0 02/37270 A2

(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(19) World Intellectual Property Organization
International Bureau

(43) International Publication Date

10 May 2002 (10.05.2002)

(10) International Publication Number

WO 02/37270 A2

(51) International Patent Classification’: GOG6F 9/32

(21) International Application Number: PCT/US01/46063

(22) International Filing Date: 31 October 2001 (31.10.2001)

(25) Filing Language: English

(26) Publication Language: English

(30) Priority Data:

09/705,070 2 November 2000 (02.11.2000) US

(71) Applicants: INTEL CORPORATION [US/US]; 2200
Mission College Boulevard, Santa Clara, CA 92122 (US).
ANALOG DEVICES, INC. [US/US]; One Technology
Way, P.O. Box 9106, Norwood, MA 02062-9106 (US).

(72) Inventors: SINGH, Ravi, P.; 12349 Metric Boulevard,
#829, Austin, TX 78758 (US). ROTH, Charles, P.; 13305
Tichester Court, Austin, TX 78729 (US). OVERKAMP,
Gregory, A.; P.O. Box 163442, Austin, TX 78716 (US).

(74) Agent: HARRIS, Scott, C.; Fish & Richardson P.C., Suite
500, 4350 La Jolla Village Drive, San Diego, CA 92122
(US).

(81) Designated States (national): CN, JP, KR, SG.

Published:
without international search report and to be republished
upon receipt of that report

For two-letter codes and other abbreviations, refer to the "Guid-
ance Notes on Codes and Abbreviations" appearing at the begin-
ning of each regular issue of the PCT Gazette.

(54) Title: HARDWARE LOOPS

CONTROL

CONTROL UNIT SIGNALS PIPELINE
6 4
Hardware Loop
Loop Unit SIGNALS
8
_ . 1

(57) Abstract: In one embodiment, a programmable processor is arranged to include early registers to support hardware loops. In
this manner, a system may increase processing speed without significantly increasing power consumption. Loop conditions of a loop
may be loaded into a set of early registers. These conditions may then be detected from the early registers before the loop conditions

are written to a set of architectural registers.

10

15

20

WO 02/37270 PCT/US01/46063

HARDWARE LOOPS

BACKGROUND

This invention relates to hardware loops implemented
in a programmable processor.

In designing a programmable processor, such as a
digital signal processing (DSP) system, two competing
design goals ére processing speed and power consumption.
Conventional processors include a variety of hardware
designed to increase the speed at which software
instructions are executed. The additional hardware,
however, typically increases the power consumption of the
processor.

One technique for increasing the speed of a
programmable processor is a “hardware loop,” which may be
dedicated hardware designed to expedite‘the execution of
software instructions within a loop construct. Hardware
lobps may reduce the number of clock cycles used to execute
a software loop by caching the instructions in local
registers, thereby reducing the need to fetch the same
instruction from a memory device or instruction cache a

plurality of times.

10

15

20

WO 02/37270 PCT/US01/46063

Hardware loops introduce several challenges. These
challenges include avoiding penalties such as setup
penalties or branch penalties. Setup penalties are the
loss of performance (usually an increase in processing
time) associated with setting up a hardware loop.
Similarly, branch penalties are the loss of performance
(again, usually an increase in processing time) associated

with a branch.

DESCRIPTION OF DRAWINGS

FIG. 1 is a biock diagram illustrating an example of a
pipelined programmable processor according to an embodiment
of the invention.

FIG. 2 is a block diagram illustrating an example
execution pipeline for the programmable processo? in
accordance with an embodiment of the present invention.

FIG. 3 is flow diagram illustrating exemplary timing
of when early registers may be loaded in accordance with an
embodiment of the present invention.

FIG. 4 is a flow diagram illustrating how a loop setup
instruction may be used to determine early register values

in accordance with an embodiment of the present invention.

10

15

20

WO 02/37270 PCT/US01/46063

FIG. 5 is a circuit block diagram illustrating one
embodiment of a hardware loop unit.

FIG. 6 is a flow diagram illustrating a‘mode of
operation involving adjustment of earlylregisters in
accordance with the present invention.

FIG. 7 is a flow diagram illustrating a way of
updating architectural register values in accordance with
an embodiment of the present invention.

FIG. 8 is a flow diagram illustrating an alternative
way of updating the architectural count register values in
accordance with an embodiment of the present invention.

FIG. 9 is a flow diagram illustrating the timing
advantages realized by the use of early registers in
accordance with an embodiment of the present invention.

FIG. 10 is a flow diagram illustrating an efficient
way of adjusting an early count value in accordance with an
embodiment of the present invention.

FIG. 11 is a block diagram illustrating counters in a
circuit in accordance with an embodiment of the present
invention.

FIG. 12 is a flow diagram illustrating a hybrid mode
of operation in accordance with an embodiment of the

present invention.

10

15

20

WO 02/37270 PCT/US01/46063

FIG. 13 is a block diagram illustrating a hybrid
circuit having counters only in the first n - 1 execution
stages in accordance with an embodiment of the present
invention.

FIG. 14 a block diagram illustrating a hardware loop
unit in accordance with an embodiment of the present
invention.

FIG. 15 is a diagram illustrating a scenario in
accordance with an embodiment of the present invention.

FIG. 16 is a flow diagram illustrating a scenario in
accordance with an embodiment of the present invention.

FIG. 17 is another flow diagram illustrating a
scenario in accordance with an embodiment of the present
invention.

FIG. 18 is a diagram illustrating another scenario in
accordance with an embodiment of the present invention.

FIG. 19 is a flow diagram illustrating the other
scenario.

FIG. 20 is a flow diagram illustrating both scenarios
in accordance with an embodiment of the present invention.
FIG. 21 is a flow diagram illustrating a mode of

operation for detecting a zero offset loop in accordance

with an embodiment of the present invention.

10

15

20

WO 02/37270 PCT/US01/46063

FIG. 22 is a flow diagram illustrating a mode of
operation for detecting and dealing with a single
instruction zero offset loop in accordance with an
embodiment of the present invention.

FIGS. 23A - 23C are block diagrams illustrating a
number of hardware loop units connected to one another in
accordance with an embodiment of the present invention.

FIG. 24 is block diagram showing power saving
circuitry in accordance with an embodiment of the present

invention.

DESCRIPTION

Figure 1 is a block diagram illustrating a
programmable processor 2 arranged to support efficient
hardware loops without significantly increasing power
consumption.

In order to support hardware loops, a processor 2 may
support a loop setup instruction that initializes the
hardware by setting entry and exit conditions for the loop.
Entry and exit conditions may be defined by loop
conditions: top, bottom and count. The top condition
defines the first instruction (or top) of a loop. The

bottom condition defines the last instruction (or bottom)

10

15

20

WO 02/37270 PCT/US01/46063

of a loop. And the count condition defines the number of
iterations of the loop.

Entry of a hardware loop may occur at the first “top
match.” A top match may occur when the program counter
(PC) is pointing to the top instructidn of a loop. Exit of
a hardware loop may occur at the last “bottom match.” A
bottom match may occur when the PC is pointing to the
bottom instruction of a loop.

By initializing the count at the first top match and
decrementing the count at each bottom match, the hardware
may keep track of when it has encountered the last bottom
match. In this manner, the loop conditions top, bottom and
count may define the entry and exit conditions of a
hardware loop.

Processor 2 may include an execution pipeline 4 and a
control unit 6. Control unit 6 may control the flow of
instructions and/or data through pipeline 4 during a clock
cycle. For example, during the processing of an
instruction, control unit 6 may direct the various
components of the pipeline to decode the instruction and
correctly perform the cofresponding operation including,

for example, writing the results back to memory.

10

15

20

WO 02/37270 PCT/US01/46063

Instructions may be loaded into a first stage of
pipeline 4 and processed through subsequent stages. A
stage may process concurrently with the other stages. Data
may pass between the stages in pipeline 4 during a cycle of
the system. The results of an instruction may emerge at
the end of the pipeline 4 in rapid succession.

Control unit 6 may include hardware loop unit 8 that,
as described below, may facilitate fast hardware loops
without significantly increasing power consumption of
processor 2.

FIG. 2 is a block diagram illustrating an example
pipeline. A pipeline 10 has multiple stages that may
facilitate execution of multiple instructions during a
single clock cycle. 1In pipeline 10, an instruction may
enter the instruction fetch (IF) stage 12 during a first
clock cycle. The instruction may then continue down the
pipeline during subsequent clock cycles. Another
instruction may enter the IF stage 12 after a previous
instruction has exited. Thus, typically another
instruction enters the IF stage 12 during a subsequent
clock cycle and then continues down the pipeline du%ing
subsequent clock cycles. Similarly, additional

instructions enter the IF stage 12 during subsequent clock

10

15

20

WO 02/37270 PCT/US01/46063

cycles respectively. The number of stages in the pipeline
may define the number of instructions that the pipeline may
service simultaneously.

The different stages of the pipeline may operate as
follows. Instructions may be fetched during the IF stage
12 by a fetch unit 13 and decoded from instruction
registers 15 during the DEC stage 14. During the AC stage
18, data address generators 19 may calculate any memory
addresses used to perform the operation.

During the execution stages (EX 1 - EX n) 22 and 28,
execution units 23 and 29 may perform specified operations
such as, for example, adding or multiplying two numbers.
Execution units may contain specialized hardware for
performing the operations including, for example, one or
more arithmetic logic units (ALU’s), floating-point units
(FPU) and barrel shifters, although the scope of the
present invention is not limited in this respect. A
variety of data may be applied to tﬁe execution units such
as the addresses generated by data address generators, data
retrieved from memory or data retrieved from data
registers. During write back stage (WB) 30, the results
may be written to a memory location or data registers

external to the pipeline or to data registers in the

10

15

20

WO 02/37270 PCT/US01/46063

pipeline such as architectural registers 32. The stages of
pipeline 10 may include one or more storage circuits, such
as a flip-flop, for storing data.

As mentioned above, processor 2 may support a loop
setup instruction. The loop setup instruction may
initialize the hardware loop by writing the boundaries of
the hardware loop (e.g. top and bottom) to architectural
registers 32 in the pipeline. The loop setup instruction
may also initialize a count in architectural registers 32,
indicating the number of times the loop is to be completed.
In addition, the loop setup instruction may define an
offset, indicating the number of instructions that follow
the loop setup instruction before the top of the loop is
reached. After the hardware loop is initialized, the
hardware loop may operate in the pipeline 10 until the exit
condition of the loop has been satisfied (e.g. a bottom
match with count equal to zero).

Architectural registers 32 are generally loaded once
an instruction has committed, e.g., at the conclusion of
the WB stage 30. Therefore, the entry and exit conditions
stored in architecture register§ 32 may not be updated
until several clock cycles have passed from when the loop

setup instruction enters pipeline 10. Because the entry

10

15

20

WO 02/37270 PCT/US01/46063

and exit conditions may not be updated until several clock
cycles have passed, restrictions on setting up hardware
loops may exist. For example, if the first instruction in
the loop enters pipeline 10 before the loop setup
instruction has committed, the architectural registers may
not be set up to identify the instruction as part of a
loop. Moreover, this problem may increase as fhe depth of
the pipeline increases.

In one embodiment, processor 2 may overcome these
restrictions by maintaining a set of early registers 34, 35
and 36 in thé pipeline. As shown in FIG. 2, early
registers ETop 34 and EBot 35 may reside in the decode
stage while ECnt 36 may reside in AC stage.

Implementing a set of early registers 34, 35 and 36
may increase processing speed of processor 2 by reducing oxr
avoiding loop set up penalties. As described above,
several clock cycles may pass between the time a loop setup
instruction enters the pipeline and the time the
architectural registers are written. However, the early
registers may be loaded long before the loop setup
instruction writes to the architectural registers. For
this reason, implementing early registers may reduce the

time it takes to setup hardware loops.

-10 -

10

15

20

WO 02/37270 PCT/US01/46063

The early registers may be speculative registers used
to predict or speculate the value of architectural
registers. Unlike the architectural registers, the
speculative registers may not be supported by the system’s
instruction set. Therefore, program code may not be used
to access the speculative registers. For this reason, a
programmer may not be able to move data in or out of the
speculative registers the same way that he or she could
with architectural registers.

Loading early regi;ters may be done in several
different ways. For instance, the early registers may be
loaded simply as a result of performing a regular
instruction register move to the architectural registers.
In other words, the system may instruct the architectural
registers to load the contents of some other register, and
as a result the early registers may be updated. Yet
another way to load the registers is a “pop” from memory.
In other words, the system may fetch the data from memoiy,
l&ad the architectural registers with that data, and update
the early registers.

The problem with regular register moves or pops,
however, is that they may introduce loop setup penalties.

These penalties may occur because the system may stall the

-11 -

10

15

20

WO 02/37270 PCT/US01/46063

pipeline until the “moved” or “popped” data is available to
be written. To avoid these penalties, a loop setup
instruction may be used to load the early registers before
the architectural registers get written.

The following example illustrates the syntax for
invoking an exemplary loop setup machine instruction:

LSETUP (PC Relative Top, PC Relative Bottom) Counter =X
The PC Relative Top specifies the distance from the current
instruction to the start of the loop (the Start Offset).
The PC Relative Bottom specifies the distance from the
current instruction to the end of the loop (the End
Offset). In addition, the Counter variable may specify a
counter register and a loop count indicating the number of
iterations in the loop.

FIG. 3 is a flow diagraﬁ illustrating the timing when
early registers get loaded in accordance with an embodiment
of the present invention. As described, the loop setup
instruction may contain loop conditions in the form of a
count value, a top value, and a bottom value.

Collectively, these three values may define entry and exit

conditions of a hardware loop.

-12 -

10

15

20

WO 02/37270 PCT/US01/46063

The count value may represent the number of iterations
that the loop will make. Once the loop setup instruction
enters AC (38), the count value may be written to the ECnt
register (39). Initially writing to the ECnt register may
be done via a register move from data registers contained
in a different pipeline. In one mode of operation, the
ECnt register may be written with data contained in PREG
registers (see FIG. 6) in the DAG pipeline.

The top and bottom values may indicate which
instruqtion is the top of the loop, and which instruction
is the bottom of the loop. The top and bottom values in
the loop setup instruction, however, may be program counter
(PC) relative. Therefore, a calculation (40) in AC stage
may be used to obtain the top and bottom values that will
be written to ETop 34 and EBot 35 registers respectively.
After the loop setup instruction enters EX 1 (41), the top
and bottom values may be written to the ETop 34 and EBot 35
registers (42).

The ETop register 34 may be loaded to point to the
first instruction of the loop (or top of the loop). The
EBot register 35 may be loaded to point to the last
instruction of the loop (or bottom of a loop). The ECnt

register 36 may be loaded to specify the number of times

-13 —

10

15

20

WO 02/37270 PCT/US01/46063

that the circuit is to go through the loop. In one
embodiment, ECnt 36 counts downward, decrementing as the
circuit goes through the loop.

FIG. 4 is a flow diagram illustrating one mode of
operation of hardware loop unit 8 when a loop setup
instruction is received and processed by pipeline 10.
According to one format, the loop setup instruction may
specify several setup variables including a Start Offset
(S-Offset) and an End Offset (E-Offset). The S-0ffset may
specify the distance in the instruction stream from the
loop setup insfruction to the first instruction in the
loop. Similarly, the E—Cffset may specify the distance in
the inétruction stream from the loop setup instruction to
the last instruction in the loop.

For instance, if the first instruction in the loop is
the instruction immediately following the loop setup
instruction, then the S-Offset would be the width of the
loop setup instruction. If, in the instruction stream,
there is one instruction between the loop setup instruction
and the first instruction in the loop, then the S-Offset
would be the width of the loop setup instruction and the
one instruction.' Similarly, if there are two instructions

between loop setup and the first instruction, then the S-

-14 -

10

15

20

WO 02/37270 PCT/US01/46063

Offset would be width of the loop setup instruction and the
two instructions.

As shown in FIG. 4, the S-Offset and E-Offset are
typically specified by a loop setup instruction (44).
However, the loop-setup instruction specifies the offsets
relative to the program counter (PC). Therefore, the PC
value must also be determined (45). The PC value and S-
Offset may then be used to calculate ETop register data
(46) . Moreover, the PC value and E-Offset may be used to
calculate EBot register data (47). Once calculated, the
early register data may be written to the early registers
(48) .

Comparing FIG. 4 with FIG. 2 illustrates exemplary
timing when writing the ETop and EBot registers. Steps
(44) and (45) may occur in DEC stage 14. Calculations
steps (46) and (47) may occur in AC stage 18. Therefore,
the write step (48) may occur in EX 1 stage 22, although
the scope of the'invention is not limited in this respect.

Once loaded, the early registers may be used té set up
hardware loops. FIG. 5 is a block diagram illustrating one
embodiment of a hardware loop unit 8 connected to an
instruction fetch (IF) unit 50 and a decoder unit 52 of

pipeline 10. In one embodiment, the early registers may be

-15 —

10

15

20

WO 02/37270 PCT/US01/46063

used to detect a loop in the stream of instructions 57.
Loop hardware 54 is then loaded with one or more loop
instructions. Once loaded, the loop instructions may be
issued again and again from loop hardware. Thus, if the
early registers detect an instruction loop, then one or
more of the loop instructions may be fetched only once by
IF unit 50, and then issued repeatedly from hardware loop
unit 8.

Implementing early registers may introduce several
challenges. For instance, one challenge introduced by the
use of early registers arises because the early register
data may need to be adjusted. If the pipeline must service
an event, the pipeline’s current operations may need to be
terminated. If this termination occurs after an early
register has been written, but before its respective
architectural register has been written, then the early
register data may need to be adjusted. In other words,
because the early registers are written early, a
termination in the pipeline before the loop has committed
may require an adjustment of the early register data.

FIG. 6 is a flow diagram illustrating a mode of

operation involving adjustment of early registers. In

-16 —

10

15

20

WO 02/37270 PCT/US01/46063

particular, FIG. 6 illustrates the timing involved in
adjusting ETop EBot, ECnt registers.

As shown in FIG. 6, the early registers may get
written (76). In one embodiment of FIG. 6, the early
registers are specifically the ETop, EBot, and ECnt
registers (as shown in FIG. 2). If a terminate in the
pipeline (80) occurs before the architectural registers
have been written (82), then the unaborted instructions may
be drained from the pipeline (83), and the early registers
may be adjusted by writing the data contained in their
respective architectural counterparts (84).

The mode of operation illustrated in FIG. 6 may be
particularly useful when dealing with back-to-back hardware
loops. If, for instance, a second loop is terminated
before it commits, a first loop might still need to execute
its remaining instructions in the pipeline. The adjustment
technique in FIG. 6 provides a way to deal with this
tfansition by adjusting early register values accordingly.

FIG. 7 illustrates a way of updating the architectural
register value with the Early Count (ECnt) data. Data may
be written to an ECnt Register (90) in any manner described
above. The ECnt register data may then sent down the

pipeline (92) so that it gets written to the architectural

-17 -

10

15

20

WO 02/37270 PCT/US01/46063

count register (93) during WB stage. Then, in every
subsequent iteration of the loop (94) the ECnt Register
data may be decremented (96) and re-sent down the pipeline
(92). This process may continue until the loop has
finished its last iteration (98).

FIG. 8 illustrates an alternative way of updating the
architectural count register. Rather than sending the ECnt
data down the pipeline after every iteration of the loop,
the mode of operation illustrated in FIG. 8 sends the ECnt
data once. Then, in subsequent iterations of the loop, a
single valid decrement bit may be sent to adjust the
architectural count register.

In FIG. 8, data may be written to an ECnt Register
(90) in any manner described above. The ECnt register data
may then be sent down the pipeline (92) so that it gets
written to the architectural count register (93) during WB
stage. In subsequent iterations of the loop (94), a single
valid decrement bit may be sent (102) to decrement the
architectural count register (104). This process may
continue until the loop has finished its last iteration
(98).

FIG. 9 is a flow diagram illustrating the timing

advantages realized by the use of early registers. As

-18 -

10

15

20

WO 02/37270 PCT/US01/46063

shown in FIG. 9, loop entry/exit conditions may be loaded
into a set of early registers (120). These early
entry/exit conditions may then be detected (122) before a
loop setup instruction has committed (124).

Adjusting the ECnt register may present additional
challenges. Adjustment of the ECnt register may be done
any time there is a termination of the pipeline prior to a
loop being finished. This may be because valid
instructions may still be in the pipeline and these valid
instructions might adjust the architectural count régister
value once they commit.

One way of correcting the ECnt register data following
a termination is to allow the instructions before the
termination to commit and then write the ECnt register with
its architectural counterpart. However, this may add an
additional penalty if the branch penalty is less than the
time it takes to drain the pipeline.

FIG. 10 illustrates an efficient way of adjusting an
early count value. As shown, after a loop setup
instruction enters AC stage (180), the early count register
may be written (182). At this point, the ECnt data may be
sent down the pipeline (184). If a termination (185)

occurs, unaborted instructions may be drained (186) and the

-19 -~

10

15

20

WO 02/37270 PCT/US01/46063

ECnt register may be written with the data in its
architectural counterpart (187).

At each bottom match (190) a valid decrement bit may
be sent down the pipeline (192). When an instruction that
caused a valid bit to be sent exits each pipe stage (194),
a valid decrement bit may be removed from the counter at
that exited pipe stage (196). In other words, the counters
may be incremented when a valid bit is sent (e.g. at 192)
and an individual counter may then decremented (e.g. at
196) when the instruction that caused the valid decrement
bit to be sent exits the pipe stage.

If a termination occurs in the pipeline (198), the
early count register may be adjusted (188) by the number of
valid decrement bits in the counter at the termination
stage. This adjustment value may also be represented in
the respective counter of every pipe stage that resides
later in the pipeline than the stage where the termination
occurred. The steps in FIG. 10 may repeat themselves until‘
all loop instructions have exited the pipeline (200).

The ECnt register may be decremented at every bottom
match (e.g. for every pass through the loop). However,
rather than propagate the whole ECnt value down the

pipeline after every bottom match, only a single valid

-20 -

10

15

20

WO 02/37270 PCT/US01/46063

decrement bit may be sent down the pipeline. In this
manner, a hardware reduction may be realized in the DSP
system. The set of counters may monitor valid decrement
bits and the associated instructions that caused those bits
to be sent. As such, the set of counters may keep a
running tab on differences between an early count register
and its architectural counterpart.

FIG. 11 is a block diagram illustrating counters in a
circuit. As shown, counters may be maintained at every
stage of a pipeline after DEC (210, 211, 212 and 213).
Therefore, a single valid decrement bit may be propagated
down the pipeline to account for the difference between the
early count register and its architectural counterpart.
The counter may be connected to the input of a multiplexer
220. Multiplexer 220 may determine which counter, if any,
is used to adjust the early count register 36.

In other embodiments, a termination may not occur at
certain stages, or may be restricted when a certain
instruction resides in a certailn stage. In such
embodiments, the circuit hardware may be reduced by not
implementing counters in the stages where a termination is

restricted.

-21 -

10

15

20

WO 02/37270 PCT/US01/46063

The width of counters 210, 211, 212 and 213 may be
altered as needed. For instance, counter 210 may be a one-
bit counter and 211 may be a two-bit counter. The minimal
depth of counters 212 and 213 may depend on the number of
execution stages n in the pipeline. Counter 210 may be a
one-bit counter because it always has a value of either 1
or zero. For instance, it has a value of one if a bottom
match instruction is currently in AC. When the instruction
leaves AC, the counter returns to zero.

Counter 211 and the next counter (e.g. for stage EX 2)
may be two-bit counters, although the scope of the present
invention is not limited in this respect. This is because
counter 211 (e.g. the EX 1 counter) may have a maximum
value of two, the EX 2 counter may have a maximum value of
three. The EX 3 counter has a maximum value of four,
hence, it may need three bits. Similarly, the next three
counters (e.g. EX 4 to EX 6) may be three-bit counters
capable of representing between five to seven values
respectively.

The counter width for each sfage may be determined by
considering the maximum value that the counter may need to
hold. This may correspond to the case where the loop is a

single instruction loop. Thus, the depth of the counters

-22 -

10

15

20

WO 02/37270 PCT/US01/46063

may simply correspond to the number of staées between the
counter and AC. Again, however, the size may also depend
on whether a termination may occur in a particular stage;
so some stages may not need counters.

Another mode of operation is a hybrid way of adjusting
the early count register. The counters residing at the
selected stages of the pipeline may be used to adjust the
early count register if the penalty associated with
draining the pipeline is greater than-the branch penalty.
However, if the drain penalty is less than or equal to the

branch penalty, then the instructions in the pipeline may

" be allowed to commit so that the early count register may

be adjusted from its architectural counterpart. System
operation may be chosen depending on where in the pipeline
the termination occurred. In one case, a pipeline having 3
execute stages may be drained if the termination occurs in
EX3 stage or WB stage; but the pipeline may not be drained
and the early counter may be adjusted if the termination
occurs before the EX 3 stage.

FIG. 12 is a flow diagram illustrating a hybrid mode
of operation. As shown, a counter may adjust an early
count value (228) if a termination (230) occurs before the

n“'stage. However, if termination (230) occurs after the

-23 -

10

15

20

WO 02/37270 PCT/US01/46063

n*® stage then the instructions in the pipeline may be

allowed to flow through the pipeline and commit (232). The
early registers may then be updated with the data in their
architectural counterparts (233). The variable n may
define the point at which allowing instructions to flow
through the pipeline takes an amount of time less than or
equal to the branch penalty (234).

FIG. 13 illustrates a hybrid circuit having counters
in the first n - 1 execution stages. The circuit may allow
the pipeline to execute its instructions following a
termination if an instruction has entered the n*™ execution
stage. However, the circuit may adjust an early count
register following a termination if an instruction has not
entered the n™ execution stage. Again, the variable n may
define the point at which allowing instructions to flow
through the pipeline takes an amount of time less than or
equal to the branch penalty. In other cases, the variable
n may reside much earlier in the pipeline (e.g. where the
branch penalty is larger).

Additional loop hardware, such as loop registers and
loop buffers, may facilitate fast hardware loops. Loop
hardware as described hereiﬁ, may provide several

advantages. In some implementations, loop hardware may

-24 -

10

15

20

WO 02/37270 PCT/US01/46063

hide branch penalties. In addition, loop hardware may save
power by removing the need to access memory devices such as
cache or SRAM for every iteration of a loop. Furthermore,
the loop hardware described below may have very few
programming restrictions. Moreover, loop hardware may
remove alignment restrictions that might otherwise exist in
program memory.

Referring again to FIG. 1, illustrated is a
programmable processor 2 having an execution pipeline 4 and
a control unit 6. Control unit 6 may include hardware loop
unit 8.

Hardware loop unit 8 may include one or morevsets of
loop buffers connected in series. In addition, the
hardware loop unit may include one or more single’
instruction loop registers. A collection of loop buffers
and/or loop registers may collectively be loop hardware.
This collection may facilitate fast hardware loops.

- Referring again to FIG. 5, illustrated is a block
diagram showing an embodiment of a hardware loop unit 8
connected to an instruction fetch unit 50 and a decoder
unit 52 of pipeline 10. Instruction fetch unit 50 may
provide one of a number of inputs to the hardware loop unit

8. Hardware loop unit 8 may comprise a multiplexer 56

-25 -~

10

15

20

WO 02/37270 PCT/US01/46063

connected to loop hardware 54. Loop hardware 54 may
contain one or more sets of loop buffers and/or one or more
loop registers. Moreover, the sets of loop buffers may
include a defined number of buffers connected in series.
Each set of loop buffers may have an associated loop
register.

FIG. 14 is another block diagram illustrating one
embodiment of a hardware loop unit 8. Again, hardware loop
unit 8 may be connected to an instruction fetch unit 50 and
a decoder (not shown).

Hardware loop unit 8 may include a multiplexer 260
connected to loop hardware. Loop hardware may include a
set of loop buffers 271, 272, 273 and 274 connected in
series. These buffers may provide input to another
multiplexer 280. Multiplexers 260 and 280, in turn, may
provide inputs to multiplexer 290. Output of multiplexer
290 may be connected to a loop register 296, which may be
connected back to the input of multiplexer 260. The output
of hardware loop unit 8 may provide input to a decoder.

Multiplexer 260 may have a plurality of inputs. These
may include an input from a register (e.g. an emulator
instruction register) and an input from the fetch unit 50.

In addition, multiplexer 260 may have an input from the

-26 —

10

15

20

WO 02/37270 PCT/US01/46063

loop instruction register and an input from one or more
other hardware loop units.

Exemplary FIG. 14 illustrates loop hardware comprised
of a 4-deep set of loop buffers and a single instruction
register. However, any number of buffers and/or
instruction registers could be used in other embodiments.

In exemplary modes of operation, loop buffers are
implemented in two different scenarios. In one scenario,
every instruction in the loop fits in the loop buffer. In
another scenario, every instruction in the loop does not
fit in the loop buffer. Each scenario is discussed in
turn.

FIG. 15 is a diagram illustrating one scenario. As
shown, a 4-deep set of loop buffers may be loaded with a
three-instruction loop (I2-~I4). As such, one of the loop
buffers and the VTop register may not be loaded with any
data. Instructions I2-I4 may be executed again and again,
until the exit condition of the loop is met. As shown, the
exit condition may be checked every time the I4 instruction
is issued from the loop buffer.

FIG. 16 is a flow diagram illustrating one scenario.
As shown, instructions may be issued (300), instructions

may be loaded into a set of loop buffers (302), and the

-27 -

10

15

20

WO 02/37270 PCT/US01/46063

memory device may be stalled (304). Stalling the memory
may provide power savings to the DSP system. After loading
the instructions into the set of buffers (302), the
instructions may be subsequently issued from the set of
buffers (306). The instructions may be issued over and
over again until the exit condition of the loop is met
(308).

FIG. 17 is another flow diagram illustrating one
scenario. As shown, instructions may be issued (310),
instructions may be loaded into a set of loop buffers
(314), a memory device may be stalled (316), and a loop
count may be initialized (312). As long as the exit
condition of the loop is not met (318), the loop count may
be decremented (320) and the instructions may be issued
from a set of loop buffers (322). The memory device may be
stalled until the loop count reaches a defined number X
(316). Moreover, X may be defined such that the next
instruction after the loop may be immediately ready in the
fetch unit when the loop has finished. In this manner, a
loop exit penalty may be avoided.

In other embodiments, a loop count is initialized
(312) to zero. Adjustment (320) would then increment the

loop count rather than decrement as shown in FIG 17. Still

-28 -

10

15

20

WO 02/37270 PCT/US01/46063

other embodiments will become apparent in light of FIGS.
15-17.

FIG. 18 is a diagram illustrating another scenario.
As shown, a 4-deep set of loop buffers may be loaded with
four instructions of a loop (I2~I5). In addition, a VTop
register may be loaded with the address of the next
instruction in the loop. VTop may be an address register
that resides in the pipeline (see FIG. 2, 37). During
subsequent iterations of the loop, instructions I2-I5 may
executed while I6 is being fetched. 1I6 may then be
immediately ready for execution after I5 has been executed.
The exit condition may be checked during iterations of the
loop.

FIG. 19 is a flow diagram illustrating the scenario of
FIG. 18. As shown, a first subset of instructions may be
loaded into a set of buffers (330), as the first subset of
instructions is issued (332). Next, the starting address
of the second subset of instructions may be loaded into a
register (334) and the second subset may be issued (336).
During subsequent iterations of the loop (the number of
iterations being defined by the exit condition (338)), the

first subset of instructions may be issued from the set of

-29 —

10

15

20

WO 02/37270 PCT/US01/46063

buffers (340) while the second subset is being fetched
(342) . The second subset may then be issued (344).

A mode of operation in accordance with FIG. 19 may
realize several advantages. For instance, every time the
first subset is issued from a set of buffers, power may be
saved if the memory device is not firing. In addition,
fetching a second subset while a first subset is issued may
minimize loop penalties. In one embodiment, the loop
buffer may have a depth that corresponds to at least the
branch penalty. Thus, the penalty associated with fetching
the second subset may be hidden behind the issuance of the
first subset of instructions. This may increase the speed
of the DSP system. In other embodiments, however, where
power saving is a more important design feature (e.g. for
circuits implemented in battery powered devices), deeper
buffers may be more useful.

The first subset of instructions may be the number of
instructions that fit in the set of loop buffers. The
second subset of instructions may be the next instruction
in the loop following those loaded in the buffers.
Alternatively, the second subset may be a plurality of

instructions that follow those loaded in the buffers.

~30 —

10

15

20

WO 02/37270 PCT/US01/46063

FIG. 20 is a more géneral flow diagram illustrating
the scenarios described above. As shown, a first subset of
instructions may be loaded into a set of buffers (350) and
issued (352). If all instructions of the loop fit into the
loop buffer (354), then a memory device may be stalled
(355) and the instructions may be continuously issued from
the set of buffers (356) until the exit condition is met
(358) .

If all the instructions of theAloop do not fit into
the loop buffer (354), then a second subset of instructions
may be issued (360) and the starting address of those
instructions may be loaded into a register (362). On
subsequent iterations of the loop (as defined by the exit
condition (364)), the first subset of instructions may be
issued from the set of buffers (366) while the second
subset i1s fetched from memory (368). The second subset may
then be issued (370).

In the scenario of FIG. 18, a request for the address
pointed by VTop may be made every time there is a bottom
match. In this manner, a first subset of instructions may
be dispatched while fetching a second subset of

instructions.

-31 -

10

15

20

WO 02/37270 PCT/US01/46063

By the time the first subset of instructions in the
loop has been dispatched, the cache/memory may have already
been accessed and an alignment buffer primed with the
second subset of instructions. The alignment buffer may
hold multiple instructions (depending on the width of each
instruction). If the second subset includes a plurality of
instructions, the plurality may be aligned in the alignment
buffer with the first instruction of the second subset
being an instruction associated with a VTop register.

Operation may further include requesting the next
instruction following that associated with VTop while the
instruction associated with VTop is dispatched. For
example, in one mode of operation, the instruction
associated with VTop is a 64-bit instruction. As that 64-
bit instruction is dispatched, the next 64-bit instruction
(as defined by alignment in memory) may be fetched. By
repeating this over and over again, a DSP system may
dispatch instructions in a fast and efficient manner.

Prior art programmable processor systems that
implement hardware loops may require many restrictions in
the operating code. However, it is highly desirable to
provide for hardware loops that have very few programming

restrictions. In one embodiment, a system in accordance

-32 -

10

15

20

WO 02/37270 PCT/US01/46063

with the present invention may have only one programming
restriction. The single restriction may be that the
system cannot have a branch on a loop bottom.

Fast hardware loops may have situations where a loop
buffer calls for invalidation. These situations might
include invalidation where a loop buffer has been populated
with a conditional branch. Thus, in one mode of operation,
a set of loop buffers may be invalidated if one of the
first n instructions in a loop is a conditional branch.

The variable n may define the depth of the set of loop
buffers

Another situation where a loop buffer may require
invalidation is when an event is received while a loop
buffer is being loaded. In addition, a loop buffer may
require invalidation following a C_SYNC for self-modifying
code. Thus, other modes of operation involve invalidating
a loop buffer when either of these two situations arise.

Zero offset loops may introduce additional challenges.
Offsets may refer to the distance between the loop setup
instruction and the first or last instruction in the loop.
In prior art systems, offsets are necessary to facilitate
setup of hardware loops or to account for programming

exceptions in the system. Facilitating zero offset loops,

-33 -

10

15

20

WO 02/37270 PCT/US01/46063

however, is highly advantageous because it may reduce
processing time.

Even in a system that implements early registers and
loop buffers, zero offset loops may raise challenges. For
instance, in the system described above, by the time the
early registers are written (e.g., in Ex 1) the first
instruction of a zero offset loop may already be in AC.
Thus, since the beginning of the loop exits DEC even before
Etop and Ebot get written, the circuit may effectively
“miss” a top match.

Special modes of operation and circuit arrangements
have been designed to detect and deal with zero offset
loops. In one mode of operation the start offset (S-
offset) in a loop setup instruction is compared to a known
value to detect zero offset. In this manner, early
detection of a zero offset loop is facilitated. 1In a
particular embodiment, the S-offset is compared to 4, where
4 refers to the four bytes of a 32 bit instruction. Once
detected, a zero offset loop may be set up even before the
early registers get written.

FIG. 21 is a flow diagram that illustrates a que of
operation for detecting a zero offset loop. As shown, a

loop setup instruction may be decoded (380). The s-offset

- 34 ~

10

15

20

WO 02/37270 PCT/US01/46063

may then be compared to a defined number (382) (the defined
number corresponding to the width of the loop setup
instruction). In this manner, a zero offset loop may be
detected even before the early registers get written. If

zero offset loop is detected (384), the next n instructions

‘in the loop may be issued and loaded into a loop buffer

(386) as described above.

FIG. 22 is a flow diagram that illustrates a mode of
operatign for detecting and dealing with the special case
of a single instruction zero offset loop. As shown, a loop
setup instruction may be decoded (388). If zero offset is
detected (390), and the Start Offset equals the End Offset
(392), then a single instruction loop may be immediately
performed (394). Zero offset may be detected when the s-
offset equals the width of the loop setup instruction. A
single instruction loop may be detected when the s-offset
and e—-offset are the same.

Special hardware may facilitate setting up and
executing a single instruction loop as quickly as possible.
Referring again to FIG. 14, the loop register 296 may be
used for this special case. Thus, step (394) may be
performed by loading loop hardware (such as loop register

296) with the single instruction, and repeatedly issuing

- 35 -

10

15

20

WO 02/37270 PCT/US01/46063

that instruction out of hardware loop unit 8 until the exit
condition of the single instruction loop is met.

A single instruction loop may be detected and then
performed by holding the instruction in decode in a special
loop instruction register 296 (see FIG. 14). 1In addition,
memory devices may not be accessed and everything upstream
may be stalled to save power. Moreover, since the single
instruction loop may be issued out of loop instruction
register 296, the instruction fetch unit 50 may be free to
fetch the next instruction (e.g. from a cache). Thus, when
the single instruction loop has finished execution the next
instruction may already be in the instruction fetch unit
50, resulting in zero penalty loop exit.

In summary, zero offset hardware loops may be broken
into three cases. In the first case, a zero offset single
instruction loop may be immediately issued out of decode
via a loop instruction register. 1In the second case, a
zero offset n-instruction loop may be immediately detected
and loaded completely into an n-deep set of loop buffers.
And in the third case, a zero offset loop may be
immediately detected and the first n-instructions of that
loop loaded into an n-deep set of‘loop buffers. The next

instruction may then be associated with a VTop register.

-36 —

10

15

20

WO 02/37270 PCT/US01/46063

In one embodiment, loop hardware as described herein,
may be implemented in a pipeline. This may be much more
advantageous than implementing buffers in a cache.

In one mode of operation, loop instructions may be
stored in loop hardware such that the instructions are
aligned to an instruction boundary. This may be more

advantageous than aligning instructions to an address

. boundary. Once aligned to an instruction boundary in loop

hardware, no alignment of instructions may be necessary
when they are subsequently issued from the loop hardware.
To align instructions to an instruction boundary, a
set of instructions may be loaded in an order of execution
into the loop hardware and the address of the next
instruction may be stored in an address register. 1In
addition, a second set of instructions may be loaded in
order of execution into a memory device. Loading
instructions in an orderrof execution intoc loop hardware
may comprise loading n sequential instructions into n
buffers, where n is a positive integer. Moreover, the n
sequential instructions may be any sequential instructions
including the first n instructions of a loop or the last n

instructions of a loop.

-37 -

10

15

20

WO 02/37270 PCT/US01/46063

In other embodiments (as shown in FIGS. 23A -~ 23C), a
number of hardware loop units may be implemented. The
output of any of the number of hardware loop units may be
connected to the respective input of one or more other
hardware loop units. In this manner, a second hardware
loop unit may be loaded via the output of a first hardware
loop unit. Again, this may provide power savings insofar
as a memory device is not fired up to load the second
hardware loop unit.

In some caseé, a plurality of loop units may be used
to service nested loops (or coincident loops). An inner
hardware loop unit may hold one or more instructions that
are aligned in an outer hardware loop unit. Moreover, the
inner hardware loop unit may be loaded by sending the
aligned instructions from the outer hardware loop unit to
the input of the inner hardware loop unit.

In still other embodiments, an independent plurality
of hardware loop units may be implemented. However,:if two

or more independent hardware loop units are used in the

same DSP system, a restriction may be used. For instance,

when both loops have the same bottom instruction, one of

the loops may be defined as the outer loop. Without this

-38 -

10

15

20

WO 02/37270 PCT/US01/46063

restriction the circuit might encounter two bottom matches
and not know which one to decrement.

Yet another mocde of operation involves power
management of hardware loops. When hardware loops are
enabled, an ETop register may be compared to the PC to
account for each top match. Likewise, an EBot register may
be compared to the PC to account for each bottom match.
However, when hardware loops are disabled, any switching in
the comparator circuits may be merely a waste of power.
Therefore, it may be advantageous to disable bottom match
and top match comparator circuits when a hardware loop is
disabled. By choosing inputs to a comparator to disable
the comparator when the hardware loop is disabled, power
may be conserved.

FIG. 24 is an exemplary embodiment showing power
saving circuitry. ETop register 400 and EBot register 402
respectively provide one of a number of inputs to
multiplexers 404 and 406. The output of multiplexers 404
and 406 may be inputs to comparators 408 and 410. The
other input to comparators 408 and 410 may come from the
output of multiplexer 412. The inputs of multiplexer 412
may come from the program counter 414 and a loop disable

signal 416 from a control unit. Multiplexers 404, 406 and

-39 -

10

15

20

WO 02/37270 PCT/US01/46063

412 may be arranged such that when hardware loops are
disabled, the output of multiplexer 412 is different from
the output of multiplexers 404 and 406. This may ensure
that no switching occurs in comparators 408 or 410 when the
hardware loops are disabled.

In one embodiment, the same loop disable signal 416
may be sent to multiplexers 404, 406 and 412. However, an
inverter (not shown) may invert a bit before multiplexer
412 receives the signal. 1In this manner, the output of
multiplexer 412 may be different than that of multiplexers
404 and 406 when a loop disable signal is sent to the
circuit.

FIG. 24 also illustrates an exemplary circuit for
incrementing an ECnt register 418. On each pass of the
loop, multiplexer 420 may decrement the ECnt register.
However, if adjustment ié necessary, the adjustments signal
(e.g. the clobber count 422) may adjust the ECnt
accordingly. Once the loop has finished its last
iteration, comparator 424 may send a signal 425 so
indicating.

FIG. 24 also illustrates how bottom matches and top
matches may be detected. When comparator 410 detects that

the program counter 412 and ETop register have the same

- 40 -

WO 02/37270 PCT/US01/46063

value, a Top Match signal 428 may be sent. When comparator
408 detects that the program counter and the EBot register
have the same value, a Bottom Match signal 430 may be sent.

Finally, FIG. 24 also illustrates a VTop register 432
implemented in a pipeline. As described, herein, VTop may
be an address register holding the address of a next
instruction following a plurality of instructions loaded
into loop hardware (not shown).

' Various embodiments of the invention have been
described. For example, numerous hardware loop techniques
have been described for implementation within a processor.
The processor may be implemented in a variety of systems
including general purpose computing systems, digital
processing systems, laptop computers, personal digital
assistants (PDA’s) and cellular phones. In this context,
the hardware loops discussed above may be readily used to
increase processing speed without significantly increasing
power consumption. In such a system, the processor may be
coupled to a memory device, such as a FLASH memory device
or a static random access memory (SRAM) that stores an
operating system and other software applications. These
and other embodiments are within the scope of the following

claims.

-41 -

WO 02/37270 PCT/US01/46063

What is claimed is:

1. A method comprising:

loading loop conditions of a loop into a set of
speculative registers, and

executing a loop in a processor based on the loop

conditions.

2. The method as in claim 1, the method further
comprising detecting the loop conditions from the
speculative registers before the loop conditions are

written to a set of architectural registers.

3. The method as in claim 2, the method further
comprising setting up a hardware loop using the loop

conditions loaded in the speculative registers.

4. The method as in claim 2, the method further
comprising terminating the loop early based on information

contained in the speculative registers.

5. The method as in claim 2, wherein the processor

includes a multi-stage execution pipeline, the method

-42 -

WO 02/37270 PCT/US01/46063

further comprising adjusting the value of at least one of
the speculative registers following a termination of an

instruction in the pipeline.

6. The method as in claim 5, wherein the set of
speculative registers includes an early top register and
the set of architectural registers includes an
architectural top register, the method further comprising
adjusting the early top register with data contained in the
architectural top register following a termination of at

least one instruction in the pipeline.

7. The method as in claim 5, wherein the set of
speculative registers includes an early bottom register and
the set of architectural registers includes an
architectural bottom register, the method further
comprising adjusting the early bottom register with data
contained in the architectural bottom register following a

termination of at least one instruction in the pipeline.

8. The method as in claim 5, wherein the set of
speculative registers includes an early count register, the

method further comprising adjusting the early count

-43 =

WO 02/37270 PCT/US01/46063

register following a termination of at least one
instruction in the pipeline.
9. An apparatus compfising:

a control unit,

a set of early registers; and

a set of architectural registers, each architectural
register being associated respectively with an early

register.

10. The apparatus as in claim 9, wherein the control unit
is adapted to load the loop conditions of a loop into the

set of early registers.

11. The apparatus as in claim 10, wherein the control unit
is adapted to use the loop conditions loaded into the set

of early registers to set up a hardware loop.

12. The apparatus as in claim 10, wherein the control unit
is adapted to detect the loop conditions from the set of
early registers before the loop conditions are written to a

set of architectural registers.

-44 -

WO 02/37270 PCT/US01/46063

13. The apparatus as in claim 9, wherein the early
registers include an early top register that points to a

top instruction of a loop.

14. The apparatus as in claim 9, wherein the early
registers include an early bottom register that points to a

bottom instruction of a loop.

15. The apparatus as in claim 9, wherein the early
registers include an early count register that specifies a

number of iterations of a loop.

16. The apparatus as in claim 10, wherein the control unit
is adapted to terminate the loop early based on information

contained in the set of early registers.

17. The apparatus as in claim 10, wherein the control unit
is adapted to adjust the value of at least one of the early

registers following a termination.

18. The apparatus as in claim 17, the apparatus including
an execution pipeline, wherein the set of early registers

includes an early top register and the set of architectural

-45 -

WO 02/37270 PCT/US01/46063

registers includes an architectural top register, the
control unit being adapted to adjust the early top register
with data contained in the architectural top register
following a termination of at least one instruction in the

pipeline.

19. The apparatus as in cléim 17, the apparatus including
an execution pipeline, wherein the set of early registers
includes an early bottom register and the set of
aréhitectural registers includes an architectural bottom
register, the control unit being adapted to adjust the
early bottom register with data contained in the
architectural bottom register following a termination of at

least one instruction in the pipeline.

20. The apparatus as in claim 17, the apparatus including
an execution pipeline, wherein the set of early registers
includes an early count register, the control unit being
adapted to adjust the early count register following a

termination of at least one instruction in the pipeline.

21. A system comprising:

an SRAM memory device;

-46 -

WO 02/37270 PCT/US01/46063

a set of early registers; and

a processor coupled to the memory device, wherein the
processor includes an execution pipeline and a control unit
adapted to load loop conditions of a loop into the set of

early registers.

22. The system of claim 21, further comprising a set of
architectural registers, wherein the control unit is
adapted to detect the loop conditions from the early
registers before the loop conditions are written to the set

of architectural registers.

23. The system of claim 21, wherein the control unit is
adapted to adjust the value of at least one of the early
registers following a termination of at least one

instruction in the pipeline.

24. The system of claim 21, wherein the set of early

registers includes an early top register that points to the

top instruction of a loop.

-47 -

WO 02/37270 PCT/US01/46063

25. The system of claim 21, wherein the set of early
registers includes an early bottom register that points to

the last instruction of a loop.

26. The system of claim 21, wherein the set of early
registers includes an early count register that specifies a

number of iterations of a loop.

27. A method comprising:
loading loop conditions of a loop into a first set of
registers in a pipeline from a loop-setup instruction; and
detecting the loop conditions from the first set of
registers before the instruction has committed to the
pipeline and the loop conditions have been written to a

second set of registers.

28. The method as in claim 27, the method further
comprising adjusting the value of at least one register in
the first set of registers following a termination of an

instruction in the pipeline.

29. A method comprising:

- 48 -

WO 02/37270 PCT/US01/46063

comparing a loop register with a program counter when
a hardware loop is enabled; and
disabling a comparator when the hardware loop is

disabled.

30. The method as in claim 29, wherein comparing a loop
register with a program counter comprises comparing a
register that points to the first instruction in a loop to

a program counter.

31. The method as in claim 30, wherein comparing a
register that points to the first instruction in a loop to
a program counter comprises comparing an early top register

with a program counter.

32. The method as in claim 29, wherein comparing a loop
register with a program counter comprises comparing a
register that points to the last instruction in a loop to a

program counter.

33. The method as in claim 32, wherein comparing a

register that points to the last instruction in a loop to a

-49 -

WO 02/37270 PCT/US01/46063

program counter comprises comparing an early bottom

register with a program counter.

34. An apparatus comprising:

a register coupled to the input of a first mutiplexer;

a program counter coupled to the input of a second
mutiplexer;

a comparator coupled to the output of the first and
second multiplexers; and

a control unit adapted to output opposite signals from
the first and second multiplexers when hardware loops are

disabled.

35. The apparatus as in claim 34, wherein the control unit
is adapted to output the register’s data through the first
multiplexer and the program counter’s data through the

second multiplexer when hardware loops are enabled.

36. The apparatus as in claim 34, wherein the register is
a first register and the comparator is a first comparator,
the circuit further comprising:

a second register coupled to the input of a third

multiplexer; and

-50 -

WO 02/37270 PCT/US01/46063

a second comparator coupled to the output of the
second and third multiplexers,

wherein the control unit is adapted to output opposite
signals from the second and third multiplexers when

hardware loops are disabled.

37. The apparatus as in claim 34, wherein the register is

a register that points to the first instruction in a loop.

38. The apparatus as in claim 37, wherein the register is

an early top register.

39. The apparatus as in claim 34, wherein the register is

a register that points to the last instruction of a loop.

40. The apparatus as in claim 39, wherein the register is

an early bottom register.

41. A system comprising:
an SRAM memory device;
a loop register;
a program counter;

a comparator; and

-5] -

WO 02/37270 PCT/US01/46063

a processor coupled to the memory device, wherein the
processor includes a control unit adapted to:
compare the loop register with a program counter
when a hardware loop i1s enabled; and
disable the comparator when the hardware loop is

disabled.

42. The system as in claim 41, wherein the loop register is
a register that points to the first instruction in a loop.
43. The system as in claim 42, wherein the loop register

is a an early top register.

44. The system as in claim 41, wherein the loop register

is a register that points to the last instruction of a

loop.

45. The system as in claim 44, wherein the register is an

early bottom register.

-52 —

WO 02/37270 PCT/US01/46063
1/24
"
CONTROL
CONTROL UNIT SIGNALS PIPELINE
6 4
Hardware Loopr
Loop Unit SIGNALS
8

FIG. 1

WO 02/37270 PCT/US01/46063

2/24
Y - e
| BN Instruction Fetch -

10\‘ (IF) |
|
| : |
““““““ S ey S
| 15
| |
35
| I,
e —r L e :
| L < 18
36 - 57 Addres; ~ |
] CNT m Calculation l
| I = o |
| e o= F e
| il 22 |
23~ Execute 1 |
| N Ex. 1 |
l ¥ l
, o T e Fmmmmmmm e
| : |
: !
| i |
S Eo==—t===== Fmmmmm—mmmm e l
l |
| v |
' ___________________ }' ______________
| |
| |
| 28 :
‘ Execute n
I (EX. n) |
| Y |
| 29'\ :
| ‘ |
| ;
[S EEEEEE e s ST |
l ' 30 |
. Write Back |
I (WB) I
| |
[y
| |
| |
| |

— — et e - e e e e et e e — — —— — — — . —

WO 02/37270

3/24

.
<

Loop Setup
Instruction
Enter AC?

39
] Write Count Value to Early
Count Register (ECnt)
40 .
_. Calculate PC Relative to Top
and Bottom Values
Loop Setup
Enter Ex. 1? No
42
_] Write Top Value to ETop and

Bottom Value to EBot

End

FIG. 3

PCT/US01/46063

WO 02/37270

4/24
Determine S- | 44
Offsetand E- | _J

Offset from loop
setup instruction

Determine
Program Counter
(PC) Value

45

Y

Calculate ETop
Register value from
S-Offset and PC
Value.

\ 4

Calculate EBot
Register value from
E-Offset and PC
Value.

Write to Early
Registers

FIG. 4

48

L/

PCT/US01/46063

PCT/US01/46063

WO 02/37270

5/24

Decoder

— e — e —— i — o — . —— —

\ 4
Loop Hardware

A

FIG. 5

WO 02/37270 PCT/US01/46063

6/24
{ Start)
Y
76
Write Early Data to Early |/
Registers
83
Has a Termination in Drain all unaborted -/
the Pipeline Occurred instructions
\ 4
No
Have the Architectural ; ; ; 84
. : Write Early Registers with
Registers been written? Data cogtaingd intheir

Architectural Counterparts

FIG. 6

WO 02/37270 PCT/US01/46063
7/24

90
Write to Early Count L/
Register
A 4 92

Send Early Count Register |
data down the pipeline

Write Architectural Count
Register

Loop finished?

Next iteration of the
loop?

(. Decrement Early Count
Register

FIG. 7

WO 02/37270

PCT/US01/46063

8/24
Start
Y
90
Write to Early Count |/
Register
92
Send Early Count Register |/
data down the pipeline
v o3
-/
Write to Architectural |
registers A

Loop finished?

Next iteration of the
loop?

102
N

Send a valid decrement bit

Decrement the Architectural
Count Register

L/

down the pipeline

FIG. 8

WO 02/37270 PCT/US01/46063
9/24

Load entry/exit | 120
conditions into ~/
Early Registers

A
Detectentry/ | 122
exit conditions |,_)
from the Early
Registers

Commit 124
instructionto |_J
Architectural

Registers

FIG. 9

WO 02/37270 PCT/US01/46063
10/24
Start
182 184
y -,)
180 '_\ Loop setup enter «| Write to Early Send ECnt down
AC Stage 71 Count Register the Pipeline
]
185 186
Yes ,
Termination?
Drain unabortec
instruction
190
No
Bottomn Match? y
Write ECnt
Register with dat
in its Architectur:
Send valid Counterpart
192 —\ decrement bit
down the Pipeline
to increment
counters
188
196
S 194 Adjust Early Count
R Register by the
deg;ﬁ:\rﬁ ;;l;?om Yes Has an instruction that No > number of valid

the counter in the
exited pipe stage

caused a valid bit to be sent
exited a pipe stage?

200

Have all loop
instructions exited
the pipeline?

198

No Yes

Termination?

decrement Bits in
the Counter at the
Kill Stage

FIG. 10

WO 02/37270 PCT/US01/46063

11/24
+ _{ TEp Decode
L (Dec)
+ BEot
R RS poee
> 36 Address
E Calculation
Counter +
210 T _l __________ jT _______
Execute 1
Counter B
211 +
_______ _t——~_i——_—~+—_—__-_
Counter Execute n
(Ex. n)
27 !
S i e
Write Back
Counter _ (WB)
2 3
| |

FIG. 11

WO 02/37270

12/24

y

n = the stage in the pipeline
where allowing the
remaining instructions to
commit takes less than or
equal to the amount of time
associated with a branch

penalty

Terminate the pipeline and
adjust early counter

End

230

Termination
occur in n~
tage or later?,

Yes

Update the Early Registers
with the Architectural
Registers

233
-/

PCT/US01/46063

234

232
'

Aliow the remaining
instructions to commit

FIG. 12

WO 02/37270 PCT/US01/46063

13/24

___________________________________ |
|
Y ; i
| Top Decodei
— (Dec) !

| E

+ Bot

!
|
{
|
I
| :
|
| |
i |
' :
|
i
I
| Address |
! = Calculation |
! cat (AC) i
, I
| i
: Counter + !
] N sy l
] === e I |
I VL :
I
I Counter Execute 1 |
! Ex. 1 |
| v |
[T ettt - |
i 7 l
! s
I]
I I
| I
I
Execute n - 1]
{
| Counter (Ex. n _1) :
!
i
:] ;
e EEEEEE Foeannns ;
i
[l :
! Execute n ,
: (Ex. n) i
| |
| y |
T [mm====----- f--=m--- !
N ¢ :
| Write Back |
i (WB) !
| .
| |
| |
{ |
| |
! I
| |
| I
| |

PCT/US01/46063

WO 02/37270

14/24

o o e o e o o e = Mo e ot o —t . s e e Sam e o e fem e n . n — o—— 7~ —— — e — s i — et o — n ot o ——

lepooe(
0] €

062
\

96¢

082

vLc

€lc

[AX4

L2

vl Old

A

WO 02/37270

..........

I1

12

13

I4

I5

I6

I7

I8

PCT/US01/46063

15/24

Loop Buffer V Top

I2 » X

I3

I4

X

Exit Condition Checked

FIG. 15

WO 02/37270 PCT/US01/46063
16/24

Start

300
Issue Instructions Once rj

302 N\ Load Instructions into
Buffer

304
Stail Memory Device

306

Exit Condition
Met?

Issue Instructions Again
From The Set of Buffers

FIG. 16

WO 02/37270

314"\

17/24

Load Instructions
into Set of Buffers

Stali Memory Device Until
Loop-count = X

316
-/

Loop Count = Number of
lterations in the Loop

».

;312

»

310

< Issue Instructions Once ~

PCT/US01/46063

Issue Instructions

318

Y,

No

from Set of Buffers

322

~

Exit Condition Met

FIG. 17

Loop-Count = Loop-
Count - 1

320

W

WO 02/37270

Bottom

Il

I2

I3

I4

I5

I6

I7

I8

18/24

Loop Buffer

PCT/US01/46063

V Top

I2

I6

I3

I4

I5

-— Exit Condition Checked

FIG. 18

WO 02/37270 PCT/US01/46063
19/24

v v

330 . 332
’\ 'Bcﬁgs?ﬁtgﬁgsiit Issue First Subset /
Set of Buffers of Instructions
A 4
334 Load Starting 336
—\ Adress of Second Issue Second /
Subset of Subset of
instructions into Instructions
VTOP
Exit
Instruction
Met
y
A
340\| First Subset g
ssue First Subse! \
From Set of Fet%hut?::f nd
Buffers
344
Issue Second /
Subset

FIG. 19

WO 02/37270

v

350 ~

Load First Subset
Into Set of Buffers

Stall Memory |
Device B

Exit
Condition
Met?

Issue Instructions ,—j
from Set of Buffers

Yes

All Instructions in
the Loop Loaded
in Buffer?

366

FIG. 20

354

360(1 Address of

Second Subset of

Instructions into
VTOP

Subset

Yes

Exit
Condition

Met

368
Issue First Subset
From Set of Fetgi:lsseecto nd
Buffers .
Y 370

Issue Second
Subset

-

PCT/US01/46063
352
Issue First Subset |~/
No ¢
A 4
Load Starting 362
Issue Second |/

WO 02/37270 PCT/US01/46063

21/24
(Start)
A 4
380
Decode Loop Setup Instruction)
382
Compare S-Offset to /
Detect Zero Offset
No
Zero Offset? » End
A
386

Send Next N Instructions
to Loop Buffer

FIG. 21

WO 02/37270 PCT/US01/46063
22/24

Start

388

Decode Loopsetup Instruction //

390

Zero Offset?

Start Offset = End
Offset? End

Yes

394

)

Immediately Perform a Single
Instruction Loop

FIG. 22

WO 02/37270 PCT/US01/46063

23/24
Hardware Hardware
Loop Unit Loop Unit
One Two
Hardware Hardware
Loop Unit Loop Unit
One Two
Hardware
Loop Unit
Three
Hardware Hardware
Loop Unit Loop Unit
One Two
Hardware Hardware
Loop Unit Loop Unit
Three Four

FIG. 23C

PCT/US01/46063

WO 02/37270

EX1

AC

24/24

Decode

432

From DAG

Unit

m

/ 430

Botto

400

!
|

From Branch
Unit

Match

412

416

420

\Clobber

422

Count

	Abstract
	Bibliographic
	Description
	Claims
	Drawings

