1348)
AUTHORS Lundh, E. R., Morser, J., McClary, J. and Nagashima, M.
TITILE Isolation and characterization of cDNA encoding the murine and rat homologues of the mammalian receptor for advanced glycosylation end products JOURNAL Unpublished COMMENT On Aug. 24, 1994 this sequence version replaced gi:496194.
FEATURES Location/Qualifiers source 1...1348/organism="Mus musculus"/strain="BALB/c"/sub_species="domesticus"/db_xref="taxon:10090"/sex="male"/tissue_type="lung"/dev_stage="adult"/tissue_lib="lambda gt10" gene 6...1217/gene="RAGE"/codon_start=1/product="receptor for advanced glycosylation end products"/protein_id="AAA40040.1"/db_xref="GI:532209"/translation="
Inhibitors of RAGE:
Inhibitors of RAGE include any molecule which, when introduced into a cell or a subject, is capable of inhibiting the biological activity of RAGE. For example, one such inhibitor would be able to inhibit the activity of RAGE as described: the binding of RAGE to AGES in the blood or the binding of RAGE to its ligands, for example, EN-RAGE, S100B, or a member of the S100/calgranulin protein family. The S100/calgranulin protein family are characterized by containing EF hand loops and have been shown to bind RAGE.

Examples of an inhibitor of RAGE activity are soluble RAGE, an antibody which specifically binds to RAGE, a truncated version of RAGE which is capable of acting as a competitive inhibitor of RAGE. A fragment of RAGE which includes the amyloid beta peptide binding portion of RAGE and introduced into the cell or subject as a soluble polypeptide. Other types of inhibitors would be known to one of skill in the art. For example, a small molecule could be prepared which mimics the amyloid beta peptide binding region of RAGE and administered alone as an inhibitor.

Pharmaceutical Compositions and Carriers
As used herein, the term “suitable pharmaceutically acceptable carrier” encompasses any of the standard pharmaceutically accepted carriers, such as phosphate buffered saline solution, water, emulsions such as an oil/water emulsion or a triglyceride emulsion, various types of wetting agents, tablets, coated tablets and capsules. An example of an acceptable triglyceride emulsion useful in intravenous and intraperitoneal administration of the compounds is the triglyceride emulsion commercially known as Intralipid®. Typically such carriers contain excipients such as starch, milk, sugar, certain types of clay, gelatin, stearic acid, tale, vegetable fats or oils, gums, glycols, or other known excipients. Such carriers may also include flavor and color additives or other ingredients.

This invention also provides for pharmaceutical compositions including therapeutically effective amounts of protein compositions and compounds together with suitable diluents, preservatives, solubilizers, emulsifiers, adjuvants and/or carriers useful in treatment of neuronal degradation due to aging, a learning disability, or a neurological disorder. Such compositions are liquids or lyophilized or otherwise dried formulations and include diluents of various buffer content (e.g., Tris-HCl, acetate, phosphate), pH and ionic strength, additives such as albumin or gelatin to prevent absorption to surfaces, detergents (e.g., Tween 20, Tween 80, Phloronic F68, bile acid salts), solubilizing agents (e.g., glycerol, polyethylene glycol), anti-oxidants (e.g., ascorbic acid, sodium metabisulfite), preservatives (e.g., Thimerosal, benzyl alcohol, parabens), bulking substances or tonicity modifiers (e.g., lactose, mannitol), covalent attachment of polymers such as polyethylene glycol to the compound, complexation with
metal ions, or incorporation of the compound into or onto particulate preparations of polymeric compounds such as poly lactate, polyglycolic acid, hydrogels, etc., or onto liposomes, micro emulsions, micelles, unilamellar or multi lamellar vesicles, erythrocyte ghosts, or spheroplasts. Such compositions will influence the physical state, solubility, stability, rate of in vivo release, and rate of in vivo clearance of the compound or composition. The choice of compositions will depend on the physical and chemical properties of the compound.

Controlled or sustained release compositions include formulation in lipophilic depots (e.g., fatty acids, waxes, oils). Also comprehended by the invention are particulate compositions coated with polymers (e.g., poloxamers or poloxamines) and the compound coupled to antibodies directed against tissue-specific receptors, ligands or antigens or coupled to ligands of tissue-specific receptors. Other embodiments of the compositions of the invention incorporate particulate forms protective coatings, protease inhibitors or permeation enhancers for various routes of administration, including parenteral, pulmonary, nasal and oral.

Portions of the compound of the invention may be "labeled" by association with a detectable marker substance (e.g., radiolabeled with 125I) or biotinated to provide reagents useful in detection and quantification of compound or its receptor bearing cells or its derivatives in solid tissue and fluid samples such as blood, cerebral spinal fluid or urine.

When administered, compounds are often cleared rapidly from the circulation and may therefore elicit relatively short-lived pharmacological activity. Consequently, frequent injections of relatively large doses of bioactive compounds may be required to sustain therapeutic efficacy. Compounds modified by the covalent attachment of water-soluble polymers such as polyethylene glycol, copolymers of polyethylene glycol and polypropylene glycol, carboxymethyl cellulose, dextran, polyvinyl alcohol, polyvinylpyrrolidone or polyvinyl alcohol are known to exhibit substantially longer half-lives in blood following intravenous injection than do the corresponding unmodified compounds (Abuchowski et al., 1981; Newmark et al., 1982; and Katre et al., 1987). Such modifications may also increase the compound's solubility in aqueous solution, eliminate aggregation, enhance the physical and chemical stability of the compound, and greatly reduce the immuno- and reactivity of the compound. As a result, the desired in vivo biological activity may be achieved by the administration of such polymer-compound additives less frequently or in lower doses than with the unmodified compound.

Attachment of polyethylene glycol (PEG) to compounds is particularly useful because PEG has very low toxicity in mammals (Carpenter et al., 1971). For example, a PEG adduct of adenosine deaminase was approved in the United States for use in humans for the treatment of severe combined immunodeficiency syndrome. A second advantage afforded by the conjugation of PEG is that of effectively reducing the immunogenicity and antigenicity of heterologous compounds. For example, a PEG adduct of a human protein might be useful for the treatment of disease in other mammalian species without the risk of triggering a severe immune response. The compound of the present invention capable of alleviating symptoms of a cognitive disorder of memory or learning may be delivered in a microencapsulated device so as to reduce or prevent an host immune response against the compound or against cells which may produce the compound. The compound of the present invention may also be delivered microencapsulated in a membrane, such as a liposome.

Polymers such as PEG may be conveniently attached to one or more reactive amino acid residues in a protein such as the alpha-amino group of the amino terminal amino acid, the epsilon amino groups of lysine side chains, the sulfhydryl groups of cysteine side chains, the carboxy groups of aspartyl and glutamyl side chains, the alpha-carboxyl group of the carboxy-terminus amino acid, tyrosine side chains, or to activated derivatives of glycosyl chains attached to certain asparagine, serine or threonine residues.

Numerous activated forms of PEG suitable for direct reaction with proteins have been described. Useful PEG reagents for reaction with protein amino groups include active esters of carboxylic acid or carbonate derivatives, particularly those in which the leaving groups are N-hydroxysuccinimide, p-nitrophenol, imidazole or 1-hydroxy-2-nitrobenzene-4-sulfonate. PEG derivatives containing maleimido or halocarboxylic acids are useful reagents for the modification of protein free sulfhydryl groups. Likewise, PEG reagents containing amino hydrazine or hydrazide groups are useful for reaction with aldehydes generated by periodate oxidation of carbohydrate groups in proteins.

In one embodiment the compound of the present invention is associated with a pharmaceutical carrier which includes a pharmaceutical composition. The pharmaceutical carrier may be a liquid and the pharmaceutical composition would be in the form of a solution. In another embodiment, the pharmaceutically acceptable carrier is a solid and the composition is in the form of a powder or tablet. In a further embodiment, the pharmaceutical carrier is a gel and the composition is in the form of a suppository or cream. In a further embodiment the active ingredient may be formulated as a part of a pharmaceutically acceptable transdermal patch.

The following U.S. Patents are hereby incorporated by reference:

PAT. NO. Title
U.S. Pat. No. 6,120,533 Stent delivery system for a radioisotope stent
U.S. Pat. No. 6,093,141 Stereotactic radiotreatment and prevention
U.S. Pat. No. 6,080,190 Intraluminal stent
U.S. Pat. No. 6,077,273 Catheter support for stent delivery
U.S. Pat. No. 6,074,362 Catheter system having imaging, balloon angioplasty, and stent deployment capabilities, and methods of use for guided stent deployment
U.S. Pat. No. 6,071,514 Methods for treating thrombotic disorders
U.S. Pat. No. 6,071,286 Combination angioplasty balloon/stent deployment device
U.S. Pat. No. 6,059,809 Protective angioplasty device
U.S. Pat. No. 6,053,913 Rapid exchange stented balloon catheter having ablation capabilities
U.S. Pat. No. 6,027,508 Stent retrieval device
U.S. Pat. No. 6,027,508 Stent retrieval device
U.S. Pat. No. 6,015,430 Expandable stent having a fabric liner
U.S. Pat. No. 6,011,995 Endovascular device for hyperthermia and angioplasty and method for using the same
U.S. Pat. No. 6,004,339 Balloon catheter with multiple distensibilities
U.S. Pat. No. 5,980,485 Pressure-sensitive balloon catheter
U.S. Pat. No. 5,976,153 Stent delivery catheter system
U.S. Pat. No. 5,957,971 Intraluminal stent
U.S. Pat. No. 5,944,735 Process for stent compression
U.S. Pat. No. 5,910,145 Stent delivery catheter system
U.S. Pat. No. 5,902,299 Cryotherapy method for reducing tissue injury after balloon angioplasty or stent implantation
should not be construed to, limit in any way the invention as set forth in the claims which follow thereafter.

EXPERIMENTAL DETAILS

Example 1

Blockade of Receptor for Age (Rage) Suppresses Neo-intimal Formation in Diabetic Rats Subjected to Carotid Artery Injury

It is well-established that the incidence of diabetes is rising sharply in the United States and worldwide. Despite aggressive efforts to optimize and achieve strict control of hyperglycemia in affected subjects, the leading cause of death in patients with diabetes remains coronary artery disease (70% of all case fatalities). In persons with coronary artery stenosis, one form of therapeutic intervention involves percutaneous revascularization (angioplasty) (PTCA). Prior registry data demonstrated that between 15-25% of patients undergoing PTCA have a history of diabetes mellitus.

Although there have been great strides in the field of cardiovascular medicine in the last 15 years, there has been little done to improve the outcomes of persons with diabetes and atherosclerotic coronary artery disease. This was most recently clearly demonstrated in a number of recent studies (1-3), including the BARI investigations and the studies comparing the NHANES I and NHANES II cohorts. Comparing these two epidemiologic surveys, investigators showed a marked improvement in cardiovascular and rated outcomes for patients without a history of diabetes. There was an overall 21.1 and 12.6% risk reduction in all cause mortality in non-diabetic men and women, respectively. In contrast, in diabetic men and women, respectively. In contradistinction, there was only a 1.2% reduction in all cause mortality for diabetic men, and a surprising 15.2% increase in all cause mortality for diabetic women. Similar to the NHANES epidemiologic surveys, patients with diabetes seem to be a higher risk cohort of patients following PTCA interventions.

Another example of the heightened risk of vascular disease in diabetes of medical urgency concerns the response to angioplasty as illustrated by the BARI study in which patients with diabetes displayed poorer results from angioplasty than from bypass surgery largely because of accelerated restenosis. From the results of these studies, the view has emerged that diabetic patients are at a heightened risk for angiographic and clinical restenosis, late myocardial infarction, late mortality, and need for future revascularization procedures.

In data retrieved from one of our institutes (Mid America Heart Institute) involving over 25,000 patients, we found that diabetic patients have a nearly two-fold increase in inhospital mortality following both elective and urgent PTCA interventions. The in-hospital mortality rate was 0.8% compared with 1.4% for non-diabetic and diabetic patients undergoing elective PTCA, respectively; p<0.001. Similarly, the in-hospital mortality rate was 6.9% compared with 12.7% for non-diabetic and diabetic patients undergoing PTCA for acute myocardial infarction, p<0.001.

In order to dissect the contribution of multiple, diabetes-associated factors in the response to arterial injury, we developed a model of exaggerated neo-intimal formation in rats with type 2 diabetes. We studied the Zucker fatty rat, as this is a model of insulin resistance, hyperglycemia, hyperlipidemia and obesity. This model, in certain respects, at least, typifies the characteristics of human subjects with type 2 diabetes. Our studies showed that upon induction of balloon injury in the carotid arteries of these rats, compared with lean, non-hyperglycemic control rats, an nearly two-fold increase in
neointimal area after balloon injury resulted. This rat model therefore provided a means to dissect the contributory factors involved in diabetic complications.

In this context, the accumulation of late-stage glycoxidation adducts of proteins, termed AGEs (Advanced Glycoxidation Endproducts), in diabetic tissues occurs at an accelerated rate due to increased levels of glucose, superimposed oxidant stress, and a chronic inflammatory component evident in macrovascular atherosclerotic, and restenotic vascular lesions. AGEs modify long-lived molecules in the blood vessel wall considerably before symptomatic atherosclerosis occurs, and exert their cellular effects in large part via engagement of RAGE (Receptor for AGEs) (4-5). RAGE is the only well-characterized signal transduction receptor which, on binding AGE ligands, activates intracellular pathways leading to chronic cellular perturbation in cells of the atherosclerotic vessel wall, including endothelium, mononuclear phagocytes, lymphocytes and smooth muscle cells (6).

Furthermore, RAGE also serves as a receptor for a family of inflammatory mediators, S100/calgranulin polypeptides, such as EN-RAGE (7), which coexist with AGEs at the site of atherosclerotic lesions and provide another ligand to reinforce sustained cellular stimulation mediated by RAGE. As we speculated that these findings are relevant to aggressive restenosis accompanying angioplasty in patients with diabetes, reflecting an underlying accelerated atherosclerotic process due, probably in large part, to smooth muscle cell migration, matrix production and proliferation, we tested these concepts in a rat model of exaggerated neointimal expansion after balloon injury to the carotid artery.

In previous studies, we found that blockade of RAGE, using soluble (s) RAGE (the extracellular ligand binding domain of the receptor), suppressed the development of accelerated atherosclerosis in apolipoprotein E null mice (8). It was thus logical to administer sRAGE to fatty Zucker rats and test the hypothesis that suppression of expanded neointimal formation might ensue.

Materials And Methods

Induction of carotid artery balloon injury. Carotid arterial injury was induced in Fatty Zucker rats with a 2 French Fogarty balloon catheter (Baxter Health Care Corp., Santa Ana, Calif.). Certain rats, as detailed below, received murine soluble RAGE, 0.5 mg, the day prior to surgery, and then once daily for a total of 6 more days (total treatment: 7 days). The remaining rats received murine serum albumin, 0.5 mg/day as control. Injections were given by intraperitoneal route, in sterile-endotoxin-free phosphate-buffered saline. All Zucker fatty rats were sacrificed on day 21 following carotid arterial injury.

Upon induction of anesthesia, a midline abdominal incision was made and an 18-gauge intravenous catheter was introduced to the aortic bifurcation and the distal abdominal aorta was exposed. The aorta was flushed with 50 ml of Ringer’s lactate solution at 120 mm Hg followed by in vivo fixation with 200 ml of 5% Histochoice infused over five minutes at 120 mm Hg. Once the infusion was begun in all animals, they were sacrificed with an overdose of Pentothal through the tail vein.

After five minutes of perfusion fixation, the entire right and left carotid arteries were embedded in paraffin and sectioned at 5 mm sections from the proximal to the distal end. Histologic morphometric and immunohistochemical studies were done utilizing these day 21 paraffin-embedded sections.

Treatment. Thirteen Zucker fatty rats were randomly assigned to treatment with sRAGE (n=7) or murine serum albumin (MSA) (n=6). Analysis of lesions. Slides obtained from paraffin-embedded sections were stained with hematoxylin and eosin (H&E) and elastic van Giessen stains. Morphometric analysis of the arterial segments was carried out by an observer blinded to the treatment groups. The investigator utilized a computerized digital microscopic teleyometry algorithm (NIH Image 1.56). The cross-sectional areas of the lumen, intima, media and the visceral area as circumscribed the external elastic lamina were determined. Analysis was performed using sections stained with H&E under 40×microscopic magnification.

Results

The key index of an exaggerated response to arterial injury is the extent of neointimal formation. In fatty Zucker rats treated with sRAGE, there was a significant reduction in neointimal area compared with MSA-treated animals (0.8 mm² compared with 0.15 mm², respectively; p=0.001) (FIG. 1). Consistent with this observation, the neointimal to media ratio for sRAGE-treated Zucker fatty rats was 0.83, compared to 1.43 mm² in rats treated with MSA; p=0.005 (FIG. 2).

Preliminary studies have been performed to determine the mechanism underlying the beneficial effects of sRAGE. Rats undergoing balloon injury were treated with sRAGE or MSA. Prior to sacrifice, rats were treated with multiple intraperitoneal injections of bromodeoxyuridine (BrdU). On day 5 after balloon injury, our preliminary studies have shown a reduction in smooth muscle proliferation and migration, as evidenced by the amount of BrdU positive cells staining in the media and intima in rats treated with sRAGE vs MSA (18% vs 25.4% BrdU-positive cells, respectively). We are now in the process of expanding the numbers of animals to be included in these mechanistic studies, and in testing the effects of sRAGE on various days after injury.

Discussion

One consequence of the endogenous development of accelerated atherosclerosis in subjects with diabetes is the need for revascularization in order to ensure adequate coronary flow and to minimize ischemic episodes. In such cases, one course of therapy includes the exogenous introduction of balloon catheter devices to disrupt intimal vascular lesions, thereby leading to revascularization and enhanced blood flow. In the case of subjects with diabetes, the response to percutaneous balloon catheter mediated revascularization is often unoward, with excessive formation of neointima, itself a risk for further ischemic episodes or infarction. Here we have shown the first time the blockade of RAGE, by administration of soluble RAGE, suppresses exaggerated neointimal expansion. These findings provide a novel means to prevent excessive restenosis in subjects with diabetes.

REFERENCES

SEQUENCE LISTING

<160> NUMBER OF SEQ ID NOS: 6
<210> SEQ ID NO 1
<211> LENGTH: 416
<212> TYPE: PRT
<213> ORGANISM: Cow

<400> SEQUENCE: 1
Met Ala Ala Gly Ala Val Val Gly Ala Trp Met Leu Val Leu Ser Leu 1 5 10 15
Gly Gly Thr Val Thr Gly Asp Glu Asn Ile Thr Ala Arg Ile Gly Lys 20 25 30
Pro Leu Val Leu Asn Cys Lys Ala Pro Lys Lys Pro Pro Glu Glu 35 40 45
Leu Glu Trp Lys Leu Asn Thr Gly Arg Thr Glu Ala Trp Lys Lys Leu 50 55 60
Ser Pro Glu Gly Asp Pro Trp Asp Ser Val Ala Arg Val Leu Pro Asn 65 70 75 80
Gly Ser Leu Leu Pro Val Gly Ile Glu Asp Glu Gly Thr Phe 85 90 95
Arg Cys Arg Ala Thr Ser Arg Ser Gly Lys Glu Thr Lys Ser Arg Tyr Arg Val Arg Val Tyr Glu Ile Pro Gly Lys Pro Glu Ile Glu Asp Pro 100 105 110 115 120 125
Asp Ala Ser Glu Leu Met Ala Val Val Gly Thr Cys Val 130 135 140
Ser Glu Gly Tyr Pro Ala Gly Thr Leu Asn Trp Leu Leu Asp Gly 145 150 155 160
Lys Thr Leu Ile Pro Asp Gly Lys Gly Val Ser Val Lys Glu Glu Thr 165 170 175 180
Lys Arg His Pro Lys Thr Gly Leu Phe Thr Leu His Ser Glu Leu Met 185 190
Val Thr Pro Ala Arg Gly Ala Leu His Pro Thr Phe Ser Cys Ser 195 200 205
Phe Thr Pro Gly Leu Pro Arg Arg Ala Leu His Thr Ala Pro Asp Ala Val 210 215 220
Gln Leu Arg Val Trp Ser Glu His Arg Gly Gly Gly Gly Pro Asn Val 225 230 235 240
Asp Ala Val Pro Leu Lys Glu Val Glu Val Val Val Glu Pro Gly
<table>
<thead>
<tr>
<th>245</th>
<th>250</th>
<th>255</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gly Ala Val Ala Pro Gly Gly Thr Val Thr Leu Thr Cys Glu Ala Pro</td>
<td></td>
<td></td>
</tr>
<tr>
<td>260</td>
<td>265</td>
<td>270</td>
</tr>
<tr>
<td>Ala Gin Pro Pro Pro Gin Ile His Trp Ile Lys Asp Gly Arg Pro Leu</td>
<td></td>
<td></td>
</tr>
<tr>
<td>275</td>
<td>280</td>
<td>285</td>
</tr>
<tr>
<td>Pro Leu Pro Pro Gly Pro Met Leu Leu Leu Pro Glu Val Gly Pro Glu</td>
<td></td>
<td></td>
</tr>
<tr>
<td>290</td>
<td>295</td>
<td>300</td>
</tr>
<tr>
<td>Asp Gin Gly Thr Tyr Ser Cys Val Ala Thr His Pro Ser His Gly Pro</td>
<td></td>
<td></td>
</tr>
<tr>
<td>305</td>
<td>310</td>
<td>315</td>
</tr>
<tr>
<td>Gin Glu Ser Arg Ala Val Ser Val Thr Ile Ile Glu Thr Gly Glu Glu</td>
<td></td>
<td></td>
</tr>
<tr>
<td>325</td>
<td>330</td>
<td>335</td>
</tr>
<tr>
<td>Gly Thr Thr Ala Gly Ser Val Gly Pro Gly Leu Thr Leu Ala</td>
<td></td>
<td></td>
</tr>
<tr>
<td>340</td>
<td>345</td>
<td>350</td>
</tr>
<tr>
<td>Leu Thr Leu Gly Ile Leu Gly Leu Gly Thr Val Ala Leu Leu Ile</td>
<td></td>
<td></td>
</tr>
<tr>
<td>355</td>
<td>360</td>
<td>365</td>
</tr>
<tr>
<td>Gly Val Ile Val Trp His Arg Arg Gin Arg Lys Gin Gly Glu Arg</td>
<td></td>
<td></td>
</tr>
<tr>
<td>370</td>
<td>375</td>
<td>380</td>
</tr>
<tr>
<td>Lys Val Pro Glu Asn Gin Glu Glu Glu Glu Glu Arg Ala Glu Leu</td>
<td></td>
<td></td>
</tr>
<tr>
<td>390</td>
<td>395</td>
<td>400</td>
</tr>
</tbody>
</table>

<210> SEQ ID NO 2
<211> LENGTH: 1426
<212> TYPE: DNA
<213> ORGANISM: Cow

<400> SEQUENCE: 2

```plaintext
cggagaagga tggcagcaag ggcaagtggc ggcgcgcgga ttggatcatc gacgccgggg 60
gggacagca cggcggacca aacaactcaca ggcgcgttag gcgccgcaact ggtgcctgac 120
tgcaagggcg ctccccccacaaaa acaccccaag cgcgtttaga gacggcgggc cgcgggccc 180
acagaggttt ggcgccttct gctccgccgg ggacacccct cggcgacgct ggcgctgggt 240
tcccccacag gcccctccct cctggtgcttc gcggcgggga ggagtgcttc gggcggccc 300
tgcggggcag gccaagggag aggaaaagcc ccacagtctt ctagcccccc cgggagggg 360
cagattccct cggcgcgcgca taataacttgct tcttactctgact cggagccgagcc 420
taccacctt cccagcagca agacatctgct ctcgacgggg ggttcacggtg ccagccgcgt 480
tggagaggg ccacggctcat ctctgctgag ggaggggagga cggcgccttg cggcgcggga 540
tagagacccca caccccaagt tttctcagcgt cattctgagc tgcttctcagc aaggagc 600
ggagggagcc ctccccccca gggcgcctgg gttttccttg gttttccttg gttttccttg 660
gcgcgcatc gggcggccag aagtgcgtct gcacctgtgag gcgcgtcctg gttttccttg 720
cccacgcgg cggcggccag aagtgcgtct gcacctgtgag gcgcgtcctg gttttccttg 780
gcgcgcatc gggcggccag aagtgcgtct gcacctgtgag gcgcgtcctg gttttccttg 840
caatcgcgg gcaccgcggct gcgcgccggc gcgcgccggc gcgcgccggc gcgcgccggc 900
tcccccacag gggcgcggtat gcgcgcggcc gcgcgcggcc gcgcgccggc gcgcgccggc 960
gcgcgcatc gggcggccag aagtgcgtct gcacctgtgag gcgcgtcctg gttttccttg 1020
cgcgcatc gggcggccag aagtgcgtct gcacctgtgag gcgcgtcctg gttttccttg 1080
gcgcgcatc gggcggccag aagtgcgtct gcacctgtgag gcgcgtcctg gttttccttg 1140
cacgccagtc gacggagcag gggcgcggcc gcgcgccggc gcgcgccggc gcgcgccggc 1200
```
GCCGGAAGA ACCAGCCGA GGCAGCAGG GGGCGCGTGA
GAGAGACCG CCGAGGGAGG CTGCTTCTTT TTCCACGACT
AGCTCCGGAG TACCGGTATG TATGAGTCC AGGCGAGGCA
CTGCTGTTGA TGATGATTT GAACACGCTG CATTAGA

SEQ ID NO: 3
LENGTH: 404
TYPE: PRT
ORGANISM: Human

SEQUENCE: 3

Gly Ala Ala Gly Thr Ala Val Gly Ala Trp Val Leu Val Leu Ser Leu
1 5 10 15
Trp Gly Ala Val Val Gly Ala Glu Asn Ile Thr Ala Arg Ile Gly Glu
20 25 30
Pro Leu Val Leu Lys Cys Lys Gly Ala Pro Lys Lys Pro Pro Gln Arg
35 40 45
Leu Glu Trp Lys Leu Arg Thr Gly Arg Thr Gly Ala Trp Lys Val Leu
50 55 60
Ser Pro Gln Gly Gly Gly Pro Pro Asp Ser Val Ala Arg Val Leu Pro
65 70 75 80
Asn Gly Ser Leu Phe Leu Pro Val Gly Ile Gln Asp Gly Gly Ile
85 90 95
Phe Arg Cys Arg Ala Met Asn Arg Asn Gly Thr Lys Ser Asn
100 105 110
Tyr Arg Val Arg Val Tyr Gln Ile Pro Gly Lys Pro Glu Ile Val Asp
115 120 125
Ser Ala Ser Glu Leu Thr Ala Gly Val Pro Asn Lys Val Gly Thr Cys
130 135 140
Val Ser Glu Gly Ser Tyr Pro Ala Gly Thr Leu Ser Trp His Leu Asp
145 150 155 160
Gly Lys Pro Leu Val Pro Asn Glu Lys Gly Val Ser Val Lys Glu Gln
165 170 175
Thr Arg Arg His Pro Glu Thr Gly Leu Phe Thr Leu Gln Ser Glu Leu
180 185 190
Met Val Thr Pro Ala Arg Gly Asp Pro Arg Pro Pro Arg Pro Thr Phe Ser Cys
195 200 205
Ser Phe Ser Pro Gly Leu Pro Arg His Arg Ala Leu Arg Thr Ala Pro
210 215 220
Ile Gln Pro Arg Val Trp Glu Pro Val Pro Leu Glu Glu Val Glu Leu
225 230 235 240
Val Val Glu Pro Glu Gly Gly Ala Val Ala Pro Gly Gly Thr Val Thr
245 250 255
Leu Thr Cys Glu Val Pro Ala Gln Ser Pro Gln Ile His Trp Met
260 265 270
Lys Asp Gly Val Leu Pro Leu Pro Ser Pro Val Leu Ile Leu
275 280 285
Pro Glu Ile Gly Pro Glu Asp Gly Gly Thr Tyr Ser Cys Val Ala Thr
290 295 300
His Ser Ser His Gly Pro Gln Glu Ser Arg Ala Val Ser Ile Ser Ile
305 310 315 320
Ile Glu Pro Gly Glu Gly Pro Thr Ala Gly Ser Val Gly Gly Ser
325 330 335
Gly Leu Gly Thr Leu Ala Leu Ala Leu Gly Ile Leu Gly Gly Leu Gly
340
345
350
Thr Ala Ala Leu Leu Ile Gly Val Ile Leu Trp Gln Arg Arg Gln Arg
355
360
365
Arg Gly Glu Glu Arg Lys Ala Pro Glu Asn Gln Glu Glu Glu Glu Glu
370
375
380
Arg Ala Glu Leu Asn Gln Ser Glu Pro Glu Ala Gly Glu Ser Ser
385
390
395
400
Thr Gly Gly Pro

<210> SEQ ID NO 4
<211> LENGTH: 1391
<212> TYPE: DNA
<213> ORGANISM: Human

<400> SEQUENCE: 4

```plaintext
ggggccagcg gaacagcgt tgtgctggcttg tgtgtgtgctg tcagttctgtg gggggctga
60
gttaagtttca aaactatcag cgcacgcctg aaccccgatt gcggccagc ctcggtggact
ggcccccaag aaccccccct ggggctggaa tggaaacgtga aacccgctg gcgcagact
120
tggaacctgc tgtcctcccgg ggagggccgg ccctgggaac gcgtgtgctct tgttcctcc
240
aagctgctcc ttctcttctcc gcctgctgcttg atccagaaag tggggatatct cctggtgcagg
300
gcaataagac agagagacgtg aacaatttac cacagcttat caggaagactta gcgtcctgat
cctgaacgc gcaggtatat gttatgcgtgct gcctcttgtgaa caccttgatt
360
gtgggagact gttgtgtgca ggggagctac ccctgggatct ctttattgtg cgaacttttg
420
ggggcaaccc tgtgctgctatt ggtgactcgg ggtactgctgct acctggctata gcggggctgg
480
cggcagctg cccatgtgct accttctctg tgtgtgttgtg gcgtgtcttgta gcgtttattt
cctggcagct cctgttatcgt gctgtgctgcc tgttcttgttg aagacagggaga gcttttttt
540
cctctgtct cttgtgact gctttctctgg ggtggtactc ggtgttgttg ggtctctgttg
gttctgtctg actgtgctgc tggcccttatt ggtgttttttg gctttcagttt ggtctctgtt
cctttttttt aagacagggaga gctttttttt
tggttaatct cttctctctt acctctgtct ccacctgttctt ccacctgttctt ccacctgttctt
900
ggttctgtctt ccacctgttctt ccacctgttctt ccacctgttctt ccacctgttctt ccacctgttctt
960
ggttctgtctt ccacctgttctt ccacctgttctt ccacctgttctt ccacctgttctt ccacctgttctt
1020
```

<210> SEQ ID NO 5
<211> LENGTH: 403
<212> TYPE: PRO
<213> ORGANISM: Mouse

<400> SEQUENCE: 5

```plaintext
cacatctgc a
1391
```
<table>
<thead>
<tr>
<th>Met</th>
<th>Pro</th>
<th>Ala</th>
<th>Gly</th>
<th>Thr</th>
<th>Ala</th>
<th>Ala</th>
<th>Arg</th>
<th>Ala</th>
<th>Trp</th>
<th>Val</th>
<th>Leu</th>
<th>Val</th>
<th>Leu</th>
<th>Ala</th>
<th>Leu</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
<tr>
<td>Trp</td>
<td>gly</td>
<td>Ala</td>
<td>Val</td>
<td>Ala</td>
<td>Gly</td>
<td>Gly</td>
<td>Gln</td>
<td>Asn</td>
<td>Ile</td>
<td>Thr</td>
<td>Ala</td>
<td>Arg</td>
<td>Ala</td>
<td>Gly</td>
<td>Glu</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>Pro</td>
<td>Leu</td>
<td>Val</td>
<td>Leu</td>
<td>Ser</td>
<td>Cys</td>
<td>Lys</td>
<td>Gly</td>
<td>Ala</td>
<td>Pro</td>
<td>Lys</td>
<td>Pro</td>
<td>Pro</td>
<td>Pro</td>
<td>Gln</td>
<td>Gln</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>Leu</td>
<td>Glu</td>
<td>Trp</td>
<td>Lys</td>
<td>Leu</td>
<td>Aen</td>
<td>Thr</td>
<td>Gly</td>
<td>Arg</td>
<td>Thr</td>
<td>Glu</td>
<td>Ala</td>
<td>Trp</td>
<td>Lys</td>
<td>Val</td>
<td>Leu</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>Ser</td>
<td>Pro</td>
<td>Gln</td>
<td>Gly</td>
<td>Gln</td>
<td>Gly</td>
<td>Pro</td>
<td>Asp</td>
<td>Ser</td>
<td>Val</td>
<td>Ala</td>
<td>Gln</td>
<td>Ile</td>
<td>Leu</td>
<td>Pro</td>
<td>Asn</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>Gly</td>
<td>Ser</td>
<td>Leu</td>
<td>Leu</td>
<td>Pro</td>
<td>Ala</td>
<td>Thr</td>
<td>Gly</td>
<td>Ile</td>
<td>Val</td>
<td>Asp</td>
<td>Gly</td>
<td>Thr</td>
<td>Phe</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>Arg</td>
<td>Arg</td>
<td>Ala</td>
<td>Thr</td>
<td>Aen</td>
<td>Arg</td>
<td>Arg</td>
<td>Gly</td>
<td>Lys</td>
<td>Glu</td>
<td>Val</td>
<td>Lys</td>
<td>Ser</td>
<td>Asn</td>
<td>Tyr</td>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>Arg</td>
<td>Val</td>
<td>Arg</td>
<td>Val</td>
<td>Tyr</td>
<td>Gln</td>
<td>Ile</td>
<td>Pro</td>
<td>Gly</td>
<td>Pro</td>
<td>Gln</td>
<td>Pro</td>
<td>Glu</td>
<td>Val</td>
<td>Asp</td>
<td>Pro</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>Ala</td>
<td>Ser</td>
<td>Glu</td>
<td>Leu</td>
<td>Thr</td>
<td>Ala</td>
<td>Ser</td>
<td>Val</td>
<td>Pro</td>
<td>Aen</td>
<td>Lys</td>
<td>Val</td>
<td>Gly</td>
<td>Thr</td>
<td>Cys</td>
<td>Val</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>Ser</td>
<td>Glu</td>
<td>Gly</td>
<td>Ser</td>
<td>Tyr</td>
<td>Pro</td>
<td>Ala</td>
<td>Gly</td>
<td>Thr</td>
<td>Leu</td>
<td>Ser</td>
<td>Trp</td>
<td>His</td>
<td>Leu</td>
<td>Asp</td>
<td>Gly</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>Lys</td>
<td>Leu</td>
<td>Leu</td>
<td>Ile</td>
<td>Pro</td>
<td>Asp</td>
<td>Gly</td>
<td>Lys</td>
<td>Glu</td>
<td>Thr</td>
<td>Leu</td>
<td>Val</td>
<td>Lys</td>
<td>Glu</td>
<td>Thr</td>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>Arg</td>
<td>Arg</td>
<td>His</td>
<td>Pro</td>
<td>Glu</td>
<td>Thr</td>
<td>Gly</td>
<td>Leu</td>
<td>Phe</td>
<td>Thr</td>
<td>Leu</td>
<td>Arg</td>
<td>Ser</td>
<td>Glu</td>
<td>Leu</td>
<td>Thr</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>Val</td>
<td>Ile</td>
<td>Pro</td>
<td>Thr</td>
<td>Gln</td>
<td>Gly</td>
<td>Gly</td>
<td>Thr</td>
<td>His</td>
<td>Pro</td>
<td>Thr</td>
<td>Phe</td>
<td>Ser</td>
<td>Cys</td>
<td>Ser</td>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>Phe</td>
<td>Ser</td>
<td>Leu</td>
<td>Gly</td>
<td>Leu</td>
<td>Pro</td>
<td>Arg</td>
<td>Arg</td>
<td>Pro</td>
<td>Leu</td>
<td>Aen</td>
<td>Thr</td>
<td>Ala</td>
<td>Pro</td>
<td>Ile</td>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>Gln</td>
<td>Leu</td>
<td>Arg</td>
<td>Val</td>
<td>Arg</td>
<td>Glu</td>
<td>Pro</td>
<td>Gly</td>
<td>Pro</td>
<td>Glu</td>
<td>Gly</td>
<td>Ile</td>
<td>Gln</td>
<td>Leu</td>
<td>Leu</td>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>Val</td>
<td>Glu</td>
<td>Pro</td>
<td>Glu</td>
<td>Gly</td>
<td>Gly</td>
<td>Ile</td>
<td>Val</td>
<td>Ala</td>
<td>Pro</td>
<td>Gly</td>
<td>Gly</td>
<td>Thr</td>
<td>Val</td>
<td>Thr</td>
<td>Leu</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>Thr</td>
<td>Cys</td>
<td>Ala</td>
<td>Ile</td>
<td>Ser</td>
<td>Ala</td>
<td>Gln</td>
<td>Pro</td>
<td>Pro</td>
<td>Gln</td>
<td>Val</td>
<td>Pro</td>
<td>Gln</td>
<td>Val</td>
<td>His</td>
<td>Thr</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>Asp</td>
<td>Gly</td>
<td>Ala</td>
<td>Pro</td>
<td>Leu</td>
<td>Ala</td>
<td>Pro</td>
<td>Ser</td>
<td>Ala</td>
<td>Pro</td>
<td>Ser</td>
<td>Val</td>
<td>Leu</td>
<td>Ala</td>
<td>Leu</td>
<td>Pro</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>Glu</td>
<td>Val</td>
<td>Val</td>
<td>His</td>
<td>Ala</td>
<td>Asp</td>
<td>Glu</td>
<td>Gly</td>
<td>Thr</td>
<td>Ser</td>
<td>Cys</td>
<td>Val</td>
<td>Ala</td>
<td>Thr</td>
<td>His</td>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>Pro</td>
<td>Ser</td>
<td>His</td>
<td>Gly</td>
<td>Pro</td>
<td>Gln</td>
<td>Glu</td>
<td>Ser</td>
<td>Pro</td>
<td>Val</td>
<td>Ser</td>
<td>Ile</td>
<td>Arg</td>
<td>Val</td>
<td>Thr</td>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>Glu</td>
<td>Thr</td>
<td>Gly</td>
<td>Asp</td>
<td>Gly</td>
<td>Pro</td>
<td>Ala</td>
<td>Gly</td>
<td>Ser</td>
<td>Val</td>
<td>Gly</td>
<td>Glu</td>
<td>Ser</td>
<td>Gly</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>Leu</td>
<td>Gly</td>
<td>Thr</td>
<td>Leu</td>
<td>Ala</td>
<td>Ala</td>
<td>Leu</td>
<td>Gly</td>
<td>Ile</td>
<td>Leu</td>
<td>Gly</td>
<td>Leu</td>
<td>Gly</td>
<td>Val</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>Val</td>
<td>Ala</td>
<td>Ala</td>
<td>Ala</td>
<td>Leu</td>
<td>Val</td>
<td>Gln</td>
<td>Ala</td>
<td>Ile</td>
<td>Leu</td>
<td>Trp</td>
<td>Arg</td>
<td>Lys</td>
<td>Arg</td>
<td>Glu</td>
<td>Pro</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>Arg</td>
<td>Arg</td>
<td>Ala</td>
<td>Pro</td>
<td>Gln</td>
<td>Ser</td>
<td>Gln</td>
<td>Glu</td>
<td>Asp</td>
<td>Glu</td>
<td>Glu</td>
<td>Arg</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>Ala</td>
<td>Ala</td>
<td>Ala</td>
<td>Gln</td>
<td>Ser</td>
<td>Gln</td>
<td>Glu</td>
<td>Ala</td>
<td>Met</td>
<td>Pro</td>
<td>Glu</td>
<td>Asn</td>
<td>Gly</td>
<td>Ala</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>Gly</td>
<td>Gly</td>
<td>Pro</td>
<td>210</td>
<td>SEQ</td>
<td>ID</td>
<td>NO</td>
<td>6</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<210> SEQ ID NO 6
What is claimed is:

1. A method for treating a diabetic subject who has (a) undergone an angioplasty procedure comprising placing an angioplasty balloon in a blood vessel and (b) experienced an injury in the blood vessel which comprises administering to the subject a soluble fragment of a receptor for advanced glycation endproduct polypeptide, which fragment (a) includes an amyloid-beta peptide-binding portion of receptor for advanced glycation endproduct polypeptide and (b) is coupled to an antibody, in an amount effective to reduce smooth muscle proliferation and migration in the subject’s blood vessels, so as to thereby treat the subject, wherein the sequence of the receptor for advanced glycation endproduct polypeptide is set forth in SEQ ID NO: 1, 3, or 5, and wherein the blood vessel is a carotid artery.

2. The method of claim 1, wherein the soluble fragment is administered to the subject by bolus injection, intraperitoneal injection, intravenous administration, subcutaneous administration, oral administration, topical application to the blood vessel, coating of a device to be placed within the subject, coating of an instrument used during a procedure upon the subject which results in blood vessel injury or contacting blood of the subject during extracorporeal circulation.

3. The method of claim 2, wherein the soluble fragment is administered to the subject by intraperitoneal or subcutaneous administration.

4. The method of claim 1, wherein the soluble fragment is administered to the subject at a rate from about 2 μg/kg/hr to about 100 μg/kg/hr.