wo 2017/030615 A1 [I 0000 Y O

(43) International Publication Date

(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(19) World Intellectual Property Ny
Organization é
International Bureau -,

=

\

(10) International Publication Number

WO 2017/030615 A1l

(51

eay)

(22)

(25)
(26)
(30)

1

(72

74

International Filing Date:
20 May 2016 (20.05.2016)

Filing Language: English
Publication Language: English
Priority Data:

62/205,282 14 August 2015 (14.08.2015) US
15/054,755 26 February 2016 (26.02.2016) US

Applicant: ORACLE INTERNATIONAL CORPORA-
TION [US/US]; 500 Oracle Parkway, Mail Stop 50OP7,
Redwood Shores, California 94065 (US).

Inventors: STRAUB, Christian David; 814 Altaire Walk,
Palo Alto, California 94043 (US). LIU, Peter; 510 Shan-
non Way, Apt. #2202, Redwood City, California 94065
(US). SUBRAMANIAM, Pavitra, 968 Pecarl Street,
Alameda, California 94501 (US).

Agents: SHAFIEE, Shabnam et al.; Miles & Stockbridge
P.C., 1751 Pinnacle Drive, Suite 1500, Tysons Corner,
Virginia 22102 (US).

23 February 2017 (23.02.2017) WIPO I PCT
International Patent Classification: (81)
GO6F 17/30 (2006.01)

International Application Number:
PCT/US2016/033422

(84)

Designated States (uniess otherwise indicated, for every
kind of national protection available). AE, AG, AL, AM,
AO, AT, AU, AZ, BA, BB, BG, BH, BN, BR, BW, BY,
BZ, CA, CH, CL, CN, CO, CR, CU, CZ, DE, DK, DM,
DO, DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, GT,
HN, HR, HU, ID, IL, IN, IR, IS, JP, KE, KG, KN, KP, KR,
KZ, LA, LC, LK, LR, LS, LU, LY, MA, MD, ME, MG,
MK, MN, MW, MX, MY, MZ, NA, NG, NI, NO, NZ, OM,
PA, PE, PG, PH, PL, PT, QA, RO, RS, RU, RW, SA, SC,
SD, SE, SG, SK, SL, SM, ST, SV, SY, TH, TJ, TM, TN,
TR, TT, TZ, UA, UG, US, UZ, VC, VN, ZA, ZM, ZW.

Designated States (uniess otherwise indicated, for every
kind of regional protection available): ARIPO (BW, GH,
GM, KE, LR, LS, MW, MZ, NA, RW, SD, SL, ST, SZ,
TZ, UG, ZM, ZW), Eurasian (AM, AZ, BY, KG, KZ, RU,
TJ, TM), European (AL, AT, BE, BG, CH, CY, CZ, DE,
DK, EE, ES, FI, FR, GB, GR, HR, HU, IE, IS, IT, LT, LU,
LV, MC, MK, MT, NL, NO, PL, PT, RO, RS, SE, SI, SK,
SM, TR), OAPI (BF, BJ, CF, CG, CI, CM, GA, GN, GQ,
GW, KM, ML, MR, NE, SN, TD, TG).

Published:

with international search report (Art. 21(3))

(54) Title: RESTORATION OF UI STATE IN TRANSACTIONAL SYSTEMS

(57) Abstract: A system restores a user interface
("UI") state. The system receives an action performed

900 \'

APPLICATION DEVELOPMENT SERVER

904

by a user that interacts with a Ul, and determines a
transaction based on the action, where the transaction
is configured to modify a model corresponding to the
UL The system stores a first Ul state of the Ul and a
first model state of the model, and then commits the
transaction. The system subsequently determines to
undo the transaction based on a first user interaction.

WEB BROWSER L

The system then restores the UI to the first UI state
and the model to the first model state. In one embodi-
ment, the first model state is restored before undoing
the transaction, while the first Ul state is restored
atter undoing the transaction.

902 [

A

REMOTE QUEUE
908

Y

APPLICATION ~

DEVELOPMENT

A

WEBSITE
910

LOCAL QUEUE
906

FIG. 9

WO 2017/030615 PCT/US2016/033422

RESTORATION OF Ul STATE IN TRANSACTIONAL SYSTEMS

CROSS-REFERENCE TO RELATED APPLICATIONS

[0001] This application claims priority of U.S. Provisional App. No.
62/205,282, filed August 14, 2015, entitled “RESTORATION OF Ul STATE IN
TRANSACTIONAL SYSTEMS,” the disclosure of which is hereby incorporated by

reference.

FIELD

[0002] One embodiment is directed generally to a system that provides user
interface (“UI”) restoration functionality, and in particular, to a transactional system
that provides Ul restoration functionality.

BACKGROUND INFORMATION

[0003] Generally, ubiquitous mobile services and wireless connections drive
the demand for mobile device applications (commonly referred to as “apps”) for
various personal and business needs. Such demand in turn leads to the desirability
of mobile application development platforms/means that simplify and expedite mobile
application development and modification, while also allowing for sophisticated
application features and ensuring that business security is not compromised.

SUMMARY

[0004] One embodiment is a system that restores a user interface (“UI”) state.
The system receives an action performed by a user that interacts with a Ul, and
determines a transaction based on the action, where the transaction is configured to
modify a model corresponding to the Ul. The system stores a first Ul state of the Ul
and a first model state of the model, and then commits the transaction. The system
subsequently determines to undo the transaction based on a first user interaction.
The system then restores the Ul to the first Ul state and the model to the first model
state. In one embodiment, the first model state is restored before undoing the

transaction, while the first Ul state is restored after undoing the transaction.

-1 -

WO 2017/030615 PCT/US2016/033422

BRIEF DESCRIPTION OF THE DRAWINGS

[0005] Fig. 1 is a block diagram of a system for developing applications that
use mobile cloud services, in accordance with an embodiment of the present
invention.

[0006] Fig. 2 is a block diagram of a computing environment to facilitate
communication between a mobile computing device and enterprise computer
systems according to some embodiments of the present invention.

[0007] Fig. 3 illustrates a mobile application springboard in accordance with
an embodiment of the present invention.

[0008] Figs. 3A and 3B illustrate a mobile application user interface (“UI”) in
accordance with an embodiment of the present invention.

[0009] Fig. 4 is a block diagram of a mobile application framework runtime
architecture in accordance with embodiments of the present invention.

[0010] Fig. 5 is a block diagram of a system for developing mobile
applications in a mobile cloud infrastructure in accordance with embodiments of the
present invention.

[0011] Fig. 6 is a block diagram of network components in a system for
building mobile applications in accordance with embodiments of the present
invention.

[0012] Fig. 7 is a block diagram of mobile security suite components in
accordance with embodiments of the present invention.

[0013] Fig. 8 is a flow diagram of mobile application development in
accordance with embodiments of the present invention.

[0014] Fig. 9 is a block diagram of a system for web application development
in accordance with embodiments of the present invention.

[0015] Fig. 10 is a flow diagram of autosave functionality in accordance with
embodiments of the present invention.

[0016] Fig. 11 illustrates an example user interface (“Ul”) according to one
embodiment.

[0017] Fig. 12 illustrates example commit, undo, and redo flows according to
some embodiments.

[0018] Fig. 13 is a flow diagram of Ul restoration functionality in accordance

-o.

WO 2017/030615 PCT/US2016/033422

with embodiments of the present invention.

DETAILED DESCRIPTION

[0019] An application refers to a software program, which on execution
performs specific desired tasks. In general, several applications are executed in a
run-time environment containing one or more operating systems (“OSs”), virtual
machines (e.g., supporting Java™ programming language), device drivers, etc.
Developers often use Application Development Frameworks (“ADFs”) (which are by
themselves applications) for implementing/developing desired applications. An ADF
provides a set of pre-defined code/data modules that can be directly/indirectly used
in the development of an application. An ADF may also provide tools such as an
integrated development environment (“IDE”), code generators, debuggers, etc. In
general, an ADF simplifies application development by providing re-usable
components which can be used by application developers to define user interfaces
(“Uls™) and application logic by, for example, selecting components to perform
desired tasks and defining the appearance, behavior, and interactions of the
selected components. Some ADFs, such as “Oracle ADF” from Oracle Corp., are
based on a model-view-controller (“MVC”) design pattern that promotes loose
coupling and easier application development and maintenance.

[0020] Generally, many companies have expressed the need to allow their
employees to access secure enterprise applications with mobile devices from off-site
locations, so that on-the-go employees can access information that is stored on
enterprise computer systems. With such capabilities, salespeople may work from
the road, service technicians may look up parts while at a customer site, employees
may work from home, etc. Some companies would also like to allow end customers
to access data located in enterprise computer systems. Such access may
differentiate a company from competitors by improving the customer experience and
lowering costs. For example, by implementing such access, a store may allow
customers to remotely search store inventory for an item and shop whenever
convenient, thereby improving customer experience and lowering the need for
salespeople, operators, and other staff.

[0021] Different enterprise application vendors have traditionally fulfilled this

need by offering specialized portals in combination with either company owned

-3-

WO 2017/030615 PCT/US2016/033422

secure mobile devices or custom mobile applications. However, with the current
explosion in the variety of available personal mobile devices, these traditional
solutions quickly become obsolete since vendors simply cannot keep up with all the
latest OSs and hardware that become available.

[0022] Further, an application may need to connect and synchronize with
different enterprise computer systems depending on the application type and/or the
type of data used by the application. These enterprise computer systems may be
supported by different backend computer systems which may also vary based on
application type and data type. However, different backend enterprise systems may
use different communication protocols and mechanisms to communicate data to
devices, thereby causing mobile computing devices that run a variety of applications
to encounter challenges for communicating with different backend computer systems
that support an enterprise computer system.

[0023] Yet further, security may become a concern in allowing access to
internal computer systems of an enterprise. The differences in communication
protocols supported between the mobile computing devices and the enterprise
computer systems may further complicate security access management for
communications between mobile computing devices and enterprise computer
systems. For example, different mechanisms may be implemented to ensure
authentication of an application to access a particular enterprise computer system
that has a proprietary security protocol. Some known systems have attempted to
address this issues by connecting off-the-shelf consumer mobile devices with
backend enterprise systems of companies. These devices may be configured with
applications or OSs that connect to an enterprise network through special portals
dedicated to communication with enterprise backend computer systems. However,
manufacturers of mobile devices, application developers, and enterprises may
benefit from more flexible and robust techniques for developing applications and
connecting mobile devices to enterprise backend computer systems.

[0024] In contrast to the known systems, embodiments of the present
invention provide a declarative browser based client application development tool for
rapid business user friendly mobile application composition in a “cloud” service. In
one embodiment, the cloud service is “Mobile Cloud Service” (“MCS”) from Oracle
Corp. Embodiments allow for building mobile applications using pre-defined

-4 -

WO 2017/030615 PCT/US2016/033422

templates that use the cloud service for backend services, so that a service definition
can be presented to a developer during application development to allow for rapid
connection between Ul design and backend services.

MCS

[0025] In embodiments that use MCS, MCS facilitates communication
between a mobile computing device and enterprise computer systems via a cloud
computer system. MCS uses a third party cloud based interface between mobile
devices and an enterprise network of a company. The cloud based interface
centralizes secure adaptors for various enterprise computer systems, and translates
different protocols to a standardized Representational State Transfer (“REST”)
architecture. Companies can use embodiments of the present invention to create
their own custom mobile applications using available tools on MCS, and such
applications can be downloaded in native form onto mobile user devices. Once an
application is installed, it can access the cloud based interface of MCS to reach
various enterprise computer systems through the secure adaptors provided by MCS.

[0026] For application development in embodiments that use MCS, MCS
provides backend services under the Mobile Backend as a Service (“MBaaS,” also
referred to as “BaaS”) model. MBaaS allows Web and mobile application developers
to link their applications to backend cloud storage and APIs exposed by backend
applications while also providing user management, push notifications, integration
with social networking services, etc. By using backend services provided in MCS
under the MBaaS model, embodiments provide a declarative Web-based Ul
configured for mobile application development by non-technical users with no
familiarity with coding.

[0027] In one embodiment, a wizard is launched when a user starts
developing a new application, and the user is asked to give a name and description
for the new application. Then, the user is asked to design the first page of the
application by selecting from a set of pre-defined templates (e.g., tabs, bottom tabs,
pagination, etc.) that can pre-seed the Ul for the first page. The Ul is then completed
by specifying details in the template, while a preview is automatically updated to
show the changes. Upon completing the Ul design, the user can use a palette to
browse a catalog of available services and data sources that are available to the
mobile application through MCS (e.g., a service catalog). For each item of the

-5-

WO 2017/030615 PCT/US2016/033422

catalog that is added to the Ul, the user is presented with a list of attributes, and
using one or more gestures (e.g., drag and drop, etc.) the user can bind the
attributes to Ul elements. The user can repeat the process of feature definition and
data-binding to create a mobile application. Other Ul components such as maps,
graphs, etc., can also be added to the Ul. When the application is ready for testing,
the user may publish the application so that corresponding binaries are created
(building native executables for iOS, Android, or any other mobile device OS), and a
Quick Response (“QR”) code is subsequently generated and provided to the user. If
the user scans the QR code by a mobile device, the application is installed over the
air onto the mobile device.

[0028] Embodiments use pre-built components in an ADF. The components
offer data interaction, data visualization, and encapsulated browser side operations,
and simplify rich client application development. ADF may also implement a plugin
such as Apache Cordova plugin to access device features such as a camera, Global
Positioning System (“GPS”), contacts, etc.

[0029] In one embodiment, when an ADF receives a request to build an
application for a mobile device, it determines portions of one or more already
developed applications that have been precompiled using a toolkit, and modifies
declarative information associated with those existing applications. This
embodiment then builds the requested application based on the modified declarative
information and one or more binary artifacts of the existing applications by packaging
the binary artifacts representing the requested application for a desired operating
system (“OS,” such as iOS, Android, etc.). The ADF then compiles the requested
application to generate one or more binary artifacts and a set of definition files. In
end-user development, an artifact is an application or a complex data object that is
created by an end-user without the need to know a programming language.

MOBILE SECURITY

[0030] Some embodiments use security services provided by a mobile

security suite such as “Oracle Mobile Security Suite” (“OMSS”) from Oracle Corp.
OMSS is a mobile device and mobile application security solution that provides an
employee-centric, comprehensive Enterprise Mobility Management (“EMM?”) solution
and a consumer-centric mobile and social service. EMM provides mobile device
management (“MDM”), mobile application management (“MAM”), mobile content

-6 -

WO 2017/030615 PCT/US2016/033422

management (“MCM”), and mobile identity policies by seamlessly tying to existing
user identities and leveraging advanced features of the enterprise backend identity
management infrastructure for mobile access. Security policies, adhering to
corporate needs, can be defined to enforce a complete device lock down (typically
for corporate owned devices) and/or to separate personal applications from secure
“containerized” corporate applications and data (for bring your own device (“BYOD”)
cases). A mobile and social service provides a software development kit (“SDK”)
allowing corporate developers to secure custom enterprise applications for iOS and
Android devices, bridging the gap between mobile devices, social networks, and
enterprise backend identity management infrastructure.

[0031] OMSS delivers a secure container to a mobile device for application
and content security to separate, protect, and wipe corporate applications and data.
All communication between the mobile device and enterprise intranet resources
goes through an authenticated transport layer security (“TLS”) /secure socket layer
(“SSL”) tunnel (“AppTunnel”) that can only be used by vetted (or “containerized”)
applications of the mobile device. The AppTunnel is terminated at a Mobile Security
Access Server located at the corporate demilitarized zone (“DMZ”). This server
offers secure Intranet access to mobile devices and terminates only the AppTunnel
from the secure container, thereby lessening the risk of rogue applications and the
need for device level VPN.

[0032] Leveraging what is provided by an ADF, embodiments provide browser
based application development, which does not require coding and which easily
maps to business services. Embodiments also allow for previewing an application
inline (e.g., as the application is being developed), as well as editing, testing, and
publishing an application from a browser. Accordingly, instead of an IDE such as
“Jdeveloper” from Oracle Corp. that is configured for use by professional developers,
embodiments are configured for use by business users (e.g., non-technical users).

SERVICE CATALOG

[0033] To support embodiments of the present invention that use MCS, MCS

provides access to an API catalog such as “Oracle API Catalog” (“OAC”) from Oracle
Corp. OAC provides visibility to available APIs in an organization so those APIs may
be reused for application development. OAC includes a simple metamodel for an
API asset, automation to populate OAC with APIs, and the ability for users to search

-7 -

WO 2017/030615 PCT/US2016/033422

OAC for APIs and understand the details of the APIs to assess their fit in their
applications. OAC includes a harvester that creates APl assets in OAC. In some
embodiments, harvesting is performed at build time of projects. The harvester
introspects deployed services and creates APl assets representing services
discovered in the project such as service oriented architecture (“SOA”) Services and
Service Bus proxies, Web Services Description Language (“WSDL”) based Web
services, and Web Application Description Language (“WADL”) based REST
services. The created assets are collected in OAC.

[0034] After the API assets are created by the harvester, curators edit the API
assets using a simple editor to provide additional metadata to facilitate the discovery
and understanding of the APIs. Curators can change the name, add a description,
tag keywords, or add document references to the API assets in OAC. This metadata
simplifies discovery and understanding of each API asset by a user. After the API
metadata is edited, curators publish the APl by making it visible to users in OAC.
Published assets are available in the OAC console and via the Oracle JDeveloper
Oracle Enterprise Repository plug-in. Users can search OAC to discover APIs and
review the metadata provided by the curator to learn more about an API.

[0035] Each OAC user is assigned a role which determines which OAC
features and content are available for each user. There are predefined roles in OAC
including developer, curator, and admin. Users with the developer role have the
ability to search OAC for published APls, examine the API metadata to better
understand the API, declare interest in the API, and submit ratings and reviews for
an API. In addition to the capabilities available to the developer role, users with the
curator role can run the harvester to create new API assets in OAC, edit the APIs to
update their metadata, and publish them. In addition to the capabilities available to
curators and developers, users with the admin role have access to an Admin page in
OAC to administer the infrastructure of OAC by editing system settings, creating new
users, creating new departments, managing sessions, and using the import/export
tool. Admins can also configure security features included with OAC.

[0036] In some embodiments, an application may be developed and deployed
to a mobile device as either a native application or a hosted application. For native
application deployment, a complete application is installed on the device. For hosted
application development, a user needs to download a hosting application from an

-8-

WO 2017/030615 PCT/US2016/033422

“app store,” where such hosting application “hosts” the hosted applications that will
be installed as “features” onto the hosting application. This embodiment may allow
for updating a running hosting application from a server, such that declarative
metadata can be sent to the device and overlaid on top of the existing application to
update the application to run against this new metadata.

[0037] Fig. 1 is a block diagram of a system environment 100 for developing
applications by using pre-defined templates that allow for use of MCS 122 as
backend services. A service definition can be presented to a user during application
development allowing rapid connection between Ul design and backend services.

[0038] In the illustrated embodiment, system environment 100 includes cloud
infrastructure system 102 that provides cloud services to one or more client
computing devices 104, 106, and 108. Client computing devices 104, 106, and 108
may be used by users to interact with cloud infrastructure system 102. Client
computing devices 104, 106, and 108 may be configured to operate a client
application such as a Web browser, a proprietary client application (e.g., Oracle
Forms), or some other application, which may be used by a user of the client
computing device to interact with cloud infrastructure system 102 to use services
provided by cloud infrastructure system 102.

[0039] Cloud infrastructure system 102 may have other components than
those depicted. Further, the embodiment shown in Fig. 1 is only one example of a
cloud infrastructure system that may incorporate an embodiment of the invention. In
some other embodiments, cloud infrastructure system 102 may have more or fewer
components than shown in FIG. 1, may combine two or more components, or may
have a different configuration or arrangement of components.

[0040] Client computing devices 104, 106, and 108 may be portable handheld
devices (e.g., an iPhone®, cellular telephone, an iPad®, computing tablet, a
personal digital assistant (“PDA”)) or wearable devices (e.g., a Google Glass® head
mounted display), running software such as Microsoft Windows Mobile®, and/or a
variety of mobile OSs such as iOS, Windows Phone, Android, BlackBerry 10, Palm
OS, and the like, and being Internet, e-mail, short message service (“SMS”),
Blackberry®, or other communication protocol enabled. Client computing devices
104, 106, and 108 can be general purpose personal computers including, by way of

example, personal computers and/or laptop computers running various versions of

-9-

WO 2017/030615 PCT/US2016/033422

Microsoft Windows®, Apple Macintosh®, and/or Linux OSs. Client computing
devices 104, 106, and 108 can be workstation computers running any of a variety of
commercially-available UNIX® or UNIX-like OSs, including without limitation the
variety of GNU/Linux OSs, such as for example, Google Chrome OS. Alternatively,
or in addition, client computing devices 104, 106, and 108 may be any other
electronic device, such as a thin-client computer, an Internet-enabled gaming system
(e.g., a Microsoft Xbox gaming console with or without a Kinect® gesture input
device), and/or a personal messaging device, capable of communicating over
network(s) 110.

[0041] Although exemplary system environment 100 is shown with three client
computing devices, any number of client computing devices may be supported.
Other devices such as devices with sensors, etc., may interact with cloud
infrastructure system 102.

[0042] Network(s) 110 may facilitate communications and exchange of data
between clients 104, 106, and 108 and cloud infrastructure system 102. Network(s)
110 may be any type of network familiar to those skilled in the art that can support
data communications using any of a variety of commercially-available protocols,
including without limitation transmission control protocol/Internet protocol (“TCP/IP?),
systems network architecture (“SNA”), Internet packet exchange (“IPX”), AppleTalk,
etc. Merely by way of example, network(s) 110 can be a local area network (“LAN”),
such as one based on Ethernet, Token-Ring and/or the like. Network(s) 110 can be
a wide-area network and the Internet. It can include a virtual network, including
without limitation a virtual private network (“VPN”), an intranet, an extranet, a public
switched telephone network (“PSTN”), an infra-red network, a wireless network (e.g.,
a network operating under any of the Institute of Electrical and Electronics (“IEEE”)
802.11 suite of protocols, Bluetooth®, and/or any other wireless protocol); and/or any
combination of these and/or other networks.

[0043] Cloud infrastructure system 102 may comprise one or more computers
and/or servers. These computer systems or servers may be composed of one or
more general purpose computers, specialized server computers (including, by way of
example, personal computer(“PC”) servers, UNIX® servers, mid-range servers,
mainframe computers, rack-mounted servers, etc.), server farms, server clusters, or

any other appropriate arrangement and/or combination. In various embodiments,

-10 -

WO 2017/030615 PCT/US2016/033422

one or more computer systems or servers associated with cloud infrastructure
system 102 may be adapted to run one or more services or software applications
described in the foregoing disclosure. For example, one or more computer systems
or servers associated with cloud infrastructure system 102 may correspond to a
server for performing processing described herein according to an embodiment of
the present disclosure.

[0044] One or more computer systems or servers associated with cloud
infrastructure system 102 may run an OS including any of those discussed above, as
well as any commercially available server OS. One or more computer systems or
servers associated with cloud infrastructure system 102 may also run any of a
variety of additional server applications and/or mid-tier applications, including
hypertext transport protocol (“HTTP”) servers, file transfer protocol (“FTP”) servers,
common gateway interface (“CGI”) servers, JAVA® servers, database servers, and
the like.

[0045] In certain embodiments, services provided by cloud infrastructure
system 102 may include a host of services that are made available to users of cloud
infrastructure system 102 on demand, such as online data storage and backup
solutions, Web-based e-mail services, hosted office suites and document
collaboration services, database processing, managed technical support services,
and the like. Services provided by cloud infrastructure system 102 can dynamically
scale to meet the needs of its users. A specific instantiation of a service provided by
cloud infrastructure system 102 is referred to herein as a “service instance.” In
general, any service made available to a user via a communication network, such as
the Internet, from a cloud service provider’s system is referred to as a “cloud
service.” Typically, in a public cloud environment, servers and systems that make up
the cloud service provider’s system are different from the customer’s own on-
premises servers and systems. For example, a cloud service provider’'s system may
host an application, and a user may, via a communication network such as the
Internet, on demand, order and use the application.

[0046] In some examples, a service instance instantiated by cloud
infrastructure 102 may include protected computer network access to storage, a
hosted database, a hosted Web server, a software application, or other service
provided by a cloud vendor to a user, or as otherwise known in the art. For example,

-11 -

WO 2017/030615 PCT/US2016/033422

a service instance instantiated by cloud infrastructure 102 can include password-
protected access to remote storage on the cloud through the Internet. As another
example, a service instance instantiated by cloud infrastructure 102 can include a
Web service-based hosted relational database and a script-language middleware
engine for private use by a networked developer. As another example, a service
instance instantiated by cloud infrastructure 102 can include access to an email
software application hosted on a cloud vendor’'s Web site.

[0047] In certain embodiments, cloud infrastructure system 102 may include a
suite of applications, middleware, development service, and database service
offerings that are delivered to a customer in a self-service, subscription-based,
elastically scalable, reliable, highly available, and secure manner. An example of
such a cloud infrastructure system as embodied in cloud infrastructure service 102 is
“Oracle Public Cloud” from Oracle Corp.

[0048] Cloud infrastructure system 102 may provide the cloud services via
different deployment models. For example, services may be provided under a public
cloud model in which cloud infrastructure system 102 is owned by an organization
selling cloud services (e.g., owned by Oracle Corp.) and the services are made
available to the general public or different industry enterprises. As another example,
services may be provided under a private cloud model in which cloud infrastructure
system 102 is operated solely for a single organization and may provide services for
one or more entities within the organization. The cloud services may also be
provided under a community cloud model in which cloud infrastructure system 102
and the services provided by cloud infrastructure system 102 are shared by several
organizations in a related community. The cloud services may also be provided
under a hybrid cloud model, which is a combination of two or more different models.

[0049] In some embodiments, the services provided by cloud infrastructure
system 102 may include one or more services provided under software as a service
(“SaaS”) category, platform as a service (“PaaS”) category, infrastructure as a
service (“laaS”) category, MBaaS category, or other categories of services including
hybrid services. In some embodiments, the services provided by cloud infrastructure
system 102 may include, without limitation, application services, platform services,
infrastructure services, backend services, etc. In some examples, application

services may be provided by cloud infrastructure system 102 via a SaaS platform.

-12-

WO 2017/030615 PCT/US2016/033422

The Saa$S platform may be configured to provide cloud services that fall under the
SaaS category. For example, the SaaS platform may provide capabilities to build
and deliver a suite of on-demand applications on an integrated development and
deployment platform. The SaaS platform may manage and control the underlying
software and infrastructure for providing the Saa$S services. By utilizing the services
provided by the SaaS platform, customers can utilize applications executing on the
cloud infrastructure system. Customers can acquire the application services without
the need for customers to purchase separate licenses and support. Various different
SaaS services may be provided. Examples include, without limitation, services that
provide solutions for sales performance management, enterprise integration, and
business flexibility for large organizations.

[0050] In some embodiments, platform services may be provided by cloud
infrastructure system 102 via a Paa$S platform. The PaaS platform may be
configured to provide cloud services that fall under the Paa$S category. Examples of
platform services may include without limitation services that enable organizations
(such as Oracle) to consolidate existing applications on a shared, common
architecture, as well as the ability to build new applications that leverage the shared
services provided by the platform. The Paa$S platform may manage and control the
underlying software and infrastructure for providing the Paa$S services. Customers
can acquire the PaaS services provided by cloud infrastructure system 102 without
the need for customers to purchase separate licenses and support. Examples of
platform services include, without limitation, “Oracle Java Cloud Service” (“JCS”)
from Oracle Corp., “Oracle Database Cloud Service” (“DBCS”) from Oracle Corp.,
and others.

[0051] By utilizing the services provided by the PaaS platform, customers can
employ programming languages and tools supported by cloud infrastructure system
102 and also control the deployed services. In some embodiments, platform
services provided by cloud infrastructure system 102 may include database cloud
services, middleware cloud services (e.g., Oracle Fusion Middleware services), and
Java cloud services. In one embodiment, database cloud services may support
shared service deployment models that enable organizations to pool database
resources and offer customers a Database as a Service in the form of a database
cloud. Middleware cloud services may provide a platform for customers to develop

-13 -

WO 2017/030615 PCT/US2016/033422

and deploy various business applications, and Java cloud services may provide a
platform for customers to deploy Java applications, in the cloud infrastructure
system.

[0052] Various different infrastructure services may be provided by an laaS
platform in cloud infrastructure system 102. The infrastructure services facilitate the
management and control of the underlying computing resources, such as storage,
networks, and other fundamental computing resources for customers utilizing
services provided by the SaaS platform and the PaaS platform.

[0053] In certain embodiments, cloud infrastructure system 102 may provide
comprehensive management of cloud services (e.g., SaaS, PaaS, laaS, and MBaaS
services) in the cloud infrastructure system. In one embodiment, cloud management
functionality may include capabilities for provisioning, managing and tracking a
customer’s subscription received by cloud infrastructure system 102, and the like. In
various embodiments, cloud infrastructure system 102 may be adapted to
automatically provision, manage and track a customer’s subscription to services
offered by cloud infrastructure system 102. A customer, via a subscription order,
may order one or more services provided by cloud infrastructure system 102. Cloud
infrastructure system 102 then performs processing to provide the services in the
customer’s subscription order.

[0054] In one embodiment, cloud management functionality may be provided
by one or more modules, such as order management and monitoring module 114.
These modules may include or be provided using one or more computers and/or
servers, which may be general purpose computers, specialized server computers,
server farms, server clusters, or any other appropriate arrangement and/or
combination.

[0055] In exemplary operation, a customer using client computing devices
104, 106 or 108, may interact with cloud infrastructure system 102 by requesting one
or more services provided by cloud infrastructure system 102. The customer may
issue service request 134 cloud infrastructure system 102 using a variety of means.
Service request 134 may include placing an order for a subscription for one or more
services offered by cloud infrastructure system 102, accessing one or more services
offered by cloud infrastructure system 102, or the like. In certain embodiments, the
customer may access a cloud Ul 132, 134, 138, and place a subscription order via

-14 -

WO 2017/030615 PCT/US2016/033422

these Uls. The order information received by cloud infrastructure system 102 in
response to the customer placing an order may include information identifying the
customer and one or more services offered by the cloud infrastructure system 102 to
which the customer intends to subscribe. After an order has been placed by the
customer, the order information is received via cloud Uls, 132, 134, and/or 138.

[0056] In this example, order management and monitoring module 112 sends
information received from a customer to an order database to have the order placed
by the customer stored. The order database can be one of several databases
operated by cloud infrastructure system 102 and operated in conjunction with other
system elements. Order management and monitoring module 112 may forward
information that includes all or part of the order information stored in the order
database to an order management module. In some instances, the order
management module may be configured to perform billing and accounting functions
related to the order, such as verifying the order, and upon verification, booking the
order.

[0057] In certain embodiments, cloud infrastructure system 100 may include
identity management module 114. Identity management module 114 may be
configured to provide identity services, such as access management and
authorization services in cloud infrastructure system 102. In some embodiments,
identity management module 114 may control information about customers who wish
to utilize the services provided by cloud infrastructure system 102. Such information
can include information that authenticates the identities of such customers and
information that describes which actions those customers are authorized to perform
relative to various system resources (e.g., files, directories, applications,
communication ports, memory segments, etc.) Identity management module 114
may also include the management of descriptive information about each customer
and about how and by whom that descriptive information can be accessed and
modified.

[0058] In certain embodiments, cloud infrastructure system 102 may also
include infrastructure resources 116 for providing the resources used to provide
various services to customers of cloud infrastructure system 102. In one
embodiment, infrastructure resources 116 may include pre-integrated and optimized

combinations of hardware, such as servers, storage, and networking resources to

-15 -

WO 2017/030615 PCT/US2016/033422

execute the services provided by the PaaS platform and the Saa$S platform.

[0059] In some embodiments, resources in cloud infrastructure system 102
may be shared by multiple users and dynamically re-allocated per demand.
Additionally, resources may be allocated to users in different time zones. For
example, cloud infrastructure system 102 may enable a first set of users in a first
time zone to utilize resources of the cloud infrastructure system for a specified
number of hours and then enable the re-allocation of the same resources to another
set of users located in a different time zone, thereby maximizing the utilization of
resources.

[0060] In certain embodiments, a number of internal shared services 118 may
be provided that are shared by different components or modules of cloud
infrastructure system 102 and by the services provided by cloud infrastructure
system 102. These internal shared services 118 may include, without limitation, a
security and identity service, an integration service, an enterprise repository service,
an enterprise manager service, a virus scanning and white list service, a high
availability, backup and recovery service, service for enabling cloud support, an
emalil service, a notification service, a file transfer service, and the like.

[0061] In certain embodiments, a number of external shared services 120
may be provided that are shared by different components or modules of cloud
infrastructure system 102 and by the services provided by cloud infrastructure
system 102. These external shared services 120 may include, without limitation, a
security and identity service, an integration service, an enterprise repository service,
an enterprise manager service, a virus scanning and white list service, a high
availability, backup and recovery service, service for enabling cloud support, an
emalil service, a notification service, a file transfer service, and the like.

[0062] In various embodiments, external shared services 120 may include
one or more components that provide access, data transformation, automation, or
the like to enterprise computer system(s) 126. Access to enterprise computer
system(s) 126 may be shared by different components or modules of cloud
infrastructure system 102 and by the services provided by cloud infrastructure
system 102. In some embodiments, access to enterprise computer system(s) 126
may be shared by service instances provided by cloud infrastructure system 102 that

are restricted to one or more subscribers.

-16 -

WO 2017/030615 PCT/US2016/033422

[0063] In further embodiments, external shared services 120 may include
external application programming interface (“API”) services 128 that are shared by
different components or modules of cloud infrastructure system 102 and by the
services provided by cloud infrastructure system 102. These external API services
128 may include, without limitation, APls provided by other third party services or
entities.

[0064] Various different mobile cloud services may be provided by MCS 122
in cloud infrastructure system 102. MCS 122 facilitates communication between a
mobile computing device and enterprise computer systems (e.g., enterprise
computer systems 124 and 126) according to some embodiments of the present
invention. MCS 122 may include one or more memory storage devices (“local
storage”) used to store enterprise data and authentication information. Enterprise
data may be received from enterprise computer systems 126 or from client
computing devices 104, 106, or 108 or may include enterprise data converted by
cloud infrastructure system 102, or combinations thereof. Authentication information
may be received from identity management system 116 and/or generated by cloud
infrastructure system 102. In some embodiments, authentication information may
include information indicating security authentication of a user with regard to a
request for a service.

[0065] Enterprise computer systems, such as enterprise computer systems
126 may be physically located beyond a firewall of cloud infrastructure system 102 at
a different geographic location (e.g., remote geographic location) than cloud
infrastructure system 102. In some embodiments, enterprise computer systems 126
may include one or more different computers or servers. In some embodiments,
enterprise computer systems 126 may be part of a single computer system.

[0066] In certain embodiments, enterprise computer systems 126 may
communicate with cloud infrastructure system 102 using one or more different
protocols. Each of enterprise computer systems 126 may communicate with cloud
infrastructure system 102 using a different communication protocols. Enterprise
computer systems 126 may support the same or different security protocols. In
some embodiments, MCS 122 may include an agent system to handle
communication with enterprise computer systems 126.

[0067] A protocol may include a communication protocol, such as SPeeDY

-17 -

WO 2017/030615 PCT/US2016/033422

(“SPDY”). A protocol may include an application protocol such as an HTTP-based
protocol. In some embodiments, enterprise computer systems 126 may
communicate with cloud infrastructure system 102 using a communication protocol
such as REST or Simple Object Access Protocol (“SOAP”). For example, REST
protocol may support a formats including uniform resource identifier (“URI”) or
uniform resource locator (“URL”). Enterprise Data formatted for communication
using REST protocol may be easily converted to data formats such as JavaScript
Object Notation (“JSON”), comma-separated values (“CSV”), and really simple
syndication (“RSS”). Enterprise computer systems 126 and cloud infrastructure
system 102 may communicate using other protocols such as remote procedure calls
(“RPC”) (e.g., extended markup language (“XML”} RPC).

[0068] In some embodiments, MCS 122 may include an adaptor interface
configured to support communication with one or more services provided by cloud
infrastructure service 102, some of which may support different protocols or
techniques for communications. In some embodiments, MCS 122 may include an
adaptor interface configured to support communication with enterprise computer
systems 126, some of which may support different protocols or techniques for
communications. MCS 122 may include one or more adaptors each of which may
be configured to communicate according to a communication protocol, a type of
enterprise computer system, a type of application, a type of service, or combinations
thereof. A communication protocol supported by an adaptor may be specific to a
service or one or more of enterprise computer systems 126.

[0069] In certain embodiments, client computing devices 104, 106, and 108
may each implement an application that can provide specific Uls to communicate
with MCS 122. A specific Ul may be configured to communicate using a specific
communication protocol. In some embodiments, specific Uls may include callable
interfaces, functions, routines, methods, and/or operations that may be invoked to
communicate with MCS 122. Specific Uls may accept as input parameters for
communicating with a service provided by cloud infrastructure service 102 or with
enterprise computer systems 126 for enterprise data and/or to request a service. In
some embodiments, communication through MCS 122 may be converted for
communication using a custom communication protocol. In some embodiments,

specific Uls may correspond to a custom client in an application.

-18 -

WO 2017/030615 PCT/US2016/033422

[0070] MCS 122 may include one or more callable interfaces, e.g., an API.
Callable interfaces associated with MCS 122 may enable an application on a mobile
computing device to communicate requests to MCS 122. Callable interfaces
associated with MCS 122 may support a common or standard interface, which may
allow requests including their parameters to be received from apps according to a
standardized protocol, architectural style, and/or format (e.g., a REST protocol).
Callable interfaces associated with MCS 122 may be configurable by a user of any
one of computing devices 104, 106, or 108. Callable interfaces associated with MCS
122 may receive requests for services according to a communication protocol.
Device application developers can connect to MCS 122 for their custom applications.
In some embodiments, a callable interface associated with MCS 122 may be
configured by the same person that develops an app, such that the person can
implement a custom application to communicate with MCS 122.

[0071] Callable interfaces associated with MCS 122 may further enable
enterprise computer systems 126 to communicate with MCS 122 according to a
standardized protocol or format. Similar to application developers, those who
manage enterprise computer systems can implement code (e.g., an agent system)
that is configured to communicate with MCS 122 via one or more callable interfaces.
Callable interfaces associated with MCS 122 may be implemented based on a type
of a computing device, a type of enterprise computer systems, an app, an agent
system, a service, a protocol, or other criterion. In some embodiments, callable
interfaces associated with MCS 122 may support requests for services including
authentication, compression, encryption, pagination with cursors, client-based
throttling, non-repudiation, logging, and metrics collection. In some embodiments,
callable interfaces associated with MCS 122 may be implemented for custom
business-related services, such as authentication, policy enforcement, caching of
responses, throttling of calls to MCS 122, translation between asynchronous and
synchronous patterns, logging of calls to underlying services, or combinations
thereof. In some embodiments, callable interfaces associated with MCS 122 may
enable users to load custom code for implementation by cloud infrastructure system
102. The custom code may implement one or more callable interfaces associated
with MCS 122 for cloud infrastructure system 102, which can enable users to access

custom services or other enterprise computer systems.

-19-

WO 2017/030615 PCT/US2016/033422

[0072] Protocol translators associated with MCS 122 may process a message
to determine a communication protocol for a message and/or to convert a message
to a communication protocol for a destination. Protocol translators associated with
MCS 122 may convert a request received from client computing devices 104, 106, or
108. The request may be converted from a format of a communication protocol
supported by client computing devices 104, 106, or 108 to a format of a
communication protocol supported by a service provided by cloud infrastructure
service 102 or enterprise computer systems 126. Protocol translators associated
with MCS 122 may convert a response received from a service provided by cloud
infrastructure service 102 or enterprise computer systems 126. A response may be
converted from a format of a communication protocol supported by a service
provided by cloud infrastructure service 102 or enterprise computer systems 126 to a
format of a communication protocol supported by client computing devices 104, 106,
or 108.

[0073] Security services associated with MCS 122 may manage security
authentication for requests received from any of client computing devices 104, 106,
or 108. Security services associated with MCS 122 may protect the integrity of
customer processes and enterprise data. To prevent system or data from being
compromised, security authentication may occur when a request is received from
client computing devices 104, 106, or 108. Security authentication may be
performed before a request is dispatched for processing by cloud infrastructure
system 102. The security authentication determined for a user may enable a user
associated with a mobile computing device to have authorization to request services
via MCS 122. The security authentication may reduce efforts for a user to
authenticate for different requests and/or services requested via MCS 122. Security
services associated with MCS 122 may be implemented as one or more functional
blocks or modules configured to perform various operations authenticating security
of a request.

[0074] Authentication services associated with MCS 122 may manage
security authentication for requests received from client computing devices 104, 106,
or 108. Authentication services associated with MCS 122 may determine security
authentication for a user associated with a computing device that sends a request to
MCS 122. Security authentication may be determined based on a time period, which

-20 -

WO 2017/030615 PCT/US2016/033422

may be tied to operation of an application (e.g., launching an application), a request,
a computing device, an enterprise computer system, other criterion related to a
request, or combinations thereof. Security authentication may be verified and
granted for any one of the following, such as an individual request, one or more
enterprise computer systems, a particular service, a type of service, a user, a
computing device, other criterion for determining security authentication, or
combinations thereof. In some embodiments, cloud infrastructure system 102 may
store authentication information of users received from enterprise computer systems
or authentication systems supporting enterprise computer systems. Cloud
infrastructure system 102 may determine authentication by performing a lookup
function to determine whether an identity of a user associated with a request has
authority to make such a request. The stored authentication information may include
information such as the type of requests, functions, enterprise computer systems,
enterprise data, or the like that a user may be authorized to access. In some
embodiments, infrastructure system 102 may initiate communication with a
requesting computing device to determine authentication.

[0075] In some embodiments, security authentication may be determined
based on a role associated with a user requesting a service. The role may be
associated with a user requesting access to MCS 122. In some embodiments, a
user may request services as a subscriber or tenant of MCS 122 who may be
granted access to resources and/or services provided by MCS 122. Authentication
may correspond to a user’s subscription to MCS 122, such that a user may be
authorized to request services via MCS 122 as a subscriber. In some embodiments,
the subscription may be limited to a particular set of resources provided by MCS
122. Security authentication may be based on the resources and/or services
accessible to the user of MCS 122. In some embodiments, a request may be
provisioned a template during execution called a “runtime environment.” The
runtime environment may be associated with resources that are allocated for a
request, a user, or a device.

[0076] In some embodiments, authentication services associated with MCS
122 may request an identity management system to determine security
authentication for the user. The identity management system may be implemented
by cloud infrastructure system 102 (e.g., as identity management 114) or by another

.29 -

WO 2017/030615 PCT/US2016/033422

computer system that is external to cloud infrastructure system 102. Identity
management 116 may determine security authentication of the user based on the
user’s role or subscription for accessing MCS 122. The role or subscription may be
assigned privileges and/or entitlements with respect to an enterprise computer
system, a service provided by an enterprise computer system, a function or feature
of an enterprise computer system, other criterion for controlling access to an
enterprise computer system, or combinations thereof.

ADF

[0077] Various different ADFs 124 may be provided in cloud infrastructure
system 102. ADFs 124 provide the infrastructure code to implement agile SOA
based applications. ADFs 124 further provide a visual and declarative approach to
development through one or more development tools (e.g., “Oracle JDeveloper 11g”
development tool). One or more frameworks provided by ADFs 124 may implement
an MVC design pattern. Such frameworks offer an integrated solution that covers all
the layers of the MVC architecture with solutions to such areas as Object/Relational
mapping, data persistence, reusable controller layer, rich Web Ul framework, data
binding to Ul, security and customization. Extending beyond the core Web based
MVC approach, such frameworks also integrate with the Oracle SOA and
WebCenter Portal frameworks simplifying the creation of complete composite
applications.

[0078] In certain embodiments, ADFs 124 make it easy to develop agile
applications that expose data as services by coupling a service interface to built-in
business services provided by cloud infrastructure system 102. This separation of
business service implementation details is performed in ADFs 124 via metadata.
Use of this metadata-driven architecture enables application developers to focus on
the business logic and user experience, rather than the details of how services are
accessed. In certain embodiments, ADFs 124 store implementation details of
services in metadata in a model layer. This enables developers to exchange
services without modifying the Ul, making the application extremely agile.
Additionally, the developer creating the Ul does not need to bother with business
service access details. Instead, developers can focus on developing the application
interface and interaction logic. Creating the user experience can be as simple as
dragging-and-dropping the desired business services onto a visual page designer

-99.

WO 2017/030615 PCT/US2016/033422

and indicating what type of component should represent that data.

[0079] In various embodiments, developers interact with ADFs 124 to create
modules forming enterprise applications. The enterprise applications can be
executed within the context of cloud infrastructure system 102. In various
embodiments, developers interact with ADFs 124 to create modules forming mobile
applications. The mobile applications can be executed within the context of cloud
infrastructure system 102. Features of the present invention described below may
be implemented using any desired combination of programming language and
application development framework as will be apparent to one skilled in the relevant
arts by reading the disclosure provided herein.

[0080] One or more frameworks provided by ADFs 124 may be embodied as
Oracle ADF in one example. Accordingly, a framework in ADFs 124 can be based
on an MVC design pattern. An MVC application is separated into: 1) a model layer
that handles interaction with data-sources and runs the business logic, 2) a view
layer that handles the application Ul, and 3) a controller that manages the application
flow and acts as the interface between the Model and the View layers. Separating
applications into these three layers simplifies maintenance and reuse of components
across applications. The independence of each layer from the others results in a
loosely coupled, SOA.

[0081] In various embodiments, ADFs 124 provide tools and resources
allowing developers to create an application in the form of multiple layers, each layer
containing code modules/files implementing desired logic according to pre-defined
specification. Thus, in one embodiment, ADFS 124 enables the application to be
developed as four layers: a view layer containing code modules/files that provide the
Ul of the application, a controller layer containing code modules that control the flow
of the application, a model layer containing data/code modules that provide an
abstraction layer for the underlying data, and a business services layer containing
code modules that provide access to data from various sources and handles
business logic.

[0082] In certain embodiments, ADFs 124 let developers choose the
technology they prefer to use when implementing each of the layers. Enterprise
JavaBean (“EJB”), Web Services, JavaBeans, JPA/EclipseLink/TopLink objects, and
many others can all be used as Business Services for ADFs 124. View layers can

-23-

WO 2017/030615 PCT/US2016/033422

include Web based interfaces implemented with Java Server Faces (“JSF”), Desktop
Swing applications and Microsoft Office front ends, as well as interfaces for mobile
devices.

[0083] In one aspect, the view layer represents the Ul of the application being
developed. The view layer can include desktop, mobile, and browser-based views,
each of which provides all or a portion of the Ul and is accessible in a variety of
manners corresponding to view type. For example, Web pages may be sent by the
application in response to receiving client requests containing corresponding URLs.
The Web pages may then be displayed by a browser on a display unit (not shown)
associated with a requesting client system, thereby enabling users of the requesting
client system to interact with the enterprise application. ADFs 124 support multi-
channel access to business services allowing reuse of business services and access
from a Web client, a client-server swing desktop-based application, Microsoft Excel
spreadsheets, mobile devices such as a smart-phone, or the like.

[0084] The code files/modules forming the view layer (such as Web pages)
may be implemented using one or more of hypertext markup language (“HTML”),
Java server pages (“JSP”), and JSF. Alternatively, the Ul may be implemented
using Java components such as Swing, and/or XML. As further noted, the Ul may
leverage a user’s experience and familiarity with desktop applications, such as Word
and Excel by Microsoft.

[0085] As noted above, the relevant user-developed code/data modules are
provided in each of the layers. However, each layer typically contains other pre-
defined code/data modules provided by ADFs 124. Some of the pre-defined
modules may be used during development, for example, as templates for developing
the Web pages, for including desired functionality in the developed code etc. Other
pre-defined modules (such as a URL rewriting module) may be deployed along with
the developed application and may provide additional functionalities (mapping of
requested URLs to internal names) to the user during execution of the enterprise
application.

[0086] A controller layer contains code modules/files that control the flow of
the application. Each controller object contains software instructions and/or data
implemented according to a desired manner of presenting information in the view

layer. The desired manner may include the specific Web pages to be displayed

-24 -

WO 2017/030615 PCT/US2016/033422

when links in another Web page are clicked/ selected by the user, the page to be
displayed when errors occur during execution, indicating the specific data to be
stored/retrieved, etc.

[0087] In one aspect, the controller layer manages the application’s flow and
handles user input. For example, when a Search button is clicked on a page, the
controller determines what action to perform (do a search) and where to navigate to
(the results page). There are two controller options for Web-based applications in
JDeveloper: the standard JSF controller or the ADF Controller that extends the JSF
controller functionality. Whichever controller is used, application flow is typically
designed by laying out pages and navigation rules on a diagram. An application’s
flow can be broken into smaller, reusable task flows; include non-visual components
such as method calls and decision points in a flow; and create “page fragment” flows
that run inside a region of a single containing page.

[0088] The code modules/files forming the controller layer are often
implemented as Java servlets receiving the client requests and sending desired Web
pages as corresponding responses. Controller objects may also be implemented, for
example, as Apache Jakarta Struts controllers or according to the JSF standard.

[0089] A model layer contains data/code modules that connect various
business services to the objects that use them in the other layers, such as to the
controller objects discussed above or directly to desktop applications. Each abstract
data object of the model layer provides a corresponding interface that can be used to
access any type of business service executing in an underlying business service
layer. The data objects may abstract the business service implementation details of
a service from a client and/or expose data control methods/attributes to view
components, thus providing a separation of the view and data layers.

[0090] In one aspect, the model layer consists of two components, data
controls and data bindings, which utilize metadata files to define the interface. Data
controls abstract the business service implementation details from clients. Data
bindings expose data control methods and attributes to Ul components, providing a
clean separation of the view and model. Due to the metadata architecture of the
model layer, developers get the same development experience when binding any
type of Business Service layer implementation to the View and Controller layers.

[0091] In certain embodiments, ADFs 124 emphasize the use of the

-925-

WO 2017/030615 PCT/US2016/033422

declarative programming paradigm throughout the development process to allow
users to focus on the logic of application creation without having to get into
implementation details. At a high level, the development process for a Fusion Web
application usually involves creating an application workspace. Using a wizard,
libraries and configuration needed for technologies selected by a developer are
automatically added and an application is structured into projects with packages and
directories.

[0092] By modeling database objects, an online database or offline replica of
any database can be created, definitions edited, and schemas updated. Using a
unified modeling language (“UML”) modeler, use cases can then be created for the
application. Application control and navigation can also be designed. Diagrammers
can be used to visually determine the flow of application control and navigation.
Then, an underlying XML file describing the flow can be automatically created. A
resource library can be used to allow a developer to view and use imported libraries
by simply dragging and dropping them into the application. From database tables,
entity objects can be created using wizards or dialogs. From those entity objects,
view objects are created to be used by pages in the application. Validation rules and
other types of business logic can be implemented.

[0093] In this example, a business services layer manages interaction with a
data persistence layer. It provides such services as data persistence,
object/relational mapping, transaction management, and business logic execution.
The business services layer can be implemented in any of the following options: as
simple Java classes, EJB, Web services, JPA objects, and Oracle ADF Business
Components. In addition, data can be consumed directly from files (XML or CSV) as
well as REST. Thus, each business service manages interaction with a
corresponding data persistence layer, and also provides such services as
object/relational mapping, transaction management, business logic execution, etc.
The business services layer may be implemented using one or more of simple Java
classes, Enterprise Java Beans, Web services, etc.

[0094] Business components represent a business service implemented
using, for example, “Oracle ADF Business Components” from Oracle Corp., to
provide interaction with databases, Web services, legacy systems, application

servers, and the like. In one embodiment, business components of the business

- 26 -

WO 2017/030615 PCT/US2016/033422

services layer contain a mixture of application modules, view/query objects, and
entity objects, which cooperate to provide the business service implementation. An
application module can be a transactional component/code module that Ul clients
communicate with for working with application/transaction data. The application
module may provide an updatable data model and also procedures/functions
(commonly referred to as service methods) related to user transactions.

[0095] An entity object may represent a corresponding row in a database
table and simplify the manipulation (update, deletion, etc.) of the data stored in the
corresponding row. An entity object often encapsulates business logic for the
corresponding row to ensure that the desired business rules are consistently
enforced. An entity object may also be associated with other entity objects to reflect
relationships existing between rows stored in the underlying database.

[0096] Fig. 2 shows a block diagram of a computing environment 200 for
facilitating communication between a mobile computing device and enterprise
computer systems according to some embodiments of the present invention. For
purposes of illustration, various examples are provided herein to describe techniques
for enabling a mobile computing device (e.g., computing device 202) to communicate
with one or more enterprise computer systems, such as a cloud enterprise computer
system 240 (e.g., “serviceprovider.com”) and an on-premises enterprise computer
system 250. Such communications may be to exchange or transfer enterprise data,
request services provided by an enterprise computer system, communicate
messages, or combinations thereof.

[0097] Messages may include service invocation messages, result messages,
request messages, other messages communicated internally, other messages
communicated between a computing device and an enterprise computer system, or
combinations thereof. A message may include a message type (e.g., a type value
from a set of shared type constants), a correlation id (e.g., an id used to correlate
this message with one or more other messages), priority information to support for
priority based message queues, timeout, sensitivity indicator to support message
data isolation, message source (e.g., a uniform resource identifier of a sender), a
message destination (e.g., a uniform resource identifier that uniquely identifies the
destination, a request context (e.g., request information from dispatcher), and/or a
message payload. The payload may have different attributes depending upon the

-97-

WO 2017/030615 PCT/US2016/033422

type of message that is being sent, such as parameter data and result data.

[0098] Enterprise data as described herein may include data received from an
enterprise computer system, data sent to an enterprise computer system, data
processed by an enterprise computer system, or combinations thereof. The
enterprise data may be distinguishable from data for consumer applications and/or
services. In some embodiments, for example, enterprise data may change based on
application or use of the enterprise data, whereas data for consumer applications
(e.g., consumer data) may remain static through use. In certain embodiments,
enterprise data may include or be associated with rules that indicate criteria for
storing, using, and/or managing the enterprise data. For example, enterprise data
may be associated with policy information that indicates one or more policies for
storing, using, and/or managing the enterprise data. In certain embodiments, policy
information may be included in enterprise data. In certain embodiments, enterprise
data may include data processed, stored, used, or communicated by an application
or a service executing in an enterprise computer system. For example, enterprise
data may include business data (e.g., business objects) such as JSON formatted
data from enterprise applications, structured data (e.g., key value pairs),
unstructured data (e.g., internal data processed or used by an application, data in
JSON format, social posts, conversation streams, activity feeds, etc.), binary large
objects (“BLOBs”), documents, system folders (e.g., application related folders in a
sandbox environment), data using REST techniques (referred to herein as “RESTful
data”) (e.g., synchronization data made available by REST endpoints), system data,
configuration data, synchronization data, or combinations thereof. In some
embodiments, enterprise data may include REST-formatted enterprise data. REST-
formatted enterprise data may include RESTful data. REST-formatted data may
include data formatted according to REST techniques implemented by an enterprise
computer system. Configuration or synchronization data may include data used for
synchronization of enterprise data, such as versions, history, integration data, etc.
Documents in enterprise data may include XML files, visual assets, configuration
files, media assets, etc. A BLOB may include a collection of binary data stored as a
single entity in a database management system, such as an image, multimedia
object, or executable code, or as otherwise known in the art.

[0099] An enterprise computer system may include various computing

-28-

WO 2017/030615 PCT/US2016/033422

systems that are configured to operate for an entity or an enterprise. For example,
an enterprise computer system may include one or more computer systems, such as
an enterprise server computer (e.g., a back-end server computer), to handle
requests for services. An enterprise computer system may include applications
and/or services, which can process and/or operate using enterprise data. For
example, enterprise computer system 250 may provide one or more services and/or
applications for managing or operating an enterprise. Services may include, without
restriction, customer relationship management (“CRM”), human capital management
(“HCM”), human resource (“HR”) management, supply chain management,
enterprise communication, email communication, business services, other enterprise
management services or applications, or combinations thereof. Enterprise computer
system 250 may include one or more computer systems dedicated to providing one
or more services. In some embodiments, each different computer system providing
a service may be located on-premise of an enterprise or may be located remotely
from an enterprise. In some embodiments, multiple different computer systems
supporting different services may be situated in a single geographical location, such
as on-premises of an enterprise. In the example shown in Fig. 2, on-premises
enterprise computer system 250 may include an HR system 254 and a CRM system
256, both of which may be located on-premises of an enterprise. In some
embodiments, enterprise computer system 250 may include or implement an agent
system 252 to facilitate or handle communication between cloud computer system
210 and one or more enterprise systems 254, 256. Enterprise computer systems,
such as cloud enterprise computer system 240 and on-premises enterprise computer
system 250 are described below in further detalil.

[00100] The computer environment 200 may include MCS 212 implemented
to operate as a secure intermediary computing environment that may facilitate
communication between the computing device 202 and one or more enterprise
computer systems because computing device 202 may not be configured to
communicate with such enterprise computer systems. For example, some
enterprise computer systems may be supported by legacy or back-end computer
systems. Such systems may be configured to operate using different communication
and/or security protocols. The protocols supported by such enterprise computer
systems may be different from those supported by mobile computing devices. MCS

-29.-

WO 2017/030615 PCT/US2016/033422

212 may support communication with different types of mobile computing devices.
As such, MCS 212 may implement techniques to facilitate communication between
enterprise computer systems and mobile computing devices to enable them to
communicate with each other despite their incompatibilities in communication, such
as differences between formats or communication protocols. For example, MCS 212
may translate communication protocols between mobile computing devices and
enterprise computer systems.

[00101] Cloud computer system 210 may support MCS 212. Cloud computer
system 210 may be implemented using hardware, software, firmware, or
combinations thereof. For example, cloud computer system 210 may include one or
more computing devices, such as a server computer. Cloud computer system 210
may include one or more memory storage devices and one or more processors. A
memory storage device can be accessible to the processor(s) and can include
instructions stored thereon which, when executed by the processor(s), cause the
processor(s) to implement one or more operations disclosed herein. In some
embodiments, the memory storage devices may operate as local storage (e.g.,
cache). Cloud computer system 210 may include different kinds of operating
systems. A memory storage device may be accessible to the processor(s) and may
include instructions stored thereon which, when executed by the processor(s), cause
the processor(s) to implement one or more operations, methods, or processes
disclosed herein. The memory storage may operate as local storage. Local storage
may be implemented using any type of persistent storage device, such as a memory
storage device or other computer readable storage medium. In some embodiments,
local storage may include or implement one or more databases (e.g., a document
database, a relational database, or other type of database), one or more file stores,
one or more file systems, or combinations thereof. The local storage may store
enterprise data.

[00102] In certain embodiments, cloud computer system 210 may include one
or more data stores, such as a metadata repository 224, diagnostics store 226, and
an analytics store 228. The data stores 224, 226, 228 may be accessible by any
component in cloud computer system 210.

[00103] Metadata repository 224 may store all the metadata associated with
MCS 212. This information may be composed of both run-time and design-time

-30 -

WO 2017/030615 PCT/US2016/033422

data, each having their own requirements on availability and performance. A tenant
or subscriber of MCS 212 may have any number of applications. Each application
may be versioned and may have an associated zero or more versioned resource
APls and zero or more versioned services implementations those resource API
contracts. These entities are what the run-time uses to map virtual requests (mAPIs)
to the concrete service implementation (service). This mapping provides a mobile
developer with the luxury of not having to know the actual implementation service
when she designs and builds her application. As well as not requiring her to have to
republish a new application on every service bug fix. Metadata repository 224 may
store one or more callable interfaces, which may be invoked by a computing device
(e.g., computing device 202). The callable interfaces may be customizable by a user
(e.g., a developer) of an application to facilitate communication with MCS 212.
Metadata repository 224 may store metadata corresponding to one or more
configurations of a callable interface. Metadata repository 224 may be configured to
store metadata for implementing a callable interface. The callable interface may be
implemented to translate between a one format, protocol, or architectural style for
communication and another format, protocol, or architectural style for
communication. Metadata repository 224 may be modifiable by an authenticated
user via the external network.

[00104] Diagnostics store 226 may store diagnostics information about
processing occurring in MCS 212. Diagnostics store 226 may store messages
communicated via MCS 212 and log information. Analytics store 228 may store
logging and analytics data captured during processing in the system.

[00105] On behalf of MCS 212, cloud computer system 210 may utilize its
computing resources to enable execution of custom code 216 (e.g., operations,
applications, methods, functions, routines, or the like). Computing resources may be
allocated for use with respect to a particular user associated as a subscriber or
tenant to MCS 212. Resources may be allocated with respect to a user, a device, an
application, or other criterion related to a subscriber. MCS 212 may be scaled in or
out, depending on the demand of mobile computing devices seeking to communicate
with enterprise computer systems. MCS 212 can be configured such that it is elastic
to handle surges and temporary periods of higher than normal traffic between mobile
computing devices and enterprise computer systems. In some embodiments, MCS

-31 -

WO 2017/030615 PCT/US2016/033422

212 may include elements that support scalability such that components may be
added or replaced to satisfy demand in communication.

[00106] Computing device 202 may communicate (e.g., send a request
message) with MCS 212 to request service provided by an enterprise computer
system. Computing device 202 (e.g., a mobile computing device) may be
implemented using hardware, firmware, software, or combinations thereof.
Computing device 202 may communicate with enterprise computer systems 240,
250 via MCS 212. Computing device 202 may include or may be implemented as an
endpoint device, a PDA, a tablet computer, a laptop computer, a mobile computing
device, a desktop computer, a wearable computer, a pager, etc. Computing device
202 may include one or more memory storage devices and one or more pProcessors.
Computing device 202 may include different kinds of operating systems. A memory
storage device may be accessible to the processor(s) and may include instructions
stored thereon which, when executed by the processor(s), cause the processor(s) to
implement one or more operations, methods, or processes disclosed herein. The
memory storage may operate as local storage. Local storage may be implemented
using any type of persistent storage device, such as a memory storage device or
other computer readable storage medium. In some embodiments, local storage may
include or implement one or more databases (e.g., a document database, a
relational database, or other type of database), one or more file stores, one or more
file systems, or combinations thereof. The local storage may store enterprise data.

[00107] In various embodiments, computing device 202 may be configured to
execute and operate one or more applications such as a web browser, a client
application, a proprietary client application, or the like. The applications can include
specific applications configured for enterprise data and/or services provided by an
enterprise computer system. Client applications may be accessible or operated via
one or more network(s). Applications may include a graphical Ul (“GUI”) for
operating the application.

[00108] Computing device 202 may communicate with MCS 212 via one or
more communication networks using wireless communication. Examples of
communication networks may include a mobile network, a wireless network, a
cellular network, a LAN, a wide area network (“WAN?”), other wireless communication

networks, or combinations thereof. In certain embodiments, computing device 202

-32-

WO 2017/030615 PCT/US2016/033422

may establish a communication connection 214 with MCS 212 using a custom
communication protocol (e.g., a custom protocol). Connection 214 may be
established with MCS 212 through cloud computer system 210. The custom
protocol may be an HTTP-based protocol. By utilizing a custom communication
protocol, computing device 202 may operate on any computing device platform to
communicate with cloud computer system 210.

[00109] Computing device 202 may communicate with cloud computer
system 210 through one or more callable interfaces, e.g., APIs. A callable interface
may be implemented on computing device 202. The callable interface may be
implemented for custom applications that enable those applications to communicate
with MCS 212. In some embodiments, a callable interface may be developed for
MCS 212. The callable interface may enable applications to communicate with MCS
212 without having to adapt to differences in protocols (e.g., communication or
development protocols) and/or architectural styles or formats.

[00110] MCS 212 may be protected by one or more firewalls 204, 230 to
provide a secure environment to process requests and execute custom code 216.
Communication between computing device 202 and MCS 212 may be separated by
an external communication firewall 204. Firewall 204 may be connected with cloud
computer system 210 to facilitate secure access to MCS 212. Firewall 204 may
permit communication of messages between cloud computer system 210 and
computing devices (e.g., computing device 202). Such messages (e.g., HTTP
messages or REST messages) may conform to a communication protocol (e.g.,
HTTP or REST), which may be supported by a callable interface. In another
example, a message between cloud computer system 210 and computing device
202 may conform to a communication protocol such as SPDY. MCS 212 may
manage firewall 230 to secure communication between cloud computer system 210
and enterprise computer systems 240, 250. Firewall 230 may permit communication
of messages between cloud computer system 210 and computing devices (e.g.,
computing device 202). Such messages (e.g., SPDY messages, HTTP messages or
REST messages) may conform to a communication protocol (e.g., SPDY, HTTP, or
REST). Communication between computing device 202 and enterprise computer
systems 240, 250 may be two-way via MCS 212.

[00111] Because communication with computing device 202 and enterprise

-33-

WO 2017/030615 PCT/US2016/033422

computer systems 240, 250 may occur via an unsecure, public network, firewalls
204, 230 provide an added layer of protection for communications to and from MCS
212. Firewalls 204, 230 may enable MCS 212 to distinguish its internal network from
an external network connecting computing device 202 and enterprise computer
systems 240, 250. In some embodiments, firewalls 204, 230, although shown as two
distinct firewalls, may be implemented as a single firewall that encapsulates MCS
212.

[00112] Cloud computer system 210 may further operate as an intermediary
computing environment by communicating with enterprise computer systems, some
of which may have different communication protocols. Such communication
protocols may be custom or specific to an application or service in communication
with cloud computer system 210. Further, cloud computer system 210 may
communicate with an enterprise computer system to provide enterprise services
and/or to exchange enterprise data according to a format supported by the
enterprise computer system. Cloud computer system 210 may maintain local
storage (e.g., local cache) of enterprise data and may use the local storage to
manage synchronization of the enterprise data between mobile computing devices
and enterprise computer systems 240, 250.

[00113] Computing device 202 may communicate (e.g., send a request
message) with MCS 212 to request service provided by an enterprise computer
system. Requests that are received through firewall 204 may be processed first by
security service 232. Security service 232 may manage security authentication for a
user associated with a request. Thus, a cloud computer system may provide
technical advantages that include providing security mechanisms described herein
which may protect the integrity of customer communications and enterprise data.
Technical advantages of cloud computer system may include preventing or reducing
compromised communications and/or data from being compromised, authentication
may occur initially, restricting access to only those who have the required
credentials. Technical advantages of cloud computer system may include the
services and service invocation flow being structured such that as requests come in
they may only be able to access services for which they are authorized. By
decoupling authorization from the rest of the system processing, another technical
advantage may include the task of authorizing “what can be done by whom” being

-34 -

WO 2017/030615 PCT/US2016/033422

delegated to a dedicated provisioned security subsystem (e.g., an identity
management system) that may be expanded to support whatever additional custom
security measures are required by a specific corporate customer. In some
embodiments, security authentication may be determined for a request, a session, a
user, a device, other criterion related to the user, or combinations thereof. Security
authentication may be performed for each request that is received. In some
embodiments, security service 232 may determine authentication based on a
previous verification of a request. Security authentication may be determined for a
user or a device such that requests to different enterprise computer systems 240,
250 may be authenticated based on a single verification of security.

[00114] Further technical advantages of the invention may include a cloud
computer system enabling a computing device to communicate with various
enterprise computer systems, some of which may be implemented differently. For
example, a computing device 202, cloud computer system 210, and enterprise
computer system 250 may be located at different geographical locations, physically
separated from each other. Therefore, computing device 202 can communicate with
enterprise computer system 250 regardless of their location. Technical advantages
may include a cloud computer system enabling a computing device to communicate
requests for services to enterprise computer systems, which may support one or
more distinct security protocols. In some cases, an enterprise computer system may
be supported by a back-end system that is not easily adaptable to a different security
protocol. In some cases, it may be desirable for developers of applications to be
able to implement an application to be able to request services without knowledge of
such security protocols. It may be equally desirable for a user (e.g., an administrator
or an architect) of an enterprise computer system to be able to receive requests
without accommodating for different types of applications, security protocols, and
standards. Technical advantages may enable such desires to be met by
implementation of a cloud computer system, as described herein, which can handle
security authentication, such that requests can meet the security measures of
different enterprise computer systems that are being requested.

[00115] In some embodiments, security service 232 may determine a security
protocol for a requested enterprise computer system and accordingly generate a
security token according to such security protocol. The security token may be

-35-

WO 2017/030615 PCT/US2016/033422

passed along with a request to an enterprise computer system to enable that
enterprise computer system to verify authentication based on the generated security
token. Enterprise computer systems may support different security protocols. A
security protocol may be a standard by which security is determined. Security may
be verified based on a security token that is generated by security service 232.
Security service 232 may determine a security protocol for an enterprise computer
system identified for a request. In some embodiments, an enterprise computer
system 250 may have an agent system 252, which may be configured or
implemented according to a custom or specific security protocol supported by MCS
212. As such, MCS 212 may generate a security token according to such custom
security protocol.

[00116] Cloud computer system 210 may include, implement, and/or
communicate with one or more load balancer systems 206, 208. Upon determining
security authentication, cloud computer system 210 may request any one of load
balancer systems 206, 208 to examine a request that it receives and to detect which
service the request is directed to. MCS 212 may be configured with load balancers
206, 208 and updated with resources that get started up, so that when a request
comes in, load balancers 206, 208 can balance a requested load across the different
resources.

[00117] Cloud computer system 210 may include a dispatcher 218 that may
handle requests and dispatch them to the appropriate service. A request may be
routed to an appropriate service upon dispatch. In some embodiments, a service
itself may route an internal request to another internal service in MCS 212 or in an
enterprise computer system. In some embodiments, dispatcher 218 may resolve a
request to determine its destination based on a location (e.g., an address) of a
destination identified in a URI and/or URL of the request. Dispatcher 218 may parse
a request and its header to extract one or more of the following information: tenant
identifier, service identifier, application name, application version, request resource,
operation and parameters, etc. Dispatcher 218 can use the parsed information to
perform a lookup in metadata repository 224. Dispatcher 218 may retrieve a
corresponding application metadata. Dispatcher 218 may determine the target
service based on the requested resource and the mappings in the metadata. While
initially a very basic mapping, the metadata can be enhanced to provide for more

-36 -

WO 2017/030615 PCT/US2016/033422

sophisticated, rules-based dispatching. Dispatcher 218 may perform any dispatcher-
specific logging, metrics gathering, etc. Dispatcher 218 may then perform initial
authorization according to the application metadata. Dispatcher 218 may format the
inbound request and any other necessary information and place the message on
routing bus 220 for further processing. Dispatcher 218 may place a request on a
queue and await the corresponding response. Dispatcher 218 may process
responses received from routing bus 220 and return a response to computing device
202.

[00118] In addition to handling the dispatching for external requests,
dispatcher 218 may also play a role in dispatching internal requests. Such internal
requests can come in the form of composite services or custom code invocations to
services. In both cases, the caller could use a logical service name as defined within
the application. Dispatcher 218 may use the current execution context to determine
the application and use that logical name to determine the appropriate service to
invoke.

[00119] Cloud computer system 210 may include a routing bus 220 to
manage deliver of messages to destinations registered with routing bus 220.

Routing bus 220 may operate as a central system for managing communications in
cloud service 212. Data communicated through routing bus 220 may be processed
to capture and store the data. Routing bus 220 may provide a framework so that
additional centralized services (additional authorization, debugging, etc.) can be
plugged in easily as necessary. Data captured by routing bus 220 may be stored in
diagnostics store 226 and/or analytics store 228.

[00120] Routing bus 220 may route messages to one or more destinations.

In some embodiments, a message may include a request to execute custom code
216. In such embodiments, routing bus 220 may request 234 custom code 216 to be
invoked. In some embodiments, routing bus 220 may pass on a request to a
destination enterprise computer system identified by information in a request.
Routing bus 220 may request 236 an adaptor interface 222 to perform translations, if
necessary, to pass a request to an enterprise computer system, e.g., enterprise
computer system 240 or enterprise computer system 250.

[00121] In certain embodiments, cloud computer system 210 may include or
implement adaptor interface 222 to translate or convert a message to a protocol

-37-

WO 2017/030615 PCT/US2016/033422

supported by a receiving enterprise computer system. Adaptor interface 222 may
establish separate communication connections with each of enterprise computer
systems 240, 250. Cloud computer system 210 may be configured to communicate
with enterprise computer systems 240, 250 via one or more networks (not shown).
Examples of communication networks may include the Internet, a mobile network, a
public network, a wireless network, a cellular network, a LAN, a WAN, other
communication networks, or combinations thereof. In certain embodiments,
communication connections may be high-speed communication connections
facilitated using high-speed communication trunks. Communication with an
enterprise computer system 240, 250 may pass through firewall 230 which ensures
that communication with an external network is secure to prevent unauthorized
access to MCS 212 via such communications.

[00122] In some embodiments, cloud computer system 210 may facilitate
notifications to a user of computing device 202. Cloud computer system 210 may
include an alert management service that supports stateful interaction with a user,
for example to deliver an alert based on user preferences through one or more
channels, wait for a response, and take action based on the response. Responses
to an alert sent on one channel may be received through another channel, which the
service needs to be able to handle. The platform may come with built-in state
models for popular interaction patterns and be extensible with new state models.
Some alert channels may include known communication resources, either one-way
or two-way. Examples include SMS, Twitter®, push notifications, and Google Cloud
Messaging®.

[00123] In some embodiments, cloud computer system 210 may enable
computing device to access and/or request one or more services, such as an object
store service, database service, access web services, social services, resource
services, or combinations thereof.

[00124] Cloud computer system 210 may provide an object store service that
may provide a storage facility for BLOBs. The basic unit of storage can be text, with
read and write operations. A basic query facility for JSON objects may also be
offered.

[00125] Cloud computer system 210 may provide a database service to allow

for connectivity to hosted databases for performing queries or writes. Required

-38 -

WO 2017/030615 PCT/US2016/033422

parameterization may require the full connection string for the database, the SQL
string or stored procedure to execute, any parameters and possibly credentials. The
necessary information can be provided at run time or be pre-configured in the
application metadata.

[00126] Cloud computer system 210 may provide access to web services
such as SOAP web services. Cloud computer system 210 may provide access to
REST services, such as connectivity to arbitrary REST resources.

[00127] Cloud computer system 210 may provide access to social services
that may provide basic integration with many of the popular social sites such as
Facebook®, Twitter®, etc. These services may allow for third party authentication
using the user’s credentials from those sites as well as access to their services.
Examples include sending a tweet or updating your status.

[00128] Cloud computer system 210 may provide a public cloud service to
enable a user to simplify and optimize communication. For example, a service
developer may use the generic web service of MCS 212 to talk to a resource hosted
using cloud computer system’s 210 cloud service.

[00129] A cloud computer system, such as one described herein, may enable
mobile computing devices to communicate with enterprise computer system despite
differences in computing resources. A cloud computer system may be equipped with
more resources and a faster, more reliable connection to enterprise computer
systems to communicate frequently to receive enterprise data. The cloud computer
system may manage and coordinate requests for services from enterprise computer
systems. By translating requests to a protocol supported by a recipient of a
message, the cloud computer system reduces a burden on developers to configure
applications for communication with different types of back-end computer systems.
Enterprises are able to maintain their back-end systems without having to
accommodate advances or changes in communication protocols supported for
mobile devices. Different enterprise computer systems may support different
security protocols based on a type of requests processed and services provided. By
managing security authentication in a centralized manner for access to different
enterprise computer systems, enterprise computer systems do not need to adapt to
differences in security protocols. By authenticating a user of the cloud computer

system, processing requests can become more efficient as authentication may not

-39-

WO 2017/030615 PCT/US2016/033422

be performed in every instance.

[00130] In some embodiments, an application may be deployed under a
mobile application framework (“MAF”) that provides built in security to control access
to the application and ensure encryption of sensitive data, such as Oracle MAF from
Oracle Corp. MAF is a hybrid mobile architecture that uses HTML5 and Cascading
Style Sheets (“CSS”) (to render the Ul in the web view), Java (for the application
business logic), and Apache Cordova (to access device features such as GPS
activities and e-mail). Because MAF uses these cross-platform technologies, the
same application can be built for both Android and iOS devices without having to use
any platform-specific tools. After an application is deployed to a device, it behaves
as applications created using such platform-specific tools as Objective C or the
Android SDK. Further, MAF allows for building the same application for
smartphones or for tablets, thereby allowing reuse of business logic in the same
application and targeting various types of devices, screen sizes, and capabilities.

[00131] Fig. 3 illustrates an example mobile application springboard 300 that
includes a MAF application 302 called “WorkBetter” that is deployed as a “heavy”
application (e.g., a mobile application that sits in a mobile device in the same manner
as a normal iPhone “app” obtained from the App store). A MAF application may
include one or more embedded applications added as application features. Such
added application features are represented as icons within the main application's
springboard or navigation bar. Application features are essentially the building
blocks of such mobile application. Each application feature that is integrated into a
MAF application performs a specific set of tasks. Application features can be
grouped together to complement each other's functionality. For example, an
application feature that provides customer contacts may be paired with one for
product inventory. Because each application feature has its own class loader and
web view, application features are independent of one another, thus a single MAF
application can be assembled from application features created by several different
development teams. Application features can also be reused in other MAF
applications. A MAF application itself can be reused as the base for another
application, allowing independent software vendors (“ISVs”) to create applications
that can be configured by specific customers.

[00132] In addition to hybrid mobile applications that run locally on the device,

-40 -

WO 2017/030615 PCT/US2016/033422

application features may be implemented as any of the following mobile application
types, depending on the requirements of a mobile application and available
resources:

¢ For mobile web applications hosted on a server, although the code can be
portable between platforms, access to device features and local storage can be
limited as these applications are governed by the device's browser.

¢ Native applications are authored in either Xcode or through the Android SDK
and are therefore limited in terms of serving both platforms. Reuse of code is
likewise limited.

[00133] MAF supports authentication and access control for refined security
at the feature level in an application where a developer can specify an appropriate
login server, e.g., a server running “Oracle Identity Management” and/or “Oracle
WebLogic” with basic authentication, a server supporting OAuth protocols, etc. At
runtime users are presented with login screens and appropriate tokens are
accessible for further Web service calls. With MAF, developers can build single Uls
that meet the needs of users with different privileges (e.g., show/hide components
based on user role or privilege).

[00134] MAF enforces communication encryption using SSL/TLS (HTTP
secure (“HTTPS”)), on-device encryption to keep credentials in an encrypted key
store to be used for validation when supporting offline authentication, and SQLite
database encryption by using the SQLite encryption extension. Encrypting an
SQLite database for an application built with MAF may be performed via a
configuration option when the application is developed. In some embodiments, MAF
supports offline and online modes of operation for an application so a self-contained
application can run on a mobile device in connected and disconnected modes. For
data access/storage, such application may leverage a local encrypted SQLite
database. The application may be built such that initial access to data is performed
from remote servers through Web services, and the data is then stored in the local
SQLite database for offline access. The data can be replicated and synchronized to
the server when connectivity is available again. MAF also supports local storage of
user authentication credentials to enable offline authentication/authorization to
secured applications.

[00135] Figs. 3A and 3B illustrate an HR mobile application Ul 304 in

-41 -

WO 2017/030615 PCT/US2016/033422

accordance with an embodiment of the present invention. Ul 304 may be provided
upon opening an icon on a springboard such as mobile application springboard 300
of Fig. 3. In Fig. 3A, Ul 304 includes various HR related information about an
employee, such as picture, title, contact information, social networking information,
performance/rating information, compensation information, manager, skills, location,
etc. Fig. 3B indicates various sources where the information in Ul 304 may be
obtained from, such as services located on premise or in the cloud. For example,
basic employee information may be obtained from on premise core HR services 306
such as PeopleSoft, Systems, Applications & Products (“SAP”), etc., while location
information is obtained from a map service 308 such as Google. Similarly,
performance information may be obtained from a talent management cloud service
310 such as TALEO, and social networking information 312 (e.g., Twitter, Facebook,
LinkedlIn, etc.) may be obtained from the web. In one embodiment, the information
from these various sources is channeled through MCS 212 (see Fig. 2) before being
sent down to the application on the mobile device 202 (see Fig. 2).

[00136] Fig. 4 is a block diagram of a MAF runtime architecture 400 according
to an embodiment. Runtime architecture 400 includes a “thin” device native
container 402 deployed to a mobile device 404. Runtime architecture 400
represents the MVC development approach which separates the presentation from
the model layer and the controller logic. Device native container 402 allows a MAF
application to function as a native application on different platforms (e.g., iOS,
Android, etc.) by interacting with a local SQLite database 406 (via SQLite 408),
mobile device services 426 (via Cordova APIs of Apache Cordova 410), and server-
side resources 412 such as a Configuration Server 444, Server-Generated HTML
430, Push Services 448, and Web Services 440.

[00137] Device Services 426 are services and features that are native to
device 404 such as camera, GPS, e-mail, etc. Configuration Server 444 is a server
based on Web Distributed Authoring and Versioning (“WebDav”) and hosting
configuration files used by the application configuration services. WebDav is defined
in, e.g., Internet Engineering Task Force (“IETF”) Request for Comments (“RFC”)
4918. Configuration Server 444 is delivered as a reference implementation. Any
common WebDav services hosted on a Java 2 Platform, Enterprise Edition (“J2EE”)
server can be used for this purpose. Server-Generated HTML 430 includes Web

-42 -

WO 2017/030615 PCT/US2016/033422

content hosted on remote servers and used for browser-based application features.
Push Services 448 may include, for example, Apple Push Notification Services
(“APNs”) and Google Cloud Messaging (“GCM”) push services that are notification
providers that send notification events to MAF applications. Web Services 440 are,
for example, remotely hosted SOAP-based web services.

[00138] Device native container 402 includes Web View 416 that uses a
mobile device's web engine to display and process web-based content. In a MAF
application, Web View 416 delivers the Ul by rendering the application markup as
HTML 5. The Ul may be created for a mobile application feature by implementing
any of the following content types: MAF Application Mobile XML (“AMX”) Views 420,
Controller 422, local HTML 424, or server HTML 428, where MAF AMX Views 420,
Controller 422, and local HTML 424 provide HTML5 and JavaScript presentation
418. Application features implemented from various content types can coexist within
the same mobile application and can also interact with one another.

[00139] Applications whose contents are implemented as MAF AMX views
420 reside on device 404 and provide the most authentic device-native user
experience, similar to an application authored in the language specific to the device's
platform. MAF provides a set of code editors that enable a user to declaratively
create a Ul from components that are tailored to the form factors of mobile devices.
These components can be used to create the page layout (e.g., list view) as well as
input components (e.g., input fields). When a user develops MAF AMX views 420,
they can leverage data controls which enable the user to declaratively create data-
bound Ul components and access a Web service and the services of a mobile
device (e.g., camera, GPS, or e-mail). At runtime, a JavaScript engine in Web View
416 renders MAF AMX view definitions into HTML5 and JavaScript.

[00140] For applications whose contents are implemented as Controller 422,
Controller 422 governs the flow between pages in the mobile application. Controller
422 enables a user to break an application's flow into smaller reusable task flows
and include non-visual components such as method calls and decision points. In the
embodiment of Fig. 4, Controller 422 is included in MAF AMX Views 420 and is
called by MAF AMX Views 420 to, e.g., transition a page and/or activate actions.
However, in alternative embodiments, Controller 422 may be implemented as a peer
of MAF AMX Views 420.

-43 -

WO 2017/030615 PCT/US2016/033422

[00141] For applications whose contents are implemented as local HTML
424, HTML pages run on the device as part of the MAF application. Local HTML
files can access device-native features and services through Apache Cordova 410
and JavaScript APIs.

[00142] For applications whose contents are implemented as server HTML
428, the Ul is delivered from server-generated Web pages (Server-Generated HTML
430) that can open within the application feature's Web View 416. Within the context
of MAF, this content type is referred to as remote URL. The resources for these
browser-based applications do not reside on the device 404. Instead, the Ul, page
flow logic, and business logic are delivered from a remote server.

[00143] When one of these remotely hosted Web applications is allowed to
open within Web View 416, it can use Cordova JavaScript APls to access any
designated device-native feature or service such as the camera or GPS capabilities.
When implementing an application using the remote URL content, a user can
leverage an existing browser-based application that has been optimized for mobile
use, or use one that has been written specifically for a specific type of mobile device.
For applications that can run within the browsers on either desktops or tablets, the
user can implement the remote URL content using applications created through rich
client-based components such as those provided by “Oracle ADF Faces” from
Oracle Corp. For applications specifically targeted to mobile phones, the remote
URL content can be delivered from Web pages created using MAF. Not only can
applications authored with MAF render on a variety of smartphones, but they can
gracefully degrade to the reduced capabilities available on feature phones through
Uls constructed with Apache Trinidad JSF components and dynamically selected
style sheets. Because the content is served remotely, the application is available
only as long as the server connection remains active.

[00144] Device native container 402 further includes Apache Cordova 410
that provides JavaScript APIs that integrate the device's native features and services
into a mobile application. Although a user can access these APIs programmatically
from Java code (or using JavaScript when implementing a MAF mobile application
as local HTML 424), the user can add device integration declaratively when creating
MAF AMX pages because MAF packages these APIs as data controls.

[00145] Device native container 402 further includes a Java Virtual Machine

-44 -

WO 2017/030615 PCT/US2016/033422

(“dVM”) 432. Java provides a Java runtime environment for a MAF application. JVM
432 is implemented in device-native code, and is embedded (or compiled) into each
instance of the MAF application as part of the native application binary. JVM 432 is
based on the Java Platform, Micro Edition (“Java ME”) Connected Device
Configuration (“CDC”) specification. In runtime architecture 400, JVM 432 includes
business logic 434, model 436, and Java database connectivity (“JDBC”) 438. Java
enables business logic 434 in MAF applications. Managed Beans (“MBeans”) are
Java classes that can be created to extend the capabilities of MAF, such as
providing additional business logic for processing data returned from the server.
MBeans are executed by the embedded Java support, and conform to the Java ME
CDC specifications. Model 436 includes the binding layer that connects the
business logic components with the Ul. In addition, the binding layer provides the
execution logic to invoke web services 440 such as remotely hosted SOAP-based
web services. These services are accessed through the Java layer (JVM 432).
Application features authored in MAF AMX access SOAP-based data services
through data controls. JDBC 438 is an APl that enables the model layer to access
the data in encrypted SQLite database 406 through Create, Read, Update, and
Delete (“CRUD”) operations.

[00146] Device native container 402 further includes Application Configuration
442 which refers to services that allow application configurations to be downloaded
and refreshed, such as URL endpoints for a web service or a remote URL
connection of a configuration server 444. Application configuration services
download the configuration information from a server-side WebDav-based service.

[00147] Device native container 402 further includes module 446 that
provides Credential Management, Single Sign-on (“SSO”), and Access Control.
MAF handles user authentication and credential management through the “Oracle
Access Management Mobile and Social” (“OAMMS”) identity manager (“IDM”) SDKs.
MAF applications perform offline authentication, meaning that when users log in to
the application while connected, MAF maintains the username and password locally
on device 404, allowing users to continue access to the application even if the
connection to the authentication server becomes unavailable. MAF encrypts the
locally stored user information as well as the data stored in local SQLite database
406. After authenticating against the login server, a user can access all of the

-45 -

WO 2017/030615 PCT/US2016/033422

application features secured by that connection. MAF also supports the concept of
access control by restricting access to application features (or specific functions of
application features) by applying user roles and privileges. For remotely served Web
content, MAF uses whitelists to ensure that only the intended URIs can open within
the application feature's web view 416 (and access the device features).

[00148] Device native container 402 also enables push notifications via a
Push Handler 414 that communicates with push services 448 included in server side
resources 412 and enables MAF applications to receive events from notification
servers such as the iOS or Android notification servers. The Java layer (JVM 432)
handles the notification processing.

[00149] In runtime architecture 400, device native container 402 interacts with
encrypted SQLite Database 406 that is an embedded SQLite database that protects
locally stored data and is called by the model layer using JDBC 438. The MAF
application generates this lightweight, cross-platform relational database 406.
Because database 406 is encrypted, it secures data if the device is lost or stolen.
Only users who enter the correct user name and password can access the data in
this database.

[00150] Fig. 5 is a block diagram of a system 500 for developing mobile
applications in a mobile cloud infrastructure in accordance with embodiments of the
present invention. In system 500, a user may use a user device 528 to develop and
build applications in a cloud infrastructure 506 via a Web based tool. In one
embodiment, the applications may be downloaded on a mobile device 526 over the
air, thus obviating the need for an App store. The native applications talk to
backends 504 created in MCS 502. In one embodiment, MAF runtime architecture
400 of Fig. 4 may be used to deliver an application to mobile device 526. In one
embodiment, a declarative syntax of an application is deployed on mobile device 526
over the air, and the declarative syntax is interpreted on mobile device 526 by MAF
runtime architecture 400 of Fig. 4.

[00151] Cloud infrastructure 506 includes MCS 502 that provides an admin Ul
516 through which application development may be performed. MCS 502 further
includes production environments 512 and testing environments 514 in which a
mobile application may be developed and tested, respectively. These environments
provide production/testing functionality by talking to corresponding backends 504 via

- 46 -

WO 2017/030615 PCT/US2016/033422

connectors. An application is first developed in testing environments 514. Once
published, the application moves to production environments 512.

[00152] In one embodiment, a mobile application is developed by using user
device 528 to communicate with MCS admin Ul 516 (also referred to as portal)
through a security layer 524. MCS admin Ul 516 includes an application
development server 518 that can be interfaced via MCS admin Ul 516. An
application that is developed in MCS admin Ul 516 can be run on a browser of user
device 528 or on mobile device 526 by communicating with production environments
512 and/or testing environments 514. In one embodiment, when an application is
deployed on mobile device 526, mobile device 526 communicates with testing
environments 514. However, if the application is updated on mobile device 526,
such updates are performed through MCS admin Ul 516.

[00153] An application that is developed in system 500 may be built as a light
application or a heavy application. A heavy application is a full application such as
apps that are downloaded from an App store. A light application is an application
that is deployed as an added feature to an already deployed full application (i.e., a
hosting application) such as an Oracle app. The hosting application acts as a
container that holds the light applications. Both heavy and light applications can be
further containerized by a security container, as described herein with reference to
Fig. 7.

[00154] Fig. 6 is a block diagram of network components in a system 600 for
building mobile applications in accordance with embodiments of the present
invention. In system 600, a first device 602 interacts with an MCS website (denoted
as “https://mcs-tenant-a.cloud.oracle.com” in the example embodiment of Fig. 6) to
initiate build requests, and a second device 604 communicates with the MCS
website to perform an over the air install of native applications. Generally, the over
the air install includes downloading a file such as a property list file (a “p-list” file with
extension “.plist”) that describes the application and the location from which to
download the corresponding application archive file (a file with “.ipa” extension and
storing the application), and then downloading the application archive file from that
location.

[00155] First device 602 and second device 604 interact with the MCS
website by communicating with an MCS Portal VM 612 of a server 610 through a

-47 -

WO 2017/030615 PCT/US2016/033422

public Oracle HTTP Server (“OHS”) 606. Public OHS 606 is a public facing HTTP
server that directs traffic to MCS Portal VM 612 located behind a firewall 608. Public
OHS 606 implements a WebGate that is a web server plugin for Oracle Access
Manager (“OAM”) to intercept HTTP requests and forward them to the corresponding
Access Server for authentication and authorization. Accordingly, public OHS 606
authenticates the user of first device 602, passes along user credentials to MCS
Portal VM 612, and terminates the SSL connection with first device 602. In the
example embodiment of Fig. 6, first device 602 and second device 604 access public
OHS 606 at “https://mcs-tenant-a.cloud.oracle.com” with port 443 used for https.

[00156] MCS Portal VM 612 is a standard WebLogic Server (“WLS”)
application whose data is backed by a single tenant schema in schema service 614
and its corresponding application development client is written using the Oracle
Jumpstart Enterprise Toolkit (“JET”) framework. WebLogic Server is a Java EE
application server developed by Oracle Corp. A database schema is a container of
objects (e.g., tables, views, stored procedures, etc.) to logically group them.

[00157] MCS Portal VM 612 is a single tenant and its security is provided via
Oracle Web Services Manager (“OWSM,” described herein with reference to Fig. 7).
Accordingly, MCS Portal VM 612 runs WLS in a trusted zone. MCS Portal VM 612
handles requests by first device 602 and has a connection to a schema service 614.
MCS Portal VM 612 is also connected to a build server farm 618 via a load balancer
616. In the embodiment of Fig. 6, MCS Portal VM 612 uses open port 80 (or
equivalent) for http communication to/from Public OHS 606, to load balancer 616,
and from individual servers in server farm 618.

[00158] Schema service 614 interacts with the MCS Portal VM 612 and
stores application data, enterprise signing certificates, and provisioning profiles for
the tenant. Load balancer 616 routes farm tasks to servers in server farm 618. The
routing may initially be performed in a round-robin fashion. In the embodiment of
Fig. 6, load balancer 616 is a BIG-IP appliance from F5 Corp. which uses open port
80 (or equivalent) and provides redundancy. Server farm 618 includes a number of
servers (e.g., 20 servers) that handle build jobs. It is connected to a filer (not shown)
for storing application binaries (e.g., 5TB). In one embodiment, connections of
server farm 618 are handled via a local Tomcat instance running locally on a server,

and build tools and processes are handled by native OSX calls.

-48 -

WO 2017/030615 PCT/US2016/033422

BUILDING AN APPLICATION
[00159] In one embodiment, once a user of first device 602 has created an

application and wishes to produce a native binary, the user initiates a build POST
request at the MCS website (e.g., at “https://mcs-tenant-
a.cloud.oracle.com/max/build”) via a Ul of first device 602. POST is a request
method supported by the HTTP protocol for requesting a web server to accept and
store the data enclosed in the body of the request message. The payload of the
build POST request includes the application identifier (“ID”) for the application.
Public OHS 606 receives the request, terminates the SSL, authenticates and
authorizes the user against OAM (assuming the user is logged in), places the user
identity into HTTP headers of the request, and forwards the request past firewall 608
to the WLS server of MCS Portal VM 612 (e.g., the WLS server running at
“http://mcs-tenant-a.internal/max/build”).

[00160] MCS Portal VM 612 receives the request, authorizes the user for
privileges against the requested application, and sends a query to the tenant schema
service 614 for application data, tenant enterprise certificate, encrypted certificate
password, and tenant provisioning profile. Once schema service 614 returns the
requested items, MCS Portal VM 612 creates a new entry in a table of build jobs
(stored at schema service 614) to record the build attempt and capture the primary
key of the corresponding new build record. MCS Portal VM 612 also creates a new
POST request against build server farm 618 behind load balancer 616 (e.g., at
“http://max-mini-farm.internal/build/initiate”), passing in the corresponding
parameters (application data, signing certificate and password, and provisioning
profile) into the body of the request as well as a callback URL for job completion,
where the callback URL encodes the primary key of the corresponding build record
in the table of build jobs. The following functionality provides an example of a build

POST request payload that includes the corresponding parameters:
applicationData: (app data)
signingCertificate: (cert) *
signingPassword: (password) *
provisioningProfile: (profile)
callbackUrl: http://mcs-tenant-a.internal:3000/maxbuild/complete?jobld=(BuildJobld)**
In this example, the certificate and the password are created by the user of first

- 49 -

WO 2017/030615 PCT/US2016/033422

device 602 exclusively for building mobile application according to this embodiment
(i.e., the certificate and the password are not shared with services other than building
mobile application according to this embodiment), and port 3000 is not publicly
accessible.

[00161] Load balancer 616 maintains a list of healthy servers in server farm
618. In one embodiment, this is done via a health check that performs sanity checks
at certain time intervals (e.g., every few minutes). Upon receiving a build job
request, load balancer 616 selects a server from the healthy server pool in the list
and routes the build job request to that server (e.g., routes the job to “http://mac-
mini1.internal/build/initiate”). In one embodiment, selecting the server is according to
a round robin process for build jobs that are of equal complexity.

[00162] In one embodiment, a Tomcat web server is running on the selected
server in server farm 618. The Tomcat web server receives the build job request
and starts an external process that runs on an asynchronous servlet to prevent the
input/output from blocking the request thread pool. When the process completes,
the Tomcat web server creates a POST request to the callback URL in the request
payload. The following functionality provides an example payload for this new
request:

result: (success if successful, etc)

binaryKey: (jobld)

[00163] MCS Portal VM 612 receives the new request and updates the
corresponding record in the table of build jobs with the binary key from the payload if
the event has been successful. It also informs the client (i.e., first device 602) that
the build job was completed (e.g., via polling on Oracle Business Intelligence
Enterprise Edition (“OBIEE”) 11g push or asynchronous servlet with OBIEE 12¢
planned) and produces a QR code with an encoded link for downloading the
application (e.g., “https://mcs-tenant-a.cloud.oracle.com/max/native-
application/(binaryKey)”).

INSTALLING AN APPLICATION

[00164] In one embodiment, once a user of second device 604 scans the QR

code on second device 604, an “over the air” install is initiated. Scanning the QR
code opens the URL encoded in the QR code (e.g., “https://mcs-tenant-
a.cloud.oracle.com/max/native-application/(binaryKey)”). Public OHS 606 receives

-50 -

WO 2017/030615 PCT/US2016/033422

the request, terminates the SSL, authenticates and authorizes the user against OAM
(assuming the user is logged in), places the user identity into the HTTP headers of
the request, and forwards the request past firewall 608 to the WLS server of MCS
Portal VM 612 (e.g., running at “http://mcs-tenant-a.internal/max/build”).

[00165] MCS Portal VM 612 receives the request, authorizes the user for
privileges against the requested application, determines user-agent (in this context,
the OS framework of the device, e.g., iOS vs Android) of the requesting device
(second device 604), identifies the platform of second device 604 (e.g., iIOS), and
forwards the request to a corresponding URL (e.g., “https://mcs-tenant-
a.cloud.oracle.com/max/native-application/plist/(binaryKey)”) by directing to Public
OHS 606, which will in turn forward the request to MCS Portal VM 612 to authorize
(as performed during the build process described herein to ensure that the user is
allowed to download the application). MCS Portal VM 612 receives the forwarded
request and generates a property list file (e.g., an iOS “p-list” file) that includes
application information for a corresponding platform (e.g., iPhone) as well as a link to
the binary (e.g., “https://mcs-tenant-a.cloud.oracle.com/max/native-
application/ios/(binaryKey)”).

[00166] Second device 604 then prompts the user if they want to install the
application. Assuming yes, second device 604 follows the link to the binary (e.g.,
“https://mcs-tenant-a.cloud.oracle.com/max/native-application/ios/(binaryKey)”) by
directing to Public OHS 606 which will in turn forward the request to MCS Portal VM
612 to authorize (as performed during the build process described herein to ensure
that the user is allowed to download the application). MCS Portal VM 612 receives
the request and generates a new build job request to build server farm 618 (e.g., at
“http://max-mini-farm.internal/download/ios/(binaryKey)”) behind load balancer 616.
Load balancer 616 selects a server in build server farm 618 (e.g., via a round robin
process) from a healthy server pool and routes the build job request to that server
(e.g., to “http://mac-minit.internal/ download/ios/(binaryKey)”). An application server
(e.g., a Tomcat) on the selected server receives the request, determines if
corresponding content exists, and streams the binary from the network (e.g., from
“Filer:/filer_mnt/generated_binaries/(binaryKey)/result.ipa”). Load balancer 616
returns the streamed response back to MCS Portal VM 612, which receives the

response and copies it into its request’s output stream to second device 604.

-51 -

WO 2017/030615 PCT/US2016/033422

Finally, second device 604 receives the binary and performs the install.

[00167] Fig. 7 is a block diagram of mobile security suite components in an
embodiment that uses security services provided by a mobile security suite 700 such
as OMSS. OMSS components are distributed across the corporate DMZ 740 and
the enterprise intranet (or corporate network 750). Under OMSS, a security
container 706 such as “Oracle Mobile Security Container” from Oracle Corp. is
installed on a mobile device 702 and is configured to hold “containerized”
applications 708, e.g., applications that have been securely linked to their specific
container. Mobile device 702 may also include other personal applications 704 held
outside security container 706.

[00168] Security container 706 includes a secure web browser 712, a file
manager (not shown), a document editor (not shown), and an optional secure mobile
mail manager 710. Secure mobile mail manager 710 includes personal information
management (“PIM”) applications such as a mail client, calendar, contacts, tasks,
and notes synchronizing with corporate mail servers via the “Microsoft Exchange
ActiveSync” (“EAS”) protocol. Many applications such as “Oracle Business

Intelligence” (“BI”), “Oracle Fusion Tap,” “Oracle Social Network,” “Oracle Enterprise

Manager Cloud Control,” “Oracle WebCenter Spaces,” etc., and a broad range of
third-party enterprise applications can be containerized with security container 706.
All data at rest inside containerized applications 708 on mobile device 702 is
encrypted. Encrypted data storage includes database, file store, cache, and user
preferences. Security container 706 uses a secure channel such as an “AppTunnel”
714 (as described in U.S. Pat. No. 8,332,464, the disclosure of which is incorporated
herein in its entirety) to communicate with corporate network 750 behind corporate
DMZ 740. In one embodiment, data in transit through AppTunnel 714 is encrypted
using TLS/SSL with Federal Information Processing Standard (“FIPS”) approved
algorithms.

[00169] In one embodiment, when a web browser or other client program
makes an unauthenticated request to a security access server such as “Oracle
Mobile Security Access Server” (“MSAS”) from Oracle Corp., the security access
server responds with a redirect to the appropriate security container. Security
containers use a key hierarchy to protect data. All keys are derived from user
credentials that are never stored. The key hierarchy involves multiple keys to

-52.-

WO 2017/030615 PCT/US2016/033422

support different sensitivity of data. For example, a unique key is used for the user’s
authentication certificate, which is allowed to be open for a very short period of time.
A different key is used for the browser cache, which must remain decrypted for an
entire session. The main security container distributes and manages keys for the
complete set of apps in the user’s secure enterprise workspace.

[00170] Secure container 706 has at least three distinctive benefits over
conventional mobile virtual private network (“VPN”) solutions: device trust vs.
gateway, secure container password vs. device password, and secure container
AppTunnel vs. device-level VPN. OMSS extends a network’s Kerberos
authentication trust directly to the user’s device instead of stopping at a gateway
server sitting in the DMZ. OMSS s significantly more efficient and secure than
implementing “constrained delegation” offered by VPN providers. A constrained
delegation solution is not only less secure but also more cumbersome to set up and
maintain. Further, the tradeoff between usability and security is magnified when
dealing with consumer devices and BYOD programs. Corporate IT requires strong
passwords to protect corporate data on BYOD devices. Conversely, users want
simple passwords—or preferably no device password at all—so they can easily
access social networks and other consumer applications. Requiring a device
password is frustrating for users, as they are constantly using the device for non-
enterprise purposes that don’t require enterprise authentication. Embodiments
provide the necessary balance between security and usability when dealing with
BYOD programs by requiring a password only to access corporate applications.

[00171] Yet further, device-level VPNs provide a trusted secure tunnel
between a user’s device and the enterprise’s network. However, device-level VPN
solutions are more appropriate for corporate-owned and secured endpoint devices
such as laptops than for consumer mobile devices. Once a mobile-device VPN
tunnel is open to the network, any application on a device has access to this secure
tunnel, causing significant security vulnerability. With embodiments, however, the
connection from mobile device 702 to enterprise intranet 750 exists only between
security container 706 and enterprise servers.

[00172] In mobile security suite 700, MSAS 716 is typically deployed in
corporate DMZ 740 and multiple server instances can be deployed behind a load
balancer for high availability and scalability. MSAS 716 provides tunneled

-53-

WO 2017/030615 PCT/US2016/033422

connections between the server and containerized apps 708. MSAS 716 brokers
authentication (strong authentication leverages HTTPS connections to “Oracle
Access Manager” (“OAM”) 722 or Kerberos connections to Kerberos Domain
Controllers 718), authorizes, audits, and enables SSO for, and proxies requests to,
their destination (resources in corporate intranet 750 such as web applications and
web services 724). MSAS 716 acts as the terminating end-point of the tunneled
connections initiated by security container 706 and containerized applications 708.

[00173] MSAS 716 supports “Oracle API Gateway” (“OAG”) from Oracle
Corp. and OWSM from Oracle Corp. to add security, threat protection, and throttling
policies to an organization’s REST APl infrastructure. SSO is supported through
OAuth, OAM tokens, Kerberos, and NT LAN Manager (“NTLM”). SAML is supported
through OAM 722 or Kerberos integration with SAML identity providers such as
Oracle, CA, or Ping Identity. MSAS 716 is integrated with the OAM platform and
supports the retrieval of OAM and OAuth tokens for SSO to backend resources
protected by OAM, OAG, and OWSM. MSAS 716 also supports “virtual smart card”
authentication by performing public key infrastructure (“PKI”) authentication to
Microsoft Active Directory protected by a PIN. Digital certificates are provisioned
inside the security container app and only accessed after successful PIN validation.
MSAS integration with OAM allows for context aware, risk based, step-up
authentication.

[00174] Mobile security suite 700 further implements OWSM which is a
component of the SOA Suite and addresses web-services-based SOA security and
management. The purpose of a SOA infrastructure is to allow consumers to invoke
services exposed by providers. OWSM offers a solution for policy management and
security of such service infrastructure. It provides visibility and control of the policies
through a centralized administration interface offered by “Oracle Enterprise
Manager” from Oracle Corp. OWSM allows companies to (1) centrally define and
store declarative policies applied to the multiple web services making up a SOA
infrastructure, (2) locally enforce security and management policies through
configurable agents, and (3) monitor runtime security events such as failed
authentication or authorization. It also provides business agility to respond to
security threats and security breaches by allowing policy changes to be enforced in
real time without the need to interrupt the running business processes.

-54 -

WO 2017/030615 PCT/US2016/033422

[00175] Mobile security suite 700 further implements “Oracle Mobile Security
Manager” (“MSM”) 720 within corporate network 750. MSM 720 is a “WebLogic”
managed server running on either Oracle Linux or Red Hat Enterprise Linux. MSM
720 integrates with Microsoft Exchange Servers 728 in corporate network 750 to
provide access to corporate email services. MSM 720 also integrates with LDAP
servers 732 to provision users, assign and manage policies for Mobile Device
Management and for accessing security container 706, manage the app catalog,
control the remote lock or wipe of the device and secure workspace apps (wiping
security container 706 removes all data and configuration for workspace apps), and
set access control policies for the security container. Polices are assigned to users
by associating policy templates with users and user groups. Available policy controls
include device restrictions, authentication (authentication frequency, failed attempt
threshold, PIN strength for PKI), catalog (apps, URLs, file shares), container/apps
(compromised platform, location services, offline status, inactivity duration, data leak
prevention (“DLP”)), time access (lock if outside time window), Geo Access (lock if
outside geo-fence (city, state, country)), devices (whitelist specific device models,
specify minimum OS level), browser (disable address bar, disable download), file
browser (allow/disallow, disable download, specify file server URL), personal
information manager (“PIM,” mail server URL), provisioning (invite template, PKI
details), etc. If a user is in multiple groups and has multiple policies, policy
combinations are resolved following specific rules.

[00176] MSM 720 maintains the EMM policies, which are then associated to
one or more user groups in the directory. MSM 720 does not perform any user or
group management but leverages these identities and groups directly (no
synchronization) from the directory store. MSM 720 uses APNS and CGN over
HTTPS to send notifications to devices. MSM 720 also exposes a WebDAYV front-
end to internal CIFS/SMB-enabled File Systems 730 or “Microsoft SharePoint
servers,” and enables browsing intranet file shares from the client.

[00177] With more and more organizations establishing a presence on social
networks, IT departments need support for social identities, which rely on more
lightweight security standards than enterprise identities but are better adapted to the
requirements of social networks. For example, some websites may require users to

provide access tokens obtained from Facebook or Google in order to be

-55-

WO 2017/030615 PCT/US2016/033422

authenticated to their services. Accordingly, Mobile security suite 700 further
implements OAMMS that includes a server that interfaces with existing backend
identity management infrastructures. The server acts as an intermediary between
supported mobile client apps and backend identity services. This decouples the
client apps from the backend infrastructure so that backend infrastructure can be
modified without having to update mobile client programs. OAMMS includes the
following functionality:

¢ Delegated authorization leveraging the OAuth standard.

¢ Mobile Services connecting browser-based (HTML5) and native mobile apps
to the enterprise identity management infrastructure, typically the “Oracle Access
Management platform.”

¢ Internet Identity Services that let OAMMS be used as the relying party when
interacting with popular, cloud-based identity authentication and authorization
services such as Google, Yahoo, Facebook, Twitter, or LinkedIn. By deploying
OAMMS, the user is provided with multiple login options without the need to
implement access functionality for each identity provider individually. User Profile
Services providing a REST interface for LDAP CRUD operations (customers use the
same REST interface to build graphical Uls for apps), user self service functions
such as self-registration, profile maintenance, password management, and account
deletion. User Profile Services are also available as an OAuth resource.

¢ Access Management Integration Services for leveraging OAM 722 through a
runtime REST interface provided by an agent SDK.

[00178] Fig. 8 is a flow diagram of mobile application development in
accordance with embodiments of the present invention. In one embodiment, the
functionality of the flow diagram of Fig. 8 (and Fig. 10 described below) is
implemented by software stored in memory or other computer readable or tangible
medium, and executed by a processor. In other embodiments, the functionality may
be performed by hardware (e.g., through the use of an application specific integrated
circuit (“ASIC”), a programmable gate array (“PGA”), a field programmable gate
array (“FPGA”), etc.), or any combination of hardware and software. An example of
cloud based mobile application development is provided in U.S. Provisional App. No.
62/186,080 (Attorney Docket No.: 88325-924721(165701US), Client Reference No.:

-56 -

WO 2017/030615 PCT/US2016/033422

ORA150600-US-PSP), filed June 29, 2015, entitled “CLOUD BASED EDITOR FOR
GENERATION OF INTERPRETED ARTIFACTS FOR MOBILE RUNTIME,” the
disclosure of which is hereby incorporated by reference.

[00179] At 810 an application definition wizard is generated. An application
definition wizard as used herein represents a set of one or more Uls that guide a
user during the definition process of a mobile application that utilizes one or more
pre-defined cloud-accessible services. The application definition wizard can
implement one or more workflows each associated with a part of the application
definition process. In one embodiment, the application definition wizard can prompt
or otherwise guide a user to specify application defaults, such as application
identifier prefixes, default icons, splash screens, default application/feature
templates, setup enterprise provisioning profile / keystore, or the like.

[00180] In certain embodiments, the application definition wizard can prompt
or otherwise guide a user to specify an application name, a form factor (such as a
phone or tablet device), a navigation type (e.g., none meaning a single feature or Ul,
as springboard, a navigation bar (“NavBar”), a Spring/Nav combo, or the like), and
any application preferences.

[00181] At 820 an application definition is received. As discussed herein, the
application definition can include any information needed in order to create at least a
minimally functional mobile application. At 830 a mobile application is generated
based on the application definition. In one embodiment, the mobile application is
represented in a simulator of the target device and can include a set of definitions
that when interpreted, function as a compiled mobile application.

[00182] At 840 a feature selection wizard is generated. A feature selection
wizard as used herein represents a set of one or more Uls that guide a user during
the development process of a mobile application that utilizes one or more pre-
defined cloud-accessible services. The feature selection wizard can implement one
or more workflows each associated with a part of the application development
process. In one embodiment, the feature selection wizard can prompt or otherwise
guide a user to specify features, Ul modules, Business Object, or the like that can be
used with the mobile application.

[00183] In certain embodiments, the feature selection wizard can prompt or
otherwise guide a user to specify components of the first screen of the mobile

-57-

WO 2017/030615 PCT/US2016/033422

application. A component can be selected from a catalog of components.

[00184] In certain embodiments, the feature selection wizard can prompt or
otherwise guide a user to specify components of other screens of the mobile
application. These other screens can form part of one or more Ul modules. In
certain embodiments, the feature selection wizard can prompt or otherwise guide a
user to specify one or more Ul modules of the mobile application. A Ul module
represents a processor, task, or flow that can be performed with respect to the
mobile application. A Ul module can be selected from a catalog of Ul modules or a
set of templates that provide cohesive collections of Ul elements and page flows.
Some examples of Ul modules are approval workflows, worker tasks, data entry
tasks, reports builders, or the like. A template provides a pre-set
arrangement/binding of a set of Ul elements so that a user only needs to configure
those Ul elements and bind the template instead of having to arrange and bind
individual Ul elements. In one embodiment, a user may contribute their own
templates to the set of templates available to another user. The user can configure
or otherwise specify a series of pages that represent the Ul Module. For each page,
the user can be presented with a set of layout templates much like before. Each
layout template might have several facets such as choosing a secondary template.

[00185] In some embodiments, the feature selection wizard can prompt or
otherwise guide a user to specify additional features of the mobile application, such
as business objects previously defined. The user can specify what resource of the
backend service, API, or connector is to be used or otherwise associated with Ul
elements of each component, screen, Ul module, or the like.

[00186] At 850 feature definitions are received, and at 860 a data binding
wizard is generated. A data binding wizard as used herein represents a set of one or
more Uls or Ul elements of an existing Ul that guide a user during the data binding
process of a mobile application that utilizes one or more pre-defined cloud-
accessible services. The data binding wizard can implement one or more workflows
each associated with a part of the application development process. In one
embodiment, the data binding wizard can prompt or otherwise guide a user to
specify how features, screens, Ul modules, etc., are bound to business objects,
services, APIs, or the like that can be used with the mobile application. In certain
embodiments, the data binding wizard can prompt or otherwise guide a user to

-58 -

WO 2017/030615 PCT/US2016/033422

specify a business object of the mobile application. A business object can be
selected from a catalog or set of services, APls, etc. that are available to the mobile
application.

[00187] At 870 data binding definitions are received. In various
embodiments, steps 840-870 can be performed in series or in parallel. Individual
steps in 840-870 can be performed on individual element of a mobile application or
to a group of elements. As illustrated, a user can repeat the process of feature
definition and data binding to create a mobile application.

[00188] At 880 the mobile application is deployed. The user can test the
application using a testing application deployed on a target device, or as a native
application deployed on a target device.

TRANSACTIONAL AUTOSAVE

[00189] Currently, in most web applications, there is no explicit save action

performed by a user. Instead, the application autosaves its content on behalf of the
user. Accordingly, the application needs to determine when certain save boundaries
occur and then perform autosave accordingly. Save boundaries are conditions (e.g.,
time instances/intervals, user actions, application variable values, application/system
events, etc.) that are configured to trigger an autosave of an application.

[00190] Some known systems perform autosave based on a simple time
based control functionality (e.g., autosave after a set period of time) but are not ideal
in case of undo/redo actions which demand more logical save boundaries. Some
known systems use action based boundaries where an autosave is triggered when
the user performs an action. These systems can provide autosave functionality in
response to undo/redo actions but result in increased complexity for determining
when to perform the autosave and how to coordinate model changes that are tied to
the same user action. For example, when a user binds some text on a screen to a
backend service, respective changes are made to a Ul definition file and a binding
definition file, and each of these files is modified by their respective model.
Accordingly, providing autosave that is triggered by undo/redo actions requires
coordination of these model changes which leads to increased complexity. A model
is a “source of truth” which is the abstraction over the actual data, such as a page
schema including the declarative syntax that describes Ul components on a screen.

[00191] Further, with regards to performance and data integrity, a client

-59-

WO 2017/030615 PCT/US2016/033422

needs to confirm with the server whether or not a save action was performed
successfully, so that the client knows whether it needs to retry the save action.
Some known systems wait for the server response before allowing further user input.
However, this waiting blocks the Ul to the user and significantly impairs performance
if the connection to the server is slow. Some known systems do not wait for the
server and do not block the client Ul. However, if the server fails, the client is often
unable to recover as the states between the server and the client no longer match.

[00192] In contrast, embodiments implement a transaction system that
correlates user actions with specific model changes on the client and provides
corresponding action based save boundaries while ensuring data integrity. In
addition, embodiments do not need to wait for server responses for save actions
(and thus do not block the client Ul) while also allowing for seli-healing if a server
error happens while attempting a save action.

[00193] One embodiment defines client side transactions that are triggered by
user actions that affect client side models. A transaction is a series of related
changes caused by a single user action. For example, for a user action to bind
some text on a screen to a backend service requiring changes to be made to a Ul
definition file and a binding definition file, instead of applying respective model
changes for each of these files, one embodiment captures a transaction that
encompasses changes to both of these models and uses the transaction to support
autosave functionality.

[00194] In one embodiment, when a model is modified, a change record is
added to a current transaction. After the user action completes, the transaction is
committed and the modifications are recorded in the change records. An example of
a model is a page schema which is the declarative syntax that describes Ul
components on a current screen. This model may be implemented as an application
programming interface (“API”) that manipulates the extensible markup language
(“XML”) code that defines a screen. An example model change for this model is:

some_component.setAttribute(“style”, “color: red”)
where “some_component” is a Ul component in the page model and the change is to
modify a style attribute to make it red. An example transaction for this model is the
series of model changes (e.g., the aforementioned change to a page schema and
the corresponding bindings), which may be caused by clicking a button by a user.

-60 -

WO 2017/030615 PCT/US2016/033422

Examples of user actions that can be configured to trigger an autosave action for this
model are user gestures such as pressing a button, entering some text, dragging
and dropping some piece of Ul, etc. For example, when completing a “new
application wizard” to develop an application, the user may modify the application
and its screen models, and an autosave can be triggered when the user hits a
“finish” button to finish developing the application.

[00195] One embodiment defines save boundaries to autosave local content
to a remote persistence store of a server. A persistence store is a storage (e.g., a
file system, a database, etc.) that stores data for long term. This embodiment
implements two separate lifecycles on two separate queues. The change records
are first applied to a local lifecycle on a local queue to commit the changes to local
models. This lifecycle happens very quickly and allows the client Ul to reflect these
changes in near instantaneous manner. The change records are also run under a
remote lifecycle where they are queued in a remote queue to be sent to the server.
The remote queue is a persistence queue that manages what gets stored to the
remote persistence store of the server. Change records queued on the remote
queue are “synchronously” sent to the server in the order they were created. That is,
change records on the remote queue are processed one at a time and each change
record is sent to the server only if the prior change record has been successfully
recorded on the server in one embodiment. This ensures that the order of the
changes is maintained at the server.

[00196] When a save request to save a change to the server fails,
embodiments are aware of the point at the remote queue from which they need to
resend the queued save requests. Accordingly, embodiments retry the failed record
in the remote queue and then continue with subsequent records. If the server fail
persists, embodiments transition to off-line mode and continue recording change
records on the remote lifecycle. These records are then saved at the server in the
correct order when the connection with the server has been restored or server
instability has been corrected.

[00197] By allowing for almost instantaneous Ul updates, embodiments
improve client Ul performance without sacrificing data integrity. For example,
actions performed by a user (including complicated actions such as creating complex
artifacts) are completed immediately for the user. Further, since the server saves

-61 -

WO 2017/030615 PCT/US2016/033422

are synchronous, embodiments can handle server outages and ensure that data is
not lost and contents will have eventual consistency with the server.

[00198] In one embodiment, a transaction is created when a user action is
triggered and is either committed or rolled back when the action completes. An
action completes when the system has finished processing the result of that action.
In between these two events (the user action and completion of the user action),
model changes can occur in response to the user action. For example, when the
user action is pressing a button, the system responds to such pressing and the
action completes when the system completes the processing of the pressing. If the
button is pressed to, e.g., add a new attribute to some part of a page butitis
deemed to be illegal to add that attribute, the transaction is cancelled. If on the other
hand the attribute is in fact legal, then the transaction is committed.

[00199] As another example, when the user attempts to add a button to a
screen by “drag and drop” functionality, the transaction completes if the user can
successfully drop the button to the screen. However, if the user tries to perform an
unacceptable action such as adding a button within another button, the page model
detects that this action is unacceptable and notifies the system. This causes the
transaction to fail and all related activities (all model changes) of the transaction are
rolled back (reverted). In some embodiments, additional model changes may be
made in response to a single model change initiated by a user gesture. For
example, when a user drops a button in a location that is acceptable, the system
may automatically add text to the button (e.g., by default) as a separate/additional
model change.

[00200] One embodiment implements transactional functionality as provided
in transactional databases. A transactional database is a database management
system (“DBMS”) where write transactions on the database can be rolled back if they
are not completed properly (e.g., due to power or connectivity loss). Some relational
DBMS’s support transactions that include one or more data manipulation statements
and queries each reading and/or writing information in the database. Transactions
may also be implemented as nested transactions that include statements within them
that start new transactions (i.e., sub-transactions). A transaction is committed if no
errors occur during its execution. A transaction commit operation applies all data

manipulations within the transaction and persists the results to the corresponding

-62 -

WO 2017/030615 PCT/US2016/033422

model. If an error occurs during the transaction or if the user specifies a rollback
operation, data manipulations within the transaction are not persisted to the model.
A partial transaction cannot be committed to the model since that would leave the
model in an inconsistent state.

[00201] In one embodiment, each model is configured to record its changes
to the transaction, including a minimal set of instructions to perform the change and
undo that change. Such minimal set of instructions can be used to implement
undo/redo actions. For example, for a page model that is backed by XML, calling
“some_component.setAttribute(...)” immediately modifies the XML, and “[set attribute
“f00” on element “X”]” can be a singular instruction that can be used to implement
undo/redo actions.

[00202] In one embodiment, when a transaction is committed, it is sent to the
local lifecycle where transactions are recorded in the order they are completed. A
transaction is considered “recorded” when its changes are applied to corresponding
client side models and any necessary Ul is updated to reflect the changes. Once a
transaction is recorded locally, its change record is added to the remote persistence
queue of the remote lifecycle. The remote lifecycle is a queue of transaction change
records that need to be saved to the server. These records are processed one at a
time and indicate how content is persisted on the server. If the persisting of a
change record to the server completes, the change record is removed from the
remote persistence queue. However, if a server save fails or a response is not
received after a period of time (e.g., 20 seconds after attempting the persist
operation), the persist operation is determined to have failed. In this case, one
embodiment retries the save action using an exponential back-off algorithm. For
example, one embodiment attempts a first retry of the save action after 1 second,
and if the first retry fails waits 2 seconds to attempt a second retry, and if the second
retry fails waits 4 seconds to attempt a third retry, and so on. If the failure persists,
one embodiment transitions to offline mode and checks at longer time intervals (e.g.,
every minute) to determine if the server connection has been restored. This may be
performed by retrying the save of the transaction at the head of the persistence
queue.

[00203] Embodiments are applicable to any web based applications such as

those in a cloud environment. For example, when a user of a web based application

-63 -

WO 2017/030615 PCT/US2016/033422

in a cloud based IDE drags and drops an object onto a design canvas in a Ul, a
number of separate but logically related files are updated and the changes to these
files are treated as a single logical transaction to allow for undo/redo of the combined
action as a single atomic transaction. In the distributed system that provides the
IDE, some of the objects that are part of a specific transaction may be remote to the
user. Accordingly, embodiment ensure that coordination of these remote updates is
not blocking from user perspective, and changes sent to remote systems are
coordinated in terms of ordering so that failed transactions can be replayed.

[00204] One embodiment implements a “TransactionManager” JavaScript
module that manages an undo history list including a history of committed
transactions that can be undone or redone. TransactionManager is a singleton (i.e.,
only one instance of this JavaScript module is created) and provides callers with a
“startTransaction” JavaScript method so that they can start recording changes. At
any time, callers can retrieve the current transaction using a
“getCurrentTransaction()” JavaScript method. Once all changes are done,
“TransactionManager” calls a “commitTransaction()” JavaScript method to save the
change records into the undo history. If for some reason during the lifetime of the
transaction there are errors or if the commit operation fails, then
“TransactionManager” calls a “rollbackTransaction()” JavaScript method which
removes the recorded changes. To undo the latest transaction, an “undo()”
JavaScript method can be called. Calling “undo()” repeatedly walks back the history
of transactions by undoing each one. At any point, a “redo” JavaScript method can
be called to redo the most recent undo transaction. “redo” can be called as many
times as “undo” was called. Each “undo”/“redo” triggers a “TransactionEvent”
JavaScript method of type undo/redo. “undo” and “redo” JavaScript methods should
not be called within a transaction.

[00205] One embodiment implements a “ChangeRecord” JavaScript module
as the base JavaScript module for a change record that constitutes part of a
transaction. Each transaction can include one or more change records, and all
records are transacted atomically (i.e., either all occur or none occur). Should one
change record roll back, all change records in that same transaction are
subsequently rolled back. A change record has two life cycles: local and remote.

[00206] The local life cycle includes non-blocking operations that occur on the

-64 -

WO 2017/030615 PCT/US2016/033422

local client. A non-blocking operation is an operation that does not halt the Ul while
processing is occurring, such as not waiting on a server response to continue. There
are three lifecycle JavaScript methods that occur on the client: “localCommit,”

“localRevert,” and “localReplay.” “localCommit” is called exactly once when the
change record is initially committed. “localRevert” is called whenever the record is
reverted (e.g., in an undo or roll back operation). “localReplay” is called whenever
the record is asked to be replayed (e.g., in a redo operation).

[00207] The remote lifecycle occurs in parallel with the local lifecycle, but
since the remote lifecycle JavaScript methods are performed asynchronously (i.e., at
the same time or in parallel), they may be delayed as compared to the local lifecycle
JavaScript methods. There are two JavaScript methods for remote operations:

“remotePersist” and “remoteRestore.” “remotePersist” persists the result of the
change to a remote server (i.e., saves the change to a database), while
“remoteRestore” restores the original state (i.e., before the change) to the remote
server.

[00208] In one embodiment, a change record is identified by a unique type
that represents a single resource in the system. A resource may be a model such as
a screen, bindings related to a screen, navigation flow of the application, application
metadata, etc. The type also identifies the JavaScript method of the operation. In
one embodiment, the type is left non-specific in order to allow change records and
listeners to define the contract of the operation. A type is a tuple including the
operation of the change as well as the ID of the resource. The operation may also
uniquely identify what type of resource is being modified. For example, in the
following functionality, “resourceType” indicates what type of model is affected (i.e.,
correlates to a table in the database) and the “id” identifies a specific instance of that

resource (i.e., a row in that table):

{

resourceType: page
id: pageld
}

[00209] For certain types, the persist operation may combine the remote
lifecycle of multiple change records. For example, if two persist operations occur for
the same type, the first may be skipped with the assumption that the second will
override data of the first. In one embodiment, a single change record affects a single

-65 -

WO 2017/030615 PCT/US2016/033422

resource, and multiple change records are used if multiple resources are modified in
the same transaction. For example, when a user action to bind some text on a
screen to a backend service requires changes to be made to a Ul definition file and a
binding definition file, one embodiment captures a transaction that encompasses
changes to both of these models and adds respective change records for changes to
each model.

[00210] One embodiment also provides a JavaScript method that allows for
Ul-only change records to be added in the local lifecycle. Such change records are
only used in the local life cycle to affect Ul changes locally. An example of a change
that only requires Ul-only change records is changing tabs on a screen. This change
does not require a data change and therefore nothing needs to be synchronized
back to the server. For Ul handling that is incidental (e.g., capturing Ul state
before/after a transaction), transaction metadata available during the local lifecycle
eventing is used. For example, when a user switches tabs on a screen,
embodiments need the tabs to switch back if the user performs an undo. The
metadata recorded in a Ul-only transaction would capture what tab was active so
that it can be restored during the undo. This metadata is stored via the transaction
metadata (e.g., “the_current_transaciton.setMetadata(CurrentTab, “some tab”)”).

[00211] A “ChangeRecord::localCommit” JavaScript method commits the
transaction locally. Some models perform the operations immediately on command,
and thus there is nothing to commit. In these cases, this JavaScript method can
serve to inform the model when a commit has been completed. This JavaScript
method can optionally return a Boolean. In some models, operations are performed
on a tentative basis and there may be no actual changes committed. In those cases,
this JavaScript method returns “false” to indicate that no change has been made to
the underlying model. If this JavaScript method returns “false,” the transaction is not
aborted but this particular change is ignored by the transaction. A transaction that
has all of its records return “false” for this JavaScript method is silently disposed of
but not rolled back. A Ul-only change record is not affected by what is returned by
this JavaScript method.

[00212] An example of a model that makes its changes immediately when a
caller modifies a property on that model is a page model that is backed by XML. For
this model, calling “some_component.setAttribute(...)” immediately modifies the

-66 -

WO 2017/030615 PCT/US2016/033422

XML. Since the model is modified before the transaction completes, there is no work
to be done during the commit operation when the transaction completes.

[00213] Some models do not modify their underlying sources immediately.
Some models capture the changes that are done to that model in a temporary
storage, and when the transaction completes during a commit operation, those
changes are read from that temporary storage and written to the model. An example
of a model where no changes are necessary is when a user changes the text of a
button from “a” to “b” and then changes it back from “b” to “a” in the same
transaction. Since the value “a” has not changed from the start of the transaction to
when the transaction is committed, the model can choose to do nothing since an
undo of that operation would not have any effect on the model.

[00214] A “ChangeRecord::remoteCommit” JavaScript method persists the
changes to a remote server. When the persist operation completes, this lifecycle
JavaScript method indicates that it has completed. When the persist operation is
rejected, this lifecycle JavaScript method indicates that an error has occurred and
schedules the persist operation to be retried in the future.

[00215] Fig. 9 is a block diagram of a system 900 for web application
development in one embodiment. A user develops an application by using a web
browser 902 running an application development website 910 corresponding to an
application development server 904. The actions performed by the user are
reflected at application development server 904 through a request/response
mechanism in which each change is sent to application development server 904,
which in turn sends a corresponding response back indicating whether the change
has been persisted at application development server 904.

[00216] In some known systems, a user is not allowed to continue interacting
with application development website 910 and making further changes unless a
response is received from application development server 904 indicating that the
change that was last made is persisted at application development server 904.
However, this may result in a poor user experience and overall performance when
there is a delay in receiving the response due to, for example, application
development server 904 being loaded, the connection to application development
server 904 being slow, poor connection with application development server 904 in

cellular/wireless scenarios, etc. Indeed, in some known systems, a user may need

-67 -

WO 2017/030615 PCT/US2016/033422

to wait 2-3 seconds after each change before being able to continue. This problem
is amplified when a series of actions are performed by the user and the user then
intends to undo all those actions, since the user will have to wait 2-3 seconds for
performing each action and then another 2-3 seconds for undoing each action, only
to end up with no changes.

[00217] In contrast, system 900 maintains a transactional system at the client
side (i.e., web browser 902) by implementing a local queue 906 and a remote queue
908. For example, when a change “A” is made by the user in application
development website 910, this change is viewed in terms of a transaction (i.e., a
unit/block of work with clear start and end points). For example, “A” may be the
addition of a form to a screen on application development Website 910. Accordingly,
every discrete operation is its own transaction. When a transaction gets committed
(i.e., the transaction has entered the system and the user has decided to perform the
corresponding action), “A” is placed in local queue 906. Application development
website 910 processes the contents of local queue 906 one at a time and performs
the corresponding changes. For example, when “A” is the oldest unprocessed item
in local queue 906, application development website 910 takes “A” out of local queue
906 and shows its effect on the screen of web browser 902.

[00218] The transactions are also queued in remote queue 908 independently
of local queue 906. Remote queue 908 is also ordered and its contents are
processed one at a time. For example, for change “A” to add a form to the screen of
Web browser 902, the user views the result immediately while “A” may still be
waiting in remote queue 908 to be communicated with application development
server 904. If application development server 904 is slow (e.g., if it takes 5 seconds
to upload a change to application development server 904), instead of waiting for “A”
to be successfully sent to application development server 904, the user can go
ahead and perform other changes “B,” “C,” and “D” locally. On the client side,
despite a slow server, changes “A” through “D” happen instantly and are recorded.
Accordingly, local queue 906 is processed very quickly.

[00219] If a catastrophic event happens at application development server
904 (e.g., the server goes down), system 900 transitions to offline mode and the
changes that are not yet reflected at application development server 904 stay in
remote queue 908 so they can be communicated with application development

-68 -

WO 2017/030615 PCT/US2016/033422

server 904 once it comes back on. Remote queue 908 holds such changes even if
web browser 902 is terminated. By referring to remote queue 908 after application
development server 904 is available again, system 900 identifies which change is
the next one to be communicated with application development server 904. An item
in remote queue 908 is eliminated only after receiving a corresponding response
from application development server 904 indicating that the item has been
successfully stored at application development server 904. Since the items are
communicated with application development server 904 one at a time, at every
instance system 900 knows which items have been successfully communicated with
application development server 904.

[00220] In one embodiment, when a most recent change saves the totality of
a resource, previous changes to that resource can be eliminated from local queue
906 and/or remote queue 908. For example, in a series of changes “A” through “D,”
if “B” and “D” modify the same resource, and “C” and “D” are independent, “B” can
be eliminated from the queues. An example of such resource is a Ul on web
browser 902, where moving one form field to another form field modifies the same
resource.

[00221] In one embodiment, when processing local queue 906 and/or remote
queue 908, a respective pointer is moved instead of moving the transactions
themselves. In one embodiment, undo operations are scheduled in remote queue
908 just the same as other transactions. However, if an undo transaction is added to
remote queue 908 while the corresponding original transaction is still waiting in
remote queue 908, both transactions may be cancelled in remote queue 908.

[00222] In one embodiment, undo history is maintained in local queue 906
from the beginning of time (e.g., the first time that application development website
910 was reached). In this embodiment, local queue 906 is a persistent object.

[00223] Fig. 10 is a flow diagram of autosave functionality in accordance with
embodiments of the present invention.

[00224] At 1010 a web browser of a client device receives a user action
performed by a user that interacts with a website corresponding to a server. The
website may be an application development website and the server may be an
application development server.

[00225] At 1020 a change record corresponding to the user action is

-69 -

WO 2017/030615 PCT/US2016/033422

determined and at 1030 the change record is queued in a first queue to commit
corresponding changes to local models. In one embodiment, the first queue is an
ordered persistence queue that maintains a history of change records for performing
undo and redo operations in interacting with the website.

[00226] At 1040 the change record is queued in a second queue that
communicates with the server to persist the change record at the server. In one
embodiment, the second queue is an ordered queue where change records are
processed one at a time and each change record is sent to the server only if a prior
change record in the second queue has been successfully recorded on the server.
The change record is removed from the second queue after being successfully
communicated with the server. The second queue communicates with the server
through a request/response mechanism in which each change record in the second
queue is sent to the server which in turn sends a corresponding response back
indicating whether the change record has been persisted at the server.

[00227] In one embodiment, the change record reflects model changes
caused by the user action in the website and is added in a transaction that
constitutes related model changes. Change records in the transaction are placed in
the first queue when the transaction is committed. The transaction is committed if no
errors occur during its execution. The website processes contents of the first queue
one at a time and performs corresponding changes. Change records in the
transaction are placed in the second queue when the transaction is recorded. The
transaction is recorded when its changes are applied to corresponding client side
models and any necessary user interface is updated to reflect corresponding
changes.

[00228] One embodiment determines that a response to a request is not
received from the server after expiry of a time threshold and transitions to offline
mode while preserving contents of the second queue and continuing the queuing of
new change records in the second queue. The embodiment then determines that
communication with the server is restored, transitions back to online mode, and
resumes to persist the contents of the second queue at the server. The second
queue holds its contents even when the web browser is terminated.

[00229] One embodiment determines that the change record saves a totality

of a resource and removes previous change records to the resource from the first

-70 -

WO 2017/030615 PCT/US2016/033422

queue and the second queue.

[00230] In one embodiment, when an undo transaction is added to the
second queue while a corresponding original transaction is still waiting in the second
queue, both the undo transaction and the corresponding original transaction are
cancelled from the second queue.

[00231] As disclosed, embodiments provide a transactional autosave system
that allows for client side changes to be almost instantaneous while also persisting
those changes at a remote server without losing data or causing inconsistency
between the client and the server, even in case of server connection problems or
undo/redo actions performed at the client. Accordingly, since there is no need for
blocking the user while persisting user changes to a remote server, embodiments
greatly enhance performance and improve user experience.

RESTORATION OF UI STATE

[00232] Currently, some transactional systems provide undo and redo

functionality to revert or re-apply model changes. However, while it may also be
desirable to restore Ul states (i.e., what Uls the user is seeing), the Ul state
information may not be part of the model data, and therefore, restoring the model
may not automatically restore the Ul state. For example, a user may be on a page
“X”in a system, make a model change to page “X,” and then switch/navigate to a
page “Y.” If the user performs an undo on the model change to page “X,” it would be
highly desirable to switch the view back to page “X” since that is where the user
made that model change. However, undoing just the model change to page “X”
does not automatically bring the user from page “Y” to page “X.” As a system gets
more complex, the amount of Ul state that preferably needs restoration also
increases.

[00233] Some known systems either do not address the issue at all (i.e., the
Ul is not changed on undo/redo) or only restore the Ul state to a certain extent. For
example, in some known systems, when an undo or redo action is received, the user
is brought back to some main/default Ul but not a detailed Ul specific to the
undo/redo action.

[00234] Some known systems attempt to inspect the changes to determine
what Ul to show to the user. However, implementing this functionality complicates
the system and is difficult to maintain.

=71 -

WO 2017/030615 PCT/US2016/033422

[00235] In contrast to the known systems, embodiments provide a
transactional system where the Ul state can be restored when a transaction is rolled
back or when it is subsequently re-committed (i.e., operations typical in undo/redo
functionality). One embodiment stores Ul and model states both before and after
committing a transaction, and uses the stored states to restore appropriate Ul and
model states when an undo or a redo operation is performed on the transaction.
Accordingly, embodiments make Ul restoration manageable and automatic within a
transactional environment, even for complex systems where a substantial amount of
Ul state needs restoration.

[00236] In one embodiment, upon undoing an action, the user sees the same
Ul they were looking at before performing that action. One embodiment provides
similar functionality for redo. That is, upon redoing an action that has been undone,
the user sees the same Ul they were looking at after performing that action.
Accordingly, embodiments significantly improve the user experience by preventing
the user from losing context within the UL.

[00237] Embodiments are extensible to allow for any piece of Ul to participate
in the restoration functionality and do not require the Ul to understand the semantics
of a transactional system. That is, the Ul does not need to understand what model
changes are actually performed by a transaction, what that transaction means to the
system, or how transactions work in general (e.g., how a commit operation, a
rollback operation, etc., works).

[00238] In one embodiment, when a web page is rendered on a browser,
components of the web page are initialized. That is, when a web page is rendered,
Ul elements/actors are first downloaded to the browser and then executed. In this
embodiment, Ul actors in the system can register with the transactional framework at
initialization time. The registrations can also be dynamic so that a Ul that is created
during a work session can register with the transactional framework and then
deregister when that Ul is removed.

[00239] In one embodiment, when a transaction is started, the transactional
framework queries the registered Uls and retrieves a snapshot of their current Ul
states. In one embodiment, a Ul state includes the semantical meaning of the
change resulting from a transaction. The Ul actors involved in the transaction know
how to restore such Ul state since these actors created the Ul state in the first place.

-72-

WO 2017/030615 PCT/US2016/033422

The following is an example functionality that may be included in a Ul state to record
that the current color of a button is blue:

{

“color”; “blue”

}

[00240] The transaction then commits and updates the corresponding models
in the system. Once these changes are reflected in the Uls, the registered Uls are
queried again and another snapshot of their current Ul states is taken. In one
embodiment, the snapshots do not indicate what lifecycle they are in within a
transaction (e.g., whether the lifecycle state of a transaction is a commit, undo, redo,
etc.). For example, the Ul just takes its current snapshot regardless of whether the
user performed an action, an undo operation, a redo operation, etc. In one
embodiment, “before transaction” and “after transaction” snapshots of Ul states are
stored along with corresponding transaction change records.

[00241] In one embodiment, a change record is stored independently of a
corresponding model state, and stores instructions for modifying that model state.
The model state is assumed to be correct at any given point in time (e.g., match the
Ul that is being provided to the user at any given point in time). In one embodiment,
change records are stored in an “undo” stack. Each change record includes a set of
instructions that can perform a corresponding action or undo it. Accordingly, when a
user undoes an action, the last change record is retrieved from the undo stack and
called to perform the corresponding undo instructions.

[00242] In one embodiment, when model changes are applied in a transaction
which is subsequently rolled back (e.g., by performing an undo operation), the
registered Uls are provided with their corresponding Ul snapshots taken when the
transaction started, and the Uls are prompted to restore their corresponding Ul
snapshots. Similarly, when model changes are restored in a rolled back transaction
which is subsequently replayed (e.g., by performing a redo operation), the registered
Uls are restored to their corresponding Ul snapshots taken when the transaction was
committed.

[00243] In one embodiment, restoring a snapshot of one piece of a Ul does
not affect other pieces of the Ul. For example, one Ul piece does not event to
another Ul piece when a snapshot is restored since updating the other Ul piece

outside its own lifecycle may introduce unpredictable behavior. Accordingly, in one

-73-

WO 2017/030615 PCT/US2016/033422

embodiment, each piece of an affected Ul registers and manages its Ul state
independently of other Ul pieces, does not react to events of other Ul pieces, and
does not send any events to other Ul pieces during this process.

[00244] Embodiments are applicable to any system or web application that
supports undo/redo functionality.

[00245] Fig. 11 illustrates an example Ul 1100 according to one embodiment.
Ul 1100 may be used, for example, to configure/design a mobile application or
another type of application. Ul 1100 includes three Ul pieces: a template selection
piece 1102, a template piece 1104, and a component selection piece 1106. In one
example, template selection piece 1102 may provide options to select a template A
1110, a template B 1112, or a template C 1114. Upon selecting a template option in
template selection piece 1102, the selected template is shown in template piece
1104. In one embodiment, the Ul component in template selection piece 1102 that
corresponds to the selected template in template piece 1104 may be highlighted in
template selection piece 1102.

[00246] Template piece 1104 may be further defined and/or modified by
components provided in component selection piece 1106. The options provided in
component selection piece 1106 may be related to the choice of template being
shown in template piece 1104. For example, component selection piece 1106 may
provide options for adding a button D 1116, a button E 1118, or a button F 1120 to
template piece 1104. In one example, a button 1108 may be shown in template
1104 upon selection of a corresponding option in component selection piece 1106.
In one embodiment, the Ul component in component selection piece 1106 that
corresponds to a button added in template piece 1104 may be highlighted in
component selection piece 1006.

[00247] In one embodiment, although Ul pieces in Ul 1100 are related to each
other, the Ul state of each Ul piece is stored independently of the other Ul pieces,
and restoration of each Ul piece does not affect or event restoration of the other Ul
pieces. Accordingly, each Ul piece may be restored independently and the Ul
pieces do not receive events from other Ul pieces or send events to other Ul pieces.
For example, if a highlighted Ul component in template selection piece 1102
corresponds to a selected template in template piece 1104, the Ul state of template
selection piece 1102 includes such highlighting information but its restoration does

-74 -

WO 2017/030615 PCT/US2016/033422

not event template piece 1104 to show the corresponding template. In this scenario,
the Ul state of template piece 1104 is independently saved and restored to show the
appropriate template, thereby obviating the need for inter-related eventing between
the two related Ul pieces. A similar independent restoration functionality is
implemented for template piece 1104 and component selection piece 1106 which
hold inter-related information but do not event each other at the time of restoration.
Accordingly, every Ul piece of Ul 1100 stores its own state independently of the
other Ul pieces, and therefore no Ul piece needs to wait for another Ul piece for
restoration.

[00248] In one embodiment, all pieces of the Ul can save their respective
states but only those pieces of the Ul that are affected by an action need to be
saved/restored. In one embodiment, some Ul pieces may not know what the action
is doing (i.e., what the effect of the action will be), therefore, each visible Ul piece
has its state saved/restored even if they are not affected by the action. In one
embodiment, if a Ul piece is not visible when the action is performed, then such Ul
piece knows that it is not affected by the action since it was not even being displayed
at the point in time when the action was performed. Accordingly, the state of Ul
pieces that are not visible during the action may not need to be saved/restored.

[00249] The following provides an example of saving and restoring a Ul for a
page that has a main content area and a sidebar, where the sidebar should have a
slightly darker background color than the main content area. The page may start out
with the main content area being “gray” and the sidebar being “dark dray.” The
background color of the main content area may be changed to “red” as follows:

o A user makes a gesture to change the background color of the main content
area, and a corresponding transaction is started.

o The framework first records all the Ul states. Assuming there are only two Uls
including a color picker for the main content area and a color picker for the sidebar,
each color picker records its current state according to the following functionality:

main content color picker:

{

‘background-color”. “gray”

}

side bar color picker:

‘background-color™. “dark gray”

-75 -

WO 2017/030615 PCT/US2016/033422

}

o The main content color picker includes code that knows that when its color
changes, the side bar color picker should also automatically change to be a darker
version of the new color of the main content color picker. Accordingly, the main
content color picker tells the side bar color picker to make its color “dark red.”

o The transaction is committed and the model state becomes:

main-content-color: red
side-bar-color: dark red
[00250] If the user subsequently undoes this transaction:

° The model state is reverted to:

main-content-color: gray
side-bar-color: dark gray
At this point the model is correct and reflects the undo action, but the color pickers

are still showing the wrong “red” colors.
o The pieces of Ul (i.e., the color pickers) are told to restore their state to the
states before the transaction, i.e.:

main content color picker:

{

‘background-color”. “gray”

}

side bar color picker:

‘background-color™. “dark gray”

}

[00251] The main content color picker then restores its state back to “gray”
and the side bar color picker restores its state back to “dark gray.” In restoring these
states, changing the main color picker no longer automatically tells the side bar color
picker to be a darker version of the restored color of the main content color picker.
That is, there is no “eventing” similar to that of normal Ul changes, and each Ul piece
manages its state by itself. In this embodiment, the Ul pieces may read their
corresponding models to know what their states are. However, tracking a Ul state of
a Ul piece also tracks/stores Ul changes that may not be recorded in the
corresponding model, such as whether a color picker should be visible or not.

[00252] Fig. 12 illustrates an example commit flow 1202, an example undo
flow 1204, and an example redo flow 1206, according to some embodiments.

[00253] In commit flow 1202, when a transaction occurs, corresponding
model and Ul states are recorded at 1208 before the transaction starts (i.e., at “INIT”

-76 -

WO 2017/030615 PCT/US2016/033422

state). Such model and Ul states are denoted, respectively, as “INIT MODEL” and
“INIT UI” in Fig. 12. Then, the pre-commit state at 1210 provides outside listeners
with the opportunity to perform actions before the commit state. At 1212 the
transaction finishes (i.e., the transaction is committed at “COMMIT” state) and
corresponding model and Ul states are recorded again. Such model and Ul states
are denoted, respectively, as “COMMIT MODEL” and “COMMIT UI” in Fig. 12.

[00254] In undo flow 1204, an undo (revert) operation attempts to restore the
Ul and model states prior to the transaction (i.e., the “INIT MODEL” and “INIT UI”
states captured at 1208). In order to do so, at 1214 the “INIT MODEL” state is
restored at a pre-revert state before the revert operation. At 1216 the revert
operation is performed. The revert operation includes performing the undo action.
For example, if a text is changed from “A” to “B” and then an undo action is
indicated, the revert operation changes “B” back to “A.” After the revert operation
completes, at 1218 the “INIT Ul” state is restored at a post-revert state.

[00255] In redo flow 1206, a redo (replay) operation attempts to restore the Ul
and model states after the transaction was committed (i.e., the “COMMIT MODEL”
and “COMMIT UI” states captured at 1212). In order to do so, at 1220 the “COMMIT
MODEL” state is restored at a pre-replay state before the redo operation. At 1222
the replay operation is performed. The replay operation includes performing the
redo action. For example, if a text is changed from “A” to “B” and then an undo
action changes “B” back to “A,” the redo action changes “A” back to “B” again. After
the replay operation completes, at 1224 the “COMMIT UI” state is restored at a post-
replay state.

[00256] Fig. 13 is a flow diagram of Ul restoration functionality in accordance
with embodiments of the present invention.

[00257] At 1310 an action performed by a user that interacts with a Ul is
received. Examples of user actions are user gestures such as pressing a button,
entering some text, dragging and dropping some piece of Ul, etc. In one
embodiment, the action is received by a web browser of a client device of the user,
and the user interacts with a website corresponding to a server that hosts the Ul. In
one embodiment, the website is an application development website and the server
is an application development server.

[00258] At 1312 a transaction is determined based on the action, where the

-77 -

WO 2017/030615 PCT/US2016/033422

transaction is configured to modify a model corresponding to the Ul. In one
embodiment, the transaction constitutes a number of related model changes.

[00259] An example of a model is a page schema which is the declarative
syntax that describes Ul components on a current screen. This model may be
implemented as an API that manipulates the XML code that defines a screen. An
example model change for this model is:

some_component.setAttribute(“style”, “color: red”)
where “some_component” is a Ul component in the page model and the change is to
modify a style attribute to make it red. An example transaction for this model is the
series of model changes (e.g., the aforementioned change to a page schema and
the corresponding bindings), which may be caused by clicking a button by a user.

[00260] At 1314 a first Ul state of the Ul and a first model state of the model
are stored.

[00261] At 1316 the transaction is committed. In one embodiment, the
transaction is committed if no errors occur during its execution.

[00262] At 1318 it is determined to undo the transaction based on a first user
interaction.

[00263] At 1320 the Ul is restored to the first Ul state and the model is
restored to the first model state. In one embodiment, the first model state is restored
before undoing the transaction, and the first Ul state is restored after undoing the
transaction. In one embodiment, the Ul includes two or more Ul pieces, and the first
Ul state includes a Ul state for each piece of the Ul. In one embodiment, the Ul
state of each piece of the Ul is stored and restored independently of other Ul pieces
of the UL

[00264] In one embodiment, a second Ul state of the Ul and a second model
state of the model are stored after the transaction is committed and before the first
user interaction.

[00265] In one embodiment, it is further determined to redo the transaction
based on a second user interaction, and then the Ul is restored to the second Ul
state and the model is restored to the second model state. In one embodiment, the
second model state is restored before redoing the transaction, and the second Ul
state is restored after redoing the transaction.

[00266] As disclosed, embodiments provide a transactional system that uses

-78 -

WO 2017/030615 PCT/US2016/033422

stored snapshots of Ul and model states before/after committing a transaction and
restores appropriate Ul and model states when undo/redo operations are performed.
In one embodiment, upon undoing an action, the user is provided with the same Ul
they were looking at before performing that action. In one embodiment, upon
redoing an action, the user is provided with the same Ul they were looking at after
performing that action. Accordingly, embodiments significantly improve the user
experience and improve the efficiency of a Ul design process.

[00267] Several embodiments are specifically illustrated and/or described
herein. However, it will be appreciated that modifications and variations of the
disclosed embodiments are covered by the above teachings and within the purview
of the appended claims without departing from the spirit and intended scope of the

invention.

-79 -

WO 2017/030615 PCT/US2016/033422

What is claimed:

1. A method of autosave comprising:

receiving, by a web browser of a client device, a user action performed by a
user that interacts with a website corresponding to a server;

determining a change record corresponding to the user action;

queuing the change record in a first queue to commit corresponding changes
to local models; and

queuing the change record in a second queue that communicates with the
server to persist the change record at the server.

2. The method of claim 1, wherein the server hosts a user interface (Ul),
wherein the user action is performed by the user when interacting with the Ul, the
method further comprising:

determining a transaction based on the user action, wherein the transaction is
configured to modify a model corresponding to the Ul;

storing a first Ul state of the Ul and a first model state of the model;

committing the transaction;

determining to undo the transaction based on a first user interaction; and

restoring the Ul to the first Ul state and the model to the first model state.

3. The method of claim 2, wherein the first model state is restored before
undoing the transaction, wherein the first Ul state is restored after undoing the

transaction.

4. The method of claim 2, wherein a second Ul state of the Ul and a second
model state of the model are stored after the transaction is committed and before the

first user interaction.

5. The method of claim 4, further comprising:

determining to redo the transaction based on a second user interaction; and

restoring the Ul to the second Ul state and the model to the second model
state.

-80 -

WO 2017/030615 PCT/US2016/033422

6. The method of claim 5, wherein the second model state is restored before
redoing the transaction, wherein the second Ul state is restored after redoing the

transaction.

7. The method of claim 1, wherein the website is an application development
website and the server is an application development server.

8. The method of claim 2, wherein the transaction constitutes a number of
related model changes.

9. The method of claim 2, wherein the transaction is committed if no errors

occur during its execution.

10. The method of claim 2, wherein the Ul comprises two or more Ul pieces,
wherein the first Ul state includes a Ul state for each piece of the Ul.

11. The method of claim 10, wherein the Ul state of each Ul piece of the Ul is
stored and restored independently of other Ul pieces of the UL.

12. The method of claim 1, wherein the first queue is an ordered persistence
queue that maintains a history of change records for performing undo and redo
operations in interacting with the website.

13. The method of claim 1, wherein the second queue is an ordered queue
where change records are processed one at a time and each change record is sent
to the server only if a prior change record in the second queue has been successfully
recorded on the server.

14. The method of claim 1, wherein the change record is removed from the

second queue after being successfully communicated with the server.

15. The method of claim 1, wherein the second queue communicates with the
server through a request/response mechanism in which each change record in the

-81 -

WO 2017/030615 PCT/US2016/033422

second queue is sent to the server which in turn sends a corresponding response

back indicating whether the change record has been persisted at the server.

16. The method of claim 1, wherein the change record reflects model changes
caused by the user action in the website and is added in a transaction that
constitutes related model changes.

17. The method of claim 1, wherein change records in the transaction are
placed in the first queue when the transaction is committed, wherein the transaction

is committed if no errors occur during its execution.

18. The method of claim 17, wherein change records in the transaction are
placed in the second queue when the transaction is recorded, wherein the
transaction is recorded when its changes are applied to corresponding client side
models and any necessary user interface is updated to reflect corresponding
changes

19. A computer readable medium having instructions stored thereon that,
when executed by a processor, cause the processor to perform autosave, the
performing comprising:

receiving, by a web browser of a client device, a user action performed by a
user that interacts with a website corresponding to a server;

determining a change record corresponding to the user action;

queuing the change record in a first queue to commit corresponding changes
to local models; and

queuing the change record in a second queue that communicates with the

server to persist the change record at the server.

20. An autosave system comprising:

a receiving module that receives, by a web browser of a client device, a user
action performed by a user that interacts with a website corresponding to a server;

a determining module that determines a change record corresponding to the

user action;

-82-

WO 2017/030615 PCT/US2016/033422

a first queuing module that queues the change record in a first queue to
commit corresponding changes to local models; and

a second queuing module that queues the change record in a second queue
that communicates with the server to persist the change record at the server.

-83-

PCT/US2016/033422

WO 2017/030615

1/15

— ocl -
8¢l Q) _\ G_H_
SINILSAS
S3IDINGEIS
IdV TVNH31L X3 d31NdINO9
3SIdd4d31N3
(74}

(4aV) SYHOMANYHS LNIWJOTIAIA NOILYDITddY

ocl

[}

(SO S3ADIAYTS ANOTD F1I90N

[\r4}

S3AVINYAS AIHVHS TYNHILXT

8l

S3AVINGIS AIHVHS TYNHILNI

o1l

S304dNOSTY FJHNLONYLSVHANI

i
ININWIDVYNVIN ALILNIAI

41

ONIHOLINOW ANV LNIJWIDVNVIN d3AHO

ocl
IN dNOTO

el
IN dNOTO

Zel
IN dNOTO

2ol

W3LSAS FJHNLONYLSYHANI ANOTO

17ns3y
IDINY3S
\ 307
\ F0IA3a
—J| LN
4 o<l
1s3no3y
JOINY3S
orr
(SHMHOM L3N
8¢l
17ns3y
IDINY3S —
\ o 0T
| 30IA3a
~ IN3I1D
8¢l oSl —
11Nns3d 1s3ano3y
m_o_>mm_m JOINYIS
v01
| g RERTEr
—~ IN3I1O
oct ~Y—0mn
1s3no3y
JDINY3S

001

PCT/US2016/033422

WO 2017/030615

2115

d30NVvd

~

I4%4
J0IN3S
ALMNO3S

k

A (SOW) 30IA43S ano1D FTI0N
% — ¢l
WALSAS (1NyD) \
INIWIOUNVYN [€
dIHSNOILY13Y
43INOLSND
. . 744
757 8¢¢ 9¢¢ AMOLISOdTY
INEERNL
304n0S3Y
NYWNH
wll
= Yy > vw 444 - 072 Jom |
s> of] FOVAHILNI <€
W3LSAS LNIOY ql shd YIHOLVASIQ
- r > HoLdvay 1494 ONILNOY
(S)W3LSAS ¥ALNAWOD
3SIYdYILNT SISINTHA-NO
Y
ol¢
74 3009
va_\/_m_._.w>m NOLSN) N_mmqwﬂ/\m
43LNdNOD 90z
3SI4dYILINT / 012 W3LSAS ¥3LNdWOD ano1)
anoto TIVMIHI4
N~ 0€¢

TIVMIHIS _/]
v0¢

¢ Ol

¢0

PCT/US2016/033422

WO 2017/030615

3115

e 2ol I R - R U o N b a2 T e

c0¢

YOUNESEY RURISRMEN

ot

Agilar Sluery

LIETY

€ Ol

PCT/US2016/033422

WO 2017/030615

4/15

i

AT

PCT/US2016/033422
5M15

WO 2017/030615

: . =

P 90¢ P B

PCT/US2016/033422

WO 2017/030615

6/15

15147

\l
ocev

—
1444

e [
IPIC-IBAIBG

—/

cly

¥ Ol

PCT/US2016/033422

WO 2017/030615

715

G

P

5% 5z
3IDIA3A ¥3SN 30IA3A 190N
) })
Y
1743
ALIHdNO3S
A
v v . ’ L J
- » P15 <
S1INIWNOYIANT ONILS3L
81G
d3AH3S ININJOTIATA
NOILYOINddY L)
' N
916 ¢
IN NINAY SON
215
P> SLN3INNOHIANT
NOILONAOYd
<
o \. J
20S
SO
90%

FHNLONHLSVHINI ANO10

>

Old

¥0S
aN3X0ovd

)

¥0S
aN3X0ovd

N

——

¥0S
aN3X0ovd

 — S

009

WO 2017/030615

600

602
Y{\\\\m
.................. N

-

ww{ ’

by

Sdstantachngd sslsosandds

\-

Faliic ONE

S .

\\\\\\ \\\\\z\\\\\ \\\\\"/
\

L |

AR IR R RN

Firsaeall

By

8/15

ww

5

608

PCT/US2016/033422

604

1

%,
%
7
5
7
7
4

\\\\\\\\\
ERNT

Smes-tenanda ahiaioracis aonnda

Tﬁ

N e :sm - fterab Ry

610

Teraes
Sohema

EH FGRENE E

\
$
:\

. §

3!.1 A

i

SRR e

'\\\\

N
&\\\\\\\\

\“ & \\;‘\s c\ s\\

W—

-

FIG. 6

PCT/US2016/033422
9/15

WO 2017/030615

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
J
o |
I

RN N SRR N

RN N

s

e

L NN (N - VO, N SN LN NN N, NN

_\\\\ ...

R

SHE SR SRS

I
o
Q :

S RN AR

N YL NN N N -
RS

%
%

]
LM

0s. ov.

WO 2017/030615 10115 PCT/US2016/033422

GENERATE APPLICATION DEFINITION WIZARD 810

'

RECEIVE APPLICATION DEFINITION ~ 820

'

GENERATE MOBILE APPLICATION BASED ON
APPLICATION DEFINITION

'

——»| GENERATE FEATURE SELECTION WIZARD 840

> 830

!

RECEIVE FEATURE DEFINITIONS > 850
!

GENERATE DATABINDING WIZARD > 860
'

RECEIVE DATABINDING DEFINITIONS > 870
'

DEPLOY MOBILE APPLICATION > 880

FIG. 8

WO 2017/030615 11115 PCT/US2016/033422

900
APPLICATION DEVELOPMENT SERVER
904
A
(™)
WEB BROWSER L/
902 ()
902 -
REMOTE QUEUE
4 N\ %
—
APPLICATION - g
DEVELOPMENT ()
]
WEBSITE LOCAL QUEUE
910 906
——
L) \ J

FIG. 9

WO 2017/030615 19115 PCT/US2016/033422

RECEIVE, BY A WEB BROWSER OF A CLIENT

DEVICE, A USER ACTION PERFORMED BY A 1010

USER THAT INTERACTS WITH A WEBSITE +
CORRESPONDING TO A SERVER

l

DETERMINE A CHANGE RECORD /1020
CORRESPONDING TO THE USER ACTION 3

l

QUEUE THE CHANGE RECORD IN A FIRST 1030
QUEUE TO COMMIT CORRESPONDING
CHANGES TO LOCAL MODELS

l

QUEUE THE CHANGE RECORD IN A SECOND

QUEUE THAT COMMUNICATES WITH THE 1040

SERVER TO PERSIST THE CHANGE RECORD ATV
THE SERVER

FIG. 10

PCT/US2016/033422

WO 2017/030615

13/15

L1 "Old

90FE
3031d
NOILO313S
1NINOJNOD

8011
NoLlnd

¥ol1
3031d J1V1dINTL

2oLl
3031d
NOILO313S
A1LVIdINTL

001

WO 2017/030615 1415 PCT/US2016/033422

1202

Commit Flow:
1208~—1 1210

“ 1212+

1204

1206

N\ N\
Undo Flow
1214 1216 1218

2N

Redo Flow:

1220+ 1222 1224

FIG. 12

WO 2017/030615 15115 PCT/US2016/033422

RECEIVE AN ACTION PERFORMED BY A USER
THAT INTERACTS WITH A UI

l

DETERMINE A TRANSACTION BASED ON THE
ACTION, WHERE THE TRANSACTION IS
CONFIGURED TO MODIFY A MODEL
CORRESPONDING TO THE Ul

'

STORE A FIRST Ul STATE OF THE UI AND A
FIRST MODEL STATE OF THE MODEL

'

COMMIT THE TRANSACTION _—1316

'

DETERMINE TO UNDO THE TRANSACTION
BASED ON A FIRST USER INTERACTION

'

RESTORE THE UI TO THE FIRST Ul STATE AND
THE MODEL TO THE FIRST MODEL STATE

FIG. 13

INTERNATIONAL SEARCH REPORT

International application No

PCT/US2016/033422

A. CLASSIFICATION OF SUBJECT MATTER

INV. GO6F17/30
ADD.

According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols)

GO6F

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

Electronic data base consulted during the international search (name of data base and, where practicable, search terms used)

EPO-Internal, INSPEC

C. DOCUMENTS CONSIDERED TO BE RELEVANT

Category™ | Citation of document, with indication, where appropriate, of the relevant passages Relevant to claim No.
X US 2010/293080 Al (SHAH MOHAMMED KAMRAN 1-20

[US]) 18 November 2010 (2010-11-18)

abstract

paragraph [0009] - paragraph [0015];

figures 5A, 5B

paragraph [0353] - paragraph [0364]
A US 2009/157811 Al (BAILOR JONATHAN BECKETT 1-20

[US] ET AL) 18 June 2009 (2009-06-18)

abstract

paragraph [0028]
figures 1, 2
paragraph [0046]

paragraph [0029];

paragraph [0051];

figure 5

paragraph [0056] - paragraph [0062];
figure 7

paragraph [0092] - paragraph [0098];
figure 20

See patent family annex.

D Further documents are listed in the continuation of Box C.

* Special categories of cited documents : L
"T" later document published after the international filing date or priority
date and not in conflict with the application but cited to understand

"A" document defining the general state of the art which is not considered the principle or theory underlying the invention

to be of particular relevance

"E" earlier application or patent but published on or after the international

- "X" document of particular relevance; the claimed invention cannot be
filing date

considered novel or cannot be considered to involve an inventive

"L" document which may throw doubts on priority claim(s) or which is
cited to establish the publication date of another citation or other
special reason (as specified)

"O" document referring to an oral disclosure, use, exhibition or other
means

"P" document published prior to the international filing date but later than
the priority date claimed

step when the document is taken alone

"Y" document of particular relevance; the claimed invention cannot be
considered to involve an inventive step when the document is
combined with one or more other such documents, such combination
being obvious to a person skilled in the art

"&" document member of the same patent family

Date of the actual completion of the international search

14 September 2016

Date of mailing of the international search report

27/09/2016

Name and mailing address of the ISA/

European Patent Office, P.B. 5818 Patentlaan 2
NL - 2280 HV Rijswijk

Tel. (+31-70) 340-2040,

Fax: (+31-70) 340-3016

Authorized officer

Barieux, Marc

Form PCT/ISA/210 (second sheet) (April 2005)

INTERNATIONAL SEARCH REPORT

Information on patent family members

International application No

PCT/US2016/033422
Patent document Publication Patent family Publication

cited in search report date member(s) date

US 2010293080 Al 18-11-2010 EP 2433213 Al 28-03-2012
EP 2433214 Al 28-03-2012
US 2010293080 Al 18-11-2010
US 2010293481 Al 18-11-2010
US 2010293482 Al 18-11-2010
US 2010293483 Al 18-11-2010
US 2010293484 Al 18-11-2010
US 2010293521 Al 18-11-2010
US 2010293522 Al 18-11-2010
US 2010293525 Al 18-11-2010
US 2010293526 Al 18-11-2010
US 2010293527 Al 18-11-2010
US 2010293528 Al 18-11-2010
US 2010293529 Al 18-11-2010
US 2010293591 Al 18-11-2010
US 2014096108 Al 03-04-2014
WO 2010135336 Al 25-11-2010
WO 2010135353 Al 25-11-2010

US 2009157811 Al 18-06-2009 AU 2008338826 Al 25-06-2009
BR PI0819825 A2 26-05-2015
CN 101896915 A 24-11-2010
EP 2220581 A2 25-08-2010
JP 5250637 B2 31-07-2013
JP 2011507100 A 03-03-2011
KR 20100095583 A 31-08-2010
RU 2010123793 A 20-12-2011
TW 200925887 A 16-06-2009
TW 201506641 A 16-02-2015
US 2009157811 Al 18-06-2009
US 2014373108 Al 18-12-2014
WO 2009079116 A2 25-06-2009

Form PCT/ISA/210 (patent family annex) (April 2005)

	Page 1 - front-page
	Page 2 - description
	Page 3 - description
	Page 4 - description
	Page 5 - description
	Page 6 - description
	Page 7 - description
	Page 8 - description
	Page 9 - description
	Page 10 - description
	Page 11 - description
	Page 12 - description
	Page 13 - description
	Page 14 - description
	Page 15 - description
	Page 16 - description
	Page 17 - description
	Page 18 - description
	Page 19 - description
	Page 20 - description
	Page 21 - description
	Page 22 - description
	Page 23 - description
	Page 24 - description
	Page 25 - description
	Page 26 - description
	Page 27 - description
	Page 28 - description
	Page 29 - description
	Page 30 - description
	Page 31 - description
	Page 32 - description
	Page 33 - description
	Page 34 - description
	Page 35 - description
	Page 36 - description
	Page 37 - description
	Page 38 - description
	Page 39 - description
	Page 40 - description
	Page 41 - description
	Page 42 - description
	Page 43 - description
	Page 44 - description
	Page 45 - description
	Page 46 - description
	Page 47 - description
	Page 48 - description
	Page 49 - description
	Page 50 - description
	Page 51 - description
	Page 52 - description
	Page 53 - description
	Page 54 - description
	Page 55 - description
	Page 56 - description
	Page 57 - description
	Page 58 - description
	Page 59 - description
	Page 60 - description
	Page 61 - description
	Page 62 - description
	Page 63 - description
	Page 64 - description
	Page 65 - description
	Page 66 - description
	Page 67 - description
	Page 68 - description
	Page 69 - description
	Page 70 - description
	Page 71 - description
	Page 72 - description
	Page 73 - description
	Page 74 - description
	Page 75 - description
	Page 76 - description
	Page 77 - description
	Page 78 - description
	Page 79 - description
	Page 80 - description
	Page 81 - claims
	Page 82 - claims
	Page 83 - claims
	Page 84 - claims
	Page 85 - drawings
	Page 86 - drawings
	Page 87 - drawings
	Page 88 - drawings
	Page 89 - drawings
	Page 90 - drawings
	Page 91 - drawings
	Page 92 - drawings
	Page 93 - drawings
	Page 94 - drawings
	Page 95 - drawings
	Page 96 - drawings
	Page 97 - drawings
	Page 98 - drawings
	Page 99 - drawings
	Page 100 - wo-search-report
	Page 101 - wo-search-report

