A pocket sized electronic card (PSEC) including a solid-state memory media located in the card and a facile port means located substantially in the card, and the port means is interfaced to access data contents recorded in the media, and the data contents is characterized by including at least one navigational reference descriptor of a real world location. The preferred PSEC is substantially the size of a business card, printed or blank, and it contains a memory chip. The memory chip contains information regarding at least one location. The location may be described as a street address, a telephone number (corresponding to a physical location), an electronic mail address (corresponding to a physical location), a GIS location descriptor, a GPS coordinate, a street intersection, or as a commonly known site (such as a public building or a landmark). This card is useful as part of a system which includes a user interface and a processor, which together can read, interpret, and present the information on the card.
A POCKET Sized ELECTRONIC CARD

FIELD OF THE INVENTION

The present invention generally relates to electronically stored navigational reference description data. More specifically, the present invention relates to small-scale ergonomic uses for such data.

BACKGROUND OF THE INVENTION

Memory cards are a well known technological articles. They often consist of a semi-rigid plastic card with an embedded solid state memory chip which is connected (on or in the card) to some port means; for use by an external card reader to perform a download from or upload to a memory portion of the solid state memory chip.

These types of cards are often used as security identification cards, allowing authorized personnel access to restricted areas; when a card reader verifies the memory content and actuates a solenoid door latch release mechanism. These areas may be hotel rooms or research laboratories or even parking lots.

In other common applications, such cards are used to facilitate secure transfers of funds, such as cash withdrawals from automatic teller machines or supervisor approved corrections of cash-register recorded transactions.

These types of memory cards have been in public use for many years. It is surprising that they have not been exploited for other substantially non-security related applications. By not using such cards for non-security applications, numerous useful product niches have remained un-developed. There is a need in the art to exploit these numerous unfulfilled commercial opportunities for this seemingly well understood technology.
NOTICES

Numbers, alphabetic characters, and roman symbols are designated in the following sections for convenience of explanations only, and should by no means be regarded as imposing particular order on any method steps. Likewise, the present invention will forthwith be described with a certain degree of particularity, however those versed in the art will readily appreciate that various modifications and alterations may be carried out without departing from either the spirit or scope, as hereinafter claimed.

In describing the present invention, explanations are presented in light of currently accepted scientific theories and models. Such theories and models are subject to changes, both adiabatic and radical. Often these changes occur because representations for fundamental component elements are innovated, because new transformations between these elements are conceived, or because new interpretations arise for these elements or for their transformations. Therefore, it is important to note that the present invention relates to specific technological actualization in embodiments. Accordingly, theory or model dependent explanations herein, related to these embodiments, are presented for the purpose of teaching, the current man of the art or the current team of the art, how these embodiments may be substantially realized in practice. Alternative or equivalent explanations for these embodiments may neither deny nor alter their realization.

SUMMARY OF THE INVENTION

The present invention relates to a pocket sized electronic card including a solid-state memory media located in the card and a facile port means located substantially in the card, and the port means is interfaced to access data contents recorded in the media, and the data contents is characterized by including at least one navigational reference descriptor of a real world location.

The present invention is the missing key to numerous otherwise facile navigational systems. The ability to manually transfer a navigational reference
descriptor in a convenient machine-readable format is essentially the missing component that is preventing navigational systems from migrating from being the tools of professional dispatchers to being the tools of ordinary users.

Using the card of the present invention as a business card, allows a visitor having a navigation system in his car or attaché case lap-top computer (with an internal navigational database or wirelessly connected to a navigational database server) to insert the business card into his onboard system and thereby to be guided to the business location associated with that card.

Using the card of the present invention as a coupon allows the same owner of an onboard system to locate the nearest outlet accepting that coupon. Using the card of the present invention as a package label allows the delivery truck driver to apply his onboard system to facilitate the packages timely delivery. Likewise, using the card of the present invention as a work-order allows workmen to navigate from one work location to another, even when the order of executing a plurality of disparate work-orders is modified.

BRIEF DESCRIPTION OF THE FIGURES AND APPENDICES

In order to understand the invention and to see how it may be carried out in practice, embodiments including the preferred embodiment will now be described, by way of non-limiting example only, with reference to the accompanying drawings, in which:

Figure 1 illustrates a schematic view of a card according to the present invention;

Figure 2 illustrates another schematic view of a card according to the present invention, being used to facilitate a work-order;

Figure 3 illustrates a further schematic view of a card according to the present invention, being used to facilitate a package delivery;

Figure 4 illustrates yet another schematic view of a card according to the present invention, being used as a coupon; and
Figure 5 illustrates still another schematic view of a card according to the present invention, being used to facilitate providing navigational instructions.

DETAILED DESCRIPTION OF THE INVENTION

The present invention relates to a pocket sized electronic card, including a solid-state memory media located in the card and a facile port means located substantially in the card, and the port means is interfaced to access data contents recorded in the media, and the data contents is characterized by including at least one navigational reference descriptor of a real world location. Examples of generic cards that include memory media, connector and port means include memory cards or smart-cards manufactured or assembled by Phillips, Micro-chip, S.G.S. Thompson, and Atmel.

The card of the present invention is substantially the size of a business card, printed or blank, and it contains a memory chip. The memory chip contains information regarding at least one location. The location may be described as a street address, a telephone number (corresponding to a physical location), an electronic mail address (corresponding to a physical location), a Global Information System location descriptor, a Global Positioning System coordinate, a street intersection, or as a commonly known site (such as a public building). This card is useful as part of a system which includes a processor, which can read and, where necessary, interpret the information on the card, and a user interface, which is usually a screen which shows a picture or the text of the information contained in or corresponding to the card’s memory. Such a system may also include speakers to allow for oral information to be presented or a printer to allow the user to print and retain the location information for later use or for use when away from the card reader associated system.

Commonly, a card reader and associated system would be placed in a vehicle such as a car, or in a handheld device such as a cellular telephone peripheral apparatus, or a handheld computer, or the like. When used, the card is inserted into the reader, and the reader returns the information stored on the memory chip in a
format that is useful and understandable to the user. For example, upon insertion, the screen might give text directions to the location of a store that has issued the card (e.g. “After the first highway exit, make the third right turn. Drive 250 meters and make a left turn. Turn into the parking lot of the third building on the right”).

Often, the card reader is part of a system that can also identify the car’s current location. When the location descriptor contained in the card’s memory is an address, the screen connected to the card reader may display directions for the shortest route to the address from the car’s current location. The connection to a larger system can be either local—the reader is connected to a more extensive system database located in the vehicle, or it may be remote—the reader had a wireless connection to a system database located at a fixed location or distributed in a plurality of servers. One example of a system with a remote connection is a municipal work vehicle with a dispatcher, where the dispatcher has a computer that is able to track the vehicle’s location. The driver of the vehicle may enter a card into his reader, where the card contains the location information for his next work order. The reader signals the dispatcher’s computer that the worker is headed to a particular address, and the dispatcher’s computer can provide the vehicle’s reader with the optimal route to the address and a probable estimated time of arrival, often considering dynamic information such as malfunctioning traffic lights and traffic delays.

The card of the present invention may include information other than the location descriptor stored in the memory chip. On the card’s surface, there may be printed information such as a street address or a picture of the desired location. The card’s memory may also contain information other than a location descriptor (e.g. name, identification number, etc.). In the example of the municipal work vehicle, the information stored in the card’s memory may include a work order number. Thus, when the driver enters the card into the vehicle’s reader, the reader will signal the dispatcher’s computer not only with a location, but with the work order which is being filled. Each time the same reader signals with a new work order number, the dispatcher’s computer automatically marks the previous work order as completed.
Another example of additional information that can be stored in the card’s memory is sale information for a store, where the card itself may serve as a coupon. The sale information can be printed on the card, with the store address appearing. When the customer enters the card into the reader, a small map of the area surrounding the store or text directions to the store are given. Alternatively, the card may be a printed coupon, per se, and the memory chip of the card may contain several addresses of the various stores honoring the coupon. When the card is inserted into the reader, the location of and directions to the nearest store are given.

In a case where the card is used as a business card, the memory chip may contain the business address and directions to the business, or the card may be used as an advertisement or to detail information about the various concerns of the business. For example, a real estate agent may use such a card and print her picture and name on the face of the card, and store the address of her firm’s office on the memory chip. If the agent wanted to advertise an open house, she could distribute cards with the address of the open house and the name and telephone number of the agent printed on the card, while the memory chip contained information about the neighborhood and the area and directions to the home from within the neighborhood.

Another example of an advertisement would be an organization wishing to publicize a convention. The cards can be sent with the invitations to the convention. On the surface of the card, a summary of the convention information could be printed. The memory chip would contain the address of the convention location and directions. Anyone wishing to attend the convention could enter his car, insert the card into a reader in the car, and drive to the convention according to the directions that appear on the screen.

The card may also be used as an address label for a package. The package is routed according to information contained in the card’s memory chip. When the package reaches the delivery stage, the driver removes the card from the package, inserts the card into a reader, and identifies the location of the delivery according to address and direction information presented on the reader’s screen.
Figure 1 shows such a card (101) with a memory media (102) which is connected via a connector (103) to a port on the card (104). Some other equivalently useful well-known memory cards (not shown) are designed to integrated the memory media, connector and port means into a single integrated entity. The card is pocket-sized, substantially similar in size to a business card or a credit card. On the card, which, in itself may have a generic appearance, is a memory chip connected to the card via a port. The memory chip on the card contains a navigational reference descriptor, such as an address or a reference point (e.g. a coordinate) for a physical location, such as a street address, an intersection, or a landmark.

The card can be used in any of several ways, including as a business card, an advertisement or a coupon, a package label, or a fleet management work order. Simply put, someone wishing to arrive at a designated location can insert the card into a reader and receive a corresponding street address or directions to the location or a map of the region proximate to the designated locations or other helpful navigational assistance related to the designated location or its surroundings.

Another embodiment of the present invention relates to the pocket sized electronic card wherein a descriptor of the at least one navigational reference descriptors is directly transformable into a Geographic Information System (GIS) location descriptor. A GIS location descriptor offers information using a known reference point or points. For example, a particular location could be described as being 200 meters north of a particular street intersection. Thus, if a reader has a local computer and database or is remotely connected to a computer system, instead of giving an exact street address, the chip on the card may yield a direction and distance from a reference point when read. For instance, a brand new pizzeria that is in a slightly remote location and wants to attract customers may distribute advertisements in the form of cards with respective memory chips. When a customer inserts a card into a reader, the directions given will indicate that the pizzeria is 400 meters west of a known intersection. Equivalently, the GIS descriptor may designate a street centerline by unique centerline ID, and therein
designate a percentage of the centerline’s length from a predetermined endpoint of the centerline.

A further embodiment of the present invention relates to the pocket sized electronic card wherein a descriptor of the at least one navigational reference descriptors is directly transformable into a Global Positioning System (GPS) coordinate. A GPS coordinate indicates a location using the location’s latitude and longitude; just as a GPS system associated with the vehicle provides the latitude and longitude of the vehicle.

When a GPS coordinate is stored on the card, a local or remote computer to which the card reader is connected will yield the latitude and longitude of a location when the card is inserted into a reader. If the reader is connected to a computer with a database and the database includes a map, the reader will display the given point, according to the latitude and longitude given on the map, thereby enabling the user to navigate to that point.

An additional embodiment of the present invention relates to the pocket sized electronic card wherein a descriptor of the at least one navigational reference descriptors includes a communication address affiliated with the real world location for the navigational reference descriptor. In a simple example of this embodiment, the communications address is used to facilitate a query in order to provide the closest address (physical location coordinates) for an enterprise associated with the card; e.g. the closest electronic teller machine or the nearest fast food franchise of a predetermined chain of fast food providers, the nearest police station, or the like.

In such a case, the memory chip on the card may contain a communications address. In this case, when the card is inserted into the reader, the reader displays the communications address or feeds it into the computer to which the reader is connected. For example, a company may maintain a file of customer facsimile machine numbers on such cards. When a particular computerized file (such as a document that was saved on the computer) needs to be sent via facsimile to a customer, the customer’s card is inserted into a reader which is connected to the computer. Since the computer also has the ability to dial and to send facsimiles (i.e. a computer with a modem, communications software, and a connection to a
telephone line), when the card is inserted into the reader, the computer automatically dials the desired number and sends the document to the customer's facsimile machine.

According to a first variation of the embodiment where the descriptor includes a communications address, the communications address is an Internet address. A commonly recognized form of an Internet address would be an electronic mail address or a world wide web (virtual) site location. In such a case, the card would contain an electronic mail address, which is displayed when the card is inserted into the reader. Alternatively, if the reader is connected to a computer with electronic mail capability and software that can accept the electronic mail address from the reader, the card may be used to send electronic mail automatically. Someone wishing to send electronic mail to the particular address would insert the card into a reader which is connected to a computer with electronic mail capability (i.e. a computer which is connected to the Internet either via a network or via a modem with appropriate electronic mail software). Using appropriate software, the computer would receive the electronic mail address from the reader, and mail could then be sent to that address. For instance, a company manufacturing card readers could include with each reader a card with the company's electronic mail address. After the reader has been installed and connected to the computer according to the manufacturer's instructions, the customer could then enter the card into the reader, and electronic mail would be automatically sent to the manufacturer with the customer's electronic mail address and the card reader's model number (which would also be stored on the card). The manufacturer could then communicate electronically with the customer to complete any necessary registration process.

According to the second variation of the embodiment where the descriptor includes a communications address, the communications address is a telephone number. This can be used, for example, when the card is used as an advertisement. When the card is entered into the reader, the screen displays a telephone number that can be dialed to obtain more information. With appropriate hardware, software, and connections, the card could even be used to cause the computer to dial a telephone number.
A further embodiment of the present invention relates to the pocket sized electronic card wherein the facile port means is a plug. In this case, the memory chip is connected to the card via a plug.

Another embodiment of the present invention relates to the pocket sized electronic card wherein the facile port means is a socket. When this is the case, the memory chip plugs directly into a socket on the card.

Another embodiment of the present invention relates to the pocket sized electronic card wherein the facile port means is a touch pads. When touch pads are used, both the card and the chip have touch pads that come in contact when the chip is placed on the card.

Another embodiment of the present invention relates to the pocket sized electronic card wherein the facile port means is a proximity antenna. In this case, the memory chip is not physically attached to the card. Instead, the chip transmits information through an antenna to the card reader. When the card is placed into the reader, the reader signals the chip to send information. The memory chip then transmits location information to the card reader.

A further embodiment of the present invention relates to the pocket sized electronic card wherein the data contents includes fleet management transactional content which is associated with a pickup or a delivery or a service call, and the transactional content also relates to the real world location for a descriptor of the at least one navigational reference descriptors. This embodiment refers to the case where the card is used as a work order. When used as such, the card may contain a pickup or delivery time and the address of the pickup or delivery, or it may contain the location of a service call and a general description of the task to be accomplished.

According to another useful scenario, an appliance repair store may use cards to schedule technician visits to customers. The technician enters the card into the reader, and the reader’s screen displays the location of the customer, as well as information about the appliance make and model and the problem with the appliance. Likewise, a municipal engineering department may use cards to schedule repairs and maintenance. In such a case, each workman would have a card
reader in the work vehicles. All of the readers maintain a wireless connection to the dispatcher’s central computer, which includes a database and a city map and has the ability to track the individual vehicles’ locations. As the workman enters a card into his reader, the reader signals the central computer with the location and number of the work order number that the workman is starting. The central computer then provides the workman with the ideal route to that location from his vehicle’s current location.

Figure 2 shows a card (201) with a memory media (202) which is connected via a connector (203) to a port on the card (204). The memory media (202) contains in it a description of a task to be addressed (pipe exploded), an address where the task it to be performed (123 W. 1st St.), and a work order number (Work Order #98) which provides the manager of the fleet with a reference number for the job. The workman enters his vehicle, inserts the card into a reader which is located in the vehicle, and the reader both provides the immediate information available on the card to the workman and signals a centralized database at the dispatch station with the information on the card and a request for additional information. The additional information is then transmitted to the reader in the form of route instructions to arrive at the desired location, or additional information about the task at hand.

An additional embodiment of the present invention relates to the pocket sized electronic card wherein the data contents includes package identification transactional content which is associated with a package to be picked up at or delivered to the real world location for a descriptor of the at least one navigational reference descriptors. When the card is used as a package identification or label, it may be affixed to a package in place of an ordinary printed label. The card itself may have printed information on it, such as a zip code or any other information which will enable an initial sorting of multiple packages. The memory chip may contain information such as the street address to which the package must be delivered, the phone number of the person who is to pick up the package, directions to a location where the package must be delivered, or a map of the area. The memory chip may also contain information such as a package tracking number.
Hence, the driver for a package service who must deliver a package would remove the card from the package and enter it into a reader in his vehicle. The reader's screen would then display the area and the street address to which the package is to be delivered. If the reader is connected to a computer with a database and the package tracking number is stored on the card's memory chip, the tracking number would then be automatically input into the computer.

Figure 3 shows a card (301) with a memory media (302) which is connected via a connector (303) to a port on the card (304). The memory media (302) contains in it a brief description and identification code of what is to be delivered (Package #444) and an address where the parcel must be delivered (65 S. 2nd St.). The delivery person, inserts the card into a reader which is attached to a hand-held computer which includes a database and a special touch-screen for signatures. The reader then provides the delivery person with the address information for the delivery and prepares the database to accept the customer signature. Upon receipt of the signature, all tracking information for the package may be processed automatically, including confirmation of the delivery address according to the information from the card reader.

A further embodiment of the present invention relates to the pocket sized electronic card wherein an outside surface of the card includes a visible identification data content, and this content is selected from the list: bar code, text, photograph, hologram, magnetic data strip. The cards may be blank or, in this case, have some kind of identifying mark on the outside of the card. The identifying mark may be printed (such as text, a bar code, or a photograph) or they may include a magnetic strip or a hologram.

The external identification can allow for identification of the cards and differentiation between them without a card reader. Thus, where a number of different cards are kept together, they may be easily identified by numbers or text on the outside of a card. Where the cards are used for advertisement, a picture and/or text of the item being advertised can be printed on the card. A car dealer wishing to publicize herself may print her picture on one side of the card and
information about the dealership on the other side of the card. On the memory chip, she may store information about the location of the dealership and how to get there.

Figure 4 shows a card (401) with a memory media (402) which is connected via a connector (403) to a port on the card (404). On the surface of the card coupon information is printed. The card thus serves as both an advertisement and a coupon. The memory media (402) contains a list of the locations where the coupon is honored. If the card is inserted into a reader which is connected to a larger computer database which includes information about the present location of the reader (or vehicle, when the reader is installed in a vehicle) and location information for the addresses stored on the card, the address of the closest establishment honoring the coupon will be displayed. In the case where the reader is unconnected to a larger system, all of the addresses stored in the card’s memory will be displayed and the customer may choose the closest or most convenient location.

An additional embodiment of the present invention relates to the pocket sized electronic card wherein a descriptor of the at least one navigational reference descriptors includes a graphic display formatted region of a map corresponding to a region surrounding the real world location for the navigational reference descriptor. In this case, the memory chip on the card contains a map of the area surrounding a specific location. Rather than giving a street address or general information about how to arrive at that address, a map of the surrounding area is given. In addition to providing information about how to arrive at a given location, such a map may also offer the user some general information about the surrounding neighborhood.

Hence, a convention organizer who sends out invitations to a three-day convention may send out cards with the invitations to the convention. The outside of the card may contain printed information about the location of the convention and nearby hotels. The memory chip may contain a map which not only displays the location of the convention, but also gives those wishing to attend the convention an indication of how far the various hotels are from the convention site.

A further embodiment of the present invention relates to the pocket sized electronic card wherein a descriptor of the at least one navigational reference
descriptors includes at least one sequence of routing instructions from a predetermined cartographic juncture to the real world for the navigational reference descriptor. This is to say that the memory chip on the card contains instructions for arriving at the designated location. The instructions would usually comprise a series of turns to make, generally indicated by arrows which point in the correct direction.

Figure 5 illustrates this. The figure shows a card (501) with a memory media (502) which is connected via a connector (503) to a port on the card (504). The memory media (502) contains a list of instructions for arriving at a designated location accompanied by a small diagram of arrows which illustrates the instructions.

Simply put, someone wishing to arrive at a designated location could insert the card into a card reader. The screen of the card reader would then display a series of arrows, with or without text, which direct the user to his final destination.

Another embodiment of the present invention relates to the pocket sized electronic card wherein a descriptor of the at least one navigational reference descriptors includes a graphic display formatted region of a photograph corresponding to a region surrounding the real world location for the navigational reference descriptor. As such, instead of text directions, a photograph of a specific location of the area surrounding the location may be stored in the card's memory. For example, for announcements of a ball game to be held at a large public park a picture of the park's southern entrance may be stored in the card's memory. A player wishing to come to the game would insert the card into a card reader and see a picture of the correct entrance, thus enabling him to recognize the entrance and know that he is headed in the correct direction. The playing field itself could then be identified by signs within the park. Alternatively, a catering hall located in a particularly scenic area may choose to advertise itself with such cards. Printed on the surface of the cards would be the location of and directions to the catering hall. Stored in the memory chip would be a picture of the view from the hall. When a customer considering using the hall inserted the card into a reader, he would see the scenery which can be viewed from the hall.
According to the first variation of the embodiment where the descriptor includes a photograph, the photograph is an aerial photograph. Thus, if a hotel wished to show its location relative to a nearby lake and to nearby mountains, it could print advertisement cards and include in the memory chip on the card an aerial photograph of the area surrounding the hotel. Customers inserting the card into a reader would be able to see the hotel’s location on the shore of the lake at the foot of the mountains.

According to the second variation of the embodiment where the descriptor includes a photograph, the photograph is of a landmark proximate to the real world location for the navigational reference descriptor. In this case, the photograph stored in the memory chip would not be of the location directly, but of a nearby landmark. For example, a hotel wishing to attract customers would send out cards which listed the hotel’s attractions, including its proximity to a known entertainment site nearby. The memory chip could then include a picture of the entertainment site. Alternatively, a business located across the street from a known landmark could direct people to its location by referring to the landmark. The street address of the business along with the instructions “across the street from the bell tower” would appear on the surface of the card, while the memory chip would include a picture of the bell tower. Thus, when a customer unsure of the location of the business inserts the card into a reader, he would see a picture of the landmark which he recognizes and to which he can easily obtain directions.

According to the first variation of the embodiment where the descriptor includes a photograph of a landmark, the landmark is portrayed substantially as seen when facing in the direction of the real world location for a descriptor of the at least one navigational reference descriptors. This variation refers specifically to a photograph of a landmark taken when facing the location to which the card is directing. A business which wanted to direct people to itself according to a landmark located next door to the business would include in the memory chip of its business cards a photograph of the landmark from the side. A customer, unsure of whether he has arrived at the correct building and unable to find the street address, would insert the card into a reader and see a photograph of the side of the landmark,
taken at the same angle the customer will be at when he enters the building which houses the business. Thus the customer is able to determine if he has chosen the building on the correct side of the landmark.
CLAIMS

1. A pocket sized electronic card including a solid-state memory media located in the card and a facile port means located substantially in the card, and the port means is interfaced to access data contents recorded in the media, and the data contents is characterized by including at least one navigational reference descriptor of a real world location.

2. The card according to claim 1 wherein a descriptor of the at least one navigational reference descriptors is directly transformable into a Geographic Information System location descriptor.

3. The card according to claim 1 wherein a descriptor of the at least one navigational reference descriptors is directly transformable into a Global Positioning System coordinate.

4. The card according to claim 1 wherein a descriptor of the at least one navigational reference descriptors includes a communications address affiliated with the real world location for the navigational reference descriptor.

5. The card according to claim 4 wherein the communications address is an Internet address.

6. The card according to claim 4 wherein the communications address is a telephone number.

7. The card according to claim 1 wherein the facile port means is a plug.

8. The card according to claim 1 wherein the facile port means is a socket.

9. The card according to claim 1 wherein the facile port means is a touch pads.
10. The card according to claim 1 wherein the facile port means is a proximity antenna.

11. The card according to claim 1 wherein the data contents includes fleet management transactional content which is associated with a pickup or a delivery or a service call, and the transactional content also relates to the real world location for a descriptor of the at least one navigational reference descriptors.

12. The card according to claim 1 wherein the data contents includes package identification transactional content which is associated with a package to be picked up at or delivered to the real world location for a descriptor of the at least one navigational reference descriptors.

13. The card according to claim 1 wherein an outside surface of the card includes a visible identification data content, and this content is selected from the list: bar code, text, photograph, hologram, magnetic data strip.

14. The card according to claim 1 wherein a descriptor of the at least one navigational reference descriptors includes a graphic display formatted region of a map corresponding to a region surrounding the real world location for the navigational reference descriptor.

15. The card according to claim 1 wherein a descriptor of the at least one navigational reference descriptors includes at least one sequence of routing instructions from a predetermined cartographic juncture to the real world for the navigational reference descriptor.

16. The card according to claim 1 wherein a descriptor of the at least one navigational reference descriptors includes a graphic display formatted region of
a photograph corresponding to a region surrounding the real world location for the navigational reference descriptor.

17. The card according to claim 16 wherein the photograph is an aerial photograph.

18. The card according to claim 16 wherein the photograph is of a landmark proximate to the real world location for the navigational reference descriptor.

19. The card according to claim 18 wherein the landmark is portrayed substantially as seen when facing in the direction of the real world location for a descriptor of the at least one navigational reference descriptors.
Pipe exploded.
123 W. 1st St.
Work Order #98

Figure 2
Figure 3

Package #444
Deliver to:
65 S. 2nd St.
Figure 4

EAT Pizza!!

$10 off any medium pizza at participating stores.
Take the Western freeway exit. Make the 2nd right turn. After 2 blocks, turn left. Make another left at the end of the block. We are located where the street ends.