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SYSTEMS, APPARATUSES, AND METHODS FOR PERFORMING A DOUBLE
BLOCKED SUM OF ABSOLUTE DIFFERENCES

FIELD OF INVENTION

[0001] Thefield of invention relates generaly to computer processor architecture, and, more

specificaly, to instructions which when executed cause a particular result.

BACKGROUND

[0002] Aninstruction set, or instruction set architecture (ISA), isthe part of the computer
architecture related to programming, and may include the native data types, instructions, register
architecture, addressing modes, memory architecture, interrupt and exception handling, and
external input and output (1/0). The term instruction generally refers herein to macro-
instructions - that isinstructions that are provided to the processor (or instruction converter that
trandates (e.g., using static binary trandation, dynamic binary trandation including dynamic
compilation), morphs, emulates, or otherwise converts an instruction to one or more other
instructions to be processed by the processor) for execution - as opposed to micro-instructions or
micro-operations (micro-ops) - that isthe result of aprocessor's decoder decoding macro-
instructions.

[0003] ThelSA isdistinguished from the microarchitecture, which isthe internal design of the
processor implementing the instruction set. Processors with different microarchitectures can
share acommon instruction set. For example, Intel® Pentium 4 processors, Intel® Core™
processors, and processors from Advanced Micro Devices, Inc. of Sunnyvale CA implement
nearly identical versions of the x86 instruction set (with some extensions that have been added
with newer versions), but have different internal designs. For example, the same register
architecture of the ISA may be implemented in different ways in different microarchitectures
using well-known techniques, including dedicated physical registers, one or more dynamically
alocated physical registers using aregister renaming mechanism (e.g., the use of a Register
Alias Table (RAT), aReorder Buffer (ROB), and aretirement register file; the use of multiple
maps and apool of registers), etc. Unless otherwise specified, the phrases register architecture,
register file, and register are used herein to refer to that which isvisible to the

software/programmer and the manner in which instructions specify registers. Where a
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specificity is desired, the adjective logical, architectural, or software visible will be used to
indicate registers/files in the register architecture, while different adjectives will be used to
designation registers in a given microarchitecture (e.g., physical register, reorder buffer,
retirement register, register pool).

[0004] Aninstruction set includes one or more instruction formats. A given instruction format
defines various fields (number of bits, location of bits) to specify, among other things, the
operation to be performed (opcode) and the operand(s) on which that operation isto be
performed. Some instruction formats are further broken down though the definition of
instruction templates (or subformats). For example, the instruction templates of agiven
instruction format may be defined to have different subsets of the instruction format's fields (the
included fields are typically in the same order, but at least some have different bit positions
because there are less fields included) and/or defined to have agiven field interpreted differently.
Thus, each instruction of an ISA is expressed using agiven instruction format (and, if defined, in
agiven one of the instruction templates of that instruction format) and includes fields for
specifying the operation and the operands. For example, an exemplary ADD instruction has a
specific opcode and an instruction format that includes an opcode field to specify that opcode
and operand fields to select operands (sourcel/destination and source2); and an occurrence of
this ADD instruction in an instruction stream will have specific contents in the operand fields
that select specific operands.

[0005] Scientific, financial, auto-vectorized general purpose, RMS (recognition, mining, and
synthesis), and visual and multimedia applications (e.g., 2D/3D graphics, image processing,
video compression/decompression, voice recognition agorithms and audio manipulation) often
require the same operation to be performed on alarge number of data items (referred to as "data
parallelism"). Single Instruction Multiple Data (SIMD) refers to atype of instruction that causes
aprocessor to perform an operation on multiple dataitems. SIMD technology is especially
suited to processors that can logically divide the bits in aregister into a number of fixed-sized
data elements, each of which represents a separate value. For example, the bits in a 256-bit
register may be specified as a source operand to be operated on asfour separate 64-bit packed
data elements (quad-word (Q) size data elements), eight separate 32-bit packed data elements
(double word (D) size data elements), sixteen separate 16-bit packed data elements (word (W)
size data elements), or thirty-two separate 8-bit data elements (byte (B) size data elements). This
type of data isreferred to as packed data type or vector data type, and operands of this data type

are referred to as packed data operands or vector operands. In other words, apacked dataitem or
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vector refers to a sequence of packed data elements, and a packed data operand or a vector
operand is a source or destination operand of a SIMD instruction (also known as apacked data
instruction or avector instruction).

[0006] By way of example, onetype of SIMD instruction specifies a single vector operation to
be performed on two source vector operands in avertical fashion to generate a destination vector
operand (also referred to as aresult vector operand) of the same size, with the same number of
data elements, and in the same data element order. The data elements in the source vector
operands are referred to as source data elements, while the data elements in the destination
vector operand arereferred to a destination or result data elements. These source vector
operands are of the same size and contain data elements of the same width, and thus they contain
the same number of data elements. The source data elements in the same bit positions in the two
source vector operands form pairs of data elements (also referred to as corresponding data
elements; that is, the data element in data element position 0 of each source operand correspond,
the data element in data element position 1 of each source operand correspond, and so on). The
operation specified by that SIMD instruction is performed separately on each of these pairs of
source data elements to generate a matching number of result data elements, and thus each pair
of source data elements has a corresponding result data element. Since the operation is vertical
and since the result vector operand is the same size, has the same number of data elements, and
the result data elements are stored in the same data element order as the source vector operands,
the result data elements are in the same bit positions of the result vector operand as their
corresponding pair of source data elements in the source vector operands. In addition to this
exemplary type of SIMD instruction, there are avariety of other types of SIMD instructions
(e.g., that has only one or has more than two source vector operands, that operate in a horizontal
fashion, that generates aresult vector operand that is of adifferent size, that has a different size
data elements, and/or that has a different data e ement order). It should be understood that the
term destination vector operand (or destination operand) is defined as the direct result of
performing the operation specified by an instruction, including the storage of that destination
operand at alocation (beit aregister or a amemory address specified by that instruction) so that
it may be accessed as a source operand by another instruction (by specification of that same
location by the another instruction).

[0007] The SIMD technology, such as that employed by the Intel® Core™ processors having
an instruction set including x86, MMX™, Streaming SIMD Extensions (SSE), SSE2, SSE3,
SSE4.1, and SSE4.2 instructions, has enabled a significant improvement in application

3



10

15

20

25

30

WO 2013/095599 PCT/US2011/067071

performance. An additional set of SIMD extensions, referred to the Advanced Vector
Extensions (AVX) (AVXI and AVX2) and using the Vector Extensions (VEX) coding scheme,
has been , has been released and/or published (e.g., see Intel® 64 and IA-32 Architectures
Software Developers Manual, October 201 1; and see Intel® Advanced Vector Extensions

Programming Reference, June 201 1).

Brief Description of the Drawings

[0008] The present invention isillustrated by way of example and not limitation in the figures
of the accompanying drawings, in which like references indicate similar elements and in which:
[0009] Figure lillustrates an exemplary illustration of part of an operation of an exemplary
DBPSAD instruction operating on byte elements wherein the resulting SAD calculations are
stored as word elements.

[0010] Figure 2 shows the next 64-bit lane calculations. If source and destinations were 128-
bit, then this would be al of the calculations performed.

[0011] Figure 3illustrates more detailed exemplary instruction formats.

[0012] Figure 4 illustrates an embodiment of the use of aDBPSAD instruction in a processor.
[0013] Figure 5illustrates an embodiment of a method for processing a DBPSAD instruction.
[0014] Figure 6 illustrates pseudo-code for DBPSAD for abyte source data element size and
word destination data element size.

[0015] Figure 7 illustrates acorrelation between the number of one active bit vector writemask
elements and the vector size and the data el ement size according to one embodiment of the
invention.

[0016] Figures 8A-8B are block diagrams illustrating a generic vector friendly instruction
format and instruction templates thereof according to embodiments of the invention.

[0017] Figure 9isablock diagram illustrating an exemplary specific vector friendly
instruction format according to embodiments of the invention

[0018] Figure 10 isablock diagram of aregister architecture according to one embodiment of
the invention

[0019] Figure 11A isablock diagram illustrating both an exemplary in-order pipeline and an
exemplary register renaming, out-of-order issue/execution pipeline according to embodiments of

the invention.
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[0020] Figure 11B isablock diagram illustrating both an exemplary embodiment of an in-
order architecture core and an exemplary register renaming, out-of-order issue/execution
architecture core to be included in aprocessor according to embodiments of the invention.

[0021] Figures 12A-B illustrate ablock diagram of amore specific exemplary in-order core
architecture, which core would be one of several logic blocks (including other cores of the same
type and/or different types) in achip

[0022] Figure 13 isablock diagram of aprocessor that may have more than one core, may
have an integrated memory controller, and may have integrated graphics according to
embodiments of the invention.

[0023] Figure 14 isablock diagram of a system in accordance with one embodiment of the
present invention.

[0024] Figure 15, isablock diagram of afirst more specific exemplary system in accordance
with an embodiment of the present invention.

[0025] Figure 16 isablock diagram of a second more specific exemplary system in accordance
with an embodiment of the present invention.

[0026] Figure 17 isablock diagram of a SoC in accordance with an embodiment of the present
invention.

[0027] Figure 18 isablock diagram contrasting the use of a software instruction converter to
convert binary instructions in a source instruction set to binary instructions in atarget instruction
set according to embodiments of the invention.

DETAILED DESCRIPTION

[0028] In the following description, numerous specific details are set forth. However, itis
understood that embodiments of the invention may be practiced without these specific details. In
other instances, well-known circuits, structures and techniques have not been shown in detail in
order not to obscure the understanding of this description.

[0029] Referencesin the specification to "one embodiment,” "an embodiment,” "an example
embodiment,” etc., indicate that the embodiment described may include aparticular feature,
structure, or characteristic, but every embodiment may not necessarily include the particular
feature, structure, or characteristic. Moreover, such phrases are not necessarily referring to the
same embodiment. Further, when aparticular feature, structure, or characteristic is described in
connection with an embodiment, it is submitted that it is within the knowledge of one skilled in
the art to affect such feature, structure, or characteristic in connection with other embodiments

whether or not explicitly described.
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[0030] Overview

[0031] In the description below, there are some items that may need explanation prior to
describing the operations of this particular instruction in the instruction set architecture. One
such itemis called a"writemask register" which is generally used to predicate an operand to
conditionally control per-element computational operation (below, the term mask register may
also be used and it refers to awritemask register such asthe "k" registers discussed below). As
used below, awritemask register stores aplurality of bits (16, 32, 64, etc.) wherein each active
bit of the writemask register governs the operation/update of apacked data element of avector
register during SIMD processing. Typicaly, there is more than one writemask register available
for use by aprocessor core.

[0032] Theinstruction set architecture includes at least some SIMD instructions that specify
vector operations and that have fields to select source registers and/or destination registers from
these vector registers (an exemplary SIMD instruction may specify a vector operation to be
performed on the contents of one or more of the vector registers, and the result of that vector
operation to be stored in one of the vector registers). Different embodiments of the invention
may have different sized vector registers and support more/less/different sized data elements.
[0033] The size of the multi-bit data elements specified by a SIMD instruction (e.g., byte,
word, double word, quad word) determines the bit locations of the "data element positions”
within avector register, and the size of the vector operand determines the number of data
elements. A packed data element refers to the data stored in aparticular position. In other
words, depending on the size of the data elements in the destination operand and the size of the
destination operand (the total number of bits in the destination operand) (or put another way,
depending on the size of the destination operand and the number of data elements within the
destination operand), the bit locations of the multi-bit data element positions within the resulting
vector operand change (e.g., if the destination for the resulting vector operand is a vector
register, then the bit locations of the multi-bit data element positions within the destination
vector register change). For example, the bit locations of the multi-bit data elements are
different between avector operation that operates on 32-bit data elements (data element position
0 occupies bit locations 31:0, data element position 1 occupies bit locations 63:32, and so on)
and avector operation that operates on 64-bit data elements (data element position 0 occupies bit
locations 63:0, data element position 1 occupies bit locations 127:64, and so on).

[0034] Additionally, thereisacorrelation between the number of one active bit vector

writemask elements and the vector size and the data element size according to one embodiment

6



10

15

20

25

30

WO 2013/095599 PCT/US2011/067071

of the invention as shown in Figure 7. Vector sizes of 128-bits, 256-bits, and 512-bits are
shown, athough other widths are also possible. Data element sizes of 8-bit bytes (B), 16-bit
words (W), 32-bit doublewords (D) or single precision floating point, and 64-bit quadwords (Q)
or double precision floating point are considered, although other widths are also possible. As
shown, when the vector size is 128-bits, 16-bits may be used for masking when the vector's data
element size is 8-hits, 8-bits may be used for masking when the vector's data element sizeis 16-
bits, 4-bits may be used for masking when the vector's data element size is 32-bits, and 2-bits
may be used for masking when the vector's data element sizeis 64-bits. When the vector sizeis
256-bits, 32-bits may be used for masking when the packed data el ement width is 8-bits, 16-bits
may be used for masking when the vector's data element sizeis 16-bits, 8-bits may be used for
masking when the vector's data element size is 32-bits, and 4-bits may be used for masking
when the vector's data element size is 64-bits. When the vector size is 512-hits, 64-bits may be
used for masking when the vector's data element size is 8-bits, 32-bits may be used for masking
when the vector's data element size is 16-bits, 16-bits may be used for masking when the
vector's data element size is 32-bits, and 8-bits may be used for masking when the vector's data
element size is 64-bits.

[0035] Depending upon the combination of the vector size and the data element size, either all
64-bits, or only a subset of the 64-bits, may be used as awrite mask. Generally, when asingle,
per-element masking control bit isused, the number of bits in the vector writemask register used
for masking (active bits) is equal to the vector size in bits divided by the vector's data element
sizein hits.

[0036] Described below is avector instruction that computes multiple SAD (sum of absolute
differences) of selected quadruplets of byte elements in afirst operand vector compared to
quadruplet of byte elements of a second operand vector. It also provides the flexibility to select
which quadruplets to compare. This instruction provides the efficiency of comparing SAD of
blocks on video images used for motion search.

[0037] Below are embodiments of an instruction generically called adouble block packed sum
of absolute differences (SAD) ("DBPSAD") instruction and embodiments of systems,
architectures, instruction formats, etc. that may be used to execute such an instruction that is
beneficia in several different areas. The execution of aDBPSAD instruction causes the storage
of SAD on byte elements from selected quadruplets (four data element chunks) from afirst and
second source into word packed data elements of a destination register. Each quadruplet is the

same size as a data element of the destination. More particularly, in some embodiments multiple
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SAD calculations are performed on different 64-bit chunks of data from the two sources and
stored as 4 word sized (64 bits in total) results in the destination register.
[0038] Figure lillustrates an exemplary illustration of part of an operation of an exemplary
DBPSAD instruction operating on byte elements wherein the resulting SAD calculations are
stored asword elements. From the first source operand the instruction takes two different
guadruplets with offset of four bytes to participate in the four different SADs. In thisillustration
a 64-bit lane is having four SAD calculations performed between 64 selected bits of the first
source and selected 64 bits from the second source. The process illustrate in this figure and
described herein would be performed (with some slight modifications such as different
guadruplet source selections and destination locations) for n number of times where nisthe size
of the vector (such asthe first source) divided by 64.
[0039] Inthis particular example, the 64-bits of the first source 101 are the least significant 64
bits of the source. These 64-bits are broken down into 8 byte elements labeled byteO to byte7.
[0040] A temporary 64-bit value 103 selected from the second source is aso shown. How
these hits are selected is detailed below. As such, there are two quadruplets (32 bit values
broken comprising 4 bytes each) for both sources that have SAD calculations performed on
them. The selection of quadruplets in the second source is done within 128-bit lanes of the
vector. For a 128-bit second source there is obviously only one such lane, but there aretwo in a
256-bit vector and four in a 512-bit vector.
[0041] Theillustration shows several independent absolute difference logic 107 and summation
logic 109. Thislogic may be hardware such asan ALU or software routines running on an ALU.
Additionally, while the figure illustrates separate absolute difference logic 107 and summation
logic 109 to be used per SAD calculation, this logic may be combined into one unit per category
(i.e., one absolute difference logic 107 and one summation logic 109) or into a single unit (i.e, a
joint absolute difference logic 107 and summation logic 109).
[0042] The results from the 4 SAD operations are stored asword elements in the destination
register 105. The specifics of each SAD calculation is detailed below. The calculations for the
first 64-bit lane are asfollows, where 1= 0, SRC1 = the first 64 bits of the first source, and
TMP1 is asdection of quadruplets from the second source that have been selected according to
an immediate value (these are the lower two quadruplets).
- DEST[I+15:1] <- ABS(SRCI[I+7: 11 - TMP 1[I1+7: 1]) + ABS(SRC1[I+15: 1+8]-
TMPL[I1+15; 1+8]) + ABS(SRCI[I+23: 1+16]- TMP[I1+23: 1+16]) + ABS(SRC1[I+31:
1+24]- TMPL[I+31; 1+24])
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- DEST[I+3L; 1+16] <- (SRC1[1+7: 1] - TMP1[I+15; 1+8]) + ABS(SRC1[I+15; 1+§]-
TMPI[I+23: 1+16]) + ABS(SRCI[I+23: 1+16]- TMP1[I+31: 1+24]) + ABS(SRC1[I+31:
1+24]- TMPI[1+39: 1+32])

- DEST[I+47: 1+32] <- ABS(SRCI[I+39: 1+32] - TMPA[1+23: 1+16]) +
ABS(SRCI[1+47; 1+40]- TMP1[1+31; 1+24]) + ABS(SRCI[I+55: 1+48]- TMPI[1+39:;
1+32]) + ABS(SRCI[1+63: 1+56]- TMP 1[I+47: 1+40])

- DEST[I+63: 1+48] <- ABS(SRCI[I+39; 1+32] - TMP1[I+31; 1+24]) +
ABS(SRCI[1+47: 1+40] - TMP 1[1+39: 1+32]) + ABS(SRCI[I+55: 1+48] - TMP[I+47:
1+40]) + ABS(SRCI[1+63: 1+56] - TMP 1[I+55:; 1+48])

[0043] Genericaly, the what is stored into the destination data element positions is asfollows

wherein the value in [] is the data element position:

DEST[0] <- ABS(SRC1[0] - TMP1[0]) + ABS(SRC1[1]- TMP1[1]) + ABS(SRC1[2]-

TMP1[2]) + ABS(SRC1[3]- TMP1[3])

DEST[1] <- (SRC1[0] - TMP1[1]) + ABS(SRC1[1]- TMP1[2]) + ABS(SRC1[2]-

TMP1[3]) + ABS(SRC1[3]- TMP1[4])

DEST[2] <- ABS(SRC1[4] - TMP1[2]) + ABS(SRC1[5]- TMP1[3]) + ABS(SRC1[6]-

TMP1[4]) + ABS(SRC1[7]- TMP1[5])

DEST[3] <- ABS(SRC1[4] - TMP1[3]) + ABS(SRC1[5] - TMP1[4]) + ABS(SRC1[6] -

TMP1[5]) + ABS(SRC1[7] - TMP1[6])

[0044] Ohbvious variations to the above are made to do the next 64-bit lane. For example, the
first source may be from bit 64 to bit 127 (the next 64-bit chunk) and the temporary value would
be the upper two quadrants selected from the second source.
[0045] The selection of quadruplets from the second source is as follows:

TMPL[1+31:1] <- select (SRC2[1+127: 1], imm8[l:0])

TMPI[I+63: 1+32] <- select (SRC2[1+127: 1], imm8[3:2])

TMPI[I+95: 1+64] <- select (SRC2[1+127: 1], imm8[5:4])

TMPL[1+127; 1+96]<- sdlect (SRC2[I+127: 1], imm8[7:6])
[0046] The two bits of the immediate alow for the selection of four 32-bit data elements from
the second source. For example, for TMPL, if the immediate is 01" then bits 63:32 of the SRC2
are selected.
[0047] The above isrepeated, for example, 64-bits at atime, per data lane (128-bit) until the

entire vector length has been processed.
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[0048] Figure 2 shows the next 64-bit lane calculations. If source and destinations were 128-
bit, then this would be al of the calculations performed.

[0049] Exemplary Format

[0050] An exemplary format of this instruction is"DBPSAD{B/W/D/Q} {BAV/D/Q}

XMM VYMM YZMM 1, XMM2/Y MM2/ZMM2/m 128/m256/m5 12, imm8" where the operand
XMMVUYMML/ZMML1 is asource vector register (such as a 128-, 256-, or 512-bit register) and
the destination XMM YYMM Y/ZMM 1which is avector register (such asa 128-, 256-, or 512-bit

register), or amemory location of 128-, 256-, or 512-bit size, imm8 is an 8-bit immediate
(although other immediate sizes may be used), and DBPSAD{B/W/D/Q} isthe instruction's
opcode. The size of the data elements in the source register may be defined in the "prefix" of the
instruction such as through the use of an indication of data granularity bit. In most
embodiments, this bit will indicate that each data element is either 32 or 64 bits, however, other
variations may be used. In other embodiments, the size of the data elements is defined by the
opcode itself. For example, afirst {B/W/D/Q} identifier indicates abyte, word, doubleword, or
guadword source data element size respectively. Additionally, in some embodiments, afollow-
on {B/W/D/Q} identifier indicates abyte, word, doubleword, or quadword destination data
element size respectively. For example, DBPSADBW indicates byte source data elements and
word destination data elements.

[0051] Figure 3illustrates more detailed exemplary vector friendly instruction formats.

[0052] Exemplary Methods of Execution

[0053] Figure 4 illustrates an embodiment of the use of a DBPSAD instruction in aprocessor.
A DBPSAD instruction with afirst and second source operands, a destination operand, an
immediate value, and an operand isfetched at 401. Asnoted above, the first source operand and
destination operand are both vector registers. The second source operand may be either a vector
register or amemory location.

[0054] The DBPSAD instruction is decoded by decoding logic at 403. Depending on the
instruction' sformat, avariety of data may be interpreted at this stage such asif thereistobe a
data transformation, which registers to write to and retrieve, what memory address to access, etc.
[0055] The source operand values areretrieved/read at 405. For example, the source register(s)
iS/are read or the memory location of the second source operand is retrieved.

[0056] The DBPSAD instruction (or operations comprising such an instruction such as
microoperations) is executed by execution resources such as one or more functional units at 407

to, per data lanes (i.e., 64-bit lanes) of the sources, compute the SAD of selected quadruplets of
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data elements (i.e., byte elements) of the first and second sources. The specifics of how this may
be accomplished for byte elements was detailed above in the description of Figure 1.
[0057] At 409, the computed SAD values are stored in the destination vector register. For
example, word results of the SAD calculations are stored in data el ement positions of the
destination register. Generically, the what is stored into the destination data element positions is
asfollows:
DEST[0] <- ABS(SRC1[0] - TMP1[0]) + ABS(SRC1[1]- TMP1[1]) + ABS(SRC1[2]-
TMP1[2]) + ABS(SRC1[3]- TMP1[3])
- DEST[1] <- (SRC1[0] - TMP1[1]) + ABS(SRC1[1]- TMP1[2]) + ABS(SRC1[2]-
TMP1[3]) + ABS(SRC1[3]- TMP1[4])
- DEST[2] <- ABS(SRC1[4] - TMP1[2]) + ABS(SRC1[5]- TMP1[3]) + ABS(SRC1[6]-
TMP1[4]) + ABS(SRC1[7]- TMP1[5])
- DEST[3] <- ABS(SRC1[4] - TMP1[3]) + ABS(SRC1[5] - TMP1[4]) + ABS(SRC1[6] -
TMP1[5]) + ABS(SRC1[7] - TMP1[6])
[0058] While 407 and 409 have been illustrated separately, in some embodiments they are

performed together as apart of the execution of the instruction.
[0059] Figure 5illustrates an embodiment of amethod for processing a DBPSAD instruction.
Specifically, what is detailed below isfor adata lane (such as a 64-bit data lane). This would be
repeated as many times as necessary until all datalanes have been processed. Inthis
embodiment it is assumed that some, if not al, of the operations 401-405 have been performed
earlier, however, they are not shown in order to not obscure the details presented below. For
example, the fetching and decoding are not shown, nor is the operand retrieval shown.
[0060] At 501, quadruplets of data elements of the first source are selected. More particularly,
two different quadruplets with an offset (such asfour bytes) is selected from the first source. In
Figure 1, thisisthe least significant 64 bits of the source. If the source and destination registers
were 128-bit, then in the subsequent iteration then the 64 most significant bits would be used.
[0061] Two quadruplets from the second source are selected according to control bits from the
immediate value of the instruction at 503. Each quadruplet isthe same size as a data element of
the destination. The selection of quadruplets from the second source is done on a 128-bit step
size. In other words, the selection is made from a 128-bit chunk of the second source. If the
second source is only 128-bits then only one selection of four quadruplets is made. If the second
source is 256-bits, then two selections of four quadruplets is made - one on the 128 least
significant bits and one on the 128 most significant bits.
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[0062] Typicaly, theimmediate is an 8-bit value and two bits are used per quadruplet
selection. The two least significant bits are used to select the first quadruplet (least significant)
and so on. For example, for TMP1 of Figure 1, if the immediate is "01" then bits 63:32 of the
SRC2 are selected.

[0063] A SAD iscalculated using the selected quadruplets at 505. Each SAD consists of
multiple absolute difference calculations that have been summed together. Again, thisis done on
adatalane basis. InFigure 1, a 64-bit lane for the least significant 64-bit isillustrated. The
specifics how the data elements are processed is discussed with respect to that figure.

[0064] At 507, the calculated SADs are stored into data element positions of the destination
vector register. Again, exemplary specifics on what goes where has been discussed with respect
to Figure 1.

[0065] Figure 6 illustrates pseudo-code for DBPSAD for abyte source data element size and
word destination data element size.

[0066] Exemplary Instruction Formats

[0067] Embodiments of the instruction(s) described herein may be embodied in different
formats. Additionally, exemplary systems, architectures, and pipelines are detailed below.
Embodiments of the instruction(s) may be executed on such systems, architectures, and
pipelines, but are not limited to those detailed.

[0068] Generic Vector Friendly Instruction Format

[0069] A vector friendly instruction format is an instruction format that is suited for vector
instructions (e.g., there are certain fields specific to vector operations). While embodiments are
described in which both vector and scalar operations are supported through the vector friendly
instruction format, alternative embodiments use only vector operations the vector friendly
instruction format.

[0070] Figures 8A-8B are block diagrams illustrating a generic vector friendly instruction
format and instruction templates thereof according to embodiments of the invention. Figure 8A
isablock diagram illustrating a generic vector friendly instruction format and class A instruction
templates thereof according to embodiments of the invention; while Figure 8B is ablock
diagram illustrating the generic vector friendly instruction format and class B instruction
templates thereof according to embodiments of the invention. Specifically, a generic vector
friendly instruction format 800 for which are defined class A and class B instruction templates,

both of which include no memory access 805 instruction templates and memory access 820
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instruction templates. The term generic in the context of the vector friendly instruction format
refers to the instruction format not being tied to any specific instruction set.

[0071] While embodiments of the invention will be described in which the vector friendly
instruction format supports the following: a 64 byte vector operand length (or size) with 32 bit (4
byte) or 64 bit (8 byte) data element widths (or sizes) (and thus, a 64 byte vector consists of
either 16 doubleword-size elements or aternatively, 8 quadword-size elements); a 64 byte vector
operand length (or size) with 16 bit (2 byte) or 8 bit (1 byte) data element widths (or sizes); a 32
byte vector operand length (or size) with 32 bit (4 byte), 64 bit (8 byte), 16 bit (2 byte), or 8 bit
(1 byte) data element widths (or sizes); and a 16 byte vector operand length (or size) with 32 bit
(4 byte), 64 bit (8 byte), 16 bit (2 byte), or 8 bit (1 byte) data element widths (or sizes);
alternative embodiments may support more, less and/or different vector operand sizes (e.g., 256
byte vector operands) with more, less, or different data element widths (e.g., 128 bit (16 byte)
data element widths).

[0072] The class A instruction templates in Figure 8A include: 1) within the no memory access
805 instruction templates there is shown ano memory access, full round control type operation
810 instruction template and ano memory access, data transform type operation 815 instruction
template; and 2) within the memory access 820 instruction templates there is shown a memory
access, temporal 825 instruction template and a memory access, hon-temporal 830 instruction
template. The class B instruction templates in Figure 8B include: 1) within the no memory
access 805 instruction templates there is shown ano memory access, write mask control, partial
round control type operation 812 instruction template and a no memory access, write mask
control, vsize type operation 817 instruction template; and 2) within the memory access 820
instruction templates there is shown amemory access, write mask control 827 instruction
template.

[0073] The generic vector friendly instruction format 800 includes the following fields listed
below in the order illustrated in Figures 8A-8B.

[0074] Format field 840 - aspecific value (an instruction format identifier value) in this field
uniquely identifies the vector friendly instruction format, and thus occurrences of instructions in
the vector friendly instruction format in instruction streams. As such, this field is optional in the
sense that it is not needed for an instruction set that has only the generic vector friendly
instruction format.

[0075] Base operation field 842 - its content distinguishes different base operations.
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[0076] Register index field 844 - its content, directly or through address generation, specifies
the locations of the source and destination operands, be they in registers or in memory. These
include a sufficient number of bits to select N registers from aPxQ (e.g. 32x512, 16x128,
32x1024, 64x1024) register file. While in one embodiment N may be up to three sources and
one destination register, alternative embodiments may support more or less sources and
destination registers (e.g., may support up to two sources where one of these sources aso acts as
the destination, may support up to three sources where one of these sources also acts as the
destination, may support up to two sources and one destination).

[0077] Modifier field 846 - its content distinguishes occurrences of instructions in the generic
vector instruction format that specify memory access from those that do not; that is, between no
memory access 805 instruction templates and memory access 820 instruction templates.
Memory access operations read and/or write to the memory hierarchy (in some cases specifying
the source and/or destination addresses using values in registers), while non-memory access
operations do not (e.g., the source and destinations are registers). While in one embodiment this
field also selects between three different ways to perform memory address calculations,
aternative embodiments may support more, less, or different ways to perform memory address
calculations.

[0078] Augmentation operation field 850 - its content distinguishes which one of avariety of
different operations to be performed in addition to the base operation. This field is context
specific. In one embodiment of the invention, this field isdivided into aclass field 868, an apha
field 852, and abeta field 854. The augmentation operation field 850 allows common groups of
operations to be performed in asingle instruction rather than 2, 3, or 4 instructions.

[0079] Scalefield 860 - its content allows for the scaling of the index field's content for
memory address generation (e.g., for address generation that uses 2a@° * index + base).

[0080] Displacement Field 862A- its content isused as part of memory address generation
(e.g., for address generation that uses 2%3° * index + base + displacement).

[0081] Displacement Factor Field 862B (note that thejuxtaposition of displacement field 862A
directly over displacement factor field 862B indicates one or the other isused) - its content is
used as part of address generation; it specifies a displacement factor that is to be scaled by the
size of amemory access (N) - where N isthe number of bytes in the memory access (e.g., for
address generation that uses 2¥4° * index + base + scaled displacement). Redundant low-order
bits are ignored and hence, the displacement factor field' s content is multiplied by the memory

operands total size (N) in order to generate the final displacement to be used in calculating an
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effective address. The value of N is determined by the processor hardware at runtime based on
the full opcode field 874 (described later herein) and the data manipulation field 854C. The
displacement field 862A and the displacement factor field 862B are optiona in the sense that
they are not used for the no memory access 805 instruction templates and/or different
embodiments may implement only one or none of the two.

[0082] Dataelement width field 864 - its content distinguishes which one of a number of data
element widths is to be used (in some embodiments for al instructions; in other embodiments for
only some of the instructions). Thisfield is optional in the sense that it is not needed if only one
data element width is supported and/or data element widths are supported using some aspect of
the opcodes.

[0083] Write mask field 870 - its content controls, on aper data element position basis,
whether that data element position in the destination vector operand reflects the result of the base
operation and augmentation operation. Class A instruction templates support merging-
writemasking, while class B instruction templates support both merging- and zeroing-
writemasking. When merging, vector masks alow any set of elements in the destination to be
protected from updates during the execution of any operation (specified by the base operation
and the augmentation operation); in other one embodiment, preserving the old value of each
element of the destination where the corresponding mask bit has a0. In contrast, when zeroing
vector masks allow any set of elements in the destination to be zeroed during the execution of
any operation (specified by the base operation and the augmentation operation); in one
embodiment, an element of the destination is set to 0 when the corresponding mask bit has a0
value. A subset of this functionality is the ability to control the vector length of the operation
being performed (that is, the span of elements being modified, from the first to the last one);
however, it is not necessary that the elements that are modified be consecutive. Thus, the write
mask field 870 allows for partia vector operations, including loads, stores, arithmetic, logical,
etc. While embodiments of the invention are described in which the write mask field's 870
content selects one of anumber of write mask registers that contains the write mask to be used
(and thus the write mask field's 870 content indirectly identifies that masking to be performed),
alternative embodiments instead or additional allow the mask write field' s 870 content to directly
specify the masking to be performed.

[0084] Immediate field 872 - its content allows for the specification of an immediate. This

field isoptional in the sense that is it not present in an implementation of the generic vector
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friendly format that does not support immediate and it is not present in instructions that do not
use an immediate.

[0085] Classfield 868 - its content distinguishes between different classes of instructions.
With reference to Figures 8A-B, the contents of this field select between class A and class B
instructions. In Figures 8A-B, rounded corner squares are used to indicate a specific value is
present in afield (e.g., class A 868A and class B 868B for the class field 868 respectively in
Figures 8A-B).

[0086] Instruction Templates of Class A

[0087] In the case of the non-memory access 805 instruction templates of class A, the alpha
field 852 isinterpreted as an RSfield 852A, whose content distinguishes which one of the
different augmentation operation types are to be performed (e.g., round 852A.1 and data
transform 852A.2 are respectively specified for the no memory access, round type operation 810
and the no memory access, data transform type operation 815 instruction templates), while the
beta field 854 distinguishes which of the operations of the specified type isto be performed. In
the no memory access 805 instruction templates, the scale field 860, the displacement field
862A, and the displacement scale filed 862B are not present.

[0088] No-Memory Access Instruction Templates - Full Round Control Type Operation
[0089] In the no memory access full round control type operation 810 instruction template, the
beta field 854 isinterpreted as around control field 854A, whose content(s) provide static
rounding. While in the described embodiments of the invention the round control field 854A
includes a suppress all floating point exceptions (SAE) field 856 and around operation control
field 858, aternative embodiments may support may encode both these concepts into the same
field or only have one or the other of these concepts/fields (e.g., may have only the round
operation control field 858).

[0090] SAE field 856 - its content distinguishes whether or not to disable the exception event
reporting; when the SAE field's 856 content indicates suppression is enabled, a given instruction
does not report any kind of floating-point exception flag and does not raise any floating point
exception handler.

[0091] Round operation control field 858 - its content distinguishes which one of agroup of
rounding operations to perform (e.g., Round-up, Round-down, Round-towards-zero and Round-
to-nearest). Thus, the round operation control field 858 allows for the changing of the rounding

mode on aper instruction basis. 1n one embodiment of the invention where aprocessor includes
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acontrol register for specifying rounding modes, the round operation control field's 850 content
overrides that register value.

[0092] No Memory Access Instruction Templates - Data Transform Type Operation

[0093] In the no memory access data transform type operation 815 instruction template, the
beta field 854 isinterpreted as adata transform field 854B, whose content distinguishes which
one of anumber of data transforms isto be performed (e.g., no data transform, swizzle,
broadcast).

[0094] In the case of amemory access 820 instruction template of class A, the alpha field 852
isinterpreted as an eviction hint field 852B, whose content distinguishes which one of the
eviction hints isto be used (in Figure 8A, tempora 852B.1 and non-temporal 852B.2 are
respectively specified for the memory access, temporal 825 instruction template and the memory
access, non-temporal 830 instruction template), while the beta field 854 isinterpreted as a data
manipulation field 854C, whose content distinguishes which one of a number of data
manipulation operations (also known as primitives) isto be performed (e.g., no manipulation;
broadcast; up conversion of asource; and down conversion of adestination). The memory
access 820 instruction templates include the scale field 860, and optionally the displacement
field 862A or the displacement scale field 862B.

[0095] Vector memory instructions perform vector loads from and vector stores to memory,
with conversion support. Aswith regular vector instructions, vector memory instructions
transfer data from/to memory in a data element-wise fashion, with the elements that are actually
transferred is dictated by the contents of the vector mask that is selected as the write mask.
[0096] Memory Access Instruction Templates - Temporal

[0097] Temporal datais data likely to bereused soon enough to benefit from caching. Thisis,
however, ahint, and different processors may implement it in different ways, including ignoring
the hint entirely.

[0098] Memory Access Instruction Templates - Non-Temporal

[0099] Non-tempora datais data unlikely to be reused soon enough to benefit from caching in
the 1st-level cache and should be given priority for eviction. Thisis, however, ahint, and
different processors may implement it in different ways, including ignoring the hint entirely.
[00100] Instruction Templates of Class B

[00101] In the case of the instruction templates of class B, the alpha field 852 isinterpreted as a
write mask control (Z) field 852C, whose content distinguishes whether the write masking
controlled by the write mask field 870 should be amerging or azeroing.
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[00102] In the case of the non-memory access 805 instruction templates of class B, part of the
beta field 854 isinterpreted as an RL field 857A, whose content distinguishes which one of the
different augmentation operation types are to be performed (e.g., round 857A.1 and vector length
(VSIZE) 857A.2 arerespectively specified for the no memory access, write mask control, partial
round control type operation 812 instruction template and the no memory access, write mask
control, VSIZE type operation 817 instruction template), while the rest of the beta field 854
distinguishes which of the operations of the specified type isto be performed. In the no memory
access 805 instruction templates, the scale field 860, the displacement field 862A, and the
displacement scale filed 862B are not present.

[00103] Inthe no memory access, write mask control, partial round control type operation 810
instruction template, the rest of the beta field 854 isinterpreted as around operation field 859A
and exception event reporting is disabled (agiven instruction does not report any kind of
floating-point exception flag and does not raise any floating point exception handler).

[00104] Round operation control field 859A - just asround operation control field 858, its
content distinguishes which one of agroup of rounding operations to perform (e.g., Round-up,
Round-down, Round-towards-zero and Round-to-nearest). Thus, the round operation control
field 859A allows for the changing of the rounding mode on aper instruction basis. In one
embodiment of the invention where aprocessor includes a control register for specifying
rounding modes, the round operation control field's 850 content overrides that register value.
[00105] Inthe no memory access, write mask control, VSIZE type operation 817 instruction
template, the rest of the beta field 854 isinterpreted as avector length field 859B, whose content
distinguishes which one of anumber of data vector lengths isto be performed on (e.g., 128, 256,
or 512 byte).

[0o106] In the case of amemory access 820 instruction template of class B, part of the beta field
854 isinterpreted as abroadcast field 857B, whose content distinguishes whether or not the
broadcast type data manipulation operation isto be performed, while the rest of the beta field
854 isinterpreted the vector length field 859B. The memory access 820 instruction templates
include the scale field 860, and optionally the displacement field 862A or the displacement scale
field 862B.

[00107] With regard to the generic vector friendly instruction format 800, afull opcode field 874
is shown including the format field 840, the base operation field 842, and the data element width
field 864. While one embodiment is shown where the full opcode field 874 includes al of these
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fields, the full opcode field 874 includes less than all of these fields in embodiments that do not
support al of them. The full opcode field 874 provides the operation code (opcode).

[00108] The augmentation operation field 850, the data element width field 864, and the write
mask field 870 allow these features to be specified on aper instruction basis in the generic vector
friendly instruction format.

[00109] The combination of write mask field and data element width field create typed
instructions in that they allow the mask to be applied based on different data element widths.
[00110] The various instruction templates found within class A and class B are beneficia in
different situations. In some embodiments of the invention, different processors or different
cores within aprocessor may support only class A, only class B, or both classes. For instance, a
high performance genera purpose out-of-order core intended for general-purpose computing
may support only class B, acore intended primarily for graphics and/or scientific (throughput)
computing may support only class A, and a core intended for both may support both (of course, a
core that has some mix of templates and instructions from both classes but not all templates and
instructions from both classes is within the purview of the invention). Also, a single processor
may include multiple cores, al of which support the same class or in which different cores
support different class. For instance, in aprocessor with separate graphics and general purpose
cores, one of the graphics cores intended primarily for graphics and/or scientific computing may
support only class A, while one or more of the general purpose cores may be high performance
general purpose cores with out of order execution and register renaming intended for general-
purpose computing that support only class B. Another processor that does not have a separate
graphics core, may include one more general purpose in-order or out-of-order cores that support
both class A and class B. Of course, features from one class may also be implement in the other
class in different embodiments of the invention. Programs written in ahigh level language
would be put (e.g., just in time compiled or statically compiled) into an variety of different
executable forms, including: 1) aform having only instructions of the class(es) supported by the
target processor for execution; or 2) aform having alternative routines written using different
combinations of the instructions of all classes and having control flow code that selects the
routines to execute based on the instructions supported by the processor which is currently
executing the code.

[00111] Exemplary Specific Vector Friendly Instruction Format

[00112] Figure 9isablock diagram illustrating an exemplary specific vector friendly

instruction format according to embodiments of the invention. Figure 9 shows a specific vector
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friendly instruction format 900 that is specific in the sense that it specifies the location, size,
interpretation, and order of the fields, aswell as values for some of those fields. The specific
vector friendly instruction format 900 may be used to extend the x86 instruction set, and thus
some of the fields are similar or the same as those used in the existing x86 instruction set and
extension thereof (e.g., AVX). Thisformat remains consistent with the prefix encoding field,
real opcode byte field, MOD R/M field, SIB field, displacement field, and immediate fields of
the existing x86 instruction set with extensions. The fields from Figure 8 into which the fields
from Figure 9 map are illustrated.

[00113] It should be understood that, although embodiments of the invention are described with
reference to the specific vector friendly instruction format 900 in the context of the generic
vector friendly instruction format 800 for illustrative purposes, the invention isnot limited to the
specific vector friendly instruction format 900 except where claimed. For example, the generic
vector friendly instruction format 800 contemplates avariety of possible sizes for the various
fields, while the specific vector friendly instruction format 900 is shown as having fields of
specific sizes. By way of specific example, while the data element width field 864 isillustrated
as aone bit field in the specific vector friendly instruction format 900, the invention is not so
limited (that is, the generic vector friendly instruction format 800 contemplates other sizes of the
data element width field 864).

[00114] The generic vector friendly instruction format 800 includes the following fields listed
below in the order illustrated in Figure 9A.

[oo115] EVEX Prefix (Bytes 0-3) 902 - isencoded in afour-byte form.

[oo11e6] Format Field 840 (EVEX Byte 0, bits [7:0]) - the first byte (EVEX Byte 0) is the format
field 840 and it contains 0x62 (the unique value used for distinguishing the vector friendly
instruction format in one embodiment of the invention).

[00117] The second-fourth bytes (EVEX Bytes 1-3) include a number of bit fields providing
specific capability.

[oo118] REX field 905 (EVEX Byte 1, bits [7-5]) - consists of aEVEX.R bit field (EVEX Byte
1, bit [7] - R), EVEX.X hit field (EVEX byte 1, bit [6] - X), and 857BEX byte 1, bit[5] - B).
The EVEX.R, EVEX.X, and EVEX.B bit fields provide the same functionality asthe
corresponding VEX hit fields, and are encoded using | scomplement form, i.e. ZMMO is
encoded as 1111B, ZMM15 is encoded as 0000B. Other fields of the instructions encode the
lower three bits of the register indexes asisknown in the art (rrr, xxx, and bbb), so that Rrrr,
Xxxx, and Bbbb may be formed by adding EVEX.R, EVEX.X, and EVEX.B.
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[oo119] REX' field 810 - thisisthefirst part of the REX' field 810 and isthe EVEX.R' bit field
(EVEX Byte 1, bit [4] - R") that isused to encode either the upper 16 or lower 16 of the extended
32 register set. 1n one embodiment of the invention, this bit, aong with others as indicated
below, is stored in bit inverted format to distinguish (in the well-known x86 32-bit mode) from
the BOUND instruction, whose real opcode byte is 62, but does not accept in the MOD R/M
field (described below) the value of 11inthe MOD field; alternative embodiments of the
invention do not store this and the other indicated bits below in the inverted format. A value of 1
isused to encode the lower 16 registers. In other words, R'Rrrr isformed by combining
EVEX.R', EVEX.R, and the other RRR from other fields.

[00120] Opcode map field 915 (EVEX byte 1, bits [3:0] - mmmm) - its content encodes an
implied leading opcode byte (OF, OF 38, or OF 3).

[00121] Data element width field 864 (EVEX byte 2, bit [7] - W) - isrepresented by the
notation EVEX.W. EVEX.W is used to define the granularity (size) of the datatype (either 32-
bit data elements or 64-bit data elements).

[00122] EVEX.vwwv 920 (EVEX Byte 2, bits [6:3]-vvvv)- therole of EVEX.vvvv may include
the following: 1) EVEX.vvvv encodes the first source register operand, specified ininverted (Is
complement) form and is valid for instructions with 2 or more source operands; 2) EVEX.vvwv
encodes the destination register operand, specified in |scomplement form for certain vector
shifts; or 3) EVEX.vvvv does not encode any operand, the field isreserved and should contain
1111b. Thus, EVEX.vvvv field 920 encodes the 4 low-order bits of the first source register
specifier stored in inverted (Is complement) form. Depending on the instruction, an extra
different EVEX bit field isused to extend the specifier size to 32 registers.

[oo123] EVEX.U 868 Classfield (EVEX byte 2, bit [2]-U) - If EVEX.U =0, it indicates class A
or EVEX.UQ; if EVEX.U = 1,itindicates class B or EVEX.U1.

[0o124] Prefix encoding field 925 (EVEX byte 2, bits [1:0]-pp) - provides additional bits for the
base operation field. In addition to providing support for the legacy SSE instructions in the
EVEX prefix format, this aso has the benefit of compacting the SIMD prefix (rather than
requiring abyte to express the SIMD prefix, the EVEX prefix requires only 2 bits). In one
embodiment, to support legacy SSE instructions that use a SIMD prefix (66H, F2H, F3H) in both
the legacy format and in the EVEX prefix format, these legacy SIMD prefixes are encoded into
the SIMD prefix encoding field; and at runtime are expanded into the legacy SIMD prefix prior
to being provided to the decoder' sPLA (so the PLA can execute both the legacy and EVEX

format of these legacy instructions without modification). Although newer instructions could
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use the EVEX prefix encoding field's content directly as an opcode extension, certain
embodiments expand in asimilar fashion for consistency but allow for different meanings to be
specified by these legacy SIMD prefixes. An alternative embodiment may redesign the PLA to
support the 2 bit SIMD prefix encodings, and thus not require the expansion.

[oo125] Alphafield 852 (EVEX byte 3, bit [7] - EH; also known as EVEX.EH, EVEX.rs,
EVEX.RL, EVEX.write mask control, and EVEX.N; also illustrated with a) - as previously
described, this field is context specific.

[oo126] Betafield 854 (EVEX byte 3, bits [6:4]-SSS, also known as EVEX.s,y, EVEX.r 5
EVEX.rrl, EVEX.LLO, EVEX.LLB; asoillustrated with BRR) - as previously described, this
field is context specific.

[oo127] REX' field 810 - thisisthe remainder of the REX' field and isthe EVEX.V hit field
(EVEX Byte 3, bit [3] - V ) that may be used to encode either the upper 16 or lower 16 of the
extended 32 register set. This bit is stored in bit inverted format. A value of 1lisused to encode
the lower 16 registers. In other words, V'VVVYV isformed by combining EVEX.V,
EVEX.vvvv.

[oo128] Write mask field 870 (EVEX byte 3, bits [2:0]-kkk) - its content specifies the index of a
register in the write mask registers as previously described. In one embodiment of the invention,
the specific value EVEX .kkk=000 has a special behavior implying no write mask isused for the
particular instruction (this may be implemented in avariety of ways including the use of awrite
mask hardwired to all ones or hardware that bypasses the masking hardware).

[00129] Real Opcode Field 930 (Byte 4) is also known asthe opcode byte. Part of the opcode is
specified in this field.

[00130] MOD R/M Field 940 (Byte 5) includes MOD field 942, Reg field 944, and R/M field
946. Aspreviously described, the MOD field' s 942 content distinguishes between memory
access and non-memory access operations. The role of Reg field 944 can be summarized to two
situations: encoding either the destination register operand or a source register operand, or be
treated as an opcode extension and not used to encode any instruction operand. Therole of R/M
field 946 may include the following: encoding the instruction operand that references a memory
address, or encoding either the destination register operand or a source register operand.

[00131] Scale, Index, Base (SIB) Byte (Byte 6) - Aspreviously described, the scalefield's 850
content is used for memory address generation. SIB.xxx 954 and SIB.bbb 956 - the contents of
these fields have been previously referred to with regard to the register indexes Xxxx and Bbbb.
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[00132] Displacement field 862A (Bytes 7-10) - when MOD field 942 contains 10, bytes 7-10
are the displacement field 862A, and it works the same as the legacy 32-bit displacement
(disp32) and works at byte granularity.

[00133] Displacement factor field 862B (Byte 7) - when MOD field 942 contains 01, byte 7 is
the displacement factor field 862B. The location of this field is that same asthat of the legacy
x86 instruction set 8-bit displacement (disp8), which works at byte granularity. Since disp8 is
sign extended, it can only address between -128 and 127 bytes offsets; in terms of 64 byte cache
lines, disp8 uses 8 bits that can be set to only four really useful values -128, -64, 0, and 64; since
agreater range is often needed, disp32 is used; however, disp32 requires 4 bytes. In contrast to
disp8 and disp32, the displacement factor field 862B is areinterpretation of disp8; when using
displacement factor field 862B, the actual displacement is determined by the content of the
displacement factor field multiplied by the size of the memory operand access (N). This type of
displacement isreferred to as disp8*N. This reduces the average instruction length (a single byte
of used for the displacement but with a much greater range). Such compressed displacement is
based on the assumption that the effective displacement is multiple of the granularity of the
memory access, and hence, the redundant low-order bits of the address offset do not need to be
encoded. In other words, the displacement factor field 862B substitutes the legacy x86
instruction set 8-bit displacement. Thus, the displacement factor field 862B is encoded the same
way as an x86 instruction set 8-bit displacement (so no changes in the ModRM/SIB encoding
rules) with the only exception that disp8 is overloaded to disp8*N. In other words, there are no
changes in the encoding rules or encoding lengths but only in the interpretation of the
displacement value by hardware (which needs to scale the displacement by the size of the
memory operand to obtain abyte-wise address offset).

[00134] Immediate field 872 operates as previously described.

[00135] Full Opcode Field

[00136] Figure 9B isablock diagram illustrating the fields of the specific vector friendly
instruction format 900 that make up the full opcode field 874 according to one embodiment of
the invention. Specifically, the full opcode field 874 includes the format field 840, the base
operation field 842, and the data el ement width (W) field 864. The base operation field 842
includes the prefix encoding field 925, the opcode map field 915, and the real opcode field 930.
[00137] Register Index Field

[00138] Figure 9C isablock diagram illustrating the fields of the specific vector friendly
instruction format 900 that make up the register index field 844 according to one embodiment of
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the invention. Specifically, the register index field 844 includes the REX field 905, the REX'
field 910, the MODR/M.reg field 944, the MODR/M.r/m field 946, the W W field 920, xxx
field 954, and the bbb field 956.

[00139] Augmentation Operation Field

[oo140] Figure 9D isablock diagram illustrating the fields of the specific vector friendly
instruction format 900 that make up the augmentation operation field 850 according to one
embodiment of the invention. When the class (U) field 868 contains 0, it signifies EVEX.UOQ
(class A 868A); when it contains 1, it signifies EVEX.U1 (class B 868B). When U=0 and the
MOD field 942 contains 11 (signifying a no memory access operation), the alphafield 852
(EVEX byte 3, bit [7] - EH) isinterpreted asthe rsfiedld 852A. When the rsfield 852A contains
a 1 (round 852A.1), the beta field 854 (EVEX byte 3, bits [6:4]- SSS) is interpreted as the round
control field 854A. Theround control field 854A includes aone bit SAE field 856 and atwo bit
round operation field 858. When thersfield 852A contains a0 (data transform 852A.2), the beta
field 854 (EVEX byte 3, bits [6:4]- SSS) is interpreted as athree bit data transform field 854B.
When U=0 and the MOD field 942 contains 00, 01, or 10 (signifying amemory access
operation), the alpha field 852 (EVEX byte 3, hit [7] - EH) isinterpreted asthe eviction hint
(EH) field 852B and the beta field 854 (EVEX byte 3, bits [6:4]- SSS) isinterpreted as athree bit
data manipulation field 854C.

[oo141] When U=l, the aphafield 852 (EVEX byte 3, bit [7] - EH) isinterpreted as the write
mask control (Z) field 852C. When U=I and the MOD field 942 contains 11 (signifying ano
memory access operation), part of the beta field 854 (EVEX byte 3, bit [4]- So) isinterpreted as
the RL field 857A; when it contains a 1 (round 857A.1) the rest of the beta field 854 (EVEX
byte 3, bit [6-5]- S, i) isinterpreted as the round operation field 859A, while when the RL field
857A contains a0 (VSIZE 857.A2) therest of the beta field 854 (EVEX byte 3, bit [6-5]- S,i) is
interpreted as the vector length field 859B (EVEX byte 3, bit [6-5]- L, ). When U=| and the
MOD field 942 contains 00, 01, or 10 (signifying a memory access operation), the beta field 854
(EVEX byte 3, bits [6:4]- SSS) isinterpreted asthe vector length field 859B (EVEX byte 3, bit
[6-5]- L1.0) and the broadcast field 857B (EVEX byte 3, bit [4]- B).

[00142] Exemplary Register Architecture

[00143] Figure 10 isablock diagram of aregister architecture 1000 according to one
embodiment of the invention. In the embodiment illustrated, there are 32 vector registers 1010
that are 512 bits wide; these registers are referenced as zmmO through zmm31. The lower order

256 bits of the lower 16 zmm registers are overlaid on registers ymmO-16. The lower order 128
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bits of the lower 16 zmm registers (the lower order 128 bits of the ymm registers) are overlaid on
registers xmmoO-15. The specific vector friendly instruction format 900 operates on these

overlaid register file asillustrated in the below tables.

Adjustable Class Operations Registers

Vector Length

Instruction A (Figure 8A; 810, 815, 825, zmm registers

Templates that U=0) 830 (the vector

do not include length is 64 byte)

the vector length | B (Figure 8B; 812 zmm registers

field 859B U=1) (the vector
length is 64 byte)

Instruction B (Figure 8B; 817, 827 zmm, ymi, or

Templates that U=1) xmm registers

do include the (the vector

vector length length is 64 byte,

field 859B 32 byte, or 16

byte) depending
on the vector

length field 859B

[00144] In other words, the vector length field 859B selects between a maximum length and one
or more other shorter lengths, where each such shorter length is half the length of the preceding
length; and instructions templates without the vector length field 859B operate on the maximum
vector length. Further, in one embodiment, the class B instruction templates of the specific
vector friendly instruction format 900 operate on packed or scalar single/double-precision
floating point data and packed or scalar integer data. Scalar operations are operations performed
on the lowest order data element position in an zmm/ymm/xmm register; the higher order data
element positions are either left the same as they were prior to the instruction or zeroed
depending on the embodiment.

[00145] Write mask registers 1015 - in the embodiment illustrated, there are 8 write mask
registers (kO through k7), each 64 bits in size. In an alternate embodiment, the write mask
registers 1015 are 16 hitsin size. Aspreviously described, in one embodiment of the invention,

the vector mask register kO cannot be used as awrite mask; when the encoding that would
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normally indicate kOisused for awrite mask, it selects ahardwired write mask of OxFFFF,
effectively disabling write masking for that instruction.

[00146] General-purpose registers 1025 - in the embodiment illustrated, there are sixteen 64-bit
general-purpose registers that are used along with the existing x86 addressing modes to address
memory operands. These registers are referenced by the names RAX, RBX, RCX, RDX, RBP,
RSI, RDI, RSP, and R8 through R15.

[00147] Scalar floating point stack register file (x87 stack) 1045, on which is aliased the MM X
packed integer flat register file 1050 - in the embodiment illustrated, the x87 stack is an eight-
element stack used to perform scalar floating-point operations on 32/64/80-bit floating point data
using the x87 instruction set extension; while the MMX registers are used to perform operations
on 64-hit packed integer data, aswell asto hold operands for some operations performed
between the MMX and XMM registers.

[00148] Alternative embodiments of the invention may use wider or narrower registers.
Additionally, alternative embodiments of the invention may use more, less, or different register
files and registers.

[00149] Exemplary Core Architectures, Processors, and Computer Architectures

[00150] Processor cores may be implemented in different ways, for different purposes, and in
different processors. For instance, implementations of such cores may include: 1) ageneral
purpose in-order core intended for general-purpose computing; 2) ahigh performance general
purpose out-of-order core intended for general-purpose computing; 3) a special purpose core
intended primarily for graphics and/or scientific (throughput) computing. Implementations of
different processors may include: 1) a CPU including one or more general purpose in-order cores
intended for general-purpose computing and/or one or more general purpose out-of-order cores
intended for general-purpose computing; and 2) acoprocessor including one or more special
purpose cores intended primarily for graphics and/or scientific (throughput). Such different
processors lead to different computer system architectures, which may include: 1) the
coprocessor on a separate chip from the CPU; 2) the coprocessor on a separate die in the same
package as a CPU; 3) the coprocessor on the same die as a CPU (in which case, such a
coprocessor is sometimes referred to as special purpose logic, such asintegrated graphics and/or
scientific (throughput) logic, or as specia purpose cores); and 4) a system on achip that may
include on the same die the described CPU (sometimes referred to as the application core(s) or

application processor(s)), the above described coprocessor, and additional functionality.
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Exemplary core architectures are described next, followed by descriptions of exemplary
processors and computer architectures.

[00151] Exemplary Core Architectures

[00152] In-order and out-of-order core block diagram

[00153] Figure 11A isablock diagram illustrating both an exemplary in-order pipeline and an
exemplary register renaming, out-of-order issue/execution pipeline according to embodiments of
the invention. Figure 11 B isablock diagram illustrating both an exemplary embodiment of an
in-order architecture core and an exemplary register renaming, out-of-order issue/execution
architecture core to be included in aprocessor according to embodiments of the invention. The
solid lined boxes in Figures 11A-B illustrate the in-order pipeline and in-order core, while the
optional addition of the dashed lined boxes illustrates the register renaming, out-of-order
issue/execution pipeline and core. Given that the in-order aspect is a subset of the out-of-order
aspect, the out-of-order aspect will be described.

[00154] In Figure 11A, aprocessor pipeline 1100 includes afetch stage 1102, alength decode
stage 1104, adecode stage 1106, an alocation stage 1108, arenaming stage 1110, a scheduling
(also known as adispatch or issue) stage 1112, aregister read/memory read stage 1114, an
execute stage 1116, awrite back/memory write stage 1118, an exception handling stage 1122,
and acommit stage 1124.

[00155] Figure 11B shows processor core 1190 including afront end unit 1130 coupled to an
execution engine unit 1150, and both are coupled to amemory unit 1170. The core 1190 may be
areduced instruction set computing (RISC) core, a complex instruction set computing (CISC)
core, avery long instruction word (VLIW) core, or ahybrid or aternative core type. Asyet
another option, the core 1190 may be a special-purpose core, such as, for example, a network or
communication core, compression engine, Coprocessor core, general purpose computing graphics
processing unit (GPGPU) core, graphics core, or the like.

[00156] The front end unit 1130 includes abranch prediction unit 1132 coupled to an instruction
cache unit 1134, which iscoupled to an instruction translation lookaside buffer (TLB) 1136,
which is coupled to an instruction fetch unit 1138, which is coupled to a decode unit 1140. The
decode unit 1140 (or decoder) may decode instructions, and generate as an output one or more
micro-operations, micro-code entry points, microinstructions, other instructions, or other control
signals, which are decoded from, or which otherwise reflect, or are derived from, the original
instructions. The decode unit 1140 may be implemented using various different mechanisms.

Examples of suitable mechanisms include, but are not limited to, look-up tables, hardware
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implementations, programmable logic arrays (PLAS), microcode read only memories (ROMs),
etc. In one embodiment, the core 1190 includes amicrocode ROM or other medium that stores
microcode for certain macroinstructions (e.g., in decode unit 1140 or otherwise within the front
end unit 1130). The decode unit 1140 is coupled to arename/alocator unit 1152 in the
execution engine unit 1150.

[00157] The execution engine unit 1150 includes the rename/allocator unit 1152 coupled to a
retirement unit 1154 and a set of one or more scheduler unit(s) 1156. The scheduler unit(s) 1156
represents any number of different schedulers, including reservations stations, central instruction
window, etc. The scheduler unit(s) 1156 is coupled to the physical register file(s) unit(s) 1158.
Each of the physical register file(s) units 1158 represents one or more physical register files,
different ones of which store one or more different data types, such as scalar integer, scalar
floating point, packed integer, packed floating point, vector integer, vector floating point,, status
(e.g., aninstruction pointer that isthe address of the next instruction to be executed), etc. In one
embodiment, the physical register file(s) unit 1158 comprises avector registers unit, awrite
mask registers unit, and a scalar registers unit. These register units may provide architectural
vector registers, vector mask registers, and general purpose registers. The physical register
file(s) unit(s) 1158 is overlapped by the retirement unit 1154 to illustrate various ways in which
register renaming and out-of-order execution may be implemented (e.g., using areorder buffer(s)
and aretirement register file(s); using afuture file(s), ahistory buffer(s), and aretirement
register file(s); using aregister maps and apool of registers; etc.). The retirement unit 1154 and
the physical register file(s) unit(s) 1158 are coupled to the execution cluster(s) 1160. The
execution cluster(s) 1160 includes a set of one or more execution units 1162 and a set of one or
more memory access units 1164. The execution units 1162 may perform various operations
(e.g., shifts, addition, subtraction, multiplication) and on various types of data (e.g., scalar
floating point, packed integer, packed floating point, vector integer, vector floating point).
While some embodiments may include a number of execution units dedicated to specific
functions or sets of functions, other embodiments may include only one execution unit or
multiple execution units that all perform all functions. The scheduler unit(s) 1156, physical
register file(s) unit(s) 1158, and execution cluster(s) 1160 are shown as being possibly plural
because certain embodiments create separate pipelines for certain types of data/operations (e.g., a
scalar integer pipeline, ascalar floating point/packed integer/packed floating point/vector
integer/vector floating point pipeline, and/or amemory access pipeline that each have their own

scheduler unit, physical register file(s) unit, and/or execution cluster - and in the case of a
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separate memory access pipeine, certain embodiments are implemented in which only the
execution cluster of this pipeline has the memory access unit(s) 1164). It should also be
understood that where separate pipelines are used, one or more of these pipelines may be out-of-
order issue/execution and the rest in-order.

[00158] The set of memory access units 1164 is coupled to the memory unit 1170, which
includes adata TLB unit 1172 coupled to a data cache unit 1174 coupled to alevel 2 (L2) cache
unit 1176. In one exemplary embodiment, the memory access units 1164 may include aload
unit, a store address unit, and a store data unit, each of which is coupled to the data TLB unit
1172 in the memory unit 1170. The instruction cache unit 1134 isfurther coupled to alevel 2
(L2) cache unit 1176 in the memory unit 1170. The L2 cache unit 1176 is coupled to one or
more other levels of cache and eventually to amain memory.

[00159] By way of example, the exemplary register renaming, out-of-order issue/execution core
architecture may implement the pipeline 1100 asfollows. 1) the instruction fetch 1138 performs
the fetch and length decoding stages 1102 and 1104; 2) the decode unit 1140 performs the
decode stage 1106; 3) the rename/allocator unit 1152 performs the allocation stage 1108 and
renaming stage 1110; 4) the scheduler unit(s) 1156 performs the schedule stage 1112; 5) the
physical register file(s) unit(s) 1158 and the memory unit 1170 perform the register read/memory
read stage 1114; the execution cluster 1160 perform the execute stage 1116; 6) the memory unit
1170 and the physical register file(s) unit(s) 1158 perform the write back/memory write stage
1118; 7) various units may be involved in the exception handling stage 1122; and 8) the
retirement unit 1154 and the physical register file(s) unit(s) 1158 perform the commit stage 1124.
[00160] The core 1190 may support one or more instructions sets (e.g., the x86 instruction set
(with some extensions that have been added with newer versions); the MIPS instruction set of
MIPS Technologies of Sunnyvale, CA; the ARM instruction set (with optional additional
extensions such as NEON) of ARM Holdings of Sunnyvale, CA), including the instruction(s)
described herein. In one embodiment, the core 1190 includes logic to support a packed data
instruction set extension (e.g., AVX1, AVX2, and/or some form of the generic vector friendly
instruction format (U=0 and/or U=Il) previoudy described), thereby alowing the operations used
by many multimedia applications to be performed using packed data.

[oo161] It should be understood that the core may support multithreading (executing two or
more parallel sets of operations or threads), and may do so in avariety of ways including time
sliced multithreading, simultaneous multithreading (where a single physical core provides a

logical core for each of the threads that physical core is simultaneously multithreading), or a
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combination thereof (e.g., time sliced fetching and decoding and simultaneous multithreading
thereafter such asin the Intel® Hyperthreading technology).

[00162] While register renaming is described in the context of out-of-order execution, it should
be understood that register renaming may be used in an in-order architecture. While the
illustrated embodiment of the processor also includes separate instruction and data cache units
1134/1 174 and a shared L2 cache unit 1176, alternative embodiments may have a single internal
cache for both instructions and data, such as, for example, aLevel 1(LI) interna cache, or
multiple levels of internal cache. In some embodiments, the system may include a combination
of an internal cache and an external cache that is external to the core and/or the processor.
Alternatively, al of the cache may be external to the core and/or the processor.

[00163] Specific Exemplary In-Order Core Architecture

[00164] Figures 12A-B illustrate ablock diagram of a more specific exemplary in-order core
architecture, which core would be one of several logic blocks (including other cores of the same
type and/or different types) in achip. The logic blocks communicate through a high-bandwidth
interconnect network (e.g., aring network) with some fixed function logic, memory 1/O
interfaces, and other necessary 1/0 logic, depending on the application.

[00165] Figure 12A isablock diagram of a single processor core, along with its connection to
the on-die interconnect network 1202 and with its local subset of the Level 2 (L2) cache 1204,
according to embodiments of the invention. In one embodiment, an instruction decoder 1200
supports the x86 instruction set with a packed data instruction set extension. An LI cache 1206
allows low-latency accesses to cache memory into the scalar and vector units. While in one
embodiment (to simplify the design), ascalar unit 1208 and a vector unit 1210 use separate
register sets (respectively, scalar registers 1212 and vector registers 1214) and data transferred
between them iswritten to memory and then read back infrom alevel 1(LI) cache 1206,
alternative embodiments of the invention may use a different approach (e.g., use a single register
set or include acommunication path that allow data to be transferred between the two register
files without being written and read back).

[00166] Thelocal subset of the L2 cache 1204 ispart of aglobal L2 cache that isdivided into
separate local subsets, one per processor core. Each processor core has adirect access path to its
own local subset of the L2 cache 1204. Dataread by aprocessor core is stored in its L2 cache
subset 1204 and can be accessed quickly, in parallel with other processor cores accessing their
own local L2 cache subsets. Data written by aprocessor core is stored in its own L2 cache

subset 1204 and isflushed from other subsets, if necessary. The ring network ensures coherency
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for shared data. The ring network isbi-directional to alow agents such as processor cores, L2
caches and other logic blocks to communicate with each other within the chip. Each ring data-
path is 1012-bits wide per direction.

[00167] Figure 12B isan expanded view of part of the processor core in Figure 12A according
to embodiments of the invention. Figure 12B includes an L | data cache 1206A part of the L |
cache 1204, aswell as more detail regarding the vector unit 1210 and the vector registers 1214.
Specifically, the vector unit 1210 is a 16-wide vector processing unit (VPU) (see the 16-wide
ALU 1228), which executes one or more of integer, single-precision float, and double-precision
float instructions. The VPU supports swizzling the register inputs with swizzle unit 1220,
numeric conversion with numeric convert units 1222A-B, and replication with replication unit
1224 on the memory input. Write mask registers 1226 allow predicating resulting vector writes.
[00168] Processor with integrated memory controller and graphics

[00169] Figure 13 isablock diagram of aprocessor 1300 that may have more than one core,
may have an integrated memory controller, and may have integrated graphics according to
embodiments of the invention. The solid lined boxes in Figure 13 illustrate aprocessor 1300
with asingle core 1302A, a system agent 1310, a set of one or more bus controller units 1316,
while the optional addition of the dashed lined boxes illustrates an alternative processor 1300
with multiple cores 1302A-N, a set of one or more integrated memory controller unit(s) 1314 in
the system agent unit 1310, and specia purpose logic 1308.

[oo170] Thus, different implementations of the processor 1300 may include: 1) a CPU with the
specia purpose logic 1308 being integrated graphics and/or scientific (throughput) logic (which
may include one or more cores), and the cores 1302A-N being one or more general purpose
cores (e.g., general purpose in-order cores, general purpose out-of-order cores, acombination of
the two); 2) acoprocessor with the cores 1302A-N being alarge number of special purpose cores
intended primarily for graphics and/or scientific (throughput); and 3) a coprocessor with the
cores 1302A-N being alarge number of general purpose in-order cores. Thus, the processor 1300
may be ageneral-purpose processor, COprocessor or special-purpose processor, such as, for
example, anetwork or communication processor, compression engine, graphics processor,
GPGPU (general purpose graphics processing unit), a high-throughput many integrated core
(MIC) coprocessor (including 30 or more cores), embedded processor, or the like. The processor
may be implemented on one or more chips. The processor 1300 may be apart of and/or may be
implemented on one or more substrates using any of a number of process technologies, such as,

for example, BICMOS, CMOS, or NMOS.
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[oo171] The memory hierarchy includes one or more levels of cache within the cores, a set or
one or more shared cache units 1306, and external memory (not shown) coupled to the set of
integrated memory controller units 1314. The set of shared cache units 1306 may include one or
more mid-level caches, such aslevel 2 (L2), level 3 (L3), level 4 (L4), or other levels of cache, a
last level cache (LLC), and/or combinations thereof. While in one embodiment aring based
interconnect unit 1312 interconnects the integrated graphics logic 1308, the set of shared cache
units 1306, and the system agent unit 1310/integrated memory controller unit(s) 1314, alternative
embodiments may use any number of well-known techniques for interconnecting such units. In
one embodiment, coherency is maintained between one or more cache units 1306 and cores
1302-A-N.

[00172] In some embodiments, one or more of the cores 1302A-N are capable of multi-
threading. The system agent 1310 includes those components coordinating and operating cores
1302A-N. The system agent unit 1310 may include for example apower control unit (PCU) and
adisplay unit. The PCU may be or include logic and components needed for regulating the
power state of the cores 1302A-N and the integrated graphics logic 1308. The display unit isfor
driving one or more externally connected displays.

[00173] The cores 1302A-N may be homogenous or heterogeneous in terms of architecture
instruction set; that is, two or more of the cores 1302A-N may be capable of execution the same
instruction set, while others may be capable of executing only asubset of that instruction set or a
different instruction set.

[00174] Exemplary Computer Architectures

[0o175] Figures 14-17 are block diagrams of exemplary computer architectures. Other system
designs and configurations known in the arts for laptops, desktops, handheld PCs, personal
digital assistants, engineering workstations, servers, network devices, network hubs, switches,
embedded processors, digital signal processors (DSPs), graphics devices, video game devices,
set-top boxes, micro controllers, cell phones, portable media players, hand held devices, and
various other electronic devices, are also suitable. In general, ahuge variety of systems or
electronic devices capable of incorporating aprocessor and/or other execution logic as disclosed
herein are generally suitable.

[0o176] Referring now to Figure 14, shown isablock diagram of a system 1400 in accordance
with one embodiment of the present invention. The system 1400 may include one or more
processors 1410, 1415, which are coupled to a controller hub 1420. In one embodiment the

controller hub 1420 includes a graphics memory controller hub (GMCH) 1490 and an
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Input/Output Hub (I0H) 1450 (which may be on separate chips); the GMCH 1490 includes
memory and graphics controllers to which are coupled memory 1440 and a coprocessor 1445;
the IOH 1450 is couples input/output (1/O) devices 1460 to the GMCH 1490. Alternatively, one
or both of the memory and graphics controllers are integrated within the processor (as described
herein), the memory 1440 and the coprocessor 1445 are coupled directly to the processor 1410,
and the controller hub 1420 in a single chip with the IOH 1450.

[00177] The optional nature of additional processors 1415 is denoted in Figure 14 with broken
lines. Each processor 1410, 1415 may include one or more of the processing cores described
herein and may be some version of the processor 1300.

[00178] The memory 1440 may be, for example, dynamic random access memory (DRAM),
phase change memory (PCM), or acombination of the two. For at least one embodiment, the
controller hub 1420 communicates with the processor(s) 1410, 1415 via amulti-drop bus, such
as afrontside bus (FSB), point-to-point interface such as QuickPath Interconnect (QPI), or
similar connection 1495.

[00179] In one embodiment, the coprocessor 1445 is a special-purpose processor, such as, for
example, ahigh-throughput MIC processor, anetwork or communication processor, cCompression
engine, graphics processor, GPGPU, embedded processor, or the like. In one embodiment,
controller hub 1420 may include an integrated graphics accelerator.

[00180] There can be avariety of differences between the physical resources 1410, 1415 in
terms of a spectrum of metrics of merit including architectural, microarchitectural, thermal,
power consumption characteristics, and the like.

[00181] In one embodiment, the processor 1410 executes instructions that control data
processing operations of ageneral type. Embedded within the instructions may be coprocessor
instructions. The processor 1410 recognizes these coprocessor instructions as being of atype
that should be executed by the attached coprocessor 1445. Accordingly, the processor 1410
issues these coprocessor instructions (or control signals representing coprocessor instructions) on
acoprocessor bus or other interconnect, to coprocessor 1445. Coprocessor(s) 1445 accept and
execute the received coprocessor instructions.

[00182] Referring now to Figure 15, shown is ablock diagram of afirst more specific
exemplary system 1500 in accordance with an embodiment of the present invention. Asshown
in Figure 15, multiprocessor system 1500 is apoint-to-point interconnect system, and includes a
first processor 1570 and a second processor 1580 coupled via apoint-to-point interconnect 1550.

Each of processors 1570 and 1580 may be some version of the processor 1300. In one

33



10

15

20

25

30

WO 2013/095599 PCT/US2011/067071

embodiment of the invention, processors 1570 and 1580 are respectively processors 1410 and
1415, while coprocessor 1538 is coprocessor 1445. In another embodiment, processors 1570 and
1580 are respectively processor 1410 coprocessor 1445.

[00183] Processors 1570 and 1580 are shown including integrated memory controller (IMC)
units 1572 and 1582, respectively. Processor 1570 also includes as part of its bus controller
units point-to-point (P-P) interfaces 1576 and 1578; similarly, second processor 1580 includes P-
P interfaces 1586 and 1588. Processors 1570, 1580 may exchange information via a point-to-
point (P-P) interface 1550 using P-P interface circuits 1578, 1588. As shown in Figure 15, IMCs
1572 and 1582 couple the processors to respective memories, namely amemory 1532 and a
memory 1534, which may be portions of main memory locally attached to the respective
processors.

[00184] Processors 1570, 1580 may each exchange information with achipset 1590 via
individual P-Pinterfaces 1552, 1554 using point to point interface circuits 1576, 1594, 1586,
1598. Chipset 1590 may optionally exchange information with the coprocessor 1538 via a high-
performance interface 1539. In one embodiment, the coprocessor 1538 is a special-purpose
processor, such as, for example, ahigh-throughput MIC processor, anetwork or communication
processor, compression engine, graphics processor, GPGPU, embedded processor, or the like.
[oo185] A shared cache (not shown) may be included in either processor or outside of both
processors, yet connected with the processors via P-P interconnect, such that either or both
processors local cache information may be stored in the shared cache if aprocessor is placed
into alow power mode.

[oo186] Chipset 1590 may be coupled to afirst bus 1516 via an interface 1596. In one
embodiment, first bus 1516 may be a Peripheral Component Interconnect (PCI) bus, or abus
such as a PCl Express bus or another third generation /O interconnect bus, although the scope of
the present invention is not so limited.

[00187] Asshown in Figure 15, various 1/O devices 1514 may be coupled to first bus 1516,
along with abus bridge 1518 which couples first bus 1516 to a second bus 1520. In one
embodiment, one or more additional processor(s) 1515, such as coprocessors, high-throughput
MIC processors, GPGPU' s, accelerators (such as, e.g., graphics accelerators or digital signal
processing (DSP) units), field programmable gate arrays, or any other processor, are coupled to
first bus 1516. In one embodiment, second bus 1520 may be alow pin count (LPC) bus.

Various devices may be coupled to a second bus 1520 including, for example, akeyboard and/or

mouse 1522, communication devices 1527 and a storage unit 1528 such asadisk drive or other
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mass storage device which may include instructions/code and data 1530, in one embodiment.
Further, an audio 1/0 1524 may be coupled to the second bus 1520. Note that other architectures
are possible. For example, instead of the point-to-point architecture of Figure 15, a system may
implement a multi-drop bus or other such architecture.

[00188] Referring now to Figure 16, shown is ablock diagram of a second more specific
exemplary system 1600 in accordance with an embodiment of the present invention. Like
elements in Figures 15 and 16 bear like reference numerals, and certain aspects of Figure 15
have been omitted from Figure 16 in order to avoid obscuring other aspects of Figure 16.
[00189] Figure 16 illustrates that the processors 1570, 1580 may include integrated memory and
IO contral logic ("CL") 1572 and 1582, respectively. Thus, the CL 1572, 1582 include
integrated memory controller units and include I/O control logic. Figure 16 illustrates that not
only are the memories 1532, 1534 coupled to the CL 1572, 1582, but also that I/O devices 1614
are aso coupled to the control logic 1572, 1582. Legacy 1/O devices 1615 are coupled to the
chipset 1590.

[00190] Referring now to Figure 17, shown is ablock diagram of a SoC 1700 in accordance
with an embodiment of the present invention. Similar elements in Figure 13 bear like reference
numerals. Also, dashed lined boxes are optional features on more advanced SoCs. In Figure 17,
an interconnect unit(s) 1702 iscoupled to: an application processor 1710 which includes a set of
one or more cores 202A-N and shared cache unit(s) 1306; a system agent unit 1310; abus
controller unit(s) 1316; an integrated memory controller unit(s) 1314; a set or one or more
coprocessors 1720 which may include integrated graphics logic, an image processor, an audio
processor, and avideo processor; an static random access memory (SRAM) unit 1730; adirect
memory access (DMA) unit 1732; and adisplay unit 1740 for coupling to one or more external
displays. In one embodiment, the coprocessor(s) 1720 include a special-purpose processor, such
as, for example, anetwork or communication processor, compression engine, GPGPU, ahigh-
throughput MIC processor, embedded processor, or the like.

[00191] Embodiments of the mechanisms disclosed herein may be implemented in hardware,
software, firmware, or acombination of such implementation approaches. Embodiments of the
invention may be implemented as computer programs or program code executing on
programmable systems comprising at least one processor, a storage system (including volatile
and non-volatile memory and/or storage elements), at least one input device, and at least one

output device.
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[00192] Program code, such ascode 1530 illustrated in Figure 15, may be applied to input
instructions to perform the functions described herein and generate output information. The
output information may be applied to one or more output devices, in known fashion. For
purposes of this application, aprocessing system includes any system that has a processor, such
as, for example; adigital signal processor (DSP), a microcontroller, an application specific
integrated circuit (ASIC), or a microprocessor.

[00193] The program code may be implemented in ahigh level procedural or object oriented
programming language to communicate with aprocessing system. The program code may also
be implemented in assembly or machine language, if desired. In fact, the mechanisms described
herein are not limited in scope to any particular programming language. In any case, the
language may be acompiled or interpreted language.

[00194] One or more aspects of at least one embodiment may be implemented by representative
instructions stored on a machine-readable medium which represents various logic within the
processor, which when read by a machine causes the machine to fabricate logic to perform the
techniques described herein. Such representations, known as "IP cores' may be stored on a
tangible, machine readable medium and supplied to various customers or manufacturing
facilities to load into the fabrication machines that actually make the logic or processor.

[00195] Such machine-readable storage media may include, without limitation, non-transitory,
tangible arrangements of articles manufactured or formed by a machine or device, including
storage media such as hard disks, any other type of disk including floppy disks, optical disks,
compact disk read-only memories (CD-ROMs), compact disk rewritable's (CD-RWSs), and
magneto-optical disks, semiconductor devices such as read-only memories (ROMSs), random
access memories (RAMS) such as dynamic random access memories (DRAMS), static random
access memories (SRAMSs), erasable programmable read-only memories (EPROMS), flash
memories, electrically erasable programmable read-only memories (EEPROMS), phase change
memory (PCM), magnetic or optical cards, or any other type of media suitable for storing
electronic instructions.

[oo196] Accordingly, embodiments of the invention aso include non-transitory, tangible
machine-readable media containing instructions or containing design data, such as Hardware
Description Language (HDL), which defines structures, circuits, apparatuses, processors and/or
system features described herein. Such embodiments may also bereferred to as program
products.

[00197] Emulation (including binary translation, code morphing, etc.)
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[00198] In some cases, an instruction converter may be used to convert an instruction from a
source instruction set to atarget instruction set. For example, the instruction converter may
trandate (e.g., using static binary trandation, dynamic binary trandation including dynamic
compilation), morph, emulate, or otherwise convert an instruction to one or more other
instructions to be processed by the core. The instruction converter may be implemented in
software, hardware, firmware, or acombination thereof. The instruction converter may be on
processor, off processor, or part on and part off processor.

[00199] Figure 18 isablock diagram contrasting the use of a software instruction converter to
convert binary instructions in a source instruction set to binary instructions in atarget instruction
set according to embodiments of the invention. In the illustrated embodiment, the instruction
converter is a software instruction converter, athough alternatively the instruction converter may
be implemented in software, firmware, hardware, or various combinations thereof. Figure 18
shows aprogram in ahigh level language 1802 may be compiled using an x86 compiler 1804 to
generate x86 binary code 1806 that may be natively executed by aprocessor with at least one
x86 instruction set core 1816. The processor with at least one x86 instruction set core 1816
represents any processor that can perform substantialy the same functions as an Intel processor
with at least one x86 instruction set core by compatibly executing or otherwise processing (1) a
substantial portion of the instruction set of the Intel x86 instruction set core or (2) object code
versions of applications or other software targeted to run on an Intel processor with at least one
x86 instruction set core, in order to achieve substantially the same result as an Intel processor
with at least one x86 instruction set core. The x86 compiler 1804 represents a compiler that is
operable to generate x86 binary code 1806 (e.g., object code) that can, with or without additional
linkage processing, be executed on the processor with at least one x86 instruction set core 1816.
Similarly, Figure 18 shows the program in the high level language 1802 may be compiled using
an aternative instruction set compiler 1808 to generate alternative instruction set binary code
1810 that may be natively executed by aprocessor without at least one x86 instruction set core
1814 (eg., aprocessor with cores that execute the MIPS instruction set of MIPS Technologies
of Sunnyvale, CA and/or that execute the ARM instruction set of ARM Holdings of Sunnyvale,
CA). Theinstruction converter 1812 isused to convert the x86 binary code 1806 into code that
may be natively executed by the processor without an x86 instruction set core 1814. This
converted code is not likely to be the same as the alternative instruction set binary code 1810
because an instruction converter capable of this is difficult to make; however, the converted code

will accomplish the general operation and be made up of instructions from the alternative
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instruction set. Thus, the instruction converter 1812 represents software, firmware, hardware, or
acombination thereof that, through emulation, ssmulation or any other process, alows a

processor or other electronic device that does not have an x86 instruction set processor or core to

execute the x86 binary code 1806.
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Claims

What is claimed is:

1 A method of performing in acomputer processor vector double block packed sum of
absolute differences (SAD) in response to asingle vector double block packed sum of absolute
differences instruction that includes a destination vector register operand, first and second source
operands, an immediate, and an opcode, the method comprising steps of:

executing the single vector double block packed sum of absolute differences instruction
to, on aper datalane basis, compute a SAD of selected quadruplets of data elements of the first
and second sources; and

storing each calculated SAD into the destination vector register.

2. The method of claim 1, wherein the data elements of the selected quadruplets of the first

and second sources are byte sized.

3. The method of claim 2, wherein the data elements of the destination register are word
sized.
4. The method of claim 1, wherein the first source operand is avector register and the

second source operand is a memory location.

5. The method of claim 1, wherein the first and second source operands are vector
registers.
6. The method of claim 1, wherein the first and second sources and the destination vector

register operand are all of the same size selected from the group consisting of 128-bit, 256-hit,
and 512-hit.

7. The method of claim 1, wherein the stored SADs comprise:

in aleast significant position of the destination register, the stored SAD is
an absolute value of aleast significant data element position of the first source minus aleast
significant data element position of the second source that is added to an absolute value of a
second-most least significant data element position of the first source minus a second-most |east

significant data element position of the second source that is added to an absolute value of a
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third-most least significant data element position of the first source minus athird-most least
significant data element position of the second source that is added to an absolute value of a
fourth-most least significant data element position of the first source minus afourth-most least
significant data element position of the second source;

in a second-most least significant position of the destination register, the stored SAD is
an absolute value of aleast significant data element position of the first source minus a second-
most least significant data element position of the second source that is added to an absolute
value of a second-most least significant data element position of the first source minus athird-
most least significant data element position of the second source that is added to an absolute
value of athird-most least significant data element position of the first source minus afourth-
most least significant data element position of the second source that is added to an absolute
value of afourth-most least significant data element position of the first source minus afifth-
most least significant data element position of the second source;

in athird-most least significant position of the destination register, the stored SAD is
an absolute value of afifth-most least significant data element position of the first source minus
athird-most least significant data element position of the second source that is added to an
absolute value of asixth-most least significant data element position of the first source minus a
fourth-most least significant data element position of the second source that is added to an
absolute value of a seventh-most least significant data element position of the first source minus
afifth-most least significant data element position of the second source that is added to an
absolute value of aeighth-most least significant data element position of the first source minus a
sixth-most least significant data element position of the second source; and

in afourth-most least significant position of the destination register, the stored SAD is
an absolute value of afifth-most least significant data element position of the first source minus
afourth-most least significant data element position of the second source that is added to an
absolute value of a sixth-most least significant data element position of the first source minus a
fifth-most least significant data element position of the second source that is added to an absolute
value of a seventh-most least significant data element position of the first source minus a sixth-
most least significant data element position of the second source that is added to an absolute
value of aeighth-most least significant data element position of the first source minus a seventh-

most least significant data element position of the second source.

8. An article of manufacture comprising:
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atangible machine-readable storage medium having stored thereon an occurrence of an
instruction, wherein the instruction' sformat specifies asits source operands afirst and second
source and an immediate and specifies as its destination a single destination vector register, and
wherein the instruction format includes an opcode which instructs a machine, responsive to the
single occurrence of the single instruction, to cause on aper data lane basis, acomputation of a
SAD of selected quadruplets of data elements of the first and second sources and storage of each
calculated SAD into the destination vector register.

9. The article of manufacture of claim 8, wherein the data el ements of the selected

quadruplets of the first and second sources are byte sized.

10. The article of manufacture of claim 9, wherein the data elements of the destination

register are word sized.

11. The article of manufacture of claim 8, wherein the first source operand is a vector

register and the second source operand is amemory location.

12. The article of manufacture of claim 8, wherein the first and second source operands are

vector registers.

13. The article of manufacture of claim 8, wherein the first and second sources and the
destination vector register operand are al of the same size selected from the group consisting of
128-hit, 256-bit, and 512-bit.

14. The article of manufacture of claim 8, wherein the stored SADs comprise:

in aleast significant position of the destination register, the stored SAD is
an absolute value of aleast significant data element position of the first source minus aleast
significant data element position of the second source that is added to an absolute value of a
second-most least significant data element position of the first source minus a second-most |east
significant data element position of the second source that is added to an absolute value of a
third-most least significant data element position of the first source minus athird-most least

significant data element position of the second source that is added to an absolute value of a
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fourth-most least significant data element position of the first source minus afourth-most least
significant data element position of the second source;

in a second-most least significant position of the destination register, the stored SAD is
an absolute value of aleast significant data element position of the first source minus a second-
most least significant data element position of the second source that is added to an absolute
value of a second-most least significant data element position of the first source minus athird-
most least significant data element position of the second source that is added to an absolute
value of athird-most least significant data element position of the first source minus afourth-
most least significant data element position of the second source that is added to an absolute
value of afourth-most least significant data element position of the first source minus afifth-
most least significant data element position of the second source;

in athird-most least significant position of the destination register, the stored SAD is
an absolute value of afifth-most least significant data element position of the first source minus
athird-most least significant data element position of the second source that is added to an
absolute value of a sixth-most least significant data element position of the first source minus a
fourth-most least significant data element position of the second source that is added to an
absolute value of a seventh-most least significant data element position of the first source minus
afifth-most least significant data element position of the second source that is added to an
absolute value of aeighth-most least significant data element position of the first source minus a
sixth-most least significant data element position of the second source; and

in afourth-most least significant position of the destination register, the stored SAD is
an absolute value of afifth-most least significant data element position of the first source minus
afourth-most least significant data element position of the second source that is added to an
absolute value of a sixth-most least significant data element position of the first source minus a
fifth-most least significant data element position of the second source that is added to an absolute
value of a seventh-most least significant data element position of the first source minus a sixth-
most least significant data element position of the second source that is added to an absolute
value of aeighth-most least significant data element position of the first source minus a seventh-

most least significant data element position of the second source.

15. An apparatus comprising;
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ahardware decoder to decode a single vector double block packed sum of absolute
differences instruction that includes a destination vector register operand, first and second source
operands, an immediate, and an opcode;
execution logic to, on aper data lane basis, compute a SAD of selected quadruplets of
data elements of the first and second sources and store each calculated SAD into the destination

vector register.

16. The apparatus of claim 15, wherein the data elements of the selected quadruplets of the

first and second sources are byte sized.

17. The apparatus of claim 16, wherein the data elements of the destination register are
word sized.
18. The apparatus of claim 15, wherein the first source operand is a vector register and the

second source operand is amemory location.

19. The apparatus of claim 15, wherein the first and second source operands are vector
registers.
20. The apparatus of claim 15, wherein the stored SADs comprise:

in aleast significant position of the destination register, the stored SAD is

an absolute value of aleast significant data element position of the first source minus aleast
significant data element position of the second source that is added to an absolute value of a
second-most least significant data element position of the first source minus a second-most |east
significant data element position of the second source that is added to an absolute value of a
third-most least significant data element position of the first source minus athird-most least
significant data element position of the second source that is added to an absolute value of a
fourth-most least significant data element position of the first source minus afourth-most least
significant data element position of the second source;

in a second-most least significant position of the destination register, the stored SAD is
an absolute value of aleast significant data element position of the first source minus a second-
most least significant data element position of the second source that is added to an absolute

value of a second-most least significant data element position of the first source minus athird-
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most least significant data element position of the second source that is added to an absolute
value of athird-most least significant data element position of the first source minus afourth-
most least significant data element position of the second source that is added to an absolute
value of afourth-most least significant data element position of the first source minus afifth-
most least significant data element position of the second source;

in athird-most least significant position of the destination register, the stored SAD is
an absolute value of afifth-most least significant data element position of the first source minus
athird-most least significant data element position of the second source that is added to an
absolute value of a sixth-most least significant data element position of the first source minus a
fourth-most least significant data element position of the second source that is added to an
absolute value of a seventh-most least significant data element position of the first source minus
afifth-most least significant data element position of the second source that is added to an
absolute value of aeighth-most least significant data element position of the first source minus a
sixth-most least significant data element position of the second source; and

in afourth-most least significant position of the destination register, the stored SAD is
an absolute value of afifth-most least significant data element position of the first source minus
afourth-most least significant data element position of the second source that is added to an
absolute value of a sixth-most least significant data element position of the first source minus a
fifth-most least significant data element position of the second source that is added to an absolute
value of a seventh-most least significant data element position of the first source minus a sixth-
most least significant data element position of the second source that is added to an absolute
value of aeighth-most least significant data element position of the first source minus a seventh-

most least significant data element position of the second source.
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FETCH SINGLE VECTOR DOUBLE PACKED SUM OF ABSOLUTE DIFFERENCES
(DBPSAD) INSTRUCTION, THE DBPSAD INSTRUCTION HAVING FIRST AND SECOND
SOURCE VECTOR REGISTER OPERANDS, AN IMMEDIATE, AN OPCODE, AND A
DESTINATION VECTOR REGISTER OPERAND 401

/

DECODE DBPSAD INSTRUCTION 403

)

RETREIVE SOURCE OPERANDS' VALUES 405

EXECUTE DBPSAD INSTRUCTION TO CALCULATE, ON A PER DATA LANE BASIS,
COMPUTE THE SAD OF SELECTED QUADRUPLETS OF DATA ELEMENTS OF THE
FIRST AND SECOND SOURCES 407

STORE EACH SAD CALCULATION IN THE DESTINATION VECTOR REGISTER 409
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SELECT QUADRUPLETS OF DATA ELEMENTS OF THE FIRST SOURCE 501

Y

SELECT QUADRUPLETS OF DATA ELEMENTS FROM THE SECOND SOURCE
ACCORDING TO CONTROL BITS FROM THE IMMEDIATE VALUE OF THE
INSTRUCTION 503

Y

CALCULATE SADS USING THE SELECTED QUADRUPLETS FOR THE DATA
LANE, EACH SAD CONSISTING OF MULTIPLE ABSOLUTE DIFFERENCE
CALCULATIONS SUMMED TOGETHER 505

STORE THE CALCULATED SADS INTO DATA ELEMENT POSITIONS OF THE
DESTINATION 507
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Pseudo-code for VDBPSADBW (Byte-sized Data Elements in the Source and Word-sized
Data Elements in the Destination)

Per Data Lane Selection of Quadruplets
V0L = 128, 256, 512 Selection of quadruplets:
FORI = 0 to VL step 128
TMP1[1+31:1] <~ select (SRC2[1+127: 1], imm8[1:0])
TMP1[I+63: I+32] <- select (SRC2[1+127: 1], imm8[3:2])
TMP1[I+95: 1+64] <- select (SRC2[1+127: 1], imm8[5:4])
TMP1[I+127: I+96]<-select (SRC2[1+127: 1], imm8[7:6])
END FOR

SAD of Quadruplets

DEST[I+15:1] <- ABS(SRC1[I+7: 1] - TMP1[1+7: I]) + ABS(SRC1[I+15: +8]- TMP1[I+15:
1+8]) + ABS(SRC1[1+23: I+16]- TMP1[1+23: 1+16]) + ABS(SRC1[I+31: [+24]-
TMP1[I+31: 1+24])

DEST[I+31: 1+16] <- (SRC1[1+7: 1] - TMP1[1+15: 1+8]) + ABS(SRC1[I+15: 1+8]-
TMP1[I+23: 1+16]) + ABS(SRC1[1+23: 1+16]- TMP1[I+31: 1+24]) + ABS(SRC1[1+31:
1+24]- TMP1[1+39: 1+32])

DEST[1+47: 1+32] <- ABS(SRC1[1+39: 1+32] - TMP1[I+23: 1+16]) + ABS(SRC1[I+47:
1+40]- TMP1[1+31: 1+24]) +

ABS(SRC1[I+55: 1+48]- TMP1[I1+39: [+32]) +

ABS(SRC1[I+63: I+56]- TMP1([1+47: |+40])

DEST[1+63: 1+48] <- ABS(SRC1[I+39: 1+32] - TMP1[1+31: +24]) + ABS(SRC1[I+47:

1+40] - TMP1[1+39: 1+32]) + ABS(SRC1[1+55: 1+48] - TMP1[1+47: 1+40]) +
ABS(SRC1[I+63: 1+56] - TMP1[I+55: 1+48])

FIGURE 6
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