(43) International Publication Date

(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(19) World Intellectual Property Ny
Organization é
International Bureau -,

=

\

(10) International Publication Number

WO 2013/040181 A1

21 March 2013 (21.03.2013) WIPO I PCT
(51) International Patent Classification: (81) Designated States (uniess otherwise indicated, for every
GO6F 11/00 (2006.01) GO8B 23/00 (2006.01) kind of national protection available): AE, AG, AL, AM,
. L . AO, AT, AU, AZ, BA, BB, BG, BH, BN, BR, BW, BY,
(21) International Application Number: BZ, CA, CH, CL, CN, CO, CR, CU, CZ, DE, DK, DM,
PCT/US2012/055116 DO, DZ. EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, GT,
(22) International Filing Date: HN, HR, HU, ID, IL, IN, IS, JP, KE, KG, KM, KN, KP,
13 September 2012 (13.09.2012) KR, KZ, LA, LC, LK, LR, LS, LT, LU, LY, MA, MD,
. ME, MG, MK, MN, MW, MX, MY, MZ, NA, NG, NI,
(25) Filing Language: English NO, NZ, OM, PA, PE, PG, PH, PL, PT, QA, RO, RS, RU,
(26) Publication Language: English RW, SC, SD, SE, SG, SK, SL, SM, ST, SV, SY, TH, TJ,
™, TN, TR, TT, TZ, UA, UG, US, UZ, VC, VN, ZA,
(30) Priority Data: M, ZW.
13/233,804 15 September 2011 (15.09.2011) Us
(84) Designated States (uniess otherwise indicated, for every
(71) Applicant (for all designated States except US): RAY- kind of regional protection available): ARIPO (BW, GH,
THEON COMPANY [US/US]; 870 Winter Street, GM, KE, LR, LS, MW, MZ, NA, RW, SD, SL, SZ, TZ,
Waltham, Massachusetts 02451-1449 (US). UG, ZM, ZW), Eurasian (AM, AZ, BY, KG, KZ, RU, TJ,
. TM), European (AL, AT, BE, BG, CH, CY, CZ, DE, DK,
(72) Inventors; and
(75) Tnventors/Applicants (for US only): MCDOUGAL, EE, ES, FL FR, GB, GR, HR, HU, IE, IS, IT, LT, LU, LV,
. MC, MK, MT, NL, NO, PL, PT, RO, RS, SE, SI, SK, SM,
Monty D. [US/US]; 2406 Vista Oaks Ln., St. Paul, Texas
75098 (US). FORD, Bradley T. [US/US]; 1309 Iron TR), OAPI (BF, BJ, CF, CG, CI, CM, GA, GN, GQ, GW,
. — ML, MR, NE, SN, TD, TG).
Horse St., Wylie, Texas 75098 (US). STERNS, William ’ ? P ’
E. [US/US]; 8088 Park Lane, Apt. 908, Dallas, Texas Published:

74

75231 (US).

Agents: MADDEN, Robert B. et al.; P.O. Box 2938, Min-
neapolis, Minnesota 55402 (US).

with international search report (Art. 21(3))

(54) Title: PROVIDING A NETWORK-ACCESSIBLE MALWARE ANALY SIS

102
CLIENT SYSTEM 106 108
N wessevices [uAWRE L/
110 112 SYSTEM SYSTEM
E 14 104 126 128 132 134
- ’—L‘ 124 /rx\,\\ 2 124
n APPLICATION | | — — — \
FILE
el oz 12 122
WEB MALWARE
116 118 SERVICES ANALYSIS
CALLBACK MODULE MODULE
INFORMATION N N
130 136
120
10{ 140 HISTORICAL 116
DETECTION DATA
CALLBACK
FIG. 1

wo 2013/040181 A 1[I I NP0 00O DO

(57) Abstract: In certain embodiments, a computer-implemented method comprises receiving, via a computer network and from a
first computer system, a first malware analysis request. The first malware analysis request comprises a file to be analyzed for mal-
ware by a malware analysis system. The method includes initiating a malware analysis by the malware analysis system of the first file
for malware. The method includes communicating to the first computer system a response for the first file determined by the mal -
ware analysis system to the first computer system. The response comprises an indication of whether the first file comprises malware.

WO 2013/040181 PCT/US2012/055116

10

PROVIDING A NETWORK-ACCESSIBLE MALWARE ANALYSIS

BACKGROUND

Malware (such as viruses, trojans, and other malicious software) has become
increasingly more difficult to contest. Various methods have been used to combat
malware, but more sophisticated malware continues to abound. Methods of detection
have grown more complex, but often take longer to execute due to this complexity.
Malware protection techniques applied in certain computer systems often lack the
complexity or other sophistication to detect or otherwise address certain types of

malware such as zero-day attacks and other types of malware.

WO 2013/040181 PCT/US2012/055116

10

15

20

25

SUMMARY

In certain embodiments, a computer-implemented method comprises
receiving, via a computer network and from a first computer system, a first malware
analysis request. The first malware analysis request comprises a file to be analyzed
for malware by a malware analysis system. The method includes initiating a malware
analysis by the malware analysis system of the first file for malware. The method
includes communicating to the first computer system a response for the first file
determined by the malware analysis system to the first computer system. The
response comprises an indication of whether the first file comprises malware.

Particular embodiments of the present disclosure may provide one or more
technical advantages. Certain embodiments allow computer systems to access
malware analysis services provided by a malware analysis system by invoking those
malware detection services using a web services interface. Embodiments of the
present disclosure may provide a network-accessible interface, which may be a
universal interface, to a malware analysis system and its associated data repository of
historical malware analyses. Providing a web services interface for communicating
with the malware analysis system may ease the use of such a system, thereby
potentially encouraging its use. Communication of files to a remote malware analysis
system for analysis may allow for more robust malware analysis to be performed than
might be possible or practical with typical host-based or other local malware analysis
systems. In certain embodiments, the remote malware analysis system further
provides a mechanism for a human analyst to contribute to the malware analysis of
certain files, if appropriate.

Certain embodiments of the present disclosure may provide some, all, or none
of the above advantages. Certain embodiments may provide one or more other
technical advantages, one or more of which may be readily apparent to those skilled

in the art from the figures, descriptions, and claims included herein.

WO 2013/040181 PCT/US2012/055116

10

15

BRIEF DESCRIPTION OF THE DRAWINGS

For a more complete understanding of the present disclosure and its
advantages, reference is made to the following descriptions, taken in conjunction with
the accompanying drawings, in which:

FIGURE 1 illustrates an example system for providing a network-accessible
malware analysis, according to certain embodiments of the present disclosure;

FIGURE 2 illustrates an example malware analysis system, according to
certain embodiments of the present disclosure;

FIGURE 3 illustrates one embodiment of an analysis console, according to
certain embodiments of the present disclosure;

FIGURES 4A-4B illustrate an example method for providing a network-
accessible malware analysis in which a callback request is submitted, according to
certain embodiments of the present disclosure;

FIGURES 5A-5B illustrate an example method for providing a network-
accessible malware analysis in which a status request is submitted, according to
certain embodiments of the present disclosure; and

FIGURE 6 illustrates an example computer system that may be used for one or

more portions of systems for implementing the present disclosure.

WO 2013/040181 PCT/US2012/055116

10

15

20

25

4

DESCRIPTION OF EXAMPLE EMBODIMENTS

FIGURE 1 illustrates an example system 100 for providing a network-
accessible malware analysis, according to certain embodiments of the present
disclosure. In the illustrated example, system 100 includes a client system 102, a
computer network 104, a web services system 106, and a malware analysis system
108. Although system 100 is illustrated and primarily described as including
particular numbers and types of components arranged in a particular manner, the
present disclosure contemplates system 100 including any suitable numbers and types
of components arranged in any suitable manner, according to particular needs.

Embodiments of system 100 implement a web service interface for malware
analysis. Although described as a “web service” or “web service interface,” the
present disclosure contemplates malware detection services being provided via a
computer network 104 in any suitable manner. In general, client system 102
determines that one or more files should be analyzed for malware and requests using a
web services interface analysis of those files by malware analysis system 108. Details
of certain example embodiments of the present disclosure are described below. In
certain embodiments, the web services interface provides a universal messaging
format for communicating between client systems 102 and malware analysis system
108.

Client system 102 may include one or more computer systems at one or more
locations. Each computer system may include any appropriate input devices, output
devices, mass storage media, processors, memory, or other suitable components for
receiving, processing, storing, and communicating data. For example, each computer
system may include a personal computer, workstation, network computer, kiosk,
wireless data port, personal data assistant (PDA), one or more Internet Protocol (IP)
telephones, one or more cellular/smart phones, one or more servers, a server pool, a
network gateway, a router, a switch, one or more processors within these or other
devices, or any other suitable processing device. Client system 102 may be a stand-
alone computer or may be a part of a larger network of computers associated with an
entity. Client system 102 may be implemented using any suitable combination of

hardware, firmware, and software. “Client system 102" and “user of client system

WO 2013/040181 PCT/US2012/055116

10

15

20

25

102 may be used interchangeably throughout this description. Client system 102
may be one of a number of client systems 102.

Client system 102 may include a processing unit 110 and a memory unit 112.
Processing unit 110 may include one or more microprocessors, controllers, or any
other suitable computing devices or resources. Processing unit 110 may work, either
alone or with other components of system 100, to provide a portion or all of the
functionality of its associated computer system 102 described herein. Memory unit
112 may take the form of wvolatile or non-volatile memory including, without
limitation, magnetic media, optical media, read-access memory (RAM), read-only
memory (ROM), removable media, or any other suitable memory component.

Client system 102 may include an application 114, which may be implemented
using any suitable combination of hardware, firmware, and software. Client system
102 also may include file 116, file information 118, and callback information 120.
Each of these is described in greater detail below.

Application 114 may include any suitable application (or combination of
applications) that is operable to access a computer network, such as the Internet, and
to initiate a web services call to web services system 106 to request that malware
analysis system 108 analyze file 116. Application 114 may be configured to interface
with web services module 130 of web services system 106. In certain embodiments, a
portion or all of application 114 may include a web service (e.g., that may be distinct
from the web service provided by web services system 106).

Application 114 may be operable to communicate various types of malware
analysis requests 122. These malware analysis requests 122 may be implemented as
web services requests. Malware analysis requests 122 may include status requests,
file analysis requests, a callback request, and any other suitable types of requests. For
example, a status request may be a synchronous request. As another example, a file
analysis request with a callback request may be an asynchronous request. These
example malware analysis requests 122 are described in greater detail below.
Application 114 may be operable to receive results 124, from web services system
106 and/or malware analysis system 108 for example. In certain embodiments, results
124 may include an indication of whether or not a file 116 submitted to be analyzed

for malware is determined by malware analysis system 108 to be malware.

WO 2013/040181 PCT/US2012/055116

10

15

20

25

In certain embodiments, application 114 is operable to access one or more
policies to determine whether to initiate malware analysis request 122 (e.g., as a web
services request) for malware analysis system 108 to perform a malware analysis of
file 116. For example, these policies may filter which files 116 are communicated to
malware analysis system 108 (via a web services request) to be analyzed for malware.

Files 116 may have any suitable format, according to particular needs. For
example, file 116 may include one or more of the following in any suitable
combination: (1) a data file; (2) a data record; (3) an email message; (4) an attachment
to an email message; (5) a Uniform Resource Locator (URL) or other suitable address
identifier; and (6) any other suitable target object for which malware detection may be
appropriate. In some embodiments, the term file as used herein may refer to a
collection of files. For example, a ZIP file or other archive or compressed file type
may include multiple embedded files. The present disclosure contemplates client
system 102 having any suitable number of files 116 and requesting that malware
analysis system 108 perform a malware analysis of any suitable number of files 116.

File information 118 may include any suitable combination of an identifier for
client system 102 (e.g., an IP address, a user name, a machine identification number,
and/or any other suitable identifying information), a file type of file 116, a hash value
(or other identifier) computed from file 116, timestamp information associated with
the addition of file 116 to client system 102 (and/or any other suitable time
information), an identification of a manner in which file 116 was added to client
system 102, an identification of one or more policies (e.g., of client system 102 and/or
an entity associated with client system 102) that resulted in file 116 being
communicated to remote malware analysis system 108, and any other suitable
information. File information 118§ may be included in certain malware analysis
requests 122, as described in greater detail below.

The hash value of file 116 may provide a reasonably reliable identifier for file
116. In certain embodiments, application 114 is operable to compute the hash value
and any other suitable file information. For example, application 114 may generate
one or more hashes of content of file 116 (such as any suitable combination of a

checksum, an MD5 hash, a SHA1 hash, and any other suitable type of hash).

WO 2013/040181 PCT/US2012/055116

10

15

20

25

Callback information 120 may include any suitable information that may be
used by web services system 106 and/or malware analysis system 108 to
communicate a message to client system 102. For example, callback information 120
may include any suitable combination of an IP address of client system 102, a port
number of client system 102, and any other suitable information that can be used by
web services system 106 and/or malware analysis system 108 to communicate a
message to client system 102. As described below, client system 102 may provide a
portion or all of callback information 120 to web services system 106 and/or malware
analysis system 108 to request a return communication from web services system 106
and/or malware analysis system upon completion of the malware analysis of file 116
(or at any other suitable point depending on the configuration of system 100).

Computer network 104 facilitates wireless or wireline communication.
Computer network 104 may communicate, for example, IP packets, Frame Relay
frames, Asynchronous Transfer Mode (ATM) cells, voice, video, data, and other
suitable information between network addresses. Computer network 104 may include
one or more local area networks (LANSs), radio access networks (RANs), metropolitan
area networks (MANs), wide area networks (WANs), mobile networks (e.g., using
WiMax (802.16), WiFi (802.11), 3G, 4G, or any other suitable wireless technologies
in any suitable combination), all or a portion of the global computer network known
as the Internet, and/or any other communication system or systems at one or more
locations, any of which may be any suitable combination of wireless and wireline.

Web services system 106 may include one or more computer systems at one or
more locations. Each computer system may include any appropriate input devices,
output devices, mass storage media, processors, memory, or other suitable
components for receiving, processing, storing, and communicating data. For
example, each computer system may include a personal computer, workstation,
network computer, kiosk, wireless data port, PDA, one or more IP telephones, one or
more cellular/smart phones, one or more servers, a server pool, switch, router, disks or
disk arrays, one or more processors within these or other devices, or any other suitable
processing device. Web services module 106 may be a stand-alone computer or may
be a part of a larger network of computers associated with an entity. In certain

embodiments, web services system 106 is a proxy server.

WO 2013/040181 PCT/US2012/055116

10

15

20

25

Web services system 106 may include a processing unit 126 and a memory
unit 128. Processing unit 126 may include one or more microprocessors, controllers,
or any other suitable computing devices or resources. Processing unit 126 may work,
either alone or with other components of system 100, to provide a portion or all of the
functionality of its associated web services system 106 described herein. Memory
unit 128 may take the form of volatile or non-volatile memory including, without
limitation, magnetic media, optical media, RAM, ROM, removable media, or any
other suitable memory component.

Web services system 106 may comprise a web services module 130, which
may be implemented in any suitable combination of hardware, firmware, and
software. Web services module 130 may implement a web services interface for
communication between client system 102 and malware analysis system 108. In
certain embodiments, web services module 130 provides a universal interface to
malware analysis system 108, allowing an external application (e.g., application 122)
to make use of the malware analysis capabilities of malware analysis system 108.
The external application (e.g., application 122) also may take advantage of the storage
capabilities associated with web services system 106 and/or malware analysis system
108 (e.g., storage module 132, described below) for storing historical malware data
associated with previous malware analyses. In certain embodiments, web services
module 130 may implement the web services interface using web service technology
such as Simple Object Access Protocol (SOAP) Remote Procedure Calls (RPCs),
Representational State Transfer (REST), Web RPC, Asynchronous JavaScript and
Extensible Markup Language (AJAX)-based Application Programming Interfaces
(APIs), and/or other suitable network-based APIs.

Web services module 130 may implement a variety of communications
between client system 102 and malware analysis system 108. For example, web
services module 130 may provide for a synchronous mechanism for client system 102
to request a status of a malware analysis of a file 116. As another example, web
services module 130 may provide for an asynchronous mechanism for uploading
single or multiple files 116 for a malware analysis to be performed on those file(s)
116 by malware analysis system 108. Web service module 130 then optionally may

call back to client system 102 (e.g., using callback information 120) upon completion

WO 2013/040181 PCT/US2012/055116

10

15

20

25

of the malware analysis of the file 116 with the results of the malware analysis. These
example communications are described in greater detail below following the
description of the other components of system 100.

Malware analysis system 108 may include any processing system operable to
analyze one or more files 116 for malware. For example, malware analysis system
108 may analyze files 116 for malware in response to a malware analysis request 122
from client system 102. Malware analysis system 108 may return the results (e.g., as
aresults 124) of the analysis of the files 116 for malware to client system 102.

In certain instances, malware analysis system 108 may identify a file 116 as
being and/or containing (terms and their variations of which may be used
interchangeably throughout this disclosure) malware if the file 116 includes any of a
variety of forms of hostile or intrusive computer-readable logic designed to infiltrate a
computer system. Particular forms of malware may include computer viruses, worms,
trojan horses, spyware, adware, scareware, crimeware, rootkits, and other malicious
and/or unwanted software. Malware may be designed to disrupt or deny operation of
a computer system, gather information from a computer system (e.g., that leads to a
loss of privacy or exploitation), gain unauthorized access to computer system
resources, or engage in other abusive behavior.

Malware analysis system 108 may be operable to run one or more malware
detection processes on files 116 and determine a status of the files 116. Running the
one or more malware detection processes on a file 116 accessed by malware analysis
system 108 may, in certain instances, result in a detection of malware. Malware
detection by malware analysis system 108 may conclusively indicate that the file 116
or files 116 in question are known not to contain malware. Malware detection by
malware analysis system 108 may conclusively indicate that the file 116 or files 116
in question are known to contain malware. Alternatively, malware detection by
malware analysis system 108 may indicate that the file 116 or files 116 in question are
suspected of malware, though such detection may not conclusively indicate that the
file 116 or files 116 are known to contain malware. These and other example statuses
are described in greater detail below.

In certain embodiments, a portion of malware analysis system 108 may

generate information that is accessible by a human analyst (e.g., using analysis

WO 2013/040181 PCT/US2012/055116

10

15

20

25

10

console 210, described in greater detail below with reference to FIGURES 2-3) for
further malware analysis of one or more files 116 suspected of malware. The
information may correspond to one or more files 116 subjected to a set of malware
detection process run by malware analysis system 108.

In certain embodiments, malware analysis system 108 may generate a
response 124 indicating a result of the malware analysis of the file 116 or files 116
performed by malware analysis system 108. In certain embodiments, response 124
may be communicated to client system 102 (via web services system 106) in response
to a callback request submitted by client system 102 and/or in response to a status
request submitted by client system 102.

In certain embodiments, malware analysis system 108 may publish available
operations/interactions as a web service (e.g., via web services system 106). Thus,
client system 102 and malware analysis system 108 may communicate with one
another via the web service, using one or more messages formatted according to the
web service interface provided by web services system 106. For example, client
system 102 may communicate files 116 and/or other information to malware analysis
system 108 via the web service, requesting that malware analysis system 108 analyze
file 116 for malware or otherwise provide a result 126.

Malware analysis system 108 may include any suitable combination of
hardware, firmware, and software. For example, malware analysis system 108 may
include one or more computer systems at one or more locations. Each computer
system may include any appropriate input devices, output devices, mass storage
media, processors, memory, or other suitable components for receiving, processing,
storing, and communicating data. For example, each computer system may include a
personal computer, workstation, network computer, kiosk, wireless data port, PDA,
one or more IP telephones, one or more cellular/smart phones, one or more servers, a
server pool, switch, router, disks or disk arrays, one or more processors within these
or other devices, or any other suitable processing device. Malware analysis system
108 may be a stand-alone computer or may be a part of a larger network of computers
associated with an entity.

Malware analysis system 108 may comprise a processing unit 132 and a

memory unit 134. Processing unit 132 may include one or more microprocessors,

WO 2013/040181 PCT/US2012/055116

10

15

20

25

11

controllers, or any other suitable computing devices or resources. Processing unit 132
may work, either alone or with other components of system 100, to provide a portion
or all of the functionality of system 100 described herein. Memory unit 134 may take
the form of volatile or non-volatile memory including, without limitation, magnetic
media, optical media, RAM, ROM, removable media, or any other suitable memory
component. In certain embodiments, a portion of all of memory unit 134 may include
a database, such as one or more SQL servers or relational databases.

In certain embodiments, malware analysis system 108 may include a malware
analysis module 136. Malware analysis module 136 may be implemented in any
suitable combination of hardware, firmware, and software. Malware analysis module
136 may be a web service running on malware analysis system 108 and may
implement the web service interface used by client system 102 and malware analysis
system 108. For example, when communicating with one another using the web
service interface, client system 102 and malware analysis system 108 may
communicate messages (e.g., requests 122 and responses 124) via malware analysis
module 136, which may enforce and interpret the message formats of the web service
interface for communicating with malware analysis system 108.

A particular example implementation of malware analysis system 108 is
illustrated in FIGURE 2 and described below in greater detail. Although that
particular example implementation of malware analysis system 108 is illustrated and
described, the present disclosure contemplates implementing malware analysis system
108 in any suitable manner, according to particular needs. Although illustrated
separately, web services system 106 and malware analysis system 108 may be
combined or separated in any suitable manner, according to particular needs.

Web services system 106 and/or malware analysis system 108 may be coupled
to or otherwise associated with a storage module 138. Storage module 138 may take
the form of volatile or non-volatile memory including, without limitation, magnetic
media, optical media, RAM, ROM, removable media, or any other suitable memory
component. In certain embodiments, a portion of all of storage module 138 may
include a database, such as one or more structured query language (SQL) servers or

relational databases. Storage module 138 may be a part of or distinct from a memory

WO 2013/040181 PCT/US2012/055116

10

15

20

25

12

unit 128 and/or memory unit 134 of web services module 106 and/or malware
analysis system 108, respectively.

Storage module 138 may store a variety of information that may be used by
web services module 106 and/or malware analysis system 108. In the illustrated
example, storage module 138 stores files 116, file information 118, callback
information 120, and historical detection data 140, each of which are described in
greater detail below. Although storage module 138 is described as including
particular information, storage module 138 may store any other suitable information.
Furthermore, although particular information is described as being stored in storage
module 13§, the present description contemplates storing this particular information
in any suitable location, according to particular needs.

Files 116 in storage module 138 may be copies of files 116 received from
client systems 102 (e.g., as part of certain malware analysis requests 122) via web
services system 106. File information 118 in storage module 138 may be any suitable
information about files 116. For example, file information 118 in storage module 138
may include any suitable combination of a portion or all of file information 118§
(possibly received from client system 102 as part of a request 122), information about
file 116 generated by web services system 106 and/or malware analysis system 108§,
and any other suitable information about file 116. Callback information 120 in
storage module 138 may include callback information 120 received from client
system 102 as part of a request 122. Historical detection data 140 may include
historical results of past and/or ongoing malware analyses of files 116 by malware
analysis system 108. In certain embodiments, historical detection data 140 is indexed
by hashes or other identifiers of files 116, and web services system 106 and/or
malware analysis system 108 may use the hashes or other identifiers of files 116 to
determine if a file 116 identified in a request 122 (e.g., a status request) has been
analyzed previously for malware.

As described above, web services module 130 of web services system 106
may implement a web services interface, which may include mechanisms by which
client system 102 and malware analysis system 108 may interact. This web services
interface may implement message formats communicated between client system 102

and malware analysis system 108 (e.g., malware analysis requests 122 and responses

WO 2013/040181 PCT/US2012/055116

10

15

20

25

13

124), possibly via web services system 106. As described above, client system 102
(e.g., application 114) may communicate malware analysis requests 122 to web
services system 106. In certain embodiments, example malware analysis requests 122
may include a status request, a file analysis request, a callback request, and other
suitable types of requests. Each of these example types of requests are described
below.

As a first example, web services module 130 may provide a synchronous
mechanism for client system 102 to request a status of a malware detection analysis of
a file 116. This synchronous mechanism may be implemented as a status request 122.
Client system 102 may submit a status request 122 prior to sending file 116 to
malware analysis system 108 for a malware analysis, after sending file 116 to
malware analysis system 108 for a malware analysis to be performed on file 116, or at
any other suitable time.

The status request 122 may identify one or more files 116 for which the status
is requested. For example, the status request may identify a file to be validated by
including for each file 116 any suitable combination of a file name, a file identifier
(e.g., a hash value computed for the file 116), and any other suitable metadata. In
certain embodiments, application 114 may compute the hash value using MD35, SHA-
1, or any other suitable hash algorithm. The status request may include an identity of
the caller (e.g., an identity of client system 102 and/or a user of client system 102
communicating the status request). The status request may include any other suitable
information about the one or more files 116 and client system 102, along with any
other suitable information.

In certain embodiments, the status request 122 prompts a substantially
immediate response from web services system 106 regarding whether the one or more
files 116 identified in the status request 122 have been previously analyzed (or are
currently being analyzed) for malware by malware analysis system 108. In certain
embodiments, to have a particular file 116 analyzed for malware by malware analysis
system 108, a client system 102 first submits a status request 122 regarding the file
116. This may filter traffic (e.g., file analysis requests 122) that actually are delivered

to malware analysis system 108 for a malware analysis to be performed by first

WO 2013/040181 PCT/US2012/055116

10

15

20

25

14

determining whether malware analysis system 108 already has determined (or
currently is determining) a malware status for the file 116.

As a second example, web services module 130 may provide an asynchronous
mechanism for uploading single or multiple files for a malware analysis to be
performed on those file(s) 116 by malware analysis system 108. Web service module
130 then optionally may call back to client system 102 upon completion of the
malware analysis of the file with results of the malware analysis, such as a status of
file 116 determined by malware analysis system 108. This asynchronous mechanism
may be implemented as a file analysis request 122 with a possible callback request
122. For example, file analysis request 122 may provide an asynchronous mechanism
for uploading single or multiple binary files 116 for a malware analysis of that file
116 or those files 116 to be performed by malware analysis system 108. If a callback
request 122 has been submitted by client system 102, web services system 106 may
call back to client system 102 substantially upon completion of the malware analysis
of file 116 by malware analysis system 108 with a status of file 116.

In certain embodiments, web services module 130 is operable to provide for
secure communication between client system 102 and malware analysis system 108,
which may include authenticating a user of client system 102 and/or client system
102. For example, client system 102 may provide one or more of a user name, a
password, and a nonce. The user name and password may be used to authenticate
client system 102 to web services system 106. The nonce may be used by web
service system 106 to authenticate back to client system 102 on completion of
determination of a status of file 116 (e.g., to provide response 124 to client system
102). In certain embodiments, the nonce is random and not a sequence to prevent
replay attacks. Web services system 106 also may use secure sockets layer (SSL) or
any other suitable secure communication protocol for the transportation layer security,
if appropriate. Certain embodiments may use one or more of digital signing of caller
credentials and/or message body and Web Services Security.

Response 124 may include one or more status messages. In certain
embodiments, a status message may be returned for each file 116 submitted to web
service system 106 for a malware analysis to be performed by malware analysis

system 108. The following provides just one example set of status messages that may

WO 2013/040181 PCT/US2012/055116

15

be returned by malware analysis system 108. Although these particular examples are
described, the present disclosure contemplates malware analysis system 108 returning
any suitable status messages, according to particular needs.
¢ GOOD - Known by malware analysis system 108 to be good.
5 e BAD — Known by malware analysis system 108 to be bad.
¢ UNKNOWN - Has not be encountered by malware analysis
system 108.
¢ SUSPICIOUS — Deemed suspicious by malware analysis system
108 based upon analysis results (e.g., based on results returned

10 from agents, described in greater detail below with respect to
FIGURES 2-3.

e GOOD BY POLICY — Marked by malware analysis system 108 as
GOOD based upon a combination of agent results defined by a
policy.

15 * BAD BY POLICY — Marked by malware analysis system 108 as
BAD based upon a combination of agent results defined by a
policy.

e SUSPICIOUS BY POLICY — Marked by malware analysis system
108 as SUSPICIOUS based upon a combination of agent results

20 defined by a policy.

¢ PROCESSING_FAILURE - Malware analysis system 108§
encountered a processing failure that is generally going to be
unretryable.

e NOT_SUPPORTED — The caller (e.g., application 114 of client

25 system 102) provided a type of file 116 that malware analysis

system 108 and/or web services system 106 is is currently not
configured to support.
In certain embodiments, client system 102 may pre-filter which files 116 are
communicated to malware analysis system 108 for analysis. For example, client
30 system 102 may store policies that limit which types of files 116 are communicated to

malware analysis system 108 for analysis. In certain embodiments, the types of files

WO 2013/040181 PCT/US2012/055116

10

15

20

25

16

116 that may be communicated to malware analysis system 108 for analysis may be
limited by what types of files malware analysis system 108 is configured to analyze.
In certain embodiments, client system 102 may simply pass files 116 according to its
own policies, and web services module 106/malware analysis system 108 may inform
client system 102 if malware analysis system 108 is unwilling/incapable of analyzing
a particular type of file. For example, client system 102 may determine a file
extension of file 116 and/or a magic MIME type of file 116 and communicate these
parameters as part of a call to malware analysis system 108 (which could then apply
its own internal ingest policies to determine if it is willing to/capable of processing the
file 116).

The following provides an example implementation of the web services
operations that may be used in certain embodiments of the present disclosure. The
various requests/calls, outputs, and associated parameters are provided for example
purposes only. Additionally, the names provided for these requests/calls, outputs, and
associate parameters are for example purposes only. Furthermore, particular
parameters may be designated as required (e.g., by the web services protocol), while
others may be designated as optional; however, any such indications below are merely
examples. In certain embodiments, some or all of these operations are implemented

by web services module 130.

CheckFile Operation

In certain embodiments, the status request 122 and associated output (e.g.,
response 124) may be implemented using a “CheckFile” web services call. CheckFile
may receive a list of file names, hashes, and file meta data and may check the list
against storage module 138 (e.g., historical detection data 140). If the file 116 has
been encountered before, malware status for the file 116 and the results from each
malware detection agent (examples of which are described below with respect to
detection module 206 in FIGURE 2) including reason codes may be returned. If the
file 116 has not be encountered, a status of UNKNOWN may be returned. Client
systems 102 may pass files 116 with a status of UNKNOWN on using the
AnalyzeBinaryFile operation, described below. The Checkfile web services call may

be published as a SOAP action at a network address (e.g., a URL), such as

WO 2013/040181 PCT/US2012/055116

10

15

20

25

30

17

http:/fwww. website com/malwaredetectionsysteny/CheckFile, which is merely

provided as an example.

Input: CheckFileSvyncRequest

An input of the CheckFile request 122 may be a CheckFileSyncRequest

request 122. An input type may be checkFileStatusInput. Example parameters for

this input type may be the following:

callerld — This parameter may identify the client system 102 that is the source
of the request 122. In certain embodiments, a scheduler associated with
malware analysis system 108 may use this parameter for prioritization of
requests 122.

userld — This parameter may be used to authenticate client system 102 to web
services system 104 and/or malware analysis system 108.

password — This parameter, possibly in combination with the userld, may be
used to authenticate client system 102 to web services system 104 and/or
malware analysis system 108.

transactionld — This parameter may be a unique ID (e.g., provided by the
caller (e.g., client system 102)) for identification purposes. In certain
embodiments, if transactionld is not specified, the messageld from the
address header may be used as an identifier for the transaction.

File information may be passed as part of a CheckFile request 122. A

fileInfo request 122 may be unbounded and of type filelnfo and may include any

suitable combination of the following parameters:

fileName — This parameter may provide the name of the file 116 being
analyzed.

md5SHash — This parameter may provide an md5 hash of the file 116.
shalHash — This parameter may provide a shal hash of the file 116.
mimeTypes — This parameter may be unbounded and provide magic mime
types of the file 116.

extension — This parameter may provide the file extension of the file 116.

WO 2013/040181 PCT/US2012/055116

10

15

20

25

30

18

fileMetaData — This parameter may be of type fileMetaData and may be O to
many. The fileMetaData parameter may include a name value pairing with
nested elements metaDataName and metaDataValue. In certain embodiments,
the fileMetaData field may be used to pass additional data to web services
system 106. In certain embodiments, this additional data may not be used in
the analyzing the file(s) 116 for malware but may aid a human analyst and/or
other portions of malware analysis system 108 in either detection or
remediation of an event. However, the present disclosure contemplates

system 100 making any suitable use of this additional data.

Output: CheckFileSyncResponse

An output of the CheckFile web services call may be the

CheckFileSyncResponse response 124. An output type may be fileStatusOutput.

Example parameters for this output type may be the following:

transactionld — This parameter may provide the original transactionld that

was sent in by the initial calling client system 102. In certain embodiments,

the transactionld may be the same as the messageld in the address header

(e.g., if a transactionld was not initially set in the input).

fileStatusInfo — This parameter may be unbounded and may be of type

fileStatusInfo and may include any suitable combination of the following

parameters:

o filename — This parameter may be of type String and may provide the file
name of file 116. In certain embodiments, this parameter may be present
but blank.

o extMimeType — This parameter of be of type String and may provide the
file MIME type(s) based upon extension of file 116.

o magicMimeType — This parameter may be of type String and may provide
the MIME type(s) of file 116 based upon a magic number analysis.

o md5Hash — This parameter may be of type String and may provide an md5
hash of file 116.

o shalHash — This parameter may be of type String and may provide a shal
hash of file 116.

WO 2013/040181

e
5

o)

10 o
15
20
25
30

PCT/US2012/055116

19

status — This parameter may be of type String and may provide the file
status (e.g., one or more of the file statuses described above) of file 116.
parentSource — This parameter may be of type String and may indicate the
source file of the analyzed file. For example, the source file may be
another file (e.g., a ZIP or other archived file) in which the analyzed file
116 is embedded.
parentClusterType — This parameter may be of type String and may
indicate whether the file 116 came from a ZIP file (or other archived file)
or was a stand-alone file.
agentResultList — This parameter may provide a list of agent results
provided by different malware detection agents of malware analysis
system 108, if applicable.

= agentResult - This parameter may be unbounded and may include

any suitable combination of the following:

e agentType — This parameter may be of type String and may
identify a particular malware detection agent of malware
analysis system 108 that is used to analyze file 116.

e agentBaseline — This parameter may be of type String and may
identify a version of a particular malware detection agent of
malware analysis system 108 that is used to analyze a file. The
value of agentBaseline may be a number, but the present
disclosure contemplates any suitable format.

e agentCategory — This parameter may be of type String and may
identify a category of a particular malware detection agent of
malware analysis system 108 that is used to analyze file 116.
Example categories may include behavioral, heuristic,
signature, file context, metadata, and any other suitable type of
malware detection agent category.

¢ result — This parameter may be of type String and may provide
a text or other representation of a result code (e.g., a status) for

a malware analysis performed by a malware detection agent of

WO 2013/040181 PCT/US2012/055116

10

15

20

25

30

20

malware analysis system 108. Particular example codes may
include Good, Bad, and Suspicious. Additional examples are
described above.

¢ reason — This parameter may be of type String and may include
an indication of a reason for a result. In certain embodiments,
malware detection agents returning a status of bad or suspicious

provide a value for this parameter.

Fault

In certain embodiments, web services system 106 may determine when a fault,
such as a processing fault, has occurred. In certain embodiments, web service system
106 may use the JAVA Application Program Interface (API) for XML Web Services
(JAX-WS) fault mapping to communicate the error to the caller (e.g., client system
102). This may be represented by a Fault message of type Fault, which may include
one or more of the following parameters:

¢ code — This parameter may be of type String and may include an error code

for the error.
¢ message — This parameter may be of type String and may include an error

message for the error.

AnalyzeBinarvyFile Operation

In certain embodiments, the malware analysis request 122 and associated
output (e.g., response 124) may be implemented using a “AnalyzeBinaryFile” web
services call. The AnalzyeBinaryFile operation may be used for asynchronous calls
to web services system 106/malware analysis system 108. The client (e.g., client
system 102) may send callback information (e.g., a callback URL and message id),
stored in a WS-Addressing header, for web services system 106/malware analysis
system 108 to respond to once a status has been completed for file 116.

A replyTo field within the WS-Addressing header may be used to store the
callback URL, and the messageld field may be used to store a unique ID identifying

the request to the client system 102 upon callback. Web services system 106 and/or

WO 2013/040181 PCT/US2012/055116

10

15

20

25

30

21

malware analysis system 108 may use this unique ID in the relatesTo field when
calling back to the client (e.g., client system 102).

Due to the length of time that may transpire for malware analysis system 108
to reach a disposition of file 116, it may be appropriate for the receiver (e.g.,
application 114) at the requesting client system 102 to be persistent. In certain
embodiments, the receiver may be implemented as another web service. The WS-
Addressing may be optional for services that do not request a callback. Files 116
received without addressing may be processed by web services system 106 and/or
malware analysis system 108, and the status may be available through the CheckFile
web service call.

The AnalyzeBinaryFile web services call may be published as a SOAP action
at a network address (e.g., a URL), such as
http://www.website.com/malwaredetectionsystem/AnalayzeBinaryFile, = which is
merely provided as an example. The operation type of the AnalyzeBinaryFile may be
request-response such that the endpoint may receive a message and send a correlated

message.

Input: AnalyzeBinarvAsyncRequest

An input of the AnalyzeBinaryFile request 122 may be an AnalyzeFileAsync
request 122. An input type may be analyzeBinaryFilelnput. Example parameters for
this input type may be the following:

e callerld — This parameter may identify the client system 102 that is the source
of the request 122. In certain embodiments, a scheduler associated with
malware analysis system 108 may use this parameter for prioritization of
requests 122.

¢ userld — This parameter may be used to authenticate client system 102 to web
services system 104 and/or malware analysis system 108.

¢ password — This parameter, possibly in combination with the userld, may be
used to authenticate client system 102 to web services system 104 and/or

malware analysis system 108.

WO 2013/040181 PCT/US2012/055116

10

15

20

25

30

22

transactionld — This parameter may be a unique ID (e.g., provided by the
caller (e.g., client system 102)) for identification purposes. In certain
embodiments, if transactionld is not specified, the messageld from the address
header may be used as an identifier for the transaction.

One or more of these parameters may be provided by an administrator

associated with malware analysis system 108 to services approved for calling web

services system 106/malware analysis system 108 in this manner.

A copy of file 116 and/or any other suitable information (e.g., file

information 118) may be passed as part of a AnalyzeBinaryFile request 122. A

fileBinary request 122 may be unbounded and of type fileBinary. A fileBinary

request 122 may include a fileInfo component that may be unbounded and of type

fileInfo. The fileInfo component may include any suitable combination of the

following parameters:

fileName — This parameter may provide the name of the file 116 being
analyzed.

mdSHash — This parameter may provide an mdS hash of file 116.

shalHash — This parameter may provide a shal hash of file 116.

mimeTypes — This parameter may be unbounded and provide magic MIME
types of file 116.

extension - This parameter may provide the file extension of file 116.
fileMetaData - This parameter may be of type fileMetaData and may be 0 to
many. The fileMetaData parameter may include a name value pairing with
nested elements metaDataName and metaDataValue. In certain
embodiments, the fileMetaData field may be used to pass additional data to
web services system 106. In certain embodiments, this additional data may
not be used in the analyzing the file(s) 116 for malware but may aid a human
analyst and/or other portions of malware analysis system 108 in either
detection or remediation of an event. However, the present disclosure
contemplates system 100 making any suitable use of this additional data.
binaryData — This parameter may include an encoded copy of the file 116 to

be analyzed by malware analysis system 108. In certain embodiments, this

WO 2013/040181 PCT/US2012/055116

10

15

20

25

30

23

parameter is a base64 encoded copy of file 116, which may be streamed from
client system 102 to web services module 106/malware analysis system 108
using a suitable technique such as Message Transmission Optimization
Mechanism (MTOM). Although a particular encoding technique is provided,

the present disclosure contemplates using any suitable encoding mechanism.

QOutput: AnalyzeFileAsyncResponse

An output of the AnalyzeBinaryFile web services call may be the

AnalyzeFileAsyncResponse response 124. An output type may be response.

Example parameters for this output type may be the following:

response - This parameter may be of type String. In certain embodiments, the
string “Success” (or another suitable indicator) may be returned on a
successful completion of the analysis of file 116. Additionally or

alternatively, this field may include any other suitable information.

Fault

In certain embodiments, web services system 106 may determine when a fault,

such as a processing fault, has occurred. In certain embodiments, web service system

106 may use the JAX-WS fault mapping to communicate the error to the caller (e.g.,

client system 102). This may be represented by a Fault message of type Fault, which

may include one or more of the following parameters:

code — This parameter may be of type String and may include an error code
for the error.
message — This parameter may be of type String and may include an error

message for the error.

Callback Operation

In certain embodiments, a subsequent response 124 from web services module

106/malware analysis system 108 to an AnalyzeBinaryFile web service call from

client system 102 may be a callback operation. In certain situations, this may not be a

substantially immediate response to the AnalyzeBinaryFile web services call, but may

be communicated at a later time after malware analysis system 108 has completed its

WO 2013/040181 PCT/US2012/055116

10

15

20

25

30

24

analysis of the file 116 communicated in association with the AnalyzeBinaryFile
request 122. Web services system 106/malware analysis system 108 may call a
persistent listener (e.g., application 114) on client system 102 and pass the results of
the malware analysis performed by malware analysis system 108 (e.g., a status of file
116). The listener on client system 102 may be implemented as a web service and
may be configured to receive a callback message from web services system
106/malware analysis system 108. An example format for the callback message is
provided below.

In certain embodiments, the callback message is listed as “CallBackRequest”
in the WSDL. The listener being implemented on client system 102 may use WS-
Addressing. Web services system 106/malware analysis system 108 may either use
WS-Addressing headers to identify the original request sent by client system 102 or
the transactionlD (e.g., provided by the caller (e.g., client system 102)). The header
may include a “RelatedTo” tag, which may include the original Messageld sent in the
WS-Addressing by client system 102 during the “AnalyzeBinaryFile” request in
addition to the transactionID in the message body. Some or all of this information
may be included as part of the callback information provided by client system 102.

Details of an example callback operation are provided below.

Input: CallBackRequest

An input of the CallBackRequest request 122 may be a fileStatusCallBack
request 122. An input type may be fileStatusCallBack. Example parameters for this
input type may be the following:

¢ transactionld — This parameter may provide the original transactionid that was
sent by client system 102. In certain embodiments, the transactionlD may be
the same as the messageld in the address header (e.g., if a transactionld was
not initially set in the input).

e fileStatusInfo - This parameter may be unbounded, may be of type
fileStatusInfo, and may include any suitable combination of the following

parameters:

WO 2013/040181

o)
o)

5
o)
o)

10
o
o
15 o)
o

20
o

25

30

PCT/US2012/055116

25

filename — This parameter may be of type String and may provide the file

name of file 116. In certain embodiments, this parameter may be present

but blank.

extMimeType — This parameter may be of type String and may provide

the file MIME type(s) based upon extension of file 116.

magicMimeType — This parameter may be of type String and may

provide the MIME type(s) of file 116 based upon a magic number

analysis.

md5Hash — This parameter may be of type String and may provide an

md5 hash of file 116.

shalHash — This parameter may be of type String and may provide a shal

hash of the file.

status — This parameter may be of type String and may provide the file

status (e.g., one or more of the file statuses described above) of file 116.

parentSource — This parameter may be of type String and may indicate

the source file of the analyzed file. For example, the source file may be

another file (e.g., a ZIP or other archived file) in which the analyzed file

116 is embedded.

parentClusterType — This parameter may be of type String and may

indicate whether the file 116 came from a ZIP file (or other archived file)

or was a stand-alone file.

agentResultList — This parameter may provide a list of agent results

provided by different malware detection agents of malware analyses

system 108, if applicable.

= agentResult This parameter may be unbounded and may include any
suitable combination of the following:

e agentType — This parameter may be of type String and may
identify a particular malware detection agent of malware analysis
system 108 that is used to analyze file 116.

e agentBaseline — This parameter may be of type String and may
identify a wversion of a particular malware detection agent of

malware analysis system 108 that is used to analyze file 116. The

WO 2013/040181 PCT/US2012/055116

10

15

20

25

30

26

value of agentBaseline may be a number, but the present disclosure
contemplates any suitable format.
e agentCategory — This parameter may be of type String and may
identify a category of a particular malware detection agent of
malware analysis system 108 that is used to analyze file 116.
Example categories may include behavioral, heuristic, signature,
file context, metadata, and any other suitable type of malware
detection agent category.
e result — This parameter may be of type String and may provide a
text or other representation of a result code (e.g., a status) for a
malware analysis performed by a malware detection agent of
malware analysis system 108. Particular example codes may
include Good, Bad, and Suspicious. Additional examples are
described above.
¢ reason — This parameter may be of type String and may include an
indication of a reason for a result. In certain embodiments,
malware detection agents returning a status of bad or suspicious
provide a value for this parameter.
supportFileInfo — This parameter may be unbounded and may include the file
name and file type of any support files pertaining to the original file 116 sent
for analysis. In certain embodiments, this information generally may be
empty for web service calls.
o supportFileName — This parameter may be of type String and may include
the file name of the support file.
o supportFileType — This parameter may be of type String and may include a
description of the file type of the support file.
agentSupportFileInfo — This parameter may be unbounded and may include
information about a support file of a particular malware detection agent of
malware analysis system 108 that is used to analyze a file. Support files may
be generated by some malware detection agent of malware analysis system

108 as further evidentiary documentation of the behavior of a file 116 being

WO 2013/040181 PCT/US2012/055116

10

15

20

25

27

analyzed. For example, an agent support file of a malware detection agent of

malware analysis system 108 may consist of an action log detailing the steps

the malware (of the file 116) took as it was executed by one of the behavior
malware detection agent.

o agentSupportFileID — This parameter may be of type String and may
include a unique ID of the support file.

o agentSupportFileAgentBaseline — type String — This parameter may be a
base line of the malware detection agent that generated this support file.

o agentSupportFileAgentCategory — This parameter may be of type String
and may include an associated agent category of the malware detection
agent of malware analysis system 108. Example categories of malware
detection agents of malware analysis system 108 may include behavioral,
heuristic, signature, file context, and metadata.

o agentSupportFileArchivedFileID — This parameter may be of type String
and may include a unique file ID for original file 116 sent for analysis.

o agentSupportFileName — This parameter may be of type String and may
include a file name of the support file.

Particular embodiments of the present disclosure may provide one or more
technical advantages. Certain embodiments allow computer systems (e.g., client
systems 102) to access malware analysis services provided by malware analysis
system 108 by invoking those malware detection services using a web services
interface. Embodiments of the present disclosure may provide a network-accessible
interface, which may be a universal interface, to malware analysis system 108 and its
associated data repository (e.g., storage module 138) of historical malware analyses
(e.g., historical detection data 140). Providing a web services interface for
communicating with malware analysis system 108 may ease the use of such a system,
thereby potentially encouraging its use. Communication of files 116 to a remote
malware analysis system 108 for analysis may allow for more robust malware
analysis to be performed than might be possible or practical with typical host-based or
other local malware analysis systems. In certain embodiments, the remote malware
analysis system 108 further provides a mechanism for a human analyst to contribute

to the malware analysis of certain files 116, if appropriate.

WO 2013/040181 PCT/US2012/055116

10

15

20

25

28

FIGURE 2 illustrates an example malware analysis system 200, according to
certain embodiments of the present disclosure. Malware analysis system 200 provides
just one example of how malware analysis system 108 (or a portion of malware
analysis system 108) may be implemented. Although this particular example
implementation of malware analysis system 108 is illustrated and described, the
present disclosure contemplates implementing malware analysis system 108 in any
suitable manner, according to particular needs. In the illustrated example, malware
analysis system 200 includes ingest module 202, scheduler module 204, detection
module 206, disposition module 208, analysis console 210, and server module 212,

Modules 202-212 may communicate between or among each other via one or
more internal networks 214, referred to for simplicity in the singular. Internal
network 214 facilitates wireless or wireline communication. Internal network 214
may communicate, for example, IP packets, Frame Relay frames, ATM cells, voice,
video, data, and other suitable information between network addresses. Internal
network 214 may include one or more LANs, RANs, MANs, WANs, mobile
networks (e.g., using WiMax (802.16), WiFi (802.11), 3G, 4G, or any other suitable
wireless technologies in any suitable combination), all or a portion of the global
computer network known as the Internet, and/or any other communication system or
systems at one or more locations, any of which may be any suitable combination of
wireless and wireline. In certain embodiments, internal network 214 includes a
system bus. Malware analysis system 200 may communicate with an external
network 216, which in certain embodiments may be substantially similar to network
108 of FIGURE 1.

Modules 202-212 may be implemented using any suitable combination of
hardware, firmware, and software. For example, modules 202-212 may be
implemented using one or more computer systems at one or more locations. Each
computer system may include any appropriate input devices, output devices, mass
storage media, processors, memory, or other suitable components for receiving,
processing, storing, and communicating data. For example, each computer system
may include a personal computer, workstation, network computer, kiosk, wireless
data port, PDA, one or more IP telephones, one or more cellular/smart phones, one or

more servers, a server pool, one or more processors within these or other devices, or

WO 2013/040181 PCT/US2012/055116

10

15

20

25

29

any other suitable processing device. Modules 202-212 may be a stand-alone
computer or may be a part of a larger network of computers associated with an entity.

Modules 202-212 may include one or more processing units and one or more
memory units. FEach processing unit may include one or more microprocessors,
controllers, or any other suitable computing devices or resources. Each processing
unit may work, either alone or with other components of system 200, to provide a
portion or all of the functionality of its associated computer system described herein.
Each memory unit may take the form of a suitable combination of volatile and non-
volatile memory including, without limitation, magnetic media, optical media, RAM,
ROM, removable media, or any other suitable memory component.

In certain embodiments, the implementation and/or operation of modules 202-
212 is implemented generally as follows. Ingest module 202 may access a file 116
and determine one or more tests that should be performed on file 116 to determine
whether file 116 is suspected of malware. In response, detection module 206 may
perform the test(s) that were determined by ingest module 202 in accordance with
scheduling performed by scheduler module 204. Disposition module 208 uses the
results of the tests performed by detection module 206 to determine whether the file
116 should be sent to server module 212 for quarantine purposes while a second
analytical stage for file 116 is processed (e.g., at analysis console 210). Further
details regarding the implementation and/or operation of modules 202-212 are
described below.

Ingest module 202 may be operable to extract and cause to be analyzed file
116 accessed by malware analysis system 200. Ingest module 202 may analyze file
116 and determine one or more tests that should be performed on file 116 to
determine whether file 116 is suspected of malware. In certain embodiments, ingest
module 202 may be configured to determine a type of a file ingest module 202
receives. For example, ingest module 202 may examine an extension associated with
the file name of file 116 to determine the type of the file. As another example, ingest
module 202 may examine portions of the file content of file 116 to determine its type.
Ingest module 202 may examine characters in a header of file 116 to determine its
type. Such characters may be referred to as magic numbers or magic bits. In this

manner, in certain embodiments, ingest module 202 may detect the correct type of file

WO 2013/040181 PCT/US2012/055116

10

15

20

25

30

116 even if the extension of the filename of file 116 has been removed or changed
(e.g., falsified). As another example, for certain types of files 116 (e.g.,
MICROSOFT OFFICE files), ingest module 202 may determine the file type based
on both magic number(s) and the file extension, possibly examining the magic
number(s) prior to examining the file extension.

In certain embodiments, ingest module 202 may determine whether file 116
has been previously analyzed for malware. Ingest module 202 may use one or more
techniques to determine if file 116 has been previously analyzed for malware. For
example, ingest module 202 may generate one or more hashes of content of file 116
(such as a checksum, an MD35 hash, and/or a SHA1 hash). These value(s) may be
compared to a database containing hash values of previously analyzed files 116. If
the hash value is found in data storage, ingest module 202 may determine that file 116
has been previously analyzed. If the hash value is not present in data storage, ingest
module 202 may determine that file 116 has not been previously analyzed. In certain
embodiments, ingest module 202 may use the name of file 116 and/or its extension, as
well as variations on those items, to determine if file 116 has been previously
analyzed.

In certain embodiments, if it is determined that file 116 has been analyzed
previously, malware detection schemes may not be applied to file 116; instead, the
results of the previous analysis of file 116 may be determined using a database that
contains results of a previous analysis of file 116. If the results indicate that file 116
is known not to be malware, then the analysis of file 116 may end. If it is determined
that file 116 was previously determined to be malware, then it may be determined that
file 116 should be quarantined. If it is determined that file 116 has been previously
received and is currently being analyzed (e.g., possibly including review by human
analysts associated with analysis console 210), then action may be taken once the
outcome of the ongoing analysis is known. In certain embodiments, this ability to
check whether a file 116 previously has been analyzed previously may allow for more
efficient use of the resources that perform the malware detection schemes on the files
116 and may reduce the workload of a machine and/or human analyst.

While in this example, ingest module 202 is described as generating the

information (e.g., the one or more hashes) used to determine whether file 116 has

WO 2013/040181 PCT/US2012/055116

10

15

20

25

31

been previously analyzed, in certain embodiments, the sender of file 116 (e.g., client
system 102 and/or processing system 104) may generate this information and
communicate this information to malware analysis system 108 (e.g., to ingest module
202). For example, prior to or in addition to sending the actual file 116 to malware
analysis detection system 108, the sender of file 116 may send this information to
malware analysis system 108 so that malware analysis system 108 can determine
whether file 116 previously has been analyzed for malware. If malware analysis
system 108 determines that file 116 has not been analyzed previously for malware,
then (if file 116 was not sent previously) malware analysis system 108 may request
that the sender send the actual file 116 for analysis.

In certain embodiments, ingest module 202 may be used to determine whether
file 116 should undergo malware detection and/or which malware detection schemes
should be applied. For example, ingest module 202 may determine that a file 116
received by ingest module 210 is a plain text file. Ingest module 202 then may
retrieve one or more policies associated with plain text files. A retrieved policy may
indicate that plain text files are not to be analyzed for malware. As a result, the plain
text file 116 may be ignored. As another example, ingest module 202 may determine
that a file 116 is a document created by the MICROSOFT WORD application. Ingest
module 202 may then retrieve one or more policies associated with MICROSOFT
WORD documents. Ingest module 202 may examine the retrieved policy or policies
and determine that the received file 116 should be analyzed for malware. Ingest
module 202 may also examine the retrieved policy or policies and determine the
malware detection schemes that should be applied to the MICROSOFT WORD
document. Ingest module 202 then may create and store entries in data storage
consistent with the determined malware detection schemes.

Scheduler module 204, in certain embodiments, may determine the order in
which malware detection processes are performed. Scheduler module 204 may assign
processes to various computing resources of malware analysis system 200 using any
suitable method. For example, scheduler module 204 may use a first-in-first-out
(FIFO) algorithm to assign processes. Processes may also be prioritized. For
example, scheduler module 204 may use a FIFO approach to schedule jobs initially,

but it may be determined to prioritize one job over another in response to results

WO 2013/040181 PCT/US2012/055116

10

15

20

25

32

provided by the detection nodes. Schedule policies may be used by scheduler module
204 to determine how to schedule jobs and how to prioritize jobs. Priorities for jobs,
in certain embodiments, may also be determined based on the context associated with
the file 116. For example, if the file 116 undergoing analysis was part of an e-mail
attachment, it may be prioritized higher than other files 116.

In certain embodiments, policies used by scheduler module 204 may be
modified when a new malware detection scheme is added. Information may be
entered regarding how to apply the malware detection scheme. For example, such
information may be entered using a tabbed interface, a wizard-style interface, or other
interfaces for entering information. The information entered may include how jobs
should be prioritized, the context associated with file 116, which malware detection
nodes 102 are involved in implementing the malware detection scheme, and/or other
items associated with applying a malware detection scheme.

Detection module 206, in certain embodiments, may be operable to perform
the test(s) that were determined by ingest module 202 in accordance with scheduling
performed by scheduler module 204. In certain embodiments, detection module 206
may conform to an interface standard for applying malware detection. Such an
interface may include standards for one or more of the following: specifying file 116
(including, possibly, a URL) that is to be analyzed configuration parameters for
applying the detection scheme, time limit for completing the analysis, format of
results, specifying the reason for indicating that an analyzed item is suspect, providing
log files, and other suitable items involved with applying malware detection schemes.

In certain embodiments, having such an interface may be advantageous
because it may allow policies to call for the application of malware detection schemes
without having to give precise parameters based on the configuration of the detection
node. In this manner, in certain embodiments, new detection schemes may be added
to the system without needing to recode various parts of the system since the detection
node applying the new malware detection scheme would conform to the interface
standard. For example, to add a new malware detection scheme, the detection node
applying the new malware detection seem may be configured to conform to the
interface standard by being configured to receive files 116 for analysis in the same or

similar manner as other configuration nodes applying other malware detection

WO 2013/040181 PCT/US2012/055116

10

15

20

25

33

schemes. In addition, for example, the configuration node applying the new malware
detection scheme may be configured to report the results of applying the new malware
detection scheme in the same or similar manner as other configuration nodes applying
other malware detection schemes. This may allow malware analysis system 200 to
adapt to new malware detection schemes.

Detection module 206 may be implemented on a variety of types of hardware.
For example, detection module 206 may be configured in a blade architecture or on
physical hosts. Detection module 206 may be configured utilizing clusters or other
suitable distributed computing architectures. Detection module 206 may use
virtualization and/or may include virtual machines. Detection module 206 may be
used to apply a variety of malware detection schemes to a file 116 (which, in certain
embodiments, may include one or more URLs). In certain embodiments, detection
module 206 may be specialized such that malware analysis system 200 may be
configured to apply a type of malware detection scheme. For example, detection
module 206 may be configured to apply behavior-based malware detection schemes
and/or metadata-based detection schemes when metadata of file 116 is analyzed. In
yet another example, detection module 206 may be configured to apply signature-
based detection schemes to files 116. As another example, detection module 206 may
also apply classification-based detection schemes. As described above, detection
module 206 may be configured to apply other forms of detection schemes that
conform to an interface to facilitate the incorporation of new or different detection
schemes.

Disposition module 208, in certain embodiments, may be operable to use the
results of the tests performed by detection module 206 to determine what should be
done with the file(s) 116. In certain embodiments, disposition module 208 may
access the one or more results received from detection module 206 (which may
include a number of malware detection agents) and determine a status of file 116
based on those results. In some cases, disposition module 208 may characterize the
file 116 as being suspected of malware. In response, malware analysis system 200
may send information corresponding to the file(s) 116 and/or actual content of the
file(s) 116 (e.g., the file 116 itself) for further review at analysis console 210. In

certain embodiments, disposition module 208 may respond to the results of detection

WO 2013/040181 PCT/US2012/055116

10

15

20

25

34

module 206 regardless of whether it sends the file(s) 116 to analysis console 210. For
example, disposition module 208 may determine that the file(s) 116 should be
quarantined and send the file 116 to server module 212 to quarantine the file 116. In
certain embodiments, disposition module 208 may determine that the file(s) 116 are
not malware and may perform suitable corresponding actions. For example,
disposition module 208 may indicate that it would be appropriate to release for
delivery a message to which the analyzed file(s) 116 were attached, in response to the
determination by disposition module 208 that the file(s) 116 are not malware.

Analysis console 210, in certain embodiments, is operable to facilitate
malware analysis for files 116 that have been identified (e.g., by disposition module
208 or another suitable component of malware analysis system 200) as requiring
further malware analysis. In certain embodiments, analysis console 210 may be
operable to access information generated by disposition module 208 or another
suitable component of malware analysis system 200, and to facilitate the propagation
of a final disposition, if appropriate. The information propagated (e.g., for
communication to another suitable component of malware analysis system 200 and/or
to client system 102) may include malware analysis outputs generated by analysis
console 210, such that the recipient may benefit from the results of malware analysis
performed using analysis console 210. In certain embodiments, the output of analysis
console 210 is a status of file 116, which in certain embodiments may override any
status determined by disposition module 208. Additional details of an example
analysis console 210 are described below with respect to FIGURE 3.

Server module 212 may include, for example, a file server, a domain name
server, a proxy server, a web server, a computer workstation, or any other tangible
device and associated logic operable to communicate with modules 230, 240, 250,
260, and/or 280 through network 220. Server module 212 may execute with any of
the well-known MS-DOS, PC-DOS, OS-2, MAC-0OS, WINDOWS™_ UNIX, or other
appropriate operating systems, including future operating systems. In certain
embodiments, server module 212 may include one or more of the following in any
suitable combination: a processor, data storage, a network interface, input

functionality, and output functionality.

WO 2013/040181 PCT/US2012/055116

10

15

20

25

35

FIGURE 3 illustrates one embodiment of an analysis console 300, according
to certain embodiments of the present disclosure. In certain embodiments, analysis
console 300 provides one example implementation of analysis console 210 of
FIGURE 2. As shown in FIGURE 3, analysis console 300 includes a workflow
manager 302 and an output generator 304 stored in computer-readable memory 306,
data storage 308, processor 310, input/output functionality 312, and an interface 314.
Workflow manager 302, output generator 304, memory 306, data storage 308,
processor 310, input/output functionality 312, and interface 314 may be implemented
using any suitable respective combination of hardware, firmware, or software. In
certain embodiments, workflow manager 302, output generator 304, memory 306,
data storage 308, processor 310, input/output functionality 312, and/or interface 314
may be capable of executing logic accessible to these components and/or stored
therein. Although this embodiment includes workflow manager 302, output generator
304, memory 306, data storage 308, processor 310, input/output functionality 312,
and interface 314, other embodiments may exclude one or more of these components
without departing from the scope of the present disclosure.

In certain embodiments, workflow manager 302 may determine a workflow.
A workflow is an ordered list of one or more tasks related to malware analysis.
Execution of a workflow starts with a task in the list. Upon completion of a task, the
active task calls the subsequent task in the ordered list using, for example, a defined
APIL. When the final task of the workflow finishes, the workflow is complete. Certain
workflows may facilitate malware analysis by a human analyst and/or by various
analysis modules of analysis console 300. The information analyzed may correspond
to a file 116 and/or may include actual content of the file 116.

In certain instances, the information to be analyzed may be presented to a
human analyst for review based on a prior characterization of the file 116. For
example, if malware analysis system 200 characterizes the file 116 as being suspected
of malware, then a human analyst may review the file 116 to determine if it is in fact
malware. As another example, if the file 116 is determined to be malware rather than
merely to be suspected malware, a human analyst may review the file 116 to learn
more about the malware in the file 116 and/or to start an incident response review

(e.g., to clean up the file 116).

WO 2013/040181 PCT/US2012/055116

10

15

20

25

36

In such and other scenarios, workflow manager 302 may determine a
workflow associated with reviewing the file 116. In certain embodiments, workflow
manager 302 may generate a set of tasks to be performed by a human analyst
reviewing the file 116 based on a variety of factors. Such factors could include the
type of file 116 being reviewed and the characterization of the file 116 by malware
analysis system 200. Other factors may include whether the system is operating in a
passive, active, a hybrid passive/active mode, or another mode. For example, if
operating in an active mode, a determination that the file 116 is suspected malware
may invoke an advanced malware analysis workflow to be followed by a human
analyst. As another example, if the file 116 is determined to be known malware, then
workflows associated with cleaning up the environment(s) the file 116 has been in as
well as other incident response workflows (e.g., notifying a user or an administrator)
may be determined. Other suitable workflows may be generated based on these or
other suitable factors.

In certain embodiments, workflow manager 302 may, automatically perform
certain tasks to facilitate the review of the file 116 by the human analyst. For
example, it may be determined that for a file 116 to be properly reviewed by a human
analyst, all strings in the file 116 should be extracted. Workflow manager 302 may
automate this extraction procedure. Workflow manager 302 may also provide a
priority associated with the review of the file 116. For example, if it is determined
that a file 116 has a higher probability of containing malware, then a higher priority
may be assigned to the review of the file 116. Workflow manager 302 may also
provide a display that enables the human analyst to review the workflow, the file 116
being analyzed, and/or information pertaining to that file 116.

Output generator 304, in certain embodiments, may be operable to generate a
malware analysis output (a portion or all of which may be or may be included with
response 124). In certain embodiments, the output may include an identifier of the
file 116 or files 116 analyzed. For example, an identifier might include a hash of all
or a portion of a file 116 analyzed at analysis console 300. The hash may be at least
substantially equivalent to a hash generated by the ingest module 202 of the node 200

requesting the file 116 to be further analyzed for malware. Certain outputs generated

WO 2013/040181 PCT/US2012/055116

10

15

20

25

37

by output generator 304 may include an indication of whether the file 116 (or files
116) analyzed at output generator 304 contain malware.

Memory 306 and data storage 308 may take the form of a suitable
combination of wvolatile and non-volatile memory including, without limitation,
magnetic media, optical media, RAM, ROM, removable media, or any other suitable
memory component. Additionally, all or part of memory 306 and/or data storage 308
could reside locally within analysis console 300 or could reside at a location external
but accessible to analysis console 300. Additionally, portions or all of memory 306
and data storage 308 may be combined, if appropriate.

Processor 310 may include one or more microprocessors, controllers, or any
other suitable computing devices or resources. Each processor may work, either alone
or with other components of analysis console 300, to provide a portion or all of the
functionality of its associated computer system described herein. In certain
embodiments, processor 310 may comprise the primary element or elements
executing or realizing various logic-based functions, including, for example, the
functions of workflow manager 302 and an output generator 304.

1/0 functionality 312 may comprise, for example, any communication method
of analysis console 300 (e.g., from an image buffer to a display). In certain
embodiments, input functionality may comprise, for example, the receiving signals or
data by analysis console 300. In other embodiments, output functionality may
comprise, for example, the communication of signals or data by analysis console.
These terms may also refer to part of an action, such as, for example, to “perform 1/O”
may involve performing an input and/or output operation. In some cases, one or more
communication devices of analysis console 300 may be used to implement both input
and output functionality.

Interface 314 may comprise, for example, any tangible device(s) that may be
used (e.g., by a person, or by another device or system) to communicate with analysis
console 300. For example, keyboards and mice may be considered input interfaces
314 of some analysis consoles 300, while monitors and printers may be considered
output interfaces of some analysis consoles 300.

FIGURES 4A-4B illustrate an example method for providing a network-

accessible malware analysis in which a callback request 122 is submitted, according

WO 2013/040181 PCT/US2012/055116

10

15

20

25

38

to certain embodiments of the present disclosure. The method described with respect
to FIGURES 4A-4B may be implemented in any suitable combination of software,
firmware, and hardware. This example method is described with respect to system
100 of FIGURE 1; however, the present disclosure contemplates this example method
being performed using any suitable type of system according to particular needs.
Additionally, although particular components of system 100 are described as
performing particular steps of the following method, the present disclosure
contemplates any suitable component performing these steps according to particular
needs. In the example method of FIGURES 4A-4B, client system 102 submits a
callback request to web services module 106 and/or malware analysis system 108 to
request a response 124 that includes the result of the malware analysis on a file 116
substantially upon completion of the determination of that result by malware analysis
system 108.

At step 400, client system 102 (e.g., application 114) accesses a file 116,
possibly stored in memory 112 of client system 102. The present disclosure
contemplates file 116 being made accessible to application 114 in any suitable
manner. At step 402, application 114 may determine whether to initiate
communication of file 116 for a remote malware analysis of file 116 to be performed.
For example, application 114 may determine whether to communicate file 116, file
information 118, and/or other suitable information to malware analysis system 108 for
a remote malware analysis to be performed on file 116. If at step 402 application 114
determines not to initiate communication of file 116 and/or other suitable information
to malware analysis system 108, then the method may return to step 400 for
application 114 to access another file 116 (e.g., at that time or at a later time). If at
step 402 application 114 determines to initiate communication of file 116 and/or other
information to malware analysis system 108 for a remote malware analysis of file 116
to be performed by malware analysis system 108, then the method may proceed to
step 404.

At step 404, application 114 may determine file information 118 associated
with file 116. Example file information 118 is described above with reference to
FIGURE 1. At step 406, application 114 may communicate a status request 122 to

web services system 106 (e.g., to web services module 130). For example,

WO 2013/040181 PCT/US2012/055116

10

15

20

25

39

application 114 may communicate status request 122 to web services system 106 to
determine whether a status for file 116 has already been determined by malware
analysis system 108. In certain embodiments, the status request 122 communicated at
step 406 may be considered a preliminary malware analysis request 122 that may be
used determine whether malware analysis system 108 already has performed (or
currently is performing) a malware analysis of file 116. This may filter traffic (e.g.,
file analysis requests 122) that actually are delivered to malware analysis system 108
for a malware analysis to be performed by first determining whether malware analysis
system 108 already has determined (or currently is determining) a malware status for
the file 116.

At step 408, web services module 130 may receive the status request 122
communicated by application 114. At step 410, web services module 130 may
determine whether a malware status of file 116 is known. Web services module 130
may determine whether a malware status of file 116 is known in any suitable manner.
In certain embodiments, to determine whether a malware status of file 116 is known,
web service module 130 may access file information 118 included in status request
122 and compare the accessed file information 118 to information stored in storage
module 138 to determine whether a malware status of file 116 is known. As a more
particular example, web services module 130 may access a hash (or other identifier)
of file 116 included in status request 122 and compare the hash (or other identifier) to
historical detection data 140 (e.g., stored in storage module 138) to determine whether
historical detection data 140 includes a status indexed by a hash (or other identifier)
corresponding to the hash (or other identifier) of file 116.

If at step 410 web services module 130 determines that a malware status of file
116 is known, then at step 412 web services module 130 may communicate a
response 124 to client system 102 that includes the malware status of file 116. For
example, web services module 130 may determine that a malware analysis of file 116
has already been performed by malware analysis system 108 or that a malware
analysis of file 116 currently is being performed by malware analysis system 108. In
response to either of these determinations (or another appropriate determination), web

services module 130 may notify client system 102 not to send file 116 to malware

WO 2013/040181 PCT/US2012/055116

10

15

20

25

40

analysis system 108. This notification may be a part of or separate from the response
124 that includes the malware status of file 116.

If at step 410 web services module 130 determines that a malware status of file
116 is not known, then at step 414 web services module 130 may communicate a
response 124 to client system 102 indicating that the malware status of file 116 is not
known. For example, web services module 130 may determine that a malware
analysis of file 116 has not already been performed by malware analysis system 108
or that a malware analysis of file 116 is not currently being performed by the malware
analysis system 108. In response to either of these determinations (or another
appropriate determination), web services module 130 may notify client system 102 to
send file 116 to malware analysis system 108 (e.g., via web services system 106 if
appropriate).

At step 416, client system 102 (e.g., application 114) may communicate a file
analysis request 122 that includes file 116 for a remote malware analysis to be
performed on the file 116 by malware analysis system 108. For example, in response
to the indication that the malware status of file 116 is not known (i.c., at step 414),
application 114 may communicate the file 116 to remote malware system 108 (e.g.,
via web services system 106) so that remote malware analysis system 108 can
perform an analysis of the file 116. In other words, the malware analysis request 122
that includes file 116 may be communicated by client system 102 in response to the
notification sent by web services module 130 for client system 102 to send file 116 to
malware analysis system 108.

At step 418, client system 102 (e.g., application 114) may communicate a
callback request 122 to web services system 106. Callback request 122 may include
callback information 120, requesting that web services system 106 and/or malware
analysis system 108 return a response 124 including the results of the malware
analysis of file 116 once the results (e.g., a status) are known. In certain
embodiments, when a callback request 122 is made, this response 124 may be
communicated automatically by malware analysis system 108 and/or web services
system 106 without further prompting by client system 102. Although described
separately, the present disclosure contemplates the file analysis request 122

communicated at step 416 and the callback request 122 communicated at step 4138 to

WO 2013/040181 PCT/US2012/055116

10

15

20

25

41

be communicated as part of the same request 122. For example, the request 122 for
remote malware analysis system 108 to perform an analysis of file 116 (the file
analysis request including file 116) may also include callback information 120.

At step 420, web services system 106 and/or malware analysis system 108
may receive the file analysis request 122 including file 116, and at step 422 web
services system 106 and/or malware analysis system 108 may store file 116 and any
other suitable information of file analysis request 122. For example, malware analysis
system 108 may receive file analysis request 122 via web services system 106, and
web services system 106 and/or malware analysis system 108 may store a portion or
all of file analysis request 122 in storage module 138. The stored information may
include file 116, file information 118, and any other suitable information.

At step 424, web services system 106 and/or malware analysis system 108
may receive callback request 122, callback request 122 including -callback
information 120, and at step 426 web services system 106 and/or malware analysis
system 108 may store callback information 120. For example, malware analysis
system may receive callback request 122 via web services system 106, and web
services system and/or malware analysis system 108 may store a portion or all of
callback request 122 in storage module 138. The stored information may include
callback information 120 and any other suitable information (e.g., a flag or other
indication that may cause web services system 1006 and/or malware analysis system
108 to automatically return a result of a malware analysis of file 116 once known.

At step 428, web services system 106 and/or malware analysis system 108
may initiate a malware analysis by malware analysis system 108 of file 116 for
malware. For example, web services module 130 may forward file analysis request
122 to malware analysis system 108 to cause malware analysis system 108 to analyze
file 116 for malware, and malware analysis system 108 may analyze file 116 in
response to this file analysis request 122 (e.g., according to any queuing or other
scheduling configurations of malware analysis system 108). The present disclosure
contemplates malware analysis system 108 performing this malware analysis of file
116 in any suitable manner according to particular needs. A particular example
implementation of malware analysis system 108 is described above with reference to

FIGURES 2-3.

WO 2013/040181 PCT/US2012/055116

10

15

20

25

42

At step 430, web services system 106 and/or malware analysis system 108
may determine whether a result of the malware analysis of file 430 is known. For
example, when malware analysis system 108 completes an analysis of file 116 (e.g.,
by determining a malware status of file 116), malware analysis system 108 may store
the result (e.g., the determined malware status of file 116) in storage module 138 (e.g.,
as part of historical detection data 140) and may inform web services system 106 that
the malware analysis of file 116 is complete (or of any other suitable status of the
malware analysis of file 116 by malware analysis system 108). Additionally or
alternatively, in certain embodiments, web services system 106 may check at any
suitable interval whether a result of the malware analysis of file 430 has been
determined. If after a predetermine threshold a result of the malware analysis of file
116 is still not completed, web services system 106 may return a status update to
client system 102 using callback information 120, informing client system 102 that a
result of a malware analysis is not yet known but that the analysis is ongoing (or has
been discontinued, if appropriate).

If at step 430 web services module 106 and/or malware analysis system 108§
determines that a result of the malware analysis of file 430 is known, then at step 432
web services system 106 and/or malware analysis system 108 may communicate a
response 124 to client system 102 and the method may end. For example, as
described above at step 430, when malware analysis system 108 completes an
analysis of file 116 (e.g., by determining a malware status of file 116), malware
analysis system 108 may store the result (e.g., the determined malware status of file
116) in storage module 138 (e.g., as part of historical detection data 140) and may
inform web services system 106 that the malware analysis of file 116 is complete (or
of any other suitable status of the malware analysis of file 116 by malware analysis
system 108). This informing of web services system 106 may be a response 124
communicated by malware analysis system 108 to be passed on by web services
system 106 to client system 102 according to the client system’s callback information
120.. The communicated response 124 may include the determined malware status of
file 116. For example, response 124 may include a disposition resulting from the
malware analysis performed on file 116, a recommended action, and/or any other

suitable information. For example, a result 116 may conclusively indicate that the file

WO 2013/040181 PCT/US2012/055116

10

15

20

25

43

116 is known to contain malware, that the file 116 is suspected of malware (though
such detection may not conclusively indicate that file 116 is known to contain
malware), that file 116 is not malware, and/or any other suitable result of the malware
analysis performed by malware analysis system 108.

If at step 432 malware analysis system 108 and/or web services system 106
determines that a result of the malware analysis of file 116 is not known, then at step
434 web services system 106 and/or malware analysis system 108 may determine
whether a timeout has occurred. Such a timeout may include any suitable
circumstance that results in the malware analysis of file 116 by malware analysis
system 106 becoming stalled beyond an acceptable time period. If at step 432 web
services system 106 and/or malware analysis system 108 determine that a timeout has
occurred, then at step 436 web services system 106 and/or malware analysis system
108 may return an error and the method may end. For example, web services system
106 may notify (via a response 124) client system 102 that an error has occurred,
potentially requesting that client system 102 resubmit the file analysis request 122 or
another suitable request 122.

Although the method in FIGURES 4A-4B is illustrated as ending after step
432/436, it will be understood that the method may be performed substantially
continuously (or at any other suitable interval) as client system 102 continues to
monitor for files 116 for which a malware analysis is appropriate and as those files
116 or other related information is processed by system 100.

FIGURES 5A-5B illustrates an example method for providing a network-
accessible malware analysis in which a status request 122 is submitted, according to
certain embodiments of the present disclosure. The method described with respect to
FIGURES 5A-5B may be implemented in any suitable combination of software,
firmware, and hardware. This example method is described with respect to system
100 of FIGURE 1; however, the present disclosure contemplates this example method
being performed using any suitable type of system according to particular needs.
Additionally, although particular components of system 100 are described as
performing particular steps of the following method, the present disclosure
contemplates any suitable component performing these steps according to particular

needs.

WO 2013/040181 PCT/US2012/055116

10

15

20

25

44

In the example method of FIGURES 5A-5B, rather than submitting a callback
request for receiving a result of the malware analysis, client system 102 submits a
status request after submitting a file 116 to malware analysis system 108 to request
the result of the malware analysis on the file 116. However, it should be understood
that the present disclosure contemplates client system 102 using any suitable
combination of callback requests and query requests. For example, client system 102
may submit a file 116 to malware analysis system 108 for a malware analysis to be
performed on the file, along with callback information that the malware analysis
system 108 may use to communicate a response to client system 102. Additionally,
client system 102 may submit one or more query requests to malware analysis system
108 while waiting for the call back from malware analysis system 108, if appropriate.

At step 500, client system 102 (e.g., application 114) accesses a file 116,
possibly stored in memory 112 of client system 102. The present disclosure
contemplates file 116 being made accessible to application 114 in any suitable
manner. At step 502, application 114 may determine whether to initiate
communication of file 116 for a remote malware analysis of file 116 to be performed.
For example, application 114 may determine whether to communicate file 116 and/or
other suitable information to malware analysis system 108 for a remote malware
analysis to be performed on file 116. If at step 502 application 114 determines not to
initiate communication of file 116 and/or other suitable information to malware
analysis system 108, then the method may return to step 500 for application 114 to
access another file 116 (e.g., at that time or at a later time). If at step 502 application
114 determines to initiate communication of file 116 and/or other information to
malware analysis system 108 for a remote malware analysis of file 116 to be
performed by malware analysis system 108, then the method may proceed to step 504.

At step 504, client system 102 (e.g., application 114) may determine file
information 118 associated with file 116. Example file information 118 is described
above with reference to FIGURE 1. At step 506, application 114 may communicate a
status request 122 to web services system 106 (e.g., to web services module 130). For
example, application 114 may communicate status request 122 to web services system
106 to determine whether a status for file 116 has already been determined by

malware analysis system 108. In certain embodiments, the status request 122

WO 2013/040181 PCT/US2012/055116

10

15

20

25

45

communicated at step 506 may be considered a preliminary malware analysis request
122 that may be used determine whether malware analysis system 108 already has
performed (or currently is performing) a malware analysis of file 116. This may filter
traffic (e.g., file analysis requests 122) that actually are delivered to malware analysis
system 108 for a malware analysis to be performed by first determining whether
malware analysis system 108 already has determined (or currently is determining) a
malware status for the file 116.

At step 508, web services module 130 may receive the status request 122
communicated by application 114. At step 510, web services module 130 may
determine whether a malware status of file 116 is known. Web services module 130
may determine whether a malware status of file 116 is known in any suitable manner.
In certain embodiments, to determine whether a malware status of file 116 is known,
web service module 130 may access file information 118 included in status request
122 and compare the accessed file information 118 to information stored in storage
module 138 to determine whether a malware status of file 116 is known. As a more
particular example, web services module 130 may access a hash (or other identifier)
of file 116 included in status request 122 and compare the hash (or other identifier) to
historical detection data 140 (e.g., stored in storage module 138) to determine whether
historical detection data 140 includes a status indexed by a hash (or other identifier)
corresponding to the hash (or other identifier) of file 116.

If at step 510 web services module 130 determines that a malware status of file
116 is known, then at step 512 web services module 130 may communicate a
response 124 to client system 102 that includes the malware status of file 116. For
example, web services module 130 may determine that a malware analysis of file 116
has already been performed by malware analysis system 108 or that a malware
analysis of file 116 currently is being performed by malware analysis system 108. In
response to either of these determinations (or another appropriate determination), web
services module 130 may notify client system 102 not to send file 116 to malware
analysis system 108. This notification may be a part of or separate from the response
124 that includes the malware status of file 116.

If at step 510 web services module 130 determines that a malware status of file

116 is not known, then at step 514 web services module 130 may communicate a

WO 2013/040181 PCT/US2012/055116

10

15

20

25

46

response 124 to client system 102 indicating that the malware status of file 116 is not
known. For example, web services module 130 may determine that a malware
analysis of file 116 has not already been performed by malware analysis system 108
or that a malware analysis of file 116 is not currently being performed by the malware
analysis system 108. In response to either of these determinations (or another
appropriate determination), web services module 130 may notify client system 102 to
send file 116 to malware analysis system 108 (e.g., via web services system 106 if
appropriate).

At step 516, client system 102 (e.g., application 114) may communicate a file
analysis request 122 that includes file 116 for a remote malware analysis to be
performed on the file 116 by malware analysis system 108. For example, in response
to the indication that the malware status of file 116 is not known (i.e., at step 514),
application 114 may communicate the file 116 to remote malware system 108 (e.g.,
via web services system 106) so that remote malware analysis system 108 can
perform an analysis of the file 116. In other words, the malware analysis request 122
that includes file 116 may be communicated by client system 102 in response to the
notification sent by web services module 130 for client system 102 to send file 116 to
malware analysis system 108.

At step 518, web services system 106 and/or malware analysis system 108§
may receive the file analysis request 122 including file 116, and at step 520 web
services system 106 and/or malware analysis system 108 may store file 116 and any
other suitable information of file analysis request 122. For example, malware analysis
system 108 may receive file analysis request 122 via web services system 106, and
web services system 106 and/or malware analysis system 108 may store a portion or
all of file analysis request 122 in storage module 138. The stored information may
include file 116, file information 118, and any other suitable information.

At step 522, web services system 106 and/or malware analysis system 108
may initiate a malware analysis by malware analysis system 108 of file 116 for
malware. For example, web services module 130 may forward file analysis request
122 to malware analysis system 108 to cause malware analysis system 108 to analyze
file 116 for malware, and malware analysis system 108 may analyze file 116 in

response to this file analysis request 122 (e.g., according to any queuing or other

WO 2013/040181 PCT/US2012/055116

10

15

20

25

47

scheduling configurations of malware analysis system 108). The present disclosure
contemplates malware analysis system 108 performing this malware analysis of file
116 in any suitable manner according to particular needs. A particular example
implementation of malware analysis system 108 is described above with reference to
FIGURES 2-3.

At step 524, client system 102 (e.g., application 114) may access a portion or
all of file information 118 determined for file 116. Example file information 118 is
described above with reference to FIGURE 1. At step 526, client system 102 (e.g.,
application 114) may communicate a status request 122 to web services system 106
(e.g., to web services module 130). For example, application 114 may communicate
status request 122 to web services system 106 to determine whether a status for file
116 has been determined by malware analysis system 108. This status request 122
may be sent by client system 102 at any suitable regular or irregular interval,
according to particular needs. In certain embodiments, the status request 122
communicated at step 524 may be considered a follow-up malware analysis request
122 that may be used determine whether malware analysis system 108 has performed
(or currently is performing) the malware analysis of file 116 requested at step 516.
For example, after submitting a malware analysis request 122 requesting that malware
analysis system 108 perform a malware analysis of a file 116 (or at any other suitable
time), client system 102 may communicate a status request 122 to request of malware
analysis system 108 and/or web services system 106 a current status of the malware
analysis of file 116. In certain embodiments, the status request 122 communicated at
step 522 is substantially similar to the status request 122 communicated at step 506.

At step 528, web services system 106 and/or malware analysis system 108
may receive the status request 122 communicated by client system 102. For example,
web services module 130 may receive, via network 104 and subsequent to receiving
the file analysis request 122 for file 116 (the file analysis request 122 including file
116), the status request 122 communicated by client system 102, the status request
122 including file information 118 (e.g., file identification information) for file 116.

At step 530, web services system 106 may determine whether the malware
status of file 116 is known. Web services module 130 may determine whether a

malware status of file 116 is known in any suitable manner. In certain embodiments,

WO 2013/040181 PCT/US2012/055116

10

15

20

25

48

to determine whether a malware status of file 116 is known, web service module 130
may access file information 118 included in status request 122 and compare the
accessed file information 118 to information stored in storage module 138 to
determine whether a malware status of file 116 is known. As a more particular
example, web services module 130 may access a hash (or other identifier) of file 116
included in status request 122 and compare the hash (or other identifier) to historical
detection data 140 (e.g., stored in storage module 138) to determine whether historical
detection data 140 includes a status indexed by a hash (or other identifier)
corresponding to the hash (or other identifier) of file 116.

If at step 530 web services module 130 determines that a malware status of file
116 is known, then at step 532 web services module 130 may communicate a
response 124 to client system 102 that includes the determined malware status of file
116. For example, web services module 130 may determine that a malware a malware
analysis of file 116 has been completed by malware analysis system 108 or that a
malware analysis system of file 116 currently is being performed by malware analysis
system 108. In response to either of those determinations (or another appropriate
determination), web services module 130 may communicate response 124 for file 116
to client system 102. Response 124 may include a disposition resulting from the
malware analysis performed on file 116, a recommended action, and/or any other
suitable information. For example, a result 116 may conclusively indicate that the file
116 is known to contain malware, that the file 116 is suspected of malware (though
such detection may not conclusively indicate that file 116 is known to contain
malware), that file 116 is not malware, and/or any other suitable result of the malware
analysis performed by malware analysis system 108.

If at step 530 web services module 130 determines that a result (e.g., a
malware status) of the malware analysis of file 116 is not known, then at step 534 web
services module 130 may determine whether a timeout has occurred. Such a timeout
may include any suitable circumstance that results in the malware analysis of file 116
by malware analysis system 106 becoming stalled beyond an acceptable time period.
If at step 534 web services system 106 and/or malware analysis system 108
determines that a timeout has occurred, then at step 536 web services system 106

and/or malware analysis system 108 may return an error and the method may end.

WO 2013/040181 PCT/US2012/055116

10

15

20

25

49

For example, web services system 106 may notify (via a response 124) client system
102 that an error has occurred, potentially requesting that client system 102 resubmit
the file analysis request 122 or another suitable request 122. If at step 534 web
services system 106 and/or malware analysis system 108 determines that a timeout
has not occurred, then at step 538 web service module 130 may communicated a
response 124 to client system 102 indicating that the malware analysis of file 116 has
not completed and the malware status of file 116 is not yet known. The method may
end.

Although the method in FIGURES 5A-5B is illustrated as ending after step
532/536/538, it will be understood that the method may be performed substantially
continuously (or at any other suitable interval) as client system 102 continues to
monitor for files 116 for which a malware analysis is appropriate and as those files
116 or other related information is processed by system 100.

Although the methods of FIGURES 4 and 5 have been described separately,
the present disclosure contemplates client system 102 providing a callback request
and querying for status, if appropriate. For example, client system 102 may be
configured to submit a callback request with a malware detection request, and to
follow up with a query request if client system 102 does not receive a call back from
web services system 106 within a predefined time period.

Regarding the methods described above with respect to FIGURES 4A-4B and
5A-5B, web services module 130 or another suitable component of system 100 may
authenticating a user of client system 102 and/or client system 102. For example,
client system 102 may provide one or more of a user name, a password, and a nonce.
The present disclosure contemplates the use of this or another suitable authentication
technique at one or more points throughout the method described below. For
example, this authentication may be performed once when client system 102 initially
establishes a connection to malware analysis system 108 using web services system
106. Additionally or alternatively, as another example, this authentication may be
performed each time client system 102 submits a request or other communication
using web services system 106.

FIGURE 6 illustrates an example computer system 600 that may be used for

one or more portions of systems for implementing the present disclosure. Although

WO 2013/040181 PCT/US2012/055116

10

15

20

25

50

the present disclosure describes and illustrates a particular computer system 600
having particular components in a particular configuration, the present disclosure
contemplates any suitable computer system having any suitable components in any
suitable configuration. Moreover, computer system 600 may have take any suitable
physical form, such as for example one or more integrated circuit (ICs), one or more
printed circuit boards (PCBs), one or more handheld or other devices (such as mobile
telephones or PDASs), one or more personal computers, one or more super computers,
one or more servers, and one or more distributed computing elements. Portions or all
of system 100 may be implemented using all of the components, or any appropriate
combination of the components, of computer system 600 described below.

Computer system 600 may have one or more input devices 602 (which may
include a keypad, keyboard, mouse, stylus, or other input devices), one or more output
devices 604 (which may include one or more displays, one or more speakers, one or
more printers, or other output devices), one or more storage devices 606, and one or
more storage media 608. An input device 602 may be external or internal to computer
system 600. An output device 604 may be external or internal to computer system
600. A storage device 606 may be external or internal to computer system 600. A
storage medium 608 may be external or internal to computer system 600.

System bus 610 couples subsystems of computer system 600 to each other.
Herein, reference to a bus encompasses one or more digital signal lines serving a
common function. The present disclosure contemplates any suitable system bus 610
including any suitable bus structures (such as one or more memory buses, one or more
peripheral buses, one or more a local buses, or a combination of the foregoing) having
any suitable bus architectures. Example bus architectures include, but are not limited
to, Industry Standard Architecture (ISA) bus, Enhanced ISA (EISA) bus, Micro
Channel Architecture (MCA) bus, Video Electronics Standards Association local
(VLB) bus, Peripheral Component Interconnect (PCI) bus, PCI-Express bus (PCI-E),
and Accelerated Graphics Port (AGP) bus.

Computer system 600 includes one or more processors 612 (or central
processing units (CPUs)). A processor 612 may contain a cache 614 for temporary
local storage of instructions, data, or computer addresses. Processors 612 are coupled

to one or more storage devices, including memory 616. Memory 616 may include

WO 2013/040181 PCT/US2012/055116

10

15

20

25

51

RAM 618 and ROM 620. Data and instructions may transfer bi-directionally between
processors 612 and RAM 618. Data and instructions may transfer uni-directionally to
processors 612 from ROM 620. RAM 618 and ROM 620 may include any suitable
computer-readable storage media.

Computer system 600 includes fixed storage 622 coupled bi-directionally to
processors 612. Fixed storage 622 may be coupled to processors 612 via storage
control unit 607. Fixed storage 622 may provide additional data storage capacity and
may include any suitable computer-readable storage media. Fixed storage 622 may
store an operating system (OS) 624, one or more executables (EXECs) 626, one or
more applications or programs 628, data 630 and the like. Fixed storage 622 is
typically a secondary storage medium (such as a hard disk) that is slower than primary
storage. In appropriate cases, the information stored by fixed storage 622 may be
incorporated as virtual memory into memory 616. In certain embodiments, fixed
storage 622 may include network resources, such as one or more storage area
networks (SAN) or network-attached storage (NAS).

Processors 612 may be coupled to a variety of interfaces, such as, for example,
graphics control 632, video interface 634, input interface 636, output interface 637,
and storage interface 638, which in turn may be respectively coupled to appropriate
devices. Example input or output devices include, but are not limited to, video
displays, track balls, mice, keyboards, microphones, touch-sensitive displays,
transducer card readers, magnetic or paper tape readers, tablets, styli, voice or
handwriting recognizers, biometrics readers, or computer systems. Network interface
640 may couple processors 012 to another computer system or to network 642.
Network interface 640 may include wired, wireless, or any combination of wired and
wireless components. Such components may include wired network cards, wireless
network cards, radios, antennas, cables, or any other appropriate components. With
network interface 640, processors 612 may receive or send information from or to
network 642 in the course of performing steps of certain embodiments. Certain
embodiments may execute solely on processors 612. Certain embodiments may
execute on processors 612 and on one or more remote processors operating together.

In a network environment, where computer system 600 is connected to

network 642, computer system 600 may communicate with other devices connected to

WO 2013/040181 PCT/US2012/055116

10

15

20

25

52

network 642. Computer system 600 may communicate with network 642 via network
interface 640. For example, computer system 600 may receive information (such as a
request or a response from another device) from network 642 in the form of one or
more incoming packets at network interface 640 and memory 616 may store the
incoming packets for subsequent processing. Computer system 600 may send
information (such as a request or a response to another device) to network 642 in the
form of one or more outgoing packets from network interface 640, which memory
616 may store prior to being sent. Processors 612 may access an incoming or
outgoing packet in memory 616 to process it, according to particular needs.

Certain embodiments involve one or more computer-storage products that
include one or more tangible, computer-readable storage media that embody software
for performing one or more steps of one or more processes described or illustrated
herein. In certain embodiments, one or more portions of the media, the software, or
both may be designed and manufactured specifically to perform one or more steps of
one or more processes described or illustrated herein. Additionally or alternatively,
one or more portions of the media, the software, or both may be generally available
without design or manufacture specific to processes described or illustrated herein.
Example computer-readable storage media include, but are not limited to, compact
discs (CDs) (such as CD-ROMs), field-programmable gate arrays (FPGAs), floppy
disks, optical disks, hard disks, holographic storage devices, integrated circuits (ICs)
(such as application-specific ICs (ASICs)), magnetic tape, caches, programmable
logic devices (PLDs), RAM devices, ROM devices, semiconductor memory devices,
and other suitable computer-readable storage media. In certain embodiments,
software may be machine code which a compiler may generate or one or more files
containing higher-level code which a computer may execute using an interpreter.

As an example and not by way of limitation, memory 616 may include one or
more tangible, computer-readable storage media embodying software and computer
system 600 may provide particular functionality described or illustrated herein as a
result of processors 612 executing the software. Memory 616 may store and
processors 612 may execute the software. Memory 616 may read the software from
the computer-readable storage media in mass storage device 616 embodying the

software or from one or more other sources via network interface 640. When

WO 2013/040181 PCT/US2012/055116

10

15

20

25

53

executing the software, processors 612 may perform one or more steps of one or more
processes described or illustrated herein, which may include defining one or more
data structures for storage in memory 016 and modifying one or more of the data
structures as directed by one or more portions the software, according to particular
needs.

In certain embodiments, the described processing and memory elements (such
as processors 612 and memory 616) may be distributed across multiple devices such
that the operations performed utilizing these elements may also be distributed across
multiple devices. For example, software operated utilizing these elements may be run
across multiple computers that contain these processing and memory elements. Other
variations aside from the stated example are contemplated involving the use of
distributed computing.

In addition or as an alternative, computer system 600 may provide particular
functionality described or illustrated herein as a result of logic hardwired or otherwise
embodied in a circuit, which may operate in place of or together with software to
perform one or more steps of one or more processes described or illustrated herein.
The present disclosure encompasses any suitable combination of hardware and
software, according to particular needs.

Although the present disclosure describes or illustrates particular operations as
occurring in a particular order, the present disclosure contemplates any suitable
operations occurring in any suitable order. Moreover, the present disclosure
contemplates any suitable operations being repeated one or more times in any suitable
order. Although the present disclosure describes or illustrates particular operations as
occurring in sequence, the present disclosure contemplates any suitable operations
occurring at substantially the same time, where appropriate. Any suitable operation or
sequence of operations described or illustrated herein may be interrupted, suspended,
or otherwise controlled by another process, such as an operating system or kernel,
where appropriate. The acts can operate in an operating system environment or as
stand-alone routines occupying all or a substantial part of the system processing.

Although the present disclosure has been described with several embodiments,
diverse changes, substitutions, variations, alterations, and modifications may be

suggested to one skilled in the art, and it is intended that the disclosure encompass all

WO 2013/040181 PCT/US2012/055116

54

such changes, substitutions, variations, alterations, and modifications as fall within the

spirit and scope of the appended claims.

WO 2013/040181 PCT/US2012/055116

10

15

20

25

55

WHAT IS CLAIMED IS:

1. A computer-implemented method, comprising:

receiving, via a computer network and from a first computer system, a first
malware analysis request, the first malware analysis request comprising a file to be
analyzed for malware by a malware analysis system;

initiating a malware analysis by the malware analysis system of the first file
for malware; and

communicating to the first computer system a response for the first file
determined by the malware analysis system to the first computer system, the response

comprising an indication of whether the first file comprises malware.

2. The computer-implemented method of Claim 1, further comprising:
receiving, via the computer network and prior to receiving the first malware
analysis request comprising the first file, a preliminary malware analysis request, the
preliminary malware analysis request comprising file identification information for
the first file;
determining that one or more of the following is true:
a malware analysis of the first file has not already been performed by
the malware analysis system; and
a malware analysis of the first file currently is not being performed by
the malware analysis system; and
notifying the first computer system to send the first file to the malware

analysis system.

3. The computer-implemented method of Claim 2, wherein the first
malware analysis request is communicated by the first computer system in response to
the notification for the first computer system to send the first file to the malware

analysis system.

4. The computer-implemented method of Claim 2, wherein the file
identification information for the first file comprises a hash value computed by

performing a hash of the first file.

WO 2013/040181 PCT/US2012/055116

10

15

20

25

56

5. The computer-implemented method of Claim 1, further comprising:
receiving, via the computer network and from the first computer system, a
second malware analysis request, the second malware analysis request comprising file
identification information for a second file;
determining, using the file identification for the second file, that one or more
of the following is true:
a malware analysis of the second file has already been performed by
the malware analysis system; and
a malware analysis of the second file currently is being performed by
the malware analysis system; and
notitying the first computer system not to send the second file to the malware

analysis system.

6. The computer-implemented method of Claim 1, wherein
communicating the response for the first file comprising the indication of whether the
first file comprises malware comprises communicating a message via the computer

network to the first computer system, the message comprising a status.

7. The computer-implemented method of Claim 1, further comprising:

receiving from the first computer system a callback request comprising an
address for communicating with the first computer system; and

communicating to the first computer system the response for the first file
comprising the indication of whether the first file comprises malware using the

address for communicating with the first computer system.

WO 2013/040181 PCT/US2012/055116

10

15

57

8. The computer-implemented method of Claim 1, further comprising:

receiving, via the computer network and subsequent to receiving the first
malware analysis request comprising the first file, a second malware analysis request,
the second malware analysis request being a status request and comprising file
identification information for the first file; and

determining, in response to the second malware analysis request, whether the
first file has been analyzed by the malware analysis system;

the communicating to the first computer system of the response for the first
file being in response to a determination that the first file has been analyzed by the

malware analysis system.

9. The computer-implemented method of Claim 1, wherein initiating the
malware analysis comprises communicating the first file to the malware analysis
system for the malware analysis to be performed by the malware analysis system on

the first file.

10. The computer-implemented method of Claim 1, further comprising
authenticating the first computer system prior to receiving the first malware analysis

request.

WO 2013/040181 PCT/US2012/055116

10

15

20

30

58

11. A system, comprising:
one or more memory units; and
one or more processing units operable to:
receive, via a computer network and from a first computer system, a
first malware analysis request, the first malware analysis request comprising a file to
be analyzed for malware by a malware analysis system;
initiate a malware analysis by the malware analysis system of the first
file for malware; and
communicate to the first computer system a response for the first file
determined by the malware analysis system to the first computer system, the response

comprising an indication of whether the first file comprises malware.

12. The system of Claim 11, wherein the one or more processing units are
further operable to:
receive, via the computer network and prior to receiving the first malware
analysis request comprising the first file, a preliminary malware analysis request, the
preliminary malware analysis request comprising file identification information for
the first file;
determine that one or more of the following is true:
a malware analysis of the first file has not already been performed by
the malware analysis system; and
a malware analysis of the first file currently is not being performed by
the malware analysis system; and
notify the first computer system to send the first file to the malware analysis

system.

13. The system of Claim 12, wherein the first malware analysis request is
communicated by the first computer system in response to the notification for the first

computer system to send the first file to the malware analysis system.

14. The system of Claim 12, wherein the file identification information for

the first file comprises a hash value computed by performing a hash of the first file.

WO 2013/040181 PCT/US2012/055116

10

15

20

25

59

15. The system of Claim 11, wherein the one or more processing units are
further operable to:
receive, via the computer network and from the first computer system, a
second malware analysis request, the second malware analysis request comprising file
identification information for a second file;
determine, using the file identification for the second file, that one or more of
the following is true:
a malware analysis of the second file has already been performed by
the malware analysis system; and
a malware analysis of the second file currently is being performed by
the malware analysis system; and
notify the first computer system not to send the second file to the malware

analysis system.

16. The system method of Claim 11, wherein communicating the response
for the first file comprising the indication of whether the first file comprises malware
comprises communicating a message via the computer network to the first computer

system, the message comprising a status.

17. The system of Claim 11, wherein the one or more processing units are
further operable to:

receive from the first computer system a callback request comprising an
address for communicating with the first computer system; and

communicate to the first computer system the response for the first file
comprising the indication of whether the first file comprises malware using the

address for communicating with the first computer system.

WO 2013/040181 PCT/US2012/055116

10

15

60

18. The system of Claim 11, wherein the one or more processing units are
further operable to:

receive, via the computer network and subsequent to receiving the first
malware analysis request comprising the first file, a second malware analysis request,
the second malware analysis request being a status request and comprising file
identification information for the first file; and

determine, in response to the second malware analysis request, whether the
first file has been analyzed by the malware analysis system;

the communicating to the first computer system of the response for the first
file being in response to a determination that the first file has been analyzed by the

malware analysis system.

19. The system of Claim 11, wherein initiating the malware analysis
comprises communicating the first file to the malware analysis system for the

malware analysis to be performed by the malware analysis system on the first file.

20. The system of Claim 11, wherein the one or more processing units are
further operable to authenticate the first computer system prior to receiving the first

malware analysis request.

WO 2013/040181 PCT/US2012/055116

61

21. Non-transitory computer-readable media comprising software, the
software when executed by one or more processing units operable to perform
operations comprising:

receiving, via a computer network and from a first computer system, a first

5 malware analysis request, the first malware analysis request comprising a file to be
analyzed for malware by a malware analysis system;

initiating a malware analysis by the malware analysis system of the first file
for malware; and

communicating to the first computer system a response for the first file

10 determined by the malware analysis system to the first computer system, the response

comprising an indication of whether the first file comprises malware.

PCT/US2012/055116

WO 2013/040181

gu——— . T —
0INI [-8LI NOILYWHOINI | ~0Z 1
LW EE (] yovarvo
V.Lv¥a NOILOALAA
{[STTH gy TWOIOLSIH [0FL
< -
gl 0clL
\ \
~ JINAOW JINAOW
~ SISATYNY S30IAY3S
JUYMIYIN B
¢l
—
W d / < |l w d
/ N 74} / \
vel ¢Cl 8¢l acl
INALSAS NILSAS
A~ Hwﬁqx Y SIDIAHAS 9IM
801 a0l

[DIA

001

!
N

NOILVINHOANI

AJVETIVO

gLl 9Ll
\ /

O4NI
1114 A1

NOILVIITddY

W d
% \
¢l O

I3LSAS IN3IMI

¢01

WO 2013/040181

PCT/US2012/055116

2/7
200
N ’2/06
i 204 .
| \ . .
| SCHEDULER DETECTION
| 202
| \
| INGEST DISPOSITION
i N
: 208
| ANALYSIS
| SERVER CONSOLE
| / N
! 212 210
FIG. 2
ANALYSIS CONSOLE
310
MEMORY PROCESSOR |}~
300~ 302~ WORKFLOW INPUT/OUTPUT |312
MANAGER
306 INTERFACE
OUTPUT ~-314
304—"| GENERATOR
DATA STORAGE _30g

FIG. 3

WO 2013/040181

3/7

(START)

PCT/US2012/055116

A A

400 ~—

ACCESS FILE

402

INITIATE
COMMUNICATION
OF FILE FOR REMOTE
MALWARE
ANALYSIS

404~

DETERMINE FILE INFORMATION

!

406 ~

COMMUNICATE STATUS REQUEST

!

408 ~

RECEIVE STATUS REQUEST

MALWARE YES

STATUS OF FILE
KNOWN?

Y

414—

COMMUNICATE RESPONSE TO
CLIENT SYSTEM INDICATING
STATUS NOT KNOWN

COMMUNICATE
RESPONSE WITH STATUS
TO CLIENT SYSTEM

!

4161

COMMUNICATE FILE ANALYSIS
REQUEST INCLUDING FILE FOR
REMOTE MALWARE ANALYSIS

D

TO FIG. 4B

FIG. 44

N
412

TO FIG. 4B

WO 2013/040181 PCT/US2012/055116

4/7

FROM FIG. 4A FROM FIG. 4A

Y/)

418~ COMMUNICATE CALLBACK
REQUEST

420~ RECEIVE FILE ANALYSIS REQUEST

422 ~ STORE FILE

424~{ RECEIVE CALLBACK REQUEST

426 ~{ STORE CALLBACK INFORMATION
INITIATE MALWARE ANALYSIS

428 - OF FILE BY MALWARE

ANALYSIS SYSTEM

y

™
NO AWARE
ANALYSIS RESULT
?
NO @ 430

434 YVES RETURN RESULT INCLUDING
STATUS AND USING CALL |~ 432
436—1 RETURN ERROR BACK INFORMATION

P
-

A

C Eno)
FIG. 4B

'~

WO 2013/040181

577

(START)

PCT/US2012/055116

Y

900~

ACCESS FILE

502

INITIATE
COMMUNICATION
OF FILE FOR REMOTE
MALWARE
ANALYSIS

504 ~

DETERMINE FILE INFORMATION

!

906 ~

COMMUNICATE STATUS REQUEST

!

508 ~

RECEIVE STATUS REQUEST

512
/

MALWARE
STATUS OF FILE
KNOWN?

YES

COMMUNICATE
RESPONSE WITH | _
STATUS TO
CLIENT SYSTEM

514"

COMMUNICATE RESPONSE TO
CLIENT SYSTEM INDICATING
STATUS NOT KNOWN

!

216"

COMMUNICATE FILE ANALYSIS
REQUEST INCLUDING FILE FOR
REMOTE MALWARE ANALYSIS

g

TO FIG. 5B

FIG. 54

Y

)

TO FIG. 5B

WO 2013/040181

6/7

FROM FIG. 5A

e

918 ~{ RECEIVE FILE ANALYSIS REQUEST
520~ STORE FILE

INITIATE MALWARE ANALYSIS
922 ~ OF FILE BY MALWARE

ANALYSIS SYSTEM

924~ ACCESS FILE INFORMATION
526 —| COMMUNICATE STATUS REQUEST
58— RECEIVE STATUS REQUEST

MALWARE

STATUS OF FILE YES

PCT/US2012/055116

FROM FIG. 5A

)

KNOWN?

538 532
/ v /
COMMUNICATE RESPONSE TO COMMUNICATE
CLIENT SYSTEM INDICATING RESPONSE WITH
y THAT MALWARE ANALYSIS OF STATUS TO
RETURN ERROR FILE HAS NOT BEEN COMPLETED CLIENT SYSTEM
/o N ¥
536 v

WO 2013/040181

PCT/US2012/055116

7/7
60\3‘
COMPUTER SYSTEM
612
N N\ 640 642
PROCESSOR NETWO/RK
614~J cache <K= INTeRracE [N
632
61\6‘ /
GRAPHICS
<—>
VEMORY CONTROL
N | e l
vy VIDEO
620 <—> INTERFACE
N
634
STORAGE CONTROL K— >
INPUT INPUT
‘ <—>1 WTERFACE = DEvicE
607 610-"1
N N
STORAGE 636 602
624 ~] OPERATING OUTPUT OUTPUT
SYSTEM <—>1 INTERFACE [N DEVICE
626~ Execs 6\37 6\04
API/ STORAGE STORAGE
628 —| APPLICATIONS IK—>1 |NTERFACE DEVICE
N N
630~ DATA 638 606
/ VvV
STORAGE
622 MEDIUM
N
FIG. 6 608

INTERNATIONAL SEARCH REPORT

International application No.
PCT/US 12/55116

A. CLASSIFICATION OF SUBJECT MATTER
IPC(8) - GO6F 11/00, GO8B 23/00 (2012.01)
USPC - 726/24

According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

USPC: 726/24

Minimum documentation searched (classification system followed by classification symbols)

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched
IPC(8): GO6F11/00, GO8B23/00 (2012.01); USPC: 726/1, 22, 23, 24; 705/50, 51; 700/1, 79 (keyword limited; terms below)

Electronic data base consulted during the international search (name of data base and, where practicable, search terms used)
PUubWEST (PGPB, USPT, EPAB, JPAB); Google Scholar; Google Patents, PatBase (All)
Keywords: Malware analysis; request; response; notification; hash; preliminary request; authentication

C. DOCUMENTS CONSIDERED TO BE RELEVANT

Category* Citation of document, with indication, where appropriate, of the relevant passages Relevant to claim No.
X US 2011/0047620 A1 (MAHAFFEY et al.) 24 February 2011 (24.02.2011), entire document, 1, 6-11, 16-21
- especially; para [0022], [0023], [0027], [0029], [0032], [0036]-[0046], {0053], [0055], [0056], e
Y [0063], {0107], [0110] 2-5, 12-15
Y US 2011/0219451 A1 (MCDOUGAL et al.) 08 September 2011 (08.09.2011), entire document, | 2-5, 12-15
especially; para [0032], [0033)]
A US 2009/0282483 A1 (BENNETT) 12 November 2009 (12.11.2009), entire document 1-21
A US 5,623,600 A (J! et al.) 22 April 1997 (22.04.1997), entire document 1-21
A US 2004/0158741 A1 (SCHNEIDER) 12 August 2004 (12.08.2004), entire document 1-21

D Further documents are listed in the continuation of Box C.

[]

* Special categories of cited documents:

“A” document defining the general state of the art which is not considered
to be of particular relevance

“E” earlier application or patent but published on or after the international
filing date

“L” document which may throw doubts on priority claim(s) or which is
cited to establish the publication date of another citation or other
special reason (as specified)

“O” document referring to an oral disclosure, use, exhibition or other
means

“P” document published prior to the international filing date but later than

the priority date claimed

“T” later document published after the international filing date or priority
date and not in conflict with the apﬁhcanon but cited to understand

the principle or theory underlying the invention

document of particular relevance; the claimed invention cannot be

X .
considered novel or cannot be considered to involve an inventive
step when the document is taken alone

“Y” document of particular relevance; the claimed invention cannot be

considered to involve an inventive step when the document is
combined with one or more other such documents, such combination
being obvious to a person skilled in the art

“&” document member of the same patent family

Date of the actual completion of the international search

23 October 2012 (23.10.2012)

Date of mailing of the international search report

2 3NQOV 2012

Name and mailing address of the ISA/US

Mail Stop PCT, Attn: ISA/US, Commissioner for Patents
P.O. Box 1450, Alexandria, Virginia 22313-1450

Facsimile No. 571.273-3201

Authorized officer:
Lee W. Young

PCT Helpdesk: 571-272-4300
PCT OSP: 571-272-7774

Form PCT/ISA/210 (second sheet) (July 2009)

	Page 1 - front-page
	Page 2 - description
	Page 3 - description
	Page 4 - description
	Page 5 - description
	Page 6 - description
	Page 7 - description
	Page 8 - description
	Page 9 - description
	Page 10 - description
	Page 11 - description
	Page 12 - description
	Page 13 - description
	Page 14 - description
	Page 15 - description
	Page 16 - description
	Page 17 - description
	Page 18 - description
	Page 19 - description
	Page 20 - description
	Page 21 - description
	Page 22 - description
	Page 23 - description
	Page 24 - description
	Page 25 - description
	Page 26 - description
	Page 27 - description
	Page 28 - description
	Page 29 - description
	Page 30 - description
	Page 31 - description
	Page 32 - description
	Page 33 - description
	Page 34 - description
	Page 35 - description
	Page 36 - description
	Page 37 - description
	Page 38 - description
	Page 39 - description
	Page 40 - description
	Page 41 - description
	Page 42 - description
	Page 43 - description
	Page 44 - description
	Page 45 - description
	Page 46 - description
	Page 47 - description
	Page 48 - description
	Page 49 - description
	Page 50 - description
	Page 51 - description
	Page 52 - description
	Page 53 - description
	Page 54 - description
	Page 55 - description
	Page 56 - claims
	Page 57 - claims
	Page 58 - claims
	Page 59 - claims
	Page 60 - claims
	Page 61 - claims
	Page 62 - claims
	Page 63 - drawings
	Page 64 - drawings
	Page 65 - drawings
	Page 66 - drawings
	Page 67 - drawings
	Page 68 - drawings
	Page 69 - drawings
	Page 70 - wo-search-report

