
(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(19) World Intellectual Property
Organization

International Bureau
(10) International Publication Number

(43) International Publication Date WO 2013/095599 Al
27 June 2013 (27.06.2013) W P O P C T

(51) International Patent Classification: (81) Designated States (unless otherwise indicated, for every
G06F 9/06 (2006.01) G06F 9/30 (2006.01) kind of national protection available): AE, AG, AL, AM,

AO, AT, AU, AZ, BA, BB, BG, BH, BR, BW, BY, BZ,
(21) International Application Number: CA, CH, CL, CN, CO, CR, CU, CZ, DE, DK, DM, DO,

PCT/US201 1/067071 DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, GT, HN,
(22) International Filing Date: HR, HU, ID, IL, IN, IS, JP, KE, KG, KM, KN, KP, KR,

23 December 201 1 (23. 12.201 1) KZ, LA, LC, LK, LR, LS, LT, LU, LY, MA, MD, ME,
MG, MK, MN, MW, MX, MY, MZ, NA, NG, NI, NO, NZ,

(25) Filing Language: English OM, PE, PG, PH, PL, PT, QA, RO, RS, RU, RW, SC, SD,

(26) Publication Language: English SE, SG, SK, SL, SM, ST, SV, SY, TH, TJ, TM, TN, TR,
TT, TZ, UA, UG, US, UZ, VC, VN, ZA, ZM, ZW.

(71) Applicant (for all designated States except US): INTEL
CORPORATION [US/US]; 2200 Mission College (84) Designated States (unless otherwise indicated, for every

Boulevard, MS: RNB-4-150, Santa Clara, California 95052 kind of regional protection available): ARIPO (BW, GH,

(US). GM, KE, LR, LS, MW, MZ, NA, RW, SD, SL, SZ, TZ,
UG, ZM, ZW), Eurasian (AM, AZ, BY, KG, KZ, MD, RU,

(72) Inventors; and TJ, TM), European (AL, AT, BE, BG, CH, CY, CZ, DE,
(75) Inventors/ Applicants (for US only): OULD-AHMED- DK, EE, ES, FI, FR, GB, GR, HR, HU, IE, IS, IT, LT, LU,

VALL, Elmoustapha [MR/US]; 5000 W Chandler Blvd, LV, MC, MK, MT, NL, NO, PL, PT, RO, RS, SE, SI, SK,
M/S: CH7-401, Chandler, Arizona 85226 (US). HAGOG, SM, TR), OAPI (BF, BJ, CF, CG, CI, CM, GA, GN, GQ,
Mostafa [IL/IL]; Kaukab 323, 20185 Kaukab, HA (IL). GW, ML, MR, NE, SN, TD, TG).
VALENTINE, Robert [US/IL]; Rechov Hadganiot 33-5,
36054 Kiryat Tivon, HA (IL). GRADSTEIN, Amit Declarations under Rule 4.17 :

[IL/IL]; 16th Hadas St., 30500 Binyamina, HA (IL). — of inventorship (Rule 4.17(ivf)
RUBANOVICH, Simon [IL/IL]; Egoz str. 10/4, 34792

Published:Haifa, HA (IL). SPERBER, Zeev [IL/IL]; 32nd Igal Alon
St., 30900 Zichron Yackov (IL). — with international search report (Art. 21(3))

(74) Agents: NICHOLSON, David F. et al; Blakely Sokoloff
Taylor & Zafhian LLP, 1279 Oakmead Parkway,
Sunnyvale, California 94085 (US).

(54) Title: SYSTEMS, APPARATUSES, AND METHODS FOR PERFORMING A DOUBLE BLOCKED SUM OF ABSOLUTE
DIFFERENCES

s s

A S
LOGIC Y V

: ~AB ~ S

T T T

-_ -—
FIGURE 1

~ A S

T

©

o (57) Abstract: Embodiments of systems, apparatuses, and methods for performing in a computer processor vector double block
packed sum of absolute differences (SAD) in response to a single vector double block packed sum of absolute differences instruction
that includes a destination vector register operand, first and second source operands, an immediate, and an opcode are described.

SYSTEMS, APPARATUSES, AND METHODS FOR PERFORMING A DOUBLE

BLOCKED SUM OF ABSOLUTE DIFFERENCES

FIELD OF INVENTION

[0001] The field of invention relates generally to computer processor architecture, and, more

specifically, to instructions which when executed cause a particular result.

BACKGROUND

[0002] An instruction set, or instruction set architecture (ISA), is the part of the computer

architecture related to programming, and may include the native data types, instructions, register

architecture, addressing modes, memory architecture, interrupt and exception handling, and

external input and output (I/O). The term instruction generally refers herein to macro-

instructions - that is instructions that are provided to the processor (or instruction converter that

translates (e.g., using static binary translation, dynamic binary translation including dynamic

compilation), morphs, emulates, or otherwise converts an instruction to one or more other

instructions to be processed by the processor) for execution - as opposed to micro-instructions or

micro-operations (micro-ops) - that is the result of a processor's decoder decoding macro-

instructions.

[0003] The ISA is distinguished from the microarchitecture, which is the internal design of the

processor implementing the instruction set. Processors with different microarchitectures can

share a common instruction set. For example, Intel® Pentium 4 processors, Intel® Core™

processors, and processors from Advanced Micro Devices, Inc. of Sunnyvale CA implement

nearly identical versions of the x86 instruction set (with some extensions that have been added

with newer versions), but have different internal designs. For example, the same register

architecture of the ISA may be implemented in different ways in different microarchitectures

using well-known techniques, including dedicated physical registers, one or more dynamically

allocated physical registers using a register renaming mechanism (e.g., the use of a Register

Alias Table (RAT), a Reorder Buffer (ROB), and a retirement register file; the use of multiple

maps and a pool of registers), etc. Unless otherwise specified, the phrases register architecture,

register file, and register are used herein to refer to that which is visible to the

software/programmer and the manner in which instructions specify registers. Where a

specificity is desired, the adjective logical, architectural, or software visible will be used to

indicate registers/files in the register architecture, while different adjectives will be used to

designation registers in a given microarchitecture (e.g., physical register, reorder buffer,

retirement register, register pool).

[0004] An instruction set includes one or more instruction formats. A given instruction format

defines various fields (number of bits, location of bits) to specify, among other things, the

operation to be performed (opcode) and the operand(s) on which that operation is to be

performed. Some instruction formats are further broken down though the definition of

instruction templates (or subformats). For example, the instruction templates of a given

instruction format may be defined to have different subsets of the instruction format's fields (the

included fields are typically in the same order, but at least some have different bit positions

because there are less fields included) and/or defined to have a given field interpreted differently.

Thus, each instruction of an ISA is expressed using a given instruction format (and, if defined, in

a given one of the instruction templates of that instruction format) and includes fields for

specifying the operation and the operands. For example, an exemplary ADD instruction has a

specific opcode and an instruction format that includes an opcode field to specify that opcode

and operand fields to select operands (sourcel/destination and source2); and an occurrence of

this ADD instruction in an instruction stream will have specific contents in the operand fields

that select specific operands.

[0005] Scientific, financial, auto-vectorized general purpose, RMS (recognition, mining, and

synthesis), and visual and multimedia applications (e.g., 2D/3D graphics, image processing,

video compression/decompression, voice recognition algorithms and audio manipulation) often

require the same operation to be performed on a large number of data items (referred to as "data

parallelism"). Single Instruction Multiple Data (SIMD) refers to a type of instruction that causes

a processor to perform an operation on multiple data items. SIMD technology is especially

suited to processors that can logically divide the bits in a register into a number of fixed-sized

data elements, each of which represents a separate value. For example, the bits in a 256-bit

register may be specified as a source operand to be operated on as four separate 64-bit packed

data elements (quad-word (Q) size data elements), eight separate 32-bit packed data elements

(double word (D) size data elements), sixteen separate 16-bit packed data elements (word (W)

size data elements), or thirty-two separate 8-bit data elements (byte (B) size data elements). This

type of data is referred to as packed data type or vector data type, and operands of this data type

are referred to as packed data operands or vector operands. In other words, a packed data item or

vector refers to a sequence of packed data elements, and a packed data operand or a vector

operand is a source or destination operand of a SIMD instruction (also known as a packed data

instruction or a vector instruction).

[0006] By way of example, one type of SIMD instruction specifies a single vector operation to

be performed on two source vector operands in a vertical fashion to generate a destination vector

operand (also referred to as a result vector operand) of the same size, with the same number of

data elements, and in the same data element order. The data elements in the source vector

operands are referred to as source data elements, while the data elements in the destination

vector operand are referred to a destination or result data elements. These source vector

operands are of the same size and contain data elements of the same width, and thus they contain

the same number of data elements. The source data elements in the same bit positions in the two

source vector operands form pairs of data elements (also referred to as corresponding data

elements; that is, the data element in data element position 0 of each source operand correspond,

the data element in data element position 1 of each source operand correspond, and so on). The

operation specified by that SIMD instruction is performed separately on each of these pairs of

source data elements to generate a matching number of result data elements, and thus each pair

of source data elements has a corresponding result data element. Since the operation is vertical

and since the result vector operand is the same size, has the same number of data elements, and

the result data elements are stored in the same data element order as the source vector operands,

the result data elements are in the same bit positions of the result vector operand as their

corresponding pair of source data elements in the source vector operands. In addition to this

exemplary type of SIMD instruction, there are a variety of other types of SIMD instructions

(e.g., that has only one or has more than two source vector operands, that operate in a horizontal

fashion, that generates a result vector operand that is of a different size, that has a different size

data elements, and/or that has a different data element order). It should be understood that the

term destination vector operand (or destination operand) is defined as the direct result of

performing the operation specified by an instruction, including the storage of that destination

operand at a location (be it a register or at a memory address specified by that instruction) so that

it may be accessed as a source operand by another instruction (by specification of that same

location by the another instruction).

[0007] The SIMD technology, such as that employed by the Intel® Core™ processors having

an instruction set including x86, MMX™, Streaming SIMD Extensions (SSE), SSE2, SSE3,

SSE4.1, and SSE4.2 instructions, has enabled a significant improvement in application

performance. An additional set of SIMD extensions, referred to the Advanced Vector

Extensions (AVX) (AVXl and AVX2) and using the Vector Extensions (VEX) coding scheme,

has been , has been released and/or published (e.g., see Intel® 64 and IA-32 Architectures

Software Developers Manual, October 201 1; and see Intel® Advanced Vector Extensions

Programming Reference, June 201 1).

Brief Description of the Drawings

[0008] The present invention is illustrated by way of example and not limitation in the figures

of the accompanying drawings, in which like references indicate similar elements and in which:

[0009] Figure 1 illustrates an exemplary illustration of part of an operation of an exemplary

DBPSAD instruction operating on byte elements wherein the resulting SAD calculations are

stored as word elements.

[0010] Figure 2 shows the next 64-bit lane calculations. If source and destinations were 128-

bit, then this would be all of the calculations performed.

[0011] Figure 3 illustrates more detailed exemplary instruction formats.

[0012] Figure 4 illustrates an embodiment of the use of a DBPSAD instruction in a processor.

[0013] Figure 5 illustrates an embodiment of a method for processing a DBPSAD instruction.

[0014] Figure 6 illustrates pseudo-code for DBPSAD for a byte source data element size and

word destination data element size.

[0015] Figure 7 illustrates a correlation between the number of one active bit vector writemask

elements and the vector size and the data element size according to one embodiment of the

invention.

[0016] Figures 8A-8B are block diagrams illustrating a generic vector friendly instruction

format and instruction templates thereof according to embodiments of the invention.

[0017] Figure 9 is a block diagram illustrating an exemplary specific vector friendly

instruction format according to embodiments of the invention

[0018] Figure 10 is a block diagram of a register architecture according to one embodiment of

the invention

[0019] Figure 11A is a block diagram illustrating both an exemplary in-order pipeline and an

exemplary register renaming, out-of-order issue/execution pipeline according to embodiments of

the invention.

[0020] Figure 11B is a block diagram illustrating both an exemplary embodiment of an in-

order architecture core and an exemplary register renaming, out-of-order issue/execution

architecture core to be included in a processor according to embodiments of the invention.

[0021] Figures 12A-B illustrate a block diagram of a more specific exemplary in-order core

architecture, which core would be one of several logic blocks (including other cores of the same

type and/or different types) in a chip

[0022] Figure 13 is a block diagram of a processor that may have more than one core, may

have an integrated memory controller, and may have integrated graphics according to

embodiments of the invention.

[0023] Figure 14 is a block diagram of a system in accordance with one embodiment of the

present invention.

[0024] Figure 15, is a block diagram of a first more specific exemplary system in accordance

with an embodiment of the present invention.

[0025] Figure 16 is a block diagram of a second more specific exemplary system in accordance

with an embodiment of the present invention.

[0026] Figure 17 is a block diagram of a SoC in accordance with an embodiment of the present

invention.

[0027] Figure 18 is a block diagram contrasting the use of a software instruction converter to

convert binary instructions in a source instruction set to binary instructions in a target instruction

set according to embodiments of the invention.

DETAILED DESCRIPTION

[0028] In the following description, numerous specific details are set forth. However, it is

understood that embodiments of the invention may be practiced without these specific details. In

other instances, well-known circuits, structures and techniques have not been shown in detail in

order not to obscure the understanding of this description.

[0029] References in the specification to "one embodiment," "an embodiment," "an example

embodiment," etc., indicate that the embodiment described may include a particular feature,

structure, or characteristic, but every embodiment may not necessarily include the particular

feature, structure, or characteristic. Moreover, such phrases are not necessarily referring to the

same embodiment. Further, when a particular feature, structure, or characteristic is described in

connection with an embodiment, it is submitted that it is within the knowledge of one skilled in

the art to affect such feature, structure, or characteristic in connection with other embodiments

whether or not explicitly described.

[0030] Overview

[0031] In the description below, there are some items that may need explanation prior to

describing the operations of this particular instruction in the instruction set architecture. One

such item is called a "writemask register" which is generally used to predicate an operand to

conditionally control per-element computational operation (below, the term mask register may

also be used and it refers to a writemask register such as the "k" registers discussed below). As

used below, a writemask register stores a plurality of bits (16, 32, 64, etc.) wherein each active

bit of the writemask register governs the operation/update of a packed data element of a vector

register during SIMD processing. Typically, there is more than one writemask register available

for use by a processor core.

[0032] The instruction set architecture includes at least some SIMD instructions that specify

vector operations and that have fields to select source registers and/or destination registers from

these vector registers (an exemplary SIMD instruction may specify a vector operation to be

performed on the contents of one or more of the vector registers, and the result of that vector

operation to be stored in one of the vector registers). Different embodiments of the invention

may have different sized vector registers and support more/less/different sized data elements.

[0033] The size of the multi-bit data elements specified by a SIMD instruction (e.g., byte,

word, double word, quad word) determines the bit locations of the "data element positions"

within a vector register, and the size of the vector operand determines the number of data

elements. A packed data element refers to the data stored in a particular position. In other

words, depending on the size of the data elements in the destination operand and the size of the

destination operand (the total number of bits in the destination operand) (or put another way,

depending on the size of the destination operand and the number of data elements within the

destination operand), the bit locations of the multi-bit data element positions within the resulting

vector operand change (e.g., if the destination for the resulting vector operand is a vector

register, then the bit locations of the multi-bit data element positions within the destination

vector register change). For example, the bit locations of the multi-bit data elements are

different between a vector operation that operates on 32-bit data elements (data element position

0 occupies bit locations 31:0, data element position 1 occupies bit locations 63:32, and so on)

and a vector operation that operates on 64-bit data elements (data element position 0 occupies bit

locations 63:0, data element position 1 occupies bit locations 127:64, and so on).

[0034] Additionally, there is a correlation between the number of one active bit vector

writemask elements and the vector size and the data element size according to one embodiment

of the invention as shown in Figure 7. Vector sizes of 128-bits, 256-bits, and 512-bits are

shown, although other widths are also possible. Data element sizes of 8-bit bytes (B), 16-bit

words (W), 32-bit doublewords (D) or single precision floating point, and 64-bit quadwords (Q)

or double precision floating point are considered, although other widths are also possible. As

shown, when the vector size is 128-bits, 16-bits may be used for masking when the vector's data

element size is 8-bits, 8-bits may be used for masking when the vector's data element size is 16-

bits, 4-bits may be used for masking when the vector's data element size is 32-bits, and 2-bits

may be used for masking when the vector's data element size is 64-bits. When the vector size is

256-bits, 32-bits may be used for masking when the packed data element width is 8-bits, 16-bits

may be used for masking when the vector's data element size is 16-bits, 8-bits may be used for

masking when the vector's data element size is 32-bits, and 4-bits may be used for masking

when the vector's data element size is 64-bits. When the vector size is 512-bits, 64-bits may be

used for masking when the vector's data element size is 8-bits, 32-bits may be used for masking

when the vector's data element size is 16-bits, 16-bits may be used for masking when the

vector's data element size is 32-bits, and 8-bits may be used for masking when the vector's data

element size is 64-bits.

[0035] Depending upon the combination of the vector size and the data element size, either all

64-bits, or only a subset of the 64-bits, may be used as a write mask. Generally, when a single,

per-element masking control bit is used, the number of bits in the vector writemask register used

for masking (active bits) is equal to the vector size in bits divided by the vector's data element

size in bits.

[0036] Described below is a vector instruction that computes multiple SAD (sum of absolute

differences) of selected quadruplets of byte elements in a first operand vector compared to

quadruplet of byte elements of a second operand vector. It also provides the flexibility to select

which quadruplets to compare. This instruction provides the efficiency of comparing SAD of

blocks on video images used for motion search.

[0037] Below are embodiments of an instruction generically called a double block packed sum

of absolute differences (SAD) ("DBPSAD") instruction and embodiments of systems,

architectures, instruction formats, etc. that may be used to execute such an instruction that is

beneficial in several different areas. The execution of a DBPSAD instruction causes the storage

of SAD on byte elements from selected quadruplets (four data element chunks) from a first and

second source into word packed data elements of a destination register. Each quadruplet is the

same size as a data element of the destination. More particularly, in some embodiments multiple

SAD calculations are performed on different 64-bit chunks of data from the two sources and

stored as 4 word sized (64 bits in total) results in the destination register.

[0038] Figure 1 illustrates an exemplary illustration of part of an operation of an exemplary

DBPSAD instruction operating on byte elements wherein the resulting SAD calculations are

stored as word elements. From the first source operand the instruction takes two different

quadruplets with offset of four bytes to participate in the four different SADs. In this illustration

a 64-bit lane is having four SAD calculations performed between 64 selected bits of the first

source and selected 64 bits from the second source. The process illustrate in this figure and

described herein would be performed (with some slight modifications such as different

quadruplet source selections and destination locations) for n number of times where n is the size

of the vector (such as the first source) divided by 64.

[0039] In this particular example, the 64-bits of the first source 101 are the least significant 64

bits of the source. These 64-bits are broken down into 8 byte elements labeled byteO to byte7.

[0040] A temporary 64-bit value 103 selected from the second source is also shown. How

these bits are selected is detailed below. As such, there are two quadruplets (32 bit values

broken comprising 4 bytes each) for both sources that have SAD calculations performed on

them. The selection of quadruplets in the second source is done within 128-bit lanes of the

vector. For a 128-bit second source there is obviously only one such lane, but there are two in a

256-bit vector and four in a 512-bit vector.

[0041] The illustration shows several independent absolute difference logic 107 and summation

logic 109. This logic may be hardware such as an ALU or software routines running on an ALU.

Additionally, while the figure illustrates separate absolute difference logic 107 and summation

logic 109 to be used per SAD calculation, this logic may be combined into one unit per category

(i.e., one absolute difference logic 107 and one summation logic 109) or into a single unit (i.e., a

joint absolute difference logic 107 and summation logic 109).

[0042] The results from the 4 SAD operations are stored as word elements in the destination

register 105. The specifics of each SAD calculation is detailed below. The calculations for the

first 64-bit lane are as follows, where 1= 0, SRC1 = the first 64 bits of the first source, and

TMP1 is a selection of quadruplets from the second source that have been selected according to

an immediate value (these are the lower two quadruplets).

DEST[I+15:I] <- ABS(SRCl[I+7: 1] - ΤΜΡ 1[Ι+7: 1]) + ABS(SRC1[I+15: 1+8]-

TMP1[I+15: 1+8]) + ABS(SRCl[I+23: 1+16]- TMPl[I+23: 1+16]) + ABS(SRC1[I+31:

1+24]- TMP1[I+31: 1+24])

DEST[I+31: 1+16] <- (SRC 1[1+7: 1] - TMP1[I+15: 1+8]) + ABS(SRC1[I+15: 1+8]-

TMPl[I+23: 1+16]) + ABS(SRCl[I+23: 1+16]- TMP1[I+31: 1+24]) + ABS(SRC1[I+31:

1+24]- TMPl[I+39: 1+32])

DEST[I+47: 1+32] <- ABS(SRCl[I+39: 1+32] - TMPl[I+23: 1+16]) +

ABS(SRCl[I+47: 1+40]- TMP1[I+31: 1+24]) + ABS(SRCl[I+55: 1+48]- TMPl[I+39:

1+32]) + ABS(SRCl[I+63: 1+56]- ΤΜΡ 1[Ι+47: 1+40])

DEST[I+63: 1+48] <- ABS(SRCl[I+39: 1+32] - TMP1[I+31: 1+24]) +

ABS(SRCl[I+47: 1+40] - ΤΜΡ 1[Ι+39: 1+32]) + ABS(SRCl[I+55: 1+48] - TMPl[I+47:

1+40]) + ABS(SRCl[I+63: 1+56] - ΤΜΡ 1[Ι+55: 1+48])

[0043] Generically, the what is stored into the destination data element positions is as follows

wherein the value in [] is the data element position:

DEST[0] <- ABS(SRC1[0] - TMP1[0]) + ABS(SRC1[1]- TMP1[1]) + ABS(SRC1[2]-

TMP1[2]) + ABS(SRC1[3]- TMP1[3])

DEST[1] <- (SRC1[0] - TMP1[1]) + ABS(SRC1[1]- TMP1[2]) + ABS(SRC1[2]-

TMP1[3]) + ABS(SRC1[3]- TMP1[4])

DEST[2] <- ABS(SRC1[4] - TMP1[2]) + ABS(SRC1[5]- TMP1[3]) + ABS(SRC1[6]-

TMP1[4]) + ABS(SRC1[7]- TMP1[5])

DEST[3] <- ABS(SRC1[4] - TMP1[3]) + ABS(SRC1[5] - TMP1[4]) + ABS(SRC1[6] -

TMP1[5]) + ABS(SRC1[7] - TMP1[6])

[0044] Obvious variations to the above are made to do the next 64-bit lane. For example, the

first source may be from bit 64 to bit 127 (the next 64-bit chunk) and the temporary value would

be the upper two quadrants selected from the second source.

[0045] The selection of quadruplets from the second source is as follows:

TMP1[I+31:I] <- select (SRC2[I+127: 1], imm8[l:0])

TMPl[I+63: 1+32] <- select (SRC2[I+127: 1], imm8[3:2])

TMPl[I+95: 1+64] <- select (SRC2[I+127: 1], imm8[5:4])

TMP1 [1+127: 1+96]<- select (SRC2[I+127: 1], imm8[7:6])

[0046] The two bits of the immediate allow for the selection of four 32-bit data elements from

the second source. For example, for TMP1, if the immediate is "01" then bits 63:32 of the SRC2

are selected.

[0047] The above is repeated, for example, 64-bits at a time, per data lane (128-bit) until the

entire vector length has been processed.

[0048] Figure 2 shows the next 64-bit lane calculations. If source and destinations were 128-

bit, then this would be all of the calculations performed.

[0049] Exemplary Format

[0050] An exemplary format of this instruction is "DBPSAD{B/W/D/Q} {BAV/D/Q}

XMM 1/YMM 1/ZMM 1, XMM2/YMM2/ZMM2/m 128/m256/m5 12, imm8" where the operand

XMM1/YMM1/ZMM1 is a source vector register (such as a 128-, 256-, or 512-bit register) and

the destination XMM 1/YMM 1/ZMM 1 which is a vector register (such as a 128-, 256-, or 512-bit

register), or a memory location of 128-, 256-, or 512-bit size, imm8 is an 8-bit immediate

(although other immediate sizes may be used), and DBPSAD{B/W/D/Q} is the instruction's

opcode. The size of the data elements in the source register may be defined in the "prefix" of the

instruction such as through the use of an indication of data granularity bit. In most

embodiments, this bit will indicate that each data element is either 32 or 64 bits, however, other

variations may be used. In other embodiments, the size of the data elements is defined by the

opcode itself. For example, a first {B/W/D/Q} identifier indicates a byte, word, doubleword, or

quadword source data element size respectively. Additionally, in some embodiments, a follow-

on {B/W/D/Q} identifier indicates a byte, word, doubleword, or quadword destination data

element size respectively. For example, DBPSADBW indicates byte source data elements and

word destination data elements.

[0051] Figure 3 illustrates more detailed exemplary vector friendly instruction formats.

[0052] Exemplary Methods of Execution

[0053] Figure 4 illustrates an embodiment of the use of a DBPSAD instruction in a processor.

A DBPSAD instruction with a first and second source operands, a destination operand, an

immediate value, and an operand is fetched at 401. As noted above, the first source operand and

destination operand are both vector registers. The second source operand may be either a vector

register or a memory location.

[0054] The DBPSAD instruction is decoded by decoding logic at 403. Depending on the

instruction' s format, a variety of data may be interpreted at this stage such as if there is to be a

data transformation, which registers to write to and retrieve, what memory address to access, etc.

[0055] The source operand values are retrieved/read at 405. For example, the source register(s)

is/are read or the memory location of the second source operand is retrieved.

[0056] The DBPSAD instruction (or operations comprising such an instruction such as

microoperations) is executed by execution resources such as one or more functional units at 407

to, per data lanes (i.e., 64-bit lanes) of the sources, compute the SAD of selected quadruplets of

data elements (i.e., byte elements) of the first and second sources. The specifics of how this may

be accomplished for byte elements was detailed above in the description of Figure 1.

[0057] At 409, the computed SAD values are stored in the destination vector register. For

example, word results of the SAD calculations are stored in data element positions of the

destination register. Generically, the what is stored into the destination data element positions is

as follows:

DEST[0] <- ABS(SRC1[0] - TMP1[0]) + ABS(SRC1[1]- TMP1[1]) + ABS(SRC1[2]-

TMP1[2]) + ABS(SRC1[3]- TMP1[3])

DEST[1] <- (SRC1[0] - TMP1[1]) + ABS(SRC1[1]- TMP1[2]) + ABS(SRC1[2]-

TMP1[3]) + ABS(SRC1[3]- TMP1[4])

DEST[2] <- ABS(SRC1[4] - TMP1[2]) + ABS(SRC1[5]- TMP1[3]) + ABS(SRC1[6]-

TMP1[4]) + ABS(SRC1[7]- TMP1[5])

DEST[3] <- ABS(SRC1[4] - TMP1[3]) + ABS(SRC1[5] - TMP1[4]) + ABS(SRC1[6] -

TMP1[5]) + ABS(SRC1[7] - TMP1[6])

[0058] While 407 and 409 have been illustrated separately, in some embodiments they are

performed together as a part of the execution of the instruction.

[0059] Figure 5 illustrates an embodiment of a method for processing a DBPSAD instruction.

Specifically, what is detailed below is for a data lane (such as a 64-bit data lane). This would be

repeated as many times as necessary until all data lanes have been processed. In this

embodiment it is assumed that some, if not all, of the operations 401-405 have been performed

earlier, however, they are not shown in order to not obscure the details presented below. For

example, the fetching and decoding are not shown, nor is the operand retrieval shown.

[0060] At 501, quadruplets of data elements of the first source are selected. More particularly,

two different quadruplets with an offset (such as four bytes) is selected from the first source. In

Figure 1, this is the least significant 64 bits of the source. If the source and destination registers

were 128-bit, then in the subsequent iteration then the 64 most significant bits would be used.

[0061] Two quadruplets from the second source are selected according to control bits from the

immediate value of the instruction at 503. Each quadruplet is the same size as a data element of

the destination. The selection of quadruplets from the second source is done on a 128-bit step

size. In other words, the selection is made from a 128-bit chunk of the second source. If the

second source is only 128-bits then only one selection of four quadruplets is made. If the second

source is 256-bits, then two selections of four quadruplets is made - one on the 128 least

significant bits and one on the 128 most significant bits.

[0062] Typically, the immediate is an 8-bit value and two bits are used per quadruplet

selection. The two least significant bits are used to select the first quadruplet (least significant)

and so on. For example, for TMP1 of Figure 1, if the immediate is "01" then bits 63:32 of the

SRC2 are selected.

[0063] A SAD is calculated using the selected quadruplets at 505. Each SAD consists of

multiple absolute difference calculations that have been summed together. Again, this is done on

a data lane basis. In Figure 1, a 64-bit lane for the least significant 64-bit is illustrated. The

specifics how the data elements are processed is discussed with respect to that figure.

[0064] At 507, the calculated SADs are stored into data element positions of the destination

vector register. Again, exemplary specifics on what goes where has been discussed with respect

to Figure 1.

[0065] Figure 6 illustrates pseudo-code for DBPSAD for a byte source data element size and

word destination data element size.

[0066] Exemplary Instruction Formats

[0067] Embodiments of the instruction(s) described herein may be embodied in different

formats. Additionally, exemplary systems, architectures, and pipelines are detailed below.

Embodiments of the instruction(s) may be executed on such systems, architectures, and

pipelines, but are not limited to those detailed.

[0068] Generic Vector Friendly Instruction Format

[0069] A vector friendly instruction format is an instruction format that is suited for vector

instructions (e.g., there are certain fields specific to vector operations). While embodiments are

described in which both vector and scalar operations are supported through the vector friendly

instruction format, alternative embodiments use only vector operations the vector friendly

instruction format.

[0070] Figures 8A-8B are block diagrams illustrating a generic vector friendly instruction

format and instruction templates thereof according to embodiments of the invention. Figure 8A

is a block diagram illustrating a generic vector friendly instruction format and class A instruction

templates thereof according to embodiments of the invention; while Figure 8B is a block

diagram illustrating the generic vector friendly instruction format and class B instruction

templates thereof according to embodiments of the invention. Specifically, a generic vector

friendly instruction format 800 for which are defined class A and class B instruction templates,

both of which include no memory access 805 instruction templates and memory access 820

instruction templates. The term generic in the context of the vector friendly instruction format

refers to the instruction format not being tied to any specific instruction set.

[0071] While embodiments of the invention will be described in which the vector friendly

instruction format supports the following: a 64 byte vector operand length (or size) with 32 bit (4

byte) or 64 bit (8 byte) data element widths (or sizes) (and thus, a 64 byte vector consists of

either 16 doubleword-size elements or alternatively, 8 quadword-size elements); a 64 byte vector

operand length (or size) with 16 bit (2 byte) or 8 bit (1 byte) data element widths (or sizes); a 32

byte vector operand length (or size) with 32 bit (4 byte), 64 bit (8 byte), 16 bit (2 byte), or 8 bit

(1 byte) data element widths (or sizes); and a 16 byte vector operand length (or size) with 32 bit

(4 byte), 64 bit (8 byte), 16 bit (2 byte), or 8 bit (1 byte) data element widths (or sizes);

alternative embodiments may support more, less and/or different vector operand sizes (e.g., 256

byte vector operands) with more, less, or different data element widths (e.g., 128 bit (16 byte)

data element widths).

[0072] The class A instruction templates in Figure 8A include: 1) within the no memory access

805 instruction templates there is shown a no memory access, full round control type operation

810 instruction template and a no memory access, data transform type operation 815 instruction

template; and 2) within the memory access 820 instruction templates there is shown a memory

access, temporal 825 instruction template and a memory access, non-temporal 830 instruction

template. The class B instruction templates in Figure 8B include: 1) within the no memory

access 805 instruction templates there is shown a no memory access, write mask control, partial

round control type operation 812 instruction template and a no memory access, write mask

control, vsize type operation 817 instruction template; and 2) within the memory access 820

instruction templates there is shown a memory access, write mask control 827 instruction

template.

[0073] The generic vector friendly instruction format 800 includes the following fields listed

below in the order illustrated in Figures 8A-8B.

[0074] Format field 840 - a specific value (an instruction format identifier value) in this field

uniquely identifies the vector friendly instruction format, and thus occurrences of instructions in

the vector friendly instruction format in instruction streams. As such, this field is optional in the

sense that it is not needed for an instruction set that has only the generic vector friendly

instruction format.

[0075] Base operation field 842 - its content distinguishes different base operations.

[0076] Register index field 844 - its content, directly or through address generation, specifies

the locations of the source and destination operands, be they in registers or in memory. These

include a sufficient number of bits to select N registers from a PxQ (e.g. 32x512, 16x128,

32x1024, 64x1024) register file. While in one embodiment N may be up to three sources and

one destination register, alternative embodiments may support more or less sources and

destination registers (e.g., may support up to two sources where one of these sources also acts as

the destination, may support up to three sources where one of these sources also acts as the

destination, may support up to two sources and one destination).

[0077] Modifier field 846 - its content distinguishes occurrences of instructions in the generic

vector instruction format that specify memory access from those that do not; that is, between no

memory access 805 instruction templates and memory access 820 instruction templates.

Memory access operations read and/or write to the memory hierarchy (in some cases specifying

the source and/or destination addresses using values in registers), while non-memory access

operations do not (e.g., the source and destinations are registers). While in one embodiment this

field also selects between three different ways to perform memory address calculations,

alternative embodiments may support more, less, or different ways to perform memory address

calculations.

[0078] Augmentation operation field 850 - its content distinguishes which one of a variety of

different operations to be performed in addition to the base operation. This field is context

specific. In one embodiment of the invention, this field is divided into a class field 868, an alpha

field 852, and a beta field 854. The augmentation operation field 850 allows common groups of

operations to be performed in a single instruction rather than 2, 3, or 4 instructions.

[0079] Scale field 860 - its content allows for the scaling of the index field's content for

memory address generation (e.g., for address generation that uses 2s al * index + base).

[0080] Displacement Field 862A- its content is used as part of memory address generation

(e.g., for address generation that uses 2s al * index + base + displacement).

[0081] Displacement Factor Field 862B (note that the juxtaposition of displacement field 862A

directly over displacement factor field 862B indicates one or the other is used) - its content is

used as part of address generation; it specifies a displacement factor that is to be scaled by the

size of a memory access (N) - where N is the number of bytes in the memory access (e.g., for

address generation that uses 2s al * index + base + scaled displacement). Redundant low-order

bits are ignored and hence, the displacement factor field' s content is multiplied by the memory

operands total size (N) in order to generate the final displacement to be used in calculating an

effective address. The value of N is determined by the processor hardware at runtime based on

the full opcode field 874 (described later herein) and the data manipulation field 854C. The

displacement field 862A and the displacement factor field 862B are optional in the sense that

they are not used for the no memory access 805 instruction templates and/or different

embodiments may implement only one or none of the two.

[0082] Data element width field 864 - its content distinguishes which one of a number of data

element widths is to be used (in some embodiments for all instructions; in other embodiments for

only some of the instructions). This field is optional in the sense that it is not needed if only one

data element width is supported and/or data element widths are supported using some aspect of

the opcodes.

[0083] Write mask field 870 - its content controls, on a per data element position basis,

whether that data element position in the destination vector operand reflects the result of the base

operation and augmentation operation. Class A instruction templates support merging-

writemasking, while class B instruction templates support both merging- and zeroing-

writemasking. When merging, vector masks allow any set of elements in the destination to be

protected from updates during the execution of any operation (specified by the base operation

and the augmentation operation); in other one embodiment, preserving the old value of each

element of the destination where the corresponding mask bit has a 0. In contrast, when zeroing

vector masks allow any set of elements in the destination to be zeroed during the execution of

any operation (specified by the base operation and the augmentation operation); in one

embodiment, an element of the destination is set to 0 when the corresponding mask bit has a 0

value. A subset of this functionality is the ability to control the vector length of the operation

being performed (that is, the span of elements being modified, from the first to the last one);

however, it is not necessary that the elements that are modified be consecutive. Thus, the write

mask field 870 allows for partial vector operations, including loads, stores, arithmetic, logical,

etc. While embodiments of the invention are described in which the write mask field's 870

content selects one of a number of write mask registers that contains the write mask to be used

(and thus the write mask field's 870 content indirectly identifies that masking to be performed),

alternative embodiments instead or additional allow the mask write field' s 870 content to directly

specify the masking to be performed.

[0084] Immediate field 872 - its content allows for the specification of an immediate. This

field is optional in the sense that is it not present in an implementation of the generic vector

friendly format that does not support immediate and it is not present in instructions that do not

use an immediate.

[0085] Class field 868 - its content distinguishes between different classes of instructions.

With reference to Figures 8A-B, the contents of this field select between class A and class B

instructions. In Figures 8A-B, rounded corner squares are used to indicate a specific value is

present in a field (e.g., class A 868A and class B 868B for the class field 868 respectively in

Figures 8A-B).

[0086] Instruction Templates of Class A

[0087] In the case of the non-memory access 805 instruction templates of class A, the alpha

field 852 is interpreted as an RS field 852A, whose content distinguishes which one of the

different augmentation operation types are to be performed (e.g., round 852A.1 and data

transform 852A.2 are respectively specified for the no memory access, round type operation 810

and the no memory access, data transform type operation 815 instruction templates), while the

beta field 854 distinguishes which of the operations of the specified type is to be performed. In

the no memory access 805 instruction templates, the scale field 860, the displacement field

862A, and the displacement scale filed 862B are not present.

[0088] No-Memory Access Instruction Templates - Full Round Control Type Operation

[0089] In the no memory access full round control type operation 810 instruction template, the

beta field 854 is interpreted as a round control field 854A, whose content(s) provide static

rounding. While in the described embodiments of the invention the round control field 854A

includes a suppress all floating point exceptions (SAE) field 856 and a round operation control

field 858, alternative embodiments may support may encode both these concepts into the same

field or only have one or the other of these concepts/fields (e.g., may have only the round

operation control field 858).

[0090] SAE field 856 - its content distinguishes whether or not to disable the exception event

reporting; when the SAE field's 856 content indicates suppression is enabled, a given instruction

does not report any kind of floating-point exception flag and does not raise any floating point

exception handler.

[0091] Round operation control field 858 - its content distinguishes which one of a group of

rounding operations to perform (e.g., Round-up, Round-down, Round-towards-zero and Round-

to-nearest). Thus, the round operation control field 858 allows for the changing of the rounding

mode on a per instruction basis. In one embodiment of the invention where a processor includes

a control register for specifying rounding modes, the round operation control field's 850 content

overrides that register value.

[0092] No Memory Access Instruction Templates - Data Transform Type Operation

[0093] In the no memory access data transform type operation 815 instruction template, the

beta field 854 is interpreted as a data transform field 854B, whose content distinguishes which

one of a number of data transforms is to be performed (e.g., no data transform, swizzle,

broadcast).

[0094] In the case of a memory access 820 instruction template of class A, the alpha field 852

is interpreted as an eviction hint field 852B, whose content distinguishes which one of the

eviction hints is to be used (in Figure 8A, temporal 852B.1 and non-temporal 852B.2 are

respectively specified for the memory access, temporal 825 instruction template and the memory

access, non-temporal 830 instruction template), while the beta field 854 is interpreted as a data

manipulation field 854C, whose content distinguishes which one of a number of data

manipulation operations (also known as primitives) is to be performed (e.g., no manipulation;

broadcast; up conversion of a source; and down conversion of a destination). The memory

access 820 instruction templates include the scale field 860, and optionally the displacement

field 862A or the displacement scale field 862B.

[0095] Vector memory instructions perform vector loads from and vector stores to memory,

with conversion support. As with regular vector instructions, vector memory instructions

transfer data from/to memory in a data element-wise fashion, with the elements that are actually

transferred is dictated by the contents of the vector mask that is selected as the write mask.

[0096] Memory Access Instruction Templates - Temporal

[0097] Temporal data is data likely to be reused soon enough to benefit from caching. This is,

however, a hint, and different processors may implement it in different ways, including ignoring

the hint entirely.

[0098] Memory Access Instruction Templates - Non-Temporal

[0099] Non-temporal data is data unlikely to be reused soon enough to benefit from caching in

the 1st-level cache and should be given priority for eviction. This is, however, a hint, and

different processors may implement it in different ways, including ignoring the hint entirely.

[00100] Instruction Templates of Class B

[00101] In the case of the instruction templates of class B, the alpha field 852 is interpreted as a

write mask control (Z) field 852C, whose content distinguishes whether the write masking

controlled by the write mask field 870 should be a merging or a zeroing.

[00102] In the case of the non-memory access 805 instruction templates of class B, part of the

beta field 854 is interpreted as an RL field 857A, whose content distinguishes which one of the

different augmentation operation types are to be performed (e.g., round 857A.1 and vector length

(VSIZE) 857A.2 are respectively specified for the no memory access, write mask control, partial

round control type operation 812 instruction template and the no memory access, write mask

control, VSIZE type operation 817 instruction template), while the rest of the beta field 854

distinguishes which of the operations of the specified type is to be performed. In the no memory

access 805 instruction templates, the scale field 860, the displacement field 862A, and the

displacement scale filed 862B are not present.

[00103] In the no memory access, write mask control, partial round control type operation 810

instruction template, the rest of the beta field 854 is interpreted as a round operation field 859A

and exception event reporting is disabled (a given instruction does not report any kind of

floating-point exception flag and does not raise any floating point exception handler).

[00104] Round operation control field 859A - just as round operation control field 858, its

content distinguishes which one of a group of rounding operations to perform (e.g., Round-up,

Round-down, Round-towards-zero and Round-to-nearest). Thus, the round operation control

field 859A allows for the changing of the rounding mode on a per instruction basis. In one

embodiment of the invention where a processor includes a control register for specifying

rounding modes, the round operation control field's 850 content overrides that register value.

[00105] In the no memory access, write mask control, VSIZE type operation 817 instruction

template, the rest of the beta field 854 is interpreted as a vector length field 859B, whose content

distinguishes which one of a number of data vector lengths is to be performed on (e.g., 128, 256,

or 512 byte).

[00106] In the case of a memory access 820 instruction template of class B, part of the beta field

854 is interpreted as a broadcast field 857B, whose content distinguishes whether or not the

broadcast type data manipulation operation is to be performed, while the rest of the beta field

854 is interpreted the vector length field 859B. The memory access 820 instruction templates

include the scale field 860, and optionally the displacement field 862A or the displacement scale

field 862B.

[00107] With regard to the generic vector friendly instruction format 800, a full opcode field 874

is shown including the format field 840, the base operation field 842, and the data element width

field 864. While one embodiment is shown where the full opcode field 874 includes all of these

fields, the full opcode field 874 includes less than all of these fields in embodiments that do not

support all of them. The full opcode field 874 provides the operation code (opcode).

[00108] The augmentation operation field 850, the data element width field 864, and the write

mask field 870 allow these features to be specified on a per instruction basis in the generic vector

friendly instruction format.

[00109] The combination of write mask field and data element width field create typed

instructions in that they allow the mask to be applied based on different data element widths.

[00110] The various instruction templates found within class A and class B are beneficial in

different situations. In some embodiments of the invention, different processors or different

cores within a processor may support only class A, only class B, or both classes. For instance, a

high performance general purpose out-of-order core intended for general-purpose computing

may support only class B, a core intended primarily for graphics and/or scientific (throughput)

computing may support only class A, and a core intended for both may support both (of course, a

core that has some mix of templates and instructions from both classes but not all templates and

instructions from both classes is within the purview of the invention). Also, a single processor

may include multiple cores, all of which support the same class or in which different cores

support different class. For instance, in a processor with separate graphics and general purpose

cores, one of the graphics cores intended primarily for graphics and/or scientific computing may

support only class A, while one or more of the general purpose cores may be high performance

general purpose cores with out of order execution and register renaming intended for general-

purpose computing that support only class B. Another processor that does not have a separate

graphics core, may include one more general purpose in-order or out-of-order cores that support

both class A and class B. Of course, features from one class may also be implement in the other

class in different embodiments of the invention. Programs written in a high level language

would be put (e.g., just in time compiled or statically compiled) into an variety of different

executable forms, including: 1) a form having only instructions of the class(es) supported by the

target processor for execution; or 2) a form having alternative routines written using different

combinations of the instructions of all classes and having control flow code that selects the

routines to execute based on the instructions supported by the processor which is currently

executing the code.

[00111] Exemplary Specific Vector Friendly Instruction Format

[00112] Figure 9 is a block diagram illustrating an exemplary specific vector friendly

instruction format according to embodiments of the invention. Figure 9 shows a specific vector

friendly instruction format 900 that is specific in the sense that it specifies the location, size,

interpretation, and order of the fields, as well as values for some of those fields. The specific

vector friendly instruction format 900 may be used to extend the x86 instruction set, and thus

some of the fields are similar or the same as those used in the existing x86 instruction set and

extension thereof (e.g., AVX). This format remains consistent with the prefix encoding field,

real opcode byte field, MOD R/M field, SIB field, displacement field, and immediate fields of

the existing x86 instruction set with extensions. The fields from Figure 8 into which the fields

from Figure 9 map are illustrated.

[00113] It should be understood that, although embodiments of the invention are described with

reference to the specific vector friendly instruction format 900 in the context of the generic

vector friendly instruction format 800 for illustrative purposes, the invention is not limited to the

specific vector friendly instruction format 900 except where claimed. For example, the generic

vector friendly instruction format 800 contemplates a variety of possible sizes for the various

fields, while the specific vector friendly instruction format 900 is shown as having fields of

specific sizes. By way of specific example, while the data element width field 864 is illustrated

as a one bit field in the specific vector friendly instruction format 900, the invention is not so

limited (that is, the generic vector friendly instruction format 800 contemplates other sizes of the

data element width field 864).

[00114] The generic vector friendly instruction format 800 includes the following fields listed

below in the order illustrated in Figure 9A.

[00115] EVEX Prefix (Bytes 0-3) 902 - is encoded in a four-byte form.

[00116] Format Field 840 (EVEX Byte 0, bits [7:0]) - the first byte (EVEX Byte 0) is the format

field 840 and it contains 0x62 (the unique value used for distinguishing the vector friendly

instruction format in one embodiment of the invention).

[00117] The second-fourth bytes (EVEX Bytes 1-3) include a number of bit fields providing

specific capability.

[00118] REX field 905 (EVEX Byte 1, bits [7-5]) - consists of a EVEX.R bit field (EVEX Byte

1, bit [7] - R), EVEX.X bit field (EVEX byte 1, bit [6] - X), and 857BEX byte 1, bit[5] - B).

The EVEX.R, EVEX.X, and EVEX.B bit fields provide the same functionality as the

corresponding VEX bit fields, and are encoded using I s complement form, i.e. ZMM0 is

encoded as 111IB, ZMM15 is encoded as 0000B. Other fields of the instructions encode the

lower three bits of the register indexes as is known in the art (rrr, xxx, and bbb), so that Rrrr,

Xxxx, and Bbbb may be formed by adding EVEX.R, EVEX.X, and EVEX.B.

[00119] REX' field 810 - this is the first part of the REX' field 810 and is the EVEX.R' bit field

(EVEX Byte 1, bit [4] - R') that is used to encode either the upper 16 or lower 16 of the extended

32 register set. In one embodiment of the invention, this bit, along with others as indicated

below, is stored in bit inverted format to distinguish (in the well-known x86 32-bit mode) from

the BOUND instruction, whose real opcode byte is 62, but does not accept in the MOD R/M

field (described below) the value of 11 in the MOD field; alternative embodiments of the

invention do not store this and the other indicated bits below in the inverted format. A value of 1

is used to encode the lower 16 registers. In other words, R'Rrrr is formed by combining

EVEX.R', EVEX.R, and the other RRR from other fields.

[00120] Opcode map field 915 (EVEX byte 1, bits [3:0] - mmmm) - its content encodes an

implied leading opcode byte (OF, OF 38, or OF 3).

[00121] Data element width field 864 (EVEX byte 2, bit [7] - W) - is represented by the

notation EVEX.W. EVEX.W is used to define the granularity (size) of the datatype (either 32-

bit data elements or 64-bit data elements).

[00122] EVEX.vvvv 920 (EVEX Byte 2, bits [6:3]-vvvv)- the role of EVEX.vvvv may include

the following: 1) EVEX.vvvv encodes the first source register operand, specified in inverted (Is

complement) form and is valid for instructions with 2 or more source operands; 2) EVEX.vvvv

encodes the destination register operand, specified in Is complement form for certain vector

shifts; or 3) EVEX.vvvv does not encode any operand, the field is reserved and should contain

111 lb. Thus, EVEX.vvvv field 920 encodes the 4 low-order bits of the first source register

specifier stored in inverted (Is complement) form. Depending on the instruction, an extra

different EVEX bit field is used to extend the specifier size to 32 registers.

[00123] EVEX.U 868 Class field (EVEX byte 2, bit [2]-U) - If EVEX.U = 0, it indicates class A

or EVEX.U0; if EVEX.U = 1, it indicates class B or EVEX.U1.

[00124] Prefix encoding field 925 (EVEX byte 2, bits [1 :0]-pp) - provides additional bits for the

base operation field. In addition to providing support for the legacy SSE instructions in the

EVEX prefix format, this also has the benefit of compacting the SIMD prefix (rather than

requiring a byte to express the SIMD prefix, the EVEX prefix requires only 2 bits). In one

embodiment, to support legacy SSE instructions that use a SIMD prefix (66H, F2H, F3H) in both

the legacy format and in the EVEX prefix format, these legacy SIMD prefixes are encoded into

the SIMD prefix encoding field; and at runtime are expanded into the legacy SIMD prefix prior

to being provided to the decoder' s PLA (so the PLA can execute both the legacy and EVEX

format of these legacy instructions without modification). Although newer instructions could

use the EVEX prefix encoding field's content directly as an opcode extension, certain

embodiments expand in a similar fashion for consistency but allow for different meanings to be

specified by these legacy SIMD prefixes. An alternative embodiment may redesign the PLA to

support the 2 bit SIMD prefix encodings, and thus not require the expansion.

[00125] Alpha field 852 (EVEX byte 3, bit [7] - EH; also known as EVEX.EH, EVEX.rs,

EVEX.RL, EVEX.write mask control, and EVEX.N; also illustrated with a) - as previously

described, this field is context specific.

[00126] Beta field 854 (EVEX byte 3, bits [6:4]-SSS, also known as EVEX.s2-0, EVEX.r2-0,

EVEX.rrl, EVEX.LL0, EVEX.LLB; also illustrated with βββ) - as previously described, this

field is context specific.

[00127] REX' field 810 - this is the remainder of the REX' field and is the EVEX.V bit field

(EVEX Byte 3, bit [3] - V) that may be used to encode either the upper 16 or lower 16 of the

extended 32 register set. This bit is stored in bit inverted format. A value of 1 is used to encode

the lower 16 registers. In other words, V'VVVV is formed by combining EVEX.V,

EVEX.vvvv.

[00128] Write mask field 870 (EVEX byte 3, bits [2:0]-kkk) - its content specifies the index of a

register in the write mask registers as previously described. In one embodiment of the invention,

the specific value EVEX.kkk=000 has a special behavior implying no write mask is used for the

particular instruction (this may be implemented in a variety of ways including the use of a write

mask hardwired to all ones or hardware that bypasses the masking hardware).

[00129] Real Opcode Field 930 (Byte 4) is also known as the opcode byte. Part of the opcode is

specified in this field.

[00130] MOD R/M Field 940 (Byte 5) includes MOD field 942, Reg field 944, and R/M field

946. As previously described, the MOD field' s 942 content distinguishes between memory

access and non-memory access operations. The role of Reg field 944 can be summarized to two

situations: encoding either the destination register operand or a source register operand, or be

treated as an opcode extension and not used to encode any instruction operand. The role of R/M

field 946 may include the following: encoding the instruction operand that references a memory

address, or encoding either the destination register operand or a source register operand.

[00131] Scale, Index, Base (SIB) Byte (Byte 6) - As previously described, the scale field's 850

content is used for memory address generation. SIB.xxx 954 and SIB.bbb 956 - the contents of

these fields have been previously referred to with regard to the register indexes Xxxx and Bbbb.

[00132] Displacement field 862A (Bytes 7-10) - when MOD field 942 contains 10, bytes 7-10

are the displacement field 862A, and it works the same as the legacy 32-bit displacement

(disp32) and works at byte granularity.

[00133] Displacement factor field 862B (Byte 7) - when MOD field 942 contains 01, byte 7 is

the displacement factor field 862B. The location of this field is that same as that of the legacy

x86 instruction set 8-bit displacement (disp8), which works at byte granularity. Since disp8 is

sign extended, it can only address between -128 and 127 bytes offsets; in terms of 64 byte cache

lines, disp8 uses 8 bits that can be set to only four really useful values -128, -64, 0, and 64; since

a greater range is often needed, disp32 is used; however, disp32 requires 4 bytes. In contrast to

disp8 and disp32, the displacement factor field 862B is a reinterpretation of disp8; when using

displacement factor field 862B, the actual displacement is determined by the content of the

displacement factor field multiplied by the size of the memory operand access (N). This type of

displacement is referred to as disp8*N. This reduces the average instruction length (a single byte

of used for the displacement but with a much greater range). Such compressed displacement is

based on the assumption that the effective displacement is multiple of the granularity of the

memory access, and hence, the redundant low-order bits of the address offset do not need to be

encoded. In other words, the displacement factor field 862B substitutes the legacy x86

instruction set 8-bit displacement. Thus, the displacement factor field 862B is encoded the same

way as an x86 instruction set 8-bit displacement (so no changes in the ModRM/SIB encoding

rules) with the only exception that disp8 is overloaded to disp8*N. In other words, there are no

changes in the encoding rules or encoding lengths but only in the interpretation of the

displacement value by hardware (which needs to scale the displacement by the size of the

memory operand to obtain a byte-wise address offset).

[00134] Immediate field 872 operates as previously described.

[00135] Full Opcode Field

[00136] Figure 9B is a block diagram illustrating the fields of the specific vector friendly

instruction format 900 that make up the full opcode field 874 according to one embodiment of

the invention. Specifically, the full opcode field 874 includes the format field 840, the base

operation field 842, and the data element width (W) field 864. The base operation field 842

includes the prefix encoding field 925, the opcode map field 915, and the real opcode field 930.

[00137] Register Index Field

[00138] Figure 9C is a block diagram illustrating the fields of the specific vector friendly

instruction format 900 that make up the register index field 844 according to one embodiment of

the invention. Specifically, the register index field 844 includes the REX field 905, the REX'

field 910, the MODR/M.reg field 944, the MODR/M.r/m field 946, the W W field 920, xxx

field 954, and the bbb field 956.

[00139] Augmentation Operation Field

[00140] Figure 9D is a block diagram illustrating the fields of the specific vector friendly

instruction format 900 that make up the augmentation operation field 850 according to one

embodiment of the invention. When the class (U) field 868 contains 0, it signifies EVEX.U0

(class A 868A); when it contains 1, it signifies EVEX.U1 (class B 868B). When U=0 and the

MOD field 942 contains 11 (signifying a no memory access operation), the alpha field 852

(EVEX byte 3, bit [7] - EH) is interpreted as the rs field 852A. When the rs field 852A contains

a 1 (round 852A.1), the beta field 854 (EVEX byte 3, bits [6:4]- SSS) is interpreted as the round

control field 854A. The round control field 854A includes a one bit SAE field 856 and a two bit

round operation field 858. When the rs field 852A contains a 0 (data transform 852A.2), the beta

field 854 (EVEX byte 3, bits [6:4]- SSS) is interpreted as a three bit data transform field 854B.

When U=0 and the MOD field 942 contains 00, 01, or 10 (signifying a memory access

operation), the alpha field 852 (EVEX byte 3, bit [7] - EH) is interpreted as the eviction hint

(EH) field 852B and the beta field 854 (EVEX byte 3, bits [6:4]- SSS) is interpreted as a three bit

data manipulation field 854C.

[00141] When U=l, the alpha field 852 (EVEX byte 3, bit [7] - EH) is interpreted as the write

mask control (Z) field 852C. When U=l and the MOD field 942 contains 11 (signifying a no

memory access operation), part of the beta field 854 (EVEX byte 3, bit [4]- So) is interpreted as

the RL field 857A; when it contains a 1 (round 857A.1) the rest of the beta field 854 (EVEX

byte 3, bit [6-5]- S2_i) is interpreted as the round operation field 859A, while when the RL field

857A contains a 0 (VSIZE 857.A2) the rest of the beta field 854 (EVEX byte 3, bit [6-5]- S2-i) is

interpreted as the vector length field 859B (EVEX byte 3, bit [6-5]- L 1-0) . When U=l and the

MOD field 942 contains 00, 01, or 10 (signifying a memory access operation), the beta field 854

(EVEX byte 3, bits [6:4]- SSS) is interpreted as the vector length field 859B (EVEX byte 3, bit

[6-5]- L1.0) and the broadcast field 857B (EVEX byte 3, bit [4]- B).

[00142] Exemplary Register Architecture

[00143] Figure 10 is a block diagram of a register architecture 1000 according to one

embodiment of the invention. In the embodiment illustrated, there are 32 vector registers 1010

that are 512 bits wide; these registers are referenced as zmmO through zmm31. The lower order

256 bits of the lower 16 zmm registers are overlaid on registers ymmO-16. The lower order 128

bits of the lower 16 zmm registers (the lower order 128 bits of the ymm registers) are overlaid on

registers xmm0-15. The specific vector friendly instruction format 900 operates on these

overlaid register file as illustrated in the below tables.

[00144] In other words, the vector length field 859B selects between a maximum length and one

or more other shorter lengths, where each such shorter length is half the length of the preceding

length; and instructions templates without the vector length field 859B operate on the maximum

vector length. Further, in one embodiment, the class B instruction templates of the specific

vector friendly instruction format 900 operate on packed or scalar single/double-precision

floating point data and packed or scalar integer data. Scalar operations are operations performed

on the lowest order data element position in an zmm/ymm/xmm register; the higher order data

element positions are either left the same as they were prior to the instruction or zeroed

depending on the embodiment.

[00145] Write mask registers 1015 - in the embodiment illustrated, there are 8 write mask

registers (kO through k7), each 64 bits in size. In an alternate embodiment, the write mask

registers 1015 are 16 bits in size. As previously described, in one embodiment of the invention,

the vector mask register k O cannot be used as a write mask; when the encoding that would

normally indicate k O is used for a write mask, it selects a hardwired write mask of OxFFFF,

effectively disabling write masking for that instruction.

[00146] General-purpose registers 1025 - in the embodiment illustrated, there are sixteen 64-bit

general-purpose registers that are used along with the existing x86 addressing modes to address

memory operands. These registers are referenced by the names RAX, RBX, RCX, RDX, RBP,

RSI, RDI, RSP, and R8 through R15.

[00147] Scalar floating point stack register file (x87 stack) 1045, on which is aliased the MMX

packed integer flat register file 1050 - in the embodiment illustrated, the x87 stack is an eight-

element stack used to perform scalar floating-point operations on 32/64/80-bit floating point data

using the x87 instruction set extension; while the MMX registers are used to perform operations

on 64-bit packed integer data, as well as to hold operands for some operations performed

between the MMX and XMM registers.

[00148] Alternative embodiments of the invention may use wider or narrower registers.

Additionally, alternative embodiments of the invention may use more, less, or different register

files and registers.

[00149] Exemplary Core Architectures, Processors, and Computer Architectures

[00150] Processor cores may be implemented in different ways, for different purposes, and in

different processors. For instance, implementations of such cores may include: 1) a general

purpose in-order core intended for general-purpose computing; 2) a high performance general

purpose out-of-order core intended for general-purpose computing; 3) a special purpose core

intended primarily for graphics and/or scientific (throughput) computing. Implementations of

different processors may include: 1) a CPU including one or more general purpose in-order cores

intended for general-purpose computing and/or one or more general purpose out-of-order cores

intended for general-purpose computing; and 2) a coprocessor including one or more special

purpose cores intended primarily for graphics and/or scientific (throughput). Such different

processors lead to different computer system architectures, which may include: 1) the

coprocessor on a separate chip from the CPU; 2) the coprocessor on a separate die in the same

package as a CPU; 3) the coprocessor on the same die as a CPU (in which case, such a

coprocessor is sometimes referred to as special purpose logic, such as integrated graphics and/or

scientific (throughput) logic, or as special purpose cores); and 4) a system on a chip that may

include on the same die the described CPU (sometimes referred to as the application core(s) or

application processor(s)), the above described coprocessor, and additional functionality.

Exemplary core architectures are described next, followed by descriptions of exemplary

processors and computer architectures.

[00151] Exemplary Core Architectures

[00152] In-order and out-of-order core block diagram

[00153] Figure 11A is a block diagram illustrating both an exemplary in-order pipeline and an

exemplary register renaming, out-of-order issue/execution pipeline according to embodiments of

the invention. Figure 1IB is a block diagram illustrating both an exemplary embodiment of an

in-order architecture core and an exemplary register renaming, out-of-order issue/execution

architecture core to be included in a processor according to embodiments of the invention. The

solid lined boxes in Figures 11A-B illustrate the in-order pipeline and in-order core, while the

optional addition of the dashed lined boxes illustrates the register renaming, out-of-order

issue/execution pipeline and core. Given that the in-order aspect is a subset of the out-of-order

aspect, the out-of-order aspect will be described.

[00154] In Figure 11A, a processor pipeline 1100 includes a fetch stage 1102, a length decode

stage 1104, a decode stage 1106, an allocation stage 1108, a renaming stage 1110, a scheduling

(also known as a dispatch or issue) stage 1112, a register read/memory read stage 1114, an

execute stage 1116, a write back/memory write stage 1118, an exception handling stage 1122,

and a commit stage 1124.

[00155] Figure 1IB shows processor core 1190 including a front end unit 1130 coupled to an

execution engine unit 1150, and both are coupled to a memory unit 1170. The core 1190 may be

a reduced instruction set computing (RISC) core, a complex instruction set computing (CISC)

core, a very long instruction word (VLIW) core, or a hybrid or alternative core type. As yet

another option, the core 1190 may be a special-purpose core, such as, for example, a network or

communication core, compression engine, coprocessor core, general purpose computing graphics

processing unit (GPGPU) core, graphics core, or the like.

[00156] The front end unit 1130 includes a branch prediction unit 1132 coupled to an instruction

cache unit 1134, which is coupled to an instruction translation lookaside buffer (TLB) 1136,

which is coupled to an instruction fetch unit 1138, which is coupled to a decode unit 1140. The

decode unit 1140 (or decoder) may decode instructions, and generate as an output one or more

micro-operations, micro-code entry points, microinstructions, other instructions, or other control

signals, which are decoded from, or which otherwise reflect, or are derived from, the original

instructions. The decode unit 1140 may be implemented using various different mechanisms.

Examples of suitable mechanisms include, but are not limited to, look-up tables, hardware

implementations, programmable logic arrays (PLAs), microcode read only memories (ROMs),

etc. In one embodiment, the core 1190 includes a microcode ROM or other medium that stores

microcode for certain macroinstructions (e.g., in decode unit 1140 or otherwise within the front

end unit 1130). The decode unit 1140 is coupled to a rename/allocator unit 1152 in the

execution engine unit 1150.

[00157] The execution engine unit 1150 includes the rename/allocator unit 1152 coupled to a

retirement unit 1154 and a set of one or more scheduler unit(s) 1156. The scheduler unit(s) 1156

represents any number of different schedulers, including reservations stations, central instruction

window, etc. The scheduler unit(s) 1156 is coupled to the physical register file(s) unit(s) 1158.

Each of the physical register file(s) units 1158 represents one or more physical register files,

different ones of which store one or more different data types, such as scalar integer, scalar

floating point, packed integer, packed floating point, vector integer, vector floating point,, status

(e.g., an instruction pointer that is the address of the next instruction to be executed), etc. In one

embodiment, the physical register file(s) unit 1158 comprises a vector registers unit, a write

mask registers unit, and a scalar registers unit. These register units may provide architectural

vector registers, vector mask registers, and general purpose registers. The physical register

file(s) unit(s) 1158 is overlapped by the retirement unit 1154 to illustrate various ways in which

register renaming and out-of-order execution may be implemented (e.g., using a reorder buffer(s)

and a retirement register file(s); using a future file(s), a history buffer(s), and a retirement

register file(s); using a register maps and a pool of registers; etc.). The retirement unit 1154 and

the physical register file(s) unit(s) 1158 are coupled to the execution cluster(s) 1160. The

execution cluster(s) 1160 includes a set of one or more execution units 1162 and a set of one or

more memory access units 1164. The execution units 1162 may perform various operations

(e.g., shifts, addition, subtraction, multiplication) and on various types of data (e.g., scalar

floating point, packed integer, packed floating point, vector integer, vector floating point).

While some embodiments may include a number of execution units dedicated to specific

functions or sets of functions, other embodiments may include only one execution unit or

multiple execution units that all perform all functions. The scheduler unit(s) 1156, physical

register file(s) unit(s) 1158, and execution cluster(s) 1160 are shown as being possibly plural

because certain embodiments create separate pipelines for certain types of data/operations (e.g., a

scalar integer pipeline, a scalar floating point/packed integer/packed floating point/vector

integer/vector floating point pipeline, and/or a memory access pipeline that each have their own

scheduler unit, physical register file(s) unit, and/or execution cluster - and in the case of a

separate memory access pipeline, certain embodiments are implemented in which only the

execution cluster of this pipeline has the memory access unit(s) 1164). It should also be

understood that where separate pipelines are used, one or more of these pipelines may be out-of-

order issue/execution and the rest in-order.

[00158] The set of memory access units 1164 is coupled to the memory unit 1170, which

includes a data TLB unit 1172 coupled to a data cache unit 1174 coupled to a level 2 (L2) cache

unit 1176. In one exemplary embodiment, the memory access units 1164 may include a load

unit, a store address unit, and a store data unit, each of which is coupled to the data TLB unit

1172 in the memory unit 1170. The instruction cache unit 1134 is further coupled to a level 2

(L2) cache unit 1176 in the memory unit 1170. The L2 cache unit 1176 is coupled to one or

more other levels of cache and eventually to a main memory.

[00159] By way of example, the exemplary register renaming, out-of-order issue/execution core

architecture may implement the pipeline 1100 as follows: 1) the instruction fetch 1138 performs

the fetch and length decoding stages 1102 and 1104; 2) the decode unit 1140 performs the

decode stage 1106; 3) the rename/allocator unit 1152 performs the allocation stage 1108 and

renaming stage 1110; 4) the scheduler unit(s) 1156 performs the schedule stage 1112; 5) the

physical register file(s) unit(s) 1158 and the memory unit 1170 perform the register read/memory

read stage 1114; the execution cluster 1160 perform the execute stage 1116; 6) the memory unit

1170 and the physical register file(s) unit(s) 1158 perform the write back/memory write stage

1118; 7) various units may be involved in the exception handling stage 1122; and 8) the

retirement unit 1154 and the physical register file(s) unit(s) 1158 perform the commit stage 1124.

[00160] The core 1190 may support one or more instructions sets (e.g., the x86 instruction set

(with some extensions that have been added with newer versions); the MIPS instruction set of

MIPS Technologies of Sunnyvale, CA; the ARM instruction set (with optional additional

extensions such as NEON) of ARM Holdings of Sunnyvale, CA), including the instruction(s)

described herein. In one embodiment, the core 1190 includes logic to support a packed data

instruction set extension (e.g., AVX1, AVX2, and/or some form of the generic vector friendly

instruction format (U=0 and/or U=l) previously described), thereby allowing the operations used

by many multimedia applications to be performed using packed data.

[00161] It should be understood that the core may support multithreading (executing two or

more parallel sets of operations or threads), and may do so in a variety of ways including time

sliced multithreading, simultaneous multithreading (where a single physical core provides a

logical core for each of the threads that physical core is simultaneously multithreading), or a

combination thereof (e.g., time sliced fetching and decoding and simultaneous multithreading

thereafter such as in the Intel® Hyperthreading technology).

[00162] While register renaming is described in the context of out-of-order execution, it should

be understood that register renaming may be used in an in-order architecture. While the

illustrated embodiment of the processor also includes separate instruction and data cache units

1134/1 174 and a shared L2 cache unit 1176, alternative embodiments may have a single internal

cache for both instructions and data, such as, for example, a Level 1 (LI) internal cache, or

multiple levels of internal cache. In some embodiments, the system may include a combination

of an internal cache and an external cache that is external to the core and/or the processor.

Alternatively, all of the cache may be external to the core and/or the processor.

[00163] Specific Exemplary In-Order Core Architecture

[00164] Figures 12A-B illustrate a block diagram of a more specific exemplary in-order core

architecture, which core would be one of several logic blocks (including other cores of the same

type and/or different types) in a chip. The logic blocks communicate through a high-bandwidth

interconnect network (e.g., a ring network) with some fixed function logic, memory I/O

interfaces, and other necessary I/O logic, depending on the application.

[00165] Figure 12A is a block diagram of a single processor core, along with its connection to

the on-die interconnect network 1202 and with its local subset of the Level 2 (L2) cache 1204,

according to embodiments of the invention. In one embodiment, an instruction decoder 1200

supports the x86 instruction set with a packed data instruction set extension. An LI cache 1206

allows low-latency accesses to cache memory into the scalar and vector units. While in one

embodiment (to simplify the design), a scalar unit 1208 and a vector unit 1210 use separate

register sets (respectively, scalar registers 1212 and vector registers 1214) and data transferred

between them is written to memory and then read back in from a level 1 (LI) cache 1206,

alternative embodiments of the invention may use a different approach (e.g., use a single register

set or include a communication path that allow data to be transferred between the two register

files without being written and read back).

[00166] The local subset of the L2 cache 1204 is part of a global L2 cache that is divided into

separate local subsets, one per processor core. Each processor core has a direct access path to its

own local subset of the L2 cache 1204. Data read by a processor core is stored in its L2 cache

subset 1204 and can be accessed quickly, in parallel with other processor cores accessing their

own local L2 cache subsets. Data written by a processor core is stored in its own L2 cache

subset 1204 and is flushed from other subsets, if necessary. The ring network ensures coherency

for shared data. The ring network is bi-directional to allow agents such as processor cores, L2

caches and other logic blocks to communicate with each other within the chip. Each ring data

path is 1012-bits wide per direction.

[00167] Figure 12B is an expanded view of part of the processor core in Figure 12A according

to embodiments of the invention. Figure 12B includes an LI data cache 1206A part of the LI

cache 1204, as well as more detail regarding the vector unit 1210 and the vector registers 1214.

Specifically, the vector unit 1210 is a 16-wide vector processing unit (VPU) (see the 16-wide

ALU 1228), which executes one or more of integer, single-precision float, and double-precision

float instructions. The VPU supports swizzling the register inputs with swizzle unit 1220,

numeric conversion with numeric convert units 1222A-B, and replication with replication unit

1224 on the memory input. Write mask registers 1226 allow predicating resulting vector writes.

[00168] Processor with integrated memory controller and graphics

[00169] Figure 13 is a block diagram of a processor 1300 that may have more than one core,

may have an integrated memory controller, and may have integrated graphics according to

embodiments of the invention. The solid lined boxes in Figure 13 illustrate a processor 1300

with a single core 1302A, a system agent 1310, a set of one or more bus controller units 1316,

while the optional addition of the dashed lined boxes illustrates an alternative processor 1300

with multiple cores 1302A-N, a set of one or more integrated memory controller unit(s) 1314 in

the system agent unit 1310, and special purpose logic 1308.

[00170] Thus, different implementations of the processor 1300 may include: 1) a CPU with the

special purpose logic 1308 being integrated graphics and/or scientific (throughput) logic (which

may include one or more cores), and the cores 1302A-N being one or more general purpose

cores (e.g., general purpose in-order cores, general purpose out-of-order cores, a combination of

the two); 2) a coprocessor with the cores 1302A-N being a large number of special purpose cores

intended primarily for graphics and/or scientific (throughput); and 3) a coprocessor with the

cores 1302A-N being a large number of general purpose in-order cores. Thus, the processor 1300

may be a general-purpose processor, coprocessor or special-purpose processor, such as, for

example, a network or communication processor, compression engine, graphics processor,

GPGPU (general purpose graphics processing unit), a high-throughput many integrated core

(MIC) coprocessor (including 30 or more cores), embedded processor, or the like. The processor

may be implemented on one or more chips. The processor 1300 may be a part of and/or may be

implemented on one or more substrates using any of a number of process technologies, such as,

for example, BiCMOS, CMOS, or NMOS.

[00171] The memory hierarchy includes one or more levels of cache within the cores, a set or

one or more shared cache units 1306, and external memory (not shown) coupled to the set of

integrated memory controller units 1314. The set of shared cache units 1306 may include one or

more mid-level caches, such as level 2 (L2), level 3 (L3), level 4 (L4), or other levels of cache, a

last level cache (LLC), and/or combinations thereof. While in one embodiment a ring based

interconnect unit 1312 interconnects the integrated graphics logic 1308, the set of shared cache

units 1306, and the system agent unit 1310/integrated memory controller unit(s) 1314, alternative

embodiments may use any number of well-known techniques for interconnecting such units. In

one embodiment, coherency is maintained between one or more cache units 1306 and cores

1302-A-N.

[00172] In some embodiments, one or more of the cores 1302A-N are capable of multi

threading. The system agent 1310 includes those components coordinating and operating cores

1302A-N. The system agent unit 1310 may include for example a power control unit (PCU) and

a display unit. The PCU may be or include logic and components needed for regulating the

power state of the cores 1302A-N and the integrated graphics logic 1308. The display unit is for

driving one or more externally connected displays.

[00173] The cores 1302A-N may be homogenous or heterogeneous in terms of architecture

instruction set; that is, two or more of the cores 1302A-N may be capable of execution the same

instruction set, while others may be capable of executing only a subset of that instruction set or a

different instruction set.

[00174] Exemplary Computer Architectures

[00175] Figures 14-17 are block diagrams of exemplary computer architectures. Other system

designs and configurations known in the arts for laptops, desktops, handheld PCs, personal

digital assistants, engineering workstations, servers, network devices, network hubs, switches,

embedded processors, digital signal processors (DSPs), graphics devices, video game devices,

set-top boxes, micro controllers, cell phones, portable media players, hand held devices, and

various other electronic devices, are also suitable. In general, a huge variety of systems or

electronic devices capable of incorporating a processor and/or other execution logic as disclosed

herein are generally suitable.

[00176] Referring now to Figure 14, shown is a block diagram of a system 1400 in accordance

with one embodiment of the present invention. The system 1400 may include one or more

processors 1410, 1415, which are coupled to a controller hub 1420. In one embodiment the

controller hub 1420 includes a graphics memory controller hub (GMCH) 1490 and an

Input/Output Hub (IOH) 1450 (which may be on separate chips); the GMCH 1490 includes

memory and graphics controllers to which are coupled memory 1440 and a coprocessor 1445;

the IOH 1450 is couples input/output (I/O) devices 1460 to the GMCH 1490. Alternatively, one

or both of the memory and graphics controllers are integrated within the processor (as described

herein), the memory 1440 and the coprocessor 1445 are coupled directly to the processor 1410,

and the controller hub 1420 in a single chip with the IOH 1450.

[00177] The optional nature of additional processors 1415 is denoted in Figure 14 with broken

lines. Each processor 1410, 1415 may include one or more of the processing cores described

herein and may be some version of the processor 1300.

[00178] The memory 1440 may be, for example, dynamic random access memory (DRAM),

phase change memory (PCM), or a combination of the two. For at least one embodiment, the

controller hub 1420 communicates with the processor(s) 1410, 1415 via a multi-drop bus, such

as a frontside bus (FSB), point-to-point interface such as QuickPath Interconnect (QPI), or

similar connection 1495.

[00179] In one embodiment, the coprocessor 1445 is a special-purpose processor, such as, for

example, a high-throughput MIC processor, a network or communication processor, compression

engine, graphics processor, GPGPU, embedded processor, or the like. In one embodiment,

controller hub 1420 may include an integrated graphics accelerator.

[00180] There can be a variety of differences between the physical resources 1410, 1415 in

terms of a spectrum of metrics of merit including architectural, microarchitectural, thermal,

power consumption characteristics, and the like.

[00181] In one embodiment, the processor 1410 executes instructions that control data

processing operations of a general type. Embedded within the instructions may be coprocessor

instructions. The processor 1410 recognizes these coprocessor instructions as being of a type

that should be executed by the attached coprocessor 1445. Accordingly, the processor 1410

issues these coprocessor instructions (or control signals representing coprocessor instructions) on

a coprocessor bus or other interconnect, to coprocessor 1445. Coprocessor(s) 1445 accept and

execute the received coprocessor instructions.

[00182] Referring now to Figure 15, shown is a block diagram of a first more specific

exemplary system 1500 in accordance with an embodiment of the present invention. As shown

in Figure 15, multiprocessor system 1500 is a point-to-point interconnect system, and includes a

first processor 1570 and a second processor 1580 coupled via a point-to-point interconnect 1550.

Each of processors 1570 and 1580 may be some version of the processor 1300. In one

embodiment of the invention, processors 1570 and 1580 are respectively processors 1410 and

1415, while coprocessor 1538 is coprocessor 1445. In another embodiment, processors 1570 and

1580 are respectively processor 1410 coprocessor 1445.

[00183] Processors 1570 and 1580 are shown including integrated memory controller (IMC)

units 1572 and 1582, respectively. Processor 1570 also includes as part of its bus controller

units point-to-point (P-P) interfaces 1576 and 1578; similarly, second processor 1580 includes P-

P interfaces 1586 and 1588. Processors 1570, 1580 may exchange information via a point-to-

point (P-P) interface 1550 using P-P interface circuits 1578, 1588. As shown in Figure 15, IMCs

1572 and 1582 couple the processors to respective memories, namely a memory 1532 and a

memory 1534, which may be portions of main memory locally attached to the respective

processors.

[00184] Processors 1570, 1580 may each exchange information with a chipset 1590 via

individual P-P interfaces 1552, 1554 using point to point interface circuits 1576, 1594, 1586,

1598. Chipset 1590 may optionally exchange information with the coprocessor 1538 via a high-

performance interface 1539. In one embodiment, the coprocessor 1538 is a special-purpose

processor, such as, for example, a high-throughput MIC processor, a network or communication

processor, compression engine, graphics processor, GPGPU, embedded processor, or the like.

[00185] A shared cache (not shown) may be included in either processor or outside of both

processors, yet connected with the processors via P-P interconnect, such that either or both

processors' local cache information may be stored in the shared cache if a processor is placed

into a low power mode.

[00186] Chipset 1590 may be coupled to a first bus 1516 via an interface 1596. In one

embodiment, first bus 1516 may be a Peripheral Component Interconnect (PCI) bus, or a bus

such as a PCI Express bus or another third generation I/O interconnect bus, although the scope of

the present invention is not so limited.

[00187] As shown in Figure 15, various I/O devices 1514 may be coupled to first bus 1516,

along with a bus bridge 1518 which couples first bus 1516 to a second bus 1520. In one

embodiment, one or more additional processor(s) 1515, such as coprocessors, high-throughput

MIC processors, GPGPU' s, accelerators (such as, e.g., graphics accelerators or digital signal

processing (DSP) units), field programmable gate arrays, or any other processor, are coupled to

first bus 1516. In one embodiment, second bus 1520 may be a low pin count (LPC) bus.

Various devices may be coupled to a second bus 1520 including, for example, a keyboard and/or

mouse 1522, communication devices 1527 and a storage unit 1528 such as a disk drive or other

mass storage device which may include instructions/code and data 1530, in one embodiment.

Further, an audio I/O 1524 may be coupled to the second bus 1520. Note that other architectures

are possible. For example, instead of the point-to-point architecture of Figure 15, a system may

implement a multi-drop bus or other such architecture.

[00188] Referring now to Figure 16, shown is a block diagram of a second more specific

exemplary system 1600 in accordance with an embodiment of the present invention. Like

elements in Figures 15 and 16 bear like reference numerals, and certain aspects of Figure 15

have been omitted from Figure 16 in order to avoid obscuring other aspects of Figure 16.

[00189] Figure 16 illustrates that the processors 1570, 1580 may include integrated memory and

I O control logic ("CL") 1572 and 1582, respectively. Thus, the CL 1572, 1582 include

integrated memory controller units and include I O control logic. Figure 16 illustrates that not

only are the memories 1532, 1534 coupled to the CL 1572, 1582, but also that I O devices 1614

are also coupled to the control logic 1572, 1582. Legacy I/O devices 1615 are coupled to the

chipset 1590.

[00190] Referring now to Figure 17, shown is a block diagram of a SoC 1700 in accordance

with an embodiment of the present invention. Similar elements in Figure 13 bear like reference

numerals. Also, dashed lined boxes are optional features on more advanced SoCs. In Figure 17,

an interconnect unit(s) 1702 is coupled to: an application processor 1710 which includes a set of

one or more cores 202A-N and shared cache unit(s) 1306; a system agent unit 1310; a bus

controller unit(s) 1316; an integrated memory controller unit(s) 1314; a set or one or more

coprocessors 1720 which may include integrated graphics logic, an image processor, an audio

processor, and a video processor; an static random access memory (SRAM) unit 1730; a direct

memory access (DMA) unit 1732; and a display unit 1740 for coupling to one or more external

displays. In one embodiment, the coprocessor(s) 1720 include a special-purpose processor, such

as, for example, a network or communication processor, compression engine, GPGPU, a high-

throughput MIC processor, embedded processor, or the like.

[00191] Embodiments of the mechanisms disclosed herein may be implemented in hardware,

software, firmware, or a combination of such implementation approaches. Embodiments of the

invention may be implemented as computer programs or program code executing on

programmable systems comprising at least one processor, a storage system (including volatile

and non-volatile memory and/or storage elements), at least one input device, and at least one

output device.

[00192] Program code, such as code 1530 illustrated in Figure 15, may be applied to input

instructions to perform the functions described herein and generate output information. The

output information may be applied to one or more output devices, in known fashion. For

purposes of this application, a processing system includes any system that has a processor, such

as, for example; a digital signal processor (DSP), a microcontroller, an application specific

integrated circuit (ASIC), or a microprocessor.

[00193] The program code may be implemented in a high level procedural or object oriented

programming language to communicate with a processing system. The program code may also

be implemented in assembly or machine language, if desired. In fact, the mechanisms described

herein are not limited in scope to any particular programming language. In any case, the

language may be a compiled or interpreted language.

[00194] One or more aspects of at least one embodiment may be implemented by representative

instructions stored on a machine-readable medium which represents various logic within the

processor, which when read by a machine causes the machine to fabricate logic to perform the

techniques described herein. Such representations, known as "IP cores" may be stored on a

tangible, machine readable medium and supplied to various customers or manufacturing

facilities to load into the fabrication machines that actually make the logic or processor.

[00195] Such machine-readable storage media may include, without limitation, non-transitory,

tangible arrangements of articles manufactured or formed by a machine or device, including

storage media such as hard disks, any other type of disk including floppy disks, optical disks,

compact disk read-only memories (CD-ROMs), compact disk rewritable ' s (CD-RWs), and

magneto-optical disks, semiconductor devices such as read-only memories (ROMs), random

access memories (RAMs) such as dynamic random access memories (DRAMs), static random

access memories (SRAMs), erasable programmable read-only memories (EPROMs), flash

memories, electrically erasable programmable read-only memories (EEPROMs), phase change

memory (PCM), magnetic or optical cards, or any other type of media suitable for storing

electronic instructions.

[00196] Accordingly, embodiments of the invention also include non-transitory, tangible

machine-readable media containing instructions or containing design data, such as Hardware

Description Language (HDL), which defines structures, circuits, apparatuses, processors and/or

system features described herein. Such embodiments may also be referred to as program

products.

[00197] Emulation (including binary translation, code morphing, etc.)

[00198] In some cases, an instruction converter may be used to convert an instruction from a

source instruction set to a target instruction set. For example, the instruction converter may

translate (e.g., using static binary translation, dynamic binary translation including dynamic

compilation), morph, emulate, or otherwise convert an instruction to one or more other

instructions to be processed by the core. The instruction converter may be implemented in

software, hardware, firmware, or a combination thereof. The instruction converter may be on

processor, off processor, or part on and part off processor.

[00199] Figure 18 is a block diagram contrasting the use of a software instruction converter to

convert binary instructions in a source instruction set to binary instructions in a target instruction

set according to embodiments of the invention. In the illustrated embodiment, the instruction

converter is a software instruction converter, although alternatively the instruction converter may

be implemented in software, firmware, hardware, or various combinations thereof. Figure 18

shows a program in a high level language 1802 may be compiled using an x86 compiler 1804 to

generate x86 binary code 1806 that may be natively executed by a processor with at least one

x86 instruction set core 1816. The processor with at least one x86 instruction set core 1816

represents any processor that can perform substantially the same functions as an Intel processor

with at least one x86 instruction set core by compatibly executing or otherwise processing (1) a

substantial portion of the instruction set of the Intel x86 instruction set core or (2) object code

versions of applications or other software targeted to run on an Intel processor with at least one

x86 instruction set core, in order to achieve substantially the same result as an Intel processor

with at least one x86 instruction set core. The x86 compiler 1804 represents a compiler that is

operable to generate x86 binary code 1806 (e.g., object code) that can, with or without additional

linkage processing, be executed on the processor with at least one x86 instruction set core 1816.

Similarly, Figure 18 shows the program in the high level language 1802 may be compiled using

an alternative instruction set compiler 1808 to generate alternative instruction set binary code

1810 that may be natively executed by a processor without at least one x86 instruction set core

1814 (e.g., a processor with cores that execute the MIPS instruction set of MIPS Technologies

of Sunnyvale, CA and/or that execute the ARM instruction set of ARM Holdings of Sunnyvale,

CA). The instruction converter 1812 is used to convert the x86 binary code 1806 into code that

may be natively executed by the processor without an x86 instruction set core 1814. This

converted code is not likely to be the same as the alternative instruction set binary code 1810

because an instruction converter capable of this is difficult to make; however, the converted code

will accomplish the general operation and be made up of instructions from the alternative

instruction set. Thus, the instruction converter 1812 represents software, firmware, hardware, or

a combination thereof that, through emulation, simulation or any other process, allows a

processor or other electronic device that does not have an x86 instruction set processor or core to

execute the x86 binary code 1806.

Claims

What is claimed is:

1. A method of performing in a computer processor vector double block packed sum of

absolute differences (SAD) in response to a single vector double block packed sum of absolute

differences instruction that includes a destination vector register operand, first and second source

operands, an immediate, and an opcode, the method comprising steps of:

executing the single vector double block packed sum of absolute differences instruction

to, on a per data lane basis, compute a SAD of selected quadruplets of data elements of the first

and second sources; and

storing each calculated SAD into the destination vector register.

2. The method of claim 1, wherein the data elements of the selected quadruplets of the first

and second sources are byte sized.

3. The method of claim 2, wherein the data elements of the destination register are word

sized.

4. The method of claim 1, wherein the first source operand is a vector register and the

second source operand is a memory location.

5. The method of claim 1, wherein the first and second source operands are vector

registers.

6. The method of claim 1, wherein the first and second sources and the destination vector

register operand are all of the same size selected from the group consisting of 128-bit, 256-bit,

and 512-bit.

7. The method of claim 1, wherein the stored SADs comprise:

in a least significant position of the destination register, the stored SAD is

an absolute value of a least significant data element position of the first source minus a least

significant data element position of the second source that is added to an absolute value of a

second-most least significant data element position of the first source minus a second-most least

significant data element position of the second source that is added to an absolute value of a

third-most least significant data element position of the first source minus a third-most least

significant data element position of the second source that is added to an absolute value of a

fourth-most least significant data element position of the first source minus a fourth-most least

significant data element position of the second source;

in a second-most least significant position of the destination register, the stored SAD is

an absolute value of a least significant data element position of the first source minus a second-

most least significant data element position of the second source that is added to an absolute

value of a second-most least significant data element position of the first source minus a third-

most least significant data element position of the second source that is added to an absolute

value of a third-most least significant data element position of the first source minus a fourth-

most least significant data element position of the second source that is added to an absolute

value of a fourth-most least significant data element position of the first source minus a fifth-

most least significant data element position of the second source;

in a third-most least significant position of the destination register, the stored SAD is

an absolute value of a fifth-most least significant data element position of the first source minus

a third-most least significant data element position of the second source that is added to an

absolute value of a sixth-most least significant data element position of the first source minus a

fourth-most least significant data element position of the second source that is added to an

absolute value of a seventh-most least significant data element position of the first source minus

a fifth-most least significant data element position of the second source that is added to an

absolute value of a eighth-most least significant data element position of the first source minus a

sixth-most least significant data element position of the second source; and

in a fourth-most least significant position of the destination register, the stored SAD is

an absolute value of a fifth-most least significant data element position of the first source minus

a fourth-most least significant data element position of the second source that is added to an

absolute value of a sixth-most least significant data element position of the first source minus a

fifth-most least significant data element position of the second source that is added to an absolute

value of a seventh-most least significant data element position of the first source minus a sixth-

most least significant data element position of the second source that is added to an absolute

value of a eighth-most least significant data element position of the first source minus a seventh-

most least significant data element position of the second source.

An article of manufacture comprising:

a tangible machine-readable storage medium having stored thereon an occurrence of an

instruction, wherein the instruction' s format specifies as its source operands a first and second

source and an immediate and specifies as its destination a single destination vector register, and

wherein the instruction format includes an opcode which instructs a machine, responsive to the

single occurrence of the single instruction, to cause on a per data lane basis, a computation of a

SAD of selected quadruplets of data elements of the first and second sources and storage of each

calculated SAD into the destination vector register.

9. The article of manufacture of claim 8, wherein the data elements of the selected

quadruplets of the first and second sources are byte sized.

10. The article of manufacture of claim 9, wherein the data elements of the destination

register are word sized.

11. The article of manufacture of claim 8, wherein the first source operand is a vector

register and the second source operand is a memory location.

12. The article of manufacture of claim 8, wherein the first and second source operands are

vector registers.

13. The article of manufacture of claim 8, wherein the first and second sources and the

destination vector register operand are all of the same size selected from the group consisting of

128-bit, 256-bit, and 512-bit.

14. The article of manufacture of claim 8, wherein the stored SADs comprise:

in a least significant position of the destination register, the stored SAD is

an absolute value of a least significant data element position of the first source minus a least

significant data element position of the second source that is added to an absolute value of a

second-most least significant data element position of the first source minus a second-most least

significant data element position of the second source that is added to an absolute value of a

third-most least significant data element position of the first source minus a third-most least

significant data element position of the second source that is added to an absolute value of a

fourth-most least significant data element position of the first source minus a fourth-most least

significant data element position of the second source;

in a second-most least significant position of the destination register, the stored SAD is

an absolute value of a least significant data element position of the first source minus a second-

most least significant data element position of the second source that is added to an absolute

value of a second-most least significant data element position of the first source minus a third-

most least significant data element position of the second source that is added to an absolute

value of a third-most least significant data element position of the first source minus a fourth-

most least significant data element position of the second source that is added to an absolute

value of a fourth-most least significant data element position of the first source minus a fifth-

most least significant data element position of the second source;

in a third-most least significant position of the destination register, the stored SAD is

an absolute value of a fifth-most least significant data element position of the first source minus

a third-most least significant data element position of the second source that is added to an

absolute value of a sixth-most least significant data element position of the first source minus a

fourth-most least significant data element position of the second source that is added to an

absolute value of a seventh-most least significant data element position of the first source minus

a fifth-most least significant data element position of the second source that is added to an

absolute value of a eighth-most least significant data element position of the first source minus a

sixth-most least significant data element position of the second source; and

in a fourth-most least significant position of the destination register, the stored SAD is

an absolute value of a fifth-most least significant data element position of the first source minus

a fourth-most least significant data element position of the second source that is added to an

absolute value of a sixth-most least significant data element position of the first source minus a

fifth-most least significant data element position of the second source that is added to an absolute

value of a seventh-most least significant data element position of the first source minus a sixth-

most least significant data element position of the second source that is added to an absolute

value of a eighth-most least significant data element position of the first source minus a seventh-

most least significant data element position of the second source.

15. An apparatus comprising;

a hardware decoder to decode a single vector double block packed sum of absolute

differences instruction that includes a destination vector register operand, first and second source

operands, an immediate, and an opcode;

execution logic to, on a per data lane basis, compute a SAD of selected quadruplets of

data elements of the first and second sources and store each calculated SAD into the destination

vector register.

16. The apparatus of claim 15, wherein the data elements of the selected quadruplets of the

first and second sources are byte sized.

17. The apparatus of claim 16, wherein the data elements of the destination register are

word sized.

18. The apparatus of claim 15, wherein the first source operand is a vector register and the

second source operand is a memory location.

19. The apparatus of claim 15, wherein the first and second source operands are vector

registers.

20. The apparatus of claim 15, wherein the stored SADs comprise:

in a least significant position of the destination register, the stored SAD is

an absolute value of a least significant data element position of the first source minus a least

significant data element position of the second source that is added to an absolute value of a

second-most least significant data element position of the first source minus a second-most least

significant data element position of the second source that is added to an absolute value of a

third-most least significant data element position of the first source minus a third-most least

significant data element position of the second source that is added to an absolute value of a

fourth-most least significant data element position of the first source minus a fourth-most least

significant data element position of the second source;

in a second-most least significant position of the destination register, the stored SAD is

an absolute value of a least significant data element position of the first source minus a second-

most least significant data element position of the second source that is added to an absolute

value of a second-most least significant data element position of the first source minus a third-

most least significant data element position of the second source that is added to an absolute

value of a third-most least significant data element position of the first source minus a fourth-

most least significant data element position of the second source that is added to an absolute

value of a fourth-most least significant data element position of the first source minus a fifth-

most least significant data element position of the second source;

in a third-most least significant position of the destination register, the stored SAD is

an absolute value of a fifth-most least significant data element position of the first source minus

a third-most least significant data element position of the second source that is added to an

absolute value of a sixth-most least significant data element position of the first source minus a

fourth-most least significant data element position of the second source that is added to an

absolute value of a seventh-most least significant data element position of the first source minus

a fifth-most least significant data element position of the second source that is added to an

absolute value of a eighth-most least significant data element position of the first source minus a

sixth-most least significant data element position of the second source; and

in a fourth-most least significant position of the destination register, the stored SAD is

an absolute value of a fifth-most least significant data element position of the first source minus

a fourth-most least significant data element position of the second source that is added to an

absolute value of a sixth-most least significant data element position of the first source minus a

fifth-most least significant data element position of the second source that is added to an absolute

value of a seventh-most least significant data element position of the first source minus a sixth-

most least significant data element position of the second source that is added to an absolute

value of a eighth-most least significant data element position of the first source minus a seventh-

most least significant data element position of the second source.

A. CLASSIFICATION OF SUBJECT MATTER

G06F 9/06(2006.01)i, G06F 9/30(2006.01)i

According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols)

G06F 9/06; G06F 15/00; G06F 9/302; G06F 9/22; G06F 7/00; H04N 7/12; G06F 7/38

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched
Korean utility models and applications for utility models
Japanese utility models and applications for utility models

Electronic data base consulted during the international search (name of data base and, where practicable, search terms used)
eKOMPASS(KIPO internal) & Keywords: sum of absolute difference, SAD, packed, double block, second source;

C. DOCUMENTS CONSIDERED TO BE RELEVANT

Category Citation of document, with indication, where appropriate, of the relevant passages Relevant to claim No.

US 7054895 B2 (IGOR M K0BA et al.) 30 May 2006 1-20

See the abstract, claims 1-45 and figures 1-6.

US 7516307 B2 (ABDALLAH MOHAMMAD A . et al.) 07 April 2009 1-20

See the abstract, claims 1-12 and figures 1-13.

US 2007-0263730 Al (MAO ZENG et a l .) 15 November 2007 1-20

See the abstract, claims 1-28 and figures 1-10.

US 05880979A A (MENNEMEIER LARRY M . et al.) 09 March 1999 1-20

See the abstract, claims 1-15 and figures l~ 7b.

Further documents are listed in the continuation of Box C . patent family annex.

* Special categories of cited documents: later document published after the international filing date or priority
"A" document defining the general state of the art which is not considered date and not in conflict with the application but cited to understand

to be of particular relevance the principle or theory underlying the invention
"E" earlier application or patent but published on or after the international document of particular relevance; the claimed invention cannot be

filing date considered novel or cannot be considered to involve an inventive
"L" document which may throw doubts on priority claim(s) or which is step when the document is taken alone

cited to establish the publication date of citation or other document of particular relevance; the claimed invention cannot be
special reason (as specified) considered to involve an inventive step when the document is

"O" document referring to an oral disclosure, use, exhibition or other combined with one or more other such documents, such combination
means being obvious to a person skilled in the art

"P" document published prior to the international filing date but later document member of the same patent family
than the priority date claimed

Date of the actual completion of the international search Date of mailing of the international search report

24 AUGUST 2012 (24.08.2012) 27 AUGUST 2012 (27.08.2012)
Name and mailing address of the ISA/KR Authorized officer —

Korean Intellectual Property Office
mm 189 Cheongsa-ro, Seo-gu, Daejeon Metropolitan BOK, Jin Yo
v City, 302-70 1, Republic of Korea

Facsimile No. 82-42-472-7140 Telephone No. 82-42-481-51 13

Form PCT/ISA/210 (second sheet) (July 2009)

Information on patent family members PCT/US201 1/067071

Patent document Publication Patent family Publication
cited in search report date member(s) date

US 7054895 B2 30 .05 .2006 US 2003-005267 A 02 .0 1.2003

US 7516307 B2 07 .04 .2009 US 2002-006233 A 23 .05 .2002
US 6377970 B 23 .04 .2002

US 2007-0263730 A 15 . 1.2007 CN 10 1438598 A 20 .05 .2009
EP 2025 175 A2 18 .02 .2009
JP 2009-536773 A 15 . 0 .2009
KR 10-0996337 B 23 . 1.2010
W0 2007- 1340 A2 22 . 1.2007
W0 2007- 1340 A3 22 . 1.2007

US 05880979A A 09 .03 . 1999 97-23822 A 03 .07 . 1997

PCT/ISA/210 (patent family annex) (July 2009)

	abstract
	description
	claims
	drawings
	wo-search-report

