

(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(19) World Intellectual Property Organization
International Bureau

(43) International Publication Date
3 March 2011 (03.03.2011)

(10) International Publication Number
WO 2011/024152 A1

(51) International Patent Classification:
H01L 29/739 (2006.01) *H01L 29/06* (2006.01)

1101 Kitchawan RD, Yorktown Heights, New York
10598 (US).

(21) International Application Number:
PCT/IB2010/053884

(74) Agents: RAGOT, Sébastien et al.; IBM Research GmbH, IBM Research - Zurich, Intellectual Property Law, Saeumerstrasse 4, CH-8803 Rueschlikon (CH).

(22) International Filing Date:
30 August 2010 (30.08.2010)

(81) Designated States (unless otherwise indicated, for every kind of national protection available): AE, AG, AL, AM, AO, AT, AU, AZ, BA, BB, BG, BH, BR, BW, BY, BZ, CA, CH, CL, CN, CO, CR, CU, CZ, DE, DK, DM, DO, DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, GT, HN, HR, HU, ID, IL, IN, IS, JP, KE, KG, KM, KN, KP, KR, KZ, LA, LC, LK, LR, LS, LT, LU, LY, MA, MD, ME, MG, MK, MN, MW, MX, MY, MZ, NA, NG, NI, NO, NZ, OM, PE, PG, PH, PL, PT, RO, RS, RU, SC, SD, SE, SG, SK, SL, SM, ST, SV, SY, TH, TJ, TM, TN, TR, TT, TZ, UA, UG, US, UZ, VC, VN, ZA, ZM, ZW.

(25) Filing Language: English

(26) Publication Language: English

(30) Priority Data:
12/550,857 31 August 2009 (31.08.2009) US

(71) Applicant (for all designated States except US): INTERNATIONAL BUSINESS MACHINES CORPORATION [US/US]; New Orchard Road, Armonk, New York 10504 (US).

(72) Inventors; and

(75) Inventors/Applicants (for US only): BJOERK, Mikael T. [SE/CH]; IBM Research GmbH, IBM Research - Zurich, Saeumerstrasse 4, CH-8803 Rueschlikon (CH). KARG, Siegfried F. [DE/CH]; IBM Research GmbH, IBM Research - Zurich, Saeumerstrasse 4, CH-8803 Rueschlikon (CH). KNOCH, Joachim [DE/DE]; Am Steinhof 53, 44577 Castrop-Rauxel (DE). RIEL, Heike E. [DE/CH]; IBM Research GmbH, IBM Research - Zurich, Saeumerstrasse 4, CH-8803 Rueschlikon (CH). RIESS, Walter H. [DE/CH]; IBM Research GmbH, IBM Research - Zurich, Saeumerstrasse 4, CH-8803 Rueschlikon (CH). SOLOMON, Paul M. [US/US]; IBM USA,

(84) Designated States (unless otherwise indicated, for every kind of regional protection available): ARIPO (BW, GH, GM, KE, LR, LS, MW, MZ, NA, SD, SL, SZ, TZ, UG, ZM, ZW), Eurasian (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), European (AL, AT, BE, BG, CH, CY, CZ, DE, DK, EE, ES, FI, FR, GB, GR, HR, HU, IE, IS, IT, LT, LU, LV, MC, MK, MT, NL, NO, PL, PT, RO, SE, SI, SK, SM, TR), OAPI (BF, BJ, CF, CG, CI, CM, GA, GN, GQ, GW, ML, MR, NE, SN, TD, TG).

Published:

— with international search report (Art. 21(3))

(54) Title: TUNNEL FIELD EFFECT DEVICES

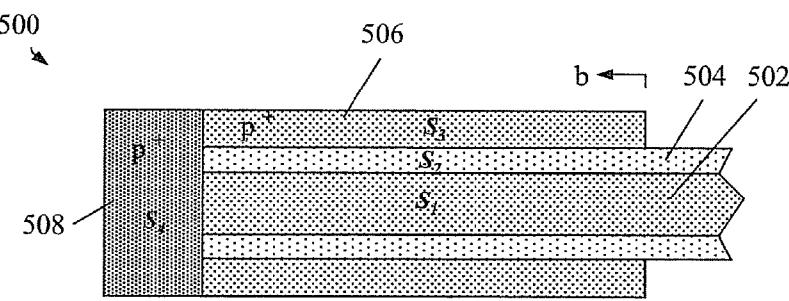


Fig. 5(a)

(57) Abstract: An indirectly induced tunnel emitter for a tunneling field effect transistor (TFET) structure includes an outer sheath that at least partially surrounds an elongated core element, the elongated core element formed from a first semiconductor material; an insulator layer disposed between the outer sheath and the core element; the outer sheath disposed at a location corresponding to a source region of the TFET structure; and a source contact that shorts the outer sheath to the core element; wherein the outer sheath is configured to introduce a carrier concentration in the source region of the core element sufficient for tunneling into a channel region of the TFET structure during an on state.

WO 2011/024152 A1

TUNNEL FIELD EFFECT DEVICES

BACKGROUND

[0001] The present invention relates generally to semiconductor device structures and, more particularly, to an indirectly induced tunnel emitter for tunnel field effect transistor (TFET) devices.

[0002] Microelectronic devices are typically fabricated on semiconductor substrates as integrated circuits, which include complementary metal oxide semiconductor (CMOS) field effect transistors as one of the core elements thereof. Over the years, the dimensions and operating voltages of CMOS transistors are continuously reduced, or scaled down, to obtain ever-higher performance and packaging density of the integrated circuits.

[0003] However, one of the problems resulting from the scaling down of CMOS transistors is that the overall power consumption of the devices keeps increasing. This is partly because leakage currents are increasing (e.g., due to short channel effects) and also because it becomes difficult to continue to decrease the supply voltage. The latter problem, in turn, is mainly due to the fact that the inverse subthreshold slope is limited to (minimally) about 60 millivolts (mV)/decade, such that switching the transistor from the OFF to the ON states requires a certain voltage variation, and therefore a minimum supply voltage.

[0004] Accordingly, tunnel field effect transistors (TFETs) have been touted as “successors” of metal oxide semiconductor field effect transistors (MOSFETs), because of the lack of short-channel effects and because the subthreshold slope can be less than 60 mV/decade, the physical limit of conventional MOSFETs, and thus potentially lower supply voltages may be used. On the other hand, TFETs typically suffer from low on-currents, which is a drawback related to the large resistance of the tunnel barrier.

SUMMARY

[0005] In an exemplary embodiment, an indirectly induced tunnel emitter for a tunneling field effect transistor (TFET) structure includes an outer sheath that at least partially surrounds an elongated core element, the elongated core element formed from a first semiconductor material; an insulator layer disposed between the outer sheath and the core element; the outer sheath disposed at a location corresponding to a source region of the TFET structure; and a source contact that shorts the outer sheath to the core element; wherein the outer sheath is configured to introduce a carrier concentration in the source region of the core element sufficient for tunneling into a channel region of the TFET structure during an on state.

[0006] In another embodiment, a method of forming an indirectly induced tunnel emitter for a tunneling field effect transistor (TFET) structure includes forming an elongated core element from a first semiconductor material; forming an insulator layer that at least partially surrounds the core element; forming an outer sheath that at least partially surrounds the insulator layer at a location corresponding to a source region of the TFET structure; and forming a source contact that shorts the outer sheath to the core element; wherein the outer sheath is configured to introduce a carrier concentration in the source region of the core element sufficient for tunneling into a channel region of the TFET structure during an on state.

BRIEF DESCRIPTION OF THE SEVERAL VIEWS OF THE DRAWINGS

[0007] Referring to the exemplary drawings wherein like elements are numbered alike in the several Figures:

[0008] Figure 1 is a band diagram that illustrates electron tunneling across a P/N junction of a TFET;

[0009] Figure 2 is a band diagram for a TFET device having a staggered band

heterojunction in the “on” state;

[0010] Figure 3 is a band diagram for a TFET device having a staggered band heterojunction in the “off” state;

[0011] Figure 4 is a cut-away sectional view of a source region of a TFET device wherein holes are induced in a nanowire by a surrounding metal sheath that is separated from the nanowire by a thin insulator layer; and

[0012] Figure 5(a) is a side cross-sectional views of a TFET structure having an Indirectly Induced Tunnel Emitter (IIITE), in accordance with an exemplary embodiment of the invention;

[0013] Figure 5(b) is an end cross-sectional view of the IIITE, taken along the lines b-b of Figure 5(a);

[0014] Figure 6 is a partial band diagram illustrating the valence bands for an exemplary n-channel TFET as shown in Figures 5(a) and 5(b);

[0015] Figure 7(a) is another side cross-sectional view of the TFET structure of Figure 5(a);

[0016] Figure 7(b) is a band diagram corresponding to the structure of Figure 7(a); and

[0017] Figure 8 is a generic band diagram of a heterojunction tunneling emitter where the bands correspond to conduction band convention and are inverted with respect to Figure 6.

DETAILED DESCRIPTION

[0018] As indicated above, in recent years the TFET has generated much interest as a possible candidate used for low power electronics. Typically, in an n-channel TFET

for example, electrons are injected from the top of the valence band in the source region of the device into the bottom of the conduction band in the channel of the device. Figure 1 is a band diagram that illustrates this process for a simple P/N junction, wherein the “P” side represents the source region and the “N” side represents the channel of a TFET. In the “on” state (as indicated by the darkened curves denoting the bands) electrons can tunnel from the valence band in the source to the conduction band in the channel.

Applying an increasing negative gate voltage to a “partially on” state causes the tunneling distance to increase (indicated by the large dashed curves), and eventually the bands become uncrossed (indicated by the short dashed curves) shutting off the current.

[0019] One type of junction arrangement for a TFET device is what is known as a staggered band heterojunction line up, illustrated in the band diagrams of Figures 2 and 3. In this arrangement, the energy bands in the source and channel regions are offset from one another so as to allowing switching from the “on” state in Figure 2 to the “off” state in Figure 3 with much smaller longitudinal electric fields.

[0020] A primary objective of TFET use is to achieve switching from “on” to “off” over a much smaller voltage range than a conventional FET. This is realized because a conventional n-type source used in an NFET is replaced by a p-type tunneling source (also referred to herein as an “emitter”) where the top of the valence band cuts off the thermal tail of the Fermi function, which is present in the n-type source, allowing for an inverse sub-threshold slope S of smaller than 60 mV/dec at room temperature, where $S = [d(\log_{10} I_D) / dV_G]^{-1}$, wherein I_D is the drain current and V_G is the gate voltage.

[0021] On the other hand, the band diagrams of Figures 2 and 3 also illustrate several factors that serve to increase S and degrade the performance of the TFET. For example, in the “on” state depicted in Figure 2, degeneracy in the source (region (a) in Figure 2) reduces the states available for tunneling, thereby reducing the “on” current. In addition, band bending (region (b) in Figure 2) increases the gate voltage needed to turn on the TFET. In the “off” state depicted in Figure 3, band bending (regions (c) and (d) in

Figure 3) increases the voltage swing required to turn off the TFET and leaves potential wells in the valence and conduction bands. Here, thermal tails can cause a reversion to the 60 mV/decade slope when tunneling from the wells, band-to-band transfer by multiphonon processes (region (e) of Figure 3), or band-to-band transfer via tunneling by gap states (region (f) of Figure 3).

[0022] Although the presence of a high dopant concentration in the source could reduce such band bending, the resulting disorder caused by the doping can induce gap states, and the high carrier concentration could in turn lead to excessive degeneracy. Thus, one possible solution to this problem is to use “electrostatic doping”, as illustrated in Figure 4. More specifically, Figure 4 is a cut-away sectional view of a source region of a TFET device 400 where, in this example, holes are induced in a nanowire 402 by way of a surrounding metal sheath 404 that is separated from the nanowire 402 by a thin insulator layer 406, similar to a gate conductor and gate dielectric layer of an FET. The proximity to the surrounding metal sheath 404 screens the electric field inside the nanowire 402, thus obviating the need for a large hole concentration in the nanowire itself. Here, a heavily doped section 408 of the nanowire 402, remote from the tunnel injector (not shown in Figure 4), provides electrical contact to the TFET. While this solution solves some of the problems outlined above, it also creates others. For example, the TFET 400 of Figure 4 would need a separate electrical contact for the metal sheath 404, complicating the design. In addition, the interface states at the insulator-nanowire boundary may provide additional tunneling paths, and metal-induced gap states may be induced by the close proximity of the sheath 404 to the channel.

[0023] Accordingly, Figures 5(a) and 5(b) are side and end cross-sectional views, respectively, of a TFET structure 500 having what is referred to herein as an Indirectly Induced Tunnel Emitter (II TE), in accordance with an exemplary embodiment of the invention. As is shown, the II TE includes a elongated core element 502 (e.g., a nanowire) formed from a first semiconductor material (S1), an insulator layer 504 formed from a

second semiconductor material (S2) that surrounds the nanowire, the second semiconductor material (S2) having a wider bandgap than the first semiconductor material (S1), a doped outer semiconductor sheath 506 formed from a third semiconductor material (S3) that surrounds the insulator 504, and a source contact 508 formed from a fourth semiconductor material (S4) that shorts the outer semiconductor sheath 506 to the core element 502.

[0024] In an exemplary embodiment, the materials used for semiconductors S1-S4 could all be epitaxially grown semiconductors forming heterojunctions at their interfaces. This could reduce or eliminate interface states, which represent a problem for TFET structures such as the one shown in Figure 4. Because the outer sheath 506 is also a doped semiconductor (S3), metal induced gap states (MIGS) are also eliminated. Further, the TFET structure shown in Figures 5(a) and 5(b) may be simplified by using the same semiconductor material for S1, S3 and S4.

[0025] Although the exemplary embodiment depicted illustrates a concentric circular configuration for the core element, insulator and outer sheath, it is contemplated that other suitable geometries may be used. For example, the cross-sectional shapes of the individual element may be other shapes besides circular, such as elliptical, oval, square or rectangular, for example. Furthermore, while the illustrated embodiment depicts layers completely surrounding other layers (e.g., the insulator layer 504 surrounding the core element 502), it is also contemplated that an outer layer of the structure can partially surround an inner layer of the structure, such as an omega (Ω) shape, for example.

[0026] With respect to the elongated core element 502, in addition to a nanowire structure element, the core element 502 could also be formed from other structures such as a semiconductor fin or a carbon nanotube, for example.

[0027] Referring now to Figure 6, there is shown a partial band diagram 600

illustrating the valence bands for an exemplary n-channel TFET as shown in Figures 5(a) and 5(b), cutting across the circular cross section. As is shown, E_{01} and E_{03} are the ground state sub-band energies in regions 1 and 3, respectively, and V_S is the Fermi energy (source voltage). The bandgaps of S1-S3 are assumed to be wide enough so that the conduction bands in the emitter do not play a role in its operation. The band alignments and thickness of the layers are adjusted to achieve a configuration such that the ground-state energies E_{01} and E_{03} ensure that the holes in S1 are barely degenerate while S3 has a much larger hole concentration. Thus, the same screening advantages may be obtained as in the metal-sheathed TFET structure 400 of Figure 4.

[0028] In order to use the same semiconductor material for S1 and S3 as mentioned above, the thickness of S3 and diameter of S1 are carefully adjusted so that the ground-state energies line up as shown in Figure 6. The requirements for S4 may be relaxed if the interfaces between S1 and S4 and S3 and S4 are heavily doped, in which case another embodiment may use a metal in lieu of S4. It is even further contemplated that S3 may be replaced with a metal sheath (as in Figure 4), so long as the work functions and band-offsets are adjusted to ensure a suitable hole concentration in S1. In yet another embodiment, S3 may be coated with an additional metal layer (not shown) to improve screening. It should also be understood that the exemplary IITE embodiments disclosed herein are equally applicable for a complementary tunneling-hole injector by replacing all p-type semiconductors with n-type semiconductors, and ensuring a suitable conduction band line up as shown in Figure 6, but inverted.

[0029] In summary, the above discussed disadvantages are addressed by the IITE embodiments. This is depicted schematically in Figures 7(a) and 7(b), wherein Figure 7(a) is another side cross-sectional view of the TFET structure of Figure 5(a), and Figure 7(b) is a band diagram corresponding to the structure of Figure 7(a). For one, the outer doped sheath (S3) provides longitudinal screening and reduces band-bending. Secondly, the doping-induced states and degeneracy conditions in S3 are isolated from the injector

core (S1) by S2. Thirdly, the semiconductor bandgap of S3 minimizes metal induced gap states. In addition, epitaxial compatible materials S1-S3 eliminates interface states due to a single crystal structure. The source contact layer S4 eliminates the need for an extra external contact to the sheath.

[0030] Finally, Figure 8 is a generic band diagram 800 of a heterojunction tunneling emitter where the bands correspond to conduction band convention and are inverted with respect to Figure 6. That is, the band diagram 800 is drawn in the radial direction and with energy of the charge carrier upwards, as is the convention for electrons in conduction bands (whereas for holes the convention is downwards, as shown in Figure 6.

[0031] The inequalities given below apply to both electrons and holes with the understanding that “energy” may refer to either electron or hole energy for the relevant case. Here, E_{b1} , E_{b2} and E_{b3} are band-edge (conduction or valence band) energies, E_{01} and E_{03} are ground-state energies of the quantized sub-bands, and E_{F1} and E_{F3} the electron or hole Fermi energies. The diagram 800 is drawn in a flat-band condition, assuming a suitable voltage is applied between S1 and S3 and that band-bending induced by the charge itself, such as shown in Figure 6, is neglected. In operation, S1 is shorted to S3 by S4 and the Fermi levels, thus E_{F1} and E_{F3} will equalize. These simplifications and approximations are shown in order to clarify the conditions on S1, S2 and S3 to facilitate operability of the exemplary embodiment(s) described. Using the vacuum level E_{VAC} as a reference, the following conditions apply for the embodiments herein:

[0032] 1. The band-edge energy of S2 (E_{b2}) is greater than those of S1 and S3 (E_{b1} and E_{b3}), which is to say that the band discontinuities between S2 and S3 and S1 and S3 are positive.

[0033] 2. The Fermi energy in S3 (E_{F3}) is higher than the Fermi energy in S1 (E_{F1}). This enables charge to flow from S3 to S1, wherein this condition may be

expressed by the following equation:

$$(E_{F3} - E_{03}) + (E_{03} - E_{b3}) - \Delta E_{b23} > (E_{F1} - E_{01}) + (E_{01} - E_{b1}) - \Delta E_{b21} \quad (\text{Eq. 1})$$

[0034] 3. For a given band alignment of E_{b3} and E_{b1} , and for given ground-state energies E_{01} and E_{03} , the doping in S3 has to be sufficiently large to raise E_{F3} above E_{F1} in order to satisfy condition 2.

[0035] 4. For a given band alignment of E_{b3} and E_{b1} , and for given doping in S3, the radius r_1 has to be sufficiently large to decrease E_{01} , and the difference in radii, $r_3 - r_2$ sufficiently small to increase E_{03} , in order to satisfy condition 2.

[0036] 5. For radii r_1 and r_2 , and for a given doping in S3, the band edge energy E_{b3} must be sufficiently larger than E_{b1} , or when E_{b1} is greater than E_{b3} the difference must be sufficiently small, in order to satisfy condition 2. The conditions for S4 (Figure 7(a)) are not critical. S4 must have heavy enough doping or a small enough bandgap to ensure a good ohmic contact with both S1 and S3. S1 and S3 may also be doped adjacent to S4 to ensure an ohmic contact. In this case, S4 may be a metal.

[0037] In an exemplary embodiment, suitable selected semiconductor materials are as follows: InAs_{0.8}P_{0.2} for S₁, InP for S₂ and InAs for S₃ and for S₄. The radii of S₁, S₂ and S₃ are 30, 40 and 50nm respectively. S₁ and S₄ are doped with silicon to a concentration of 10¹⁹ atoms/cm³, ensuring a good ohmic contact of S₃ to S₁ via S₄ and that Eq. 1 above is satisfied. That equation becomes:

$$(E_{F3} + 0.033) + (-0.033 + 0.173) - 0.6533 > (E_{F1} + 0.044) + (-0.044 + 0.0744) - 0.5544 \quad (\text{Eq. 2})$$

[0039] This expression in turn reduces to:

$$E_{F3} > E_{F1} + 0.0003 \text{ eV} \quad (\text{Eq. 3})$$

[0040] Thus, substitution of the selected system parameters for the equation terms results in the condition, $E_{F3} > E_{F1} + 0.0003$ eV, which is satisfied with the chosen doping level in S₃. Referring once again to Figure 7(a), the lengths of S₁, S₂, S₃ and S₄ are not critical but should be longer than about 10 nm to allow for the band bending shown in Figure 7(b), but also shorter than about 100 nm to minimize series resistance.

[0041] While the invention has been described with reference to a preferred embodiment or embodiments, it will be understood by those skilled in the art that various changes may be made and equivalents may be substituted for elements thereof without departing from the scope of the invention. In addition, many modifications may be made to adapt a particular situation or material to the teachings of the invention without departing from the essential scope thereof. Therefore, it is intended that the invention not be limited to the particular embodiment disclosed as the best mode contemplated for carrying out this invention, but that the invention will include all embodiments falling within the scope of the appended claims.

CLAIMS

What is claimed is:

1. An indirectly induced tunnel emitter for a tunneling field effect transistor (TFET) structure, comprising:

an outer sheath that at least partially surrounds an elongated core element, the elongated core element formed from a first semiconductor material;

an insulator layer disposed between the outer sheath and the core element;

the outer sheath disposed at a location corresponding to a source region of the TFET structure; and

a source contact that shorts the outer sheath to the core element;

wherein the outer sheath is configured to introduce a carrier concentration in the source region of the core element sufficient for tunneling into a channel region of the TFET structure during an on state.

2. The TFET structure of claim 1, wherein the elongated core element comprises one or more of: a nanowire, a fin structure, and a carbon nanotube.

3. The TFET structure of claim 2, wherein the insulator layer is formed from a second semiconductor material having a wider bandgap than the first semiconductor material.

4. The TFET structure of claim 3, wherein the outer sheath comprises a outer semiconductor sheath formed from a third semiconductor material, the outer semiconductor sheath being doped at a higher concentration with respect to the core element.

5. The TFET structure of claim 4, wherein the source contact is formed from a fourth semiconductor material that is doped at a higher concentration with respect to the core element.

6. The TFET structure of claim 5, wherein the first, second, third and fourth semiconductor materials comprise epitaxially grown semiconductors forming heterojunctions at interfaces therebetween.

7. The TFET structure of claim 6, wherein the first, third and fourth semiconductor materials are the same material.

8. The TFET structure of claim 7, wherein the first, second and third semiconductors have a single crystal structure.

9. The TFET structure of claim 3, wherein the outer sheath comprises a metal material.

10. The TFET structure of claim 4, wherein the outer sheath is coated with a metal material.

11. The TFET structure of claim 5, wherein a band edge energy of the first semiconductor material is greater than a band edge energy of the second semiconductor and greater than a band edge energy of the third semiconductor material.

12. The TFET structure of claim 11, wherein a Fermi energy of the third semiconductor material is higher than a Fermi energy of the first semiconductor material.

13. The TFET structure of claim 5, wherein the first semiconductor material comprises $\text{InAs}_{0.8}\text{P}_{0.2}$, the second semiconductor material comprises InP, and the third and fourth semiconductor materials comprise InAs.

14. The TFET structure of claim 5, wherein lengths of the first, second, third and fourth semiconductor materials are from about 10 nanometers to about 100 nanometers.

15. A method of forming an indirectly induced tunnel emitter for a tunneling field effect transistor (TFET) structure, the method comprising:

forming an elongated core element from a first semiconductor material;

forming an insulator layer that at least partially surrounds the core element;

forming an outer sheath that at least partially surrounds the insulator layer at a location corresponding to a source region of the TFET structure; and

forming a source contact that shorts the outer sheath to the core element;

wherein the outer sheath is configured to introduce a carrier concentration in the source region of the core element sufficient for tunneling into a channel region of the TFET structure during an on state.

16. The method of claim 15, wherein the elongated core element comprises one or more of: a nanowire, a fin structure, and a carbon nanotube.

17. The method of claim 16, wherein the insulator layer is formed from a second semiconductor material having a wider bandgap than the first semiconductor material.

18. The method of claim 17, wherein the outer sheath comprises a outer semiconductor sheath formed from a third semiconductor material, the outer semiconductor sheath being doped at a higher concentration with respect to the core element.

19. The method of claim 18, wherein the source contact is formed from a fourth semiconductor material that is doped at a higher concentration with respect to the core element.

20. The method of claim 19, wherein the first, second, third and fourth semiconductor materials comprise epitaxially grown semiconductors forming heterojunctions at interfaces therebetween.

21. The method of claim 20, wherein the first, third and fourth semiconductor materials are the same material.

22. The method of claim 21, wherein the first, second and third semiconductors have a single crystal structure.

23. The method of claim 17, wherein the outer sheath comprises a metal material.

24. The method of claim 18, wherein the outer sheath is coated with a metal material.

25. The method of claim 19, wherein a band edge energy of the first semiconductor material is greater than a band edge energy of the second semiconductor and greater than a band edge energy of the third semiconductor material.

26. The method of claim 25, wherein a Fermi energy of the third semiconductor material is higher than a Fermi energy of the first semiconductor material.

27. The TFET structure of claim 19, wherein the first semiconductor material comprises $\text{InAs}_{0.8}\text{P}_{0.2}$, the second semiconductor material comprises InP, and the third and fourth semiconductor material comprise InAs.

28. The TFET structure of claim 19, wherein lengths of the first, second, third and fourth semiconductor materials are from about 10 nanometers to about 100 nanometers.

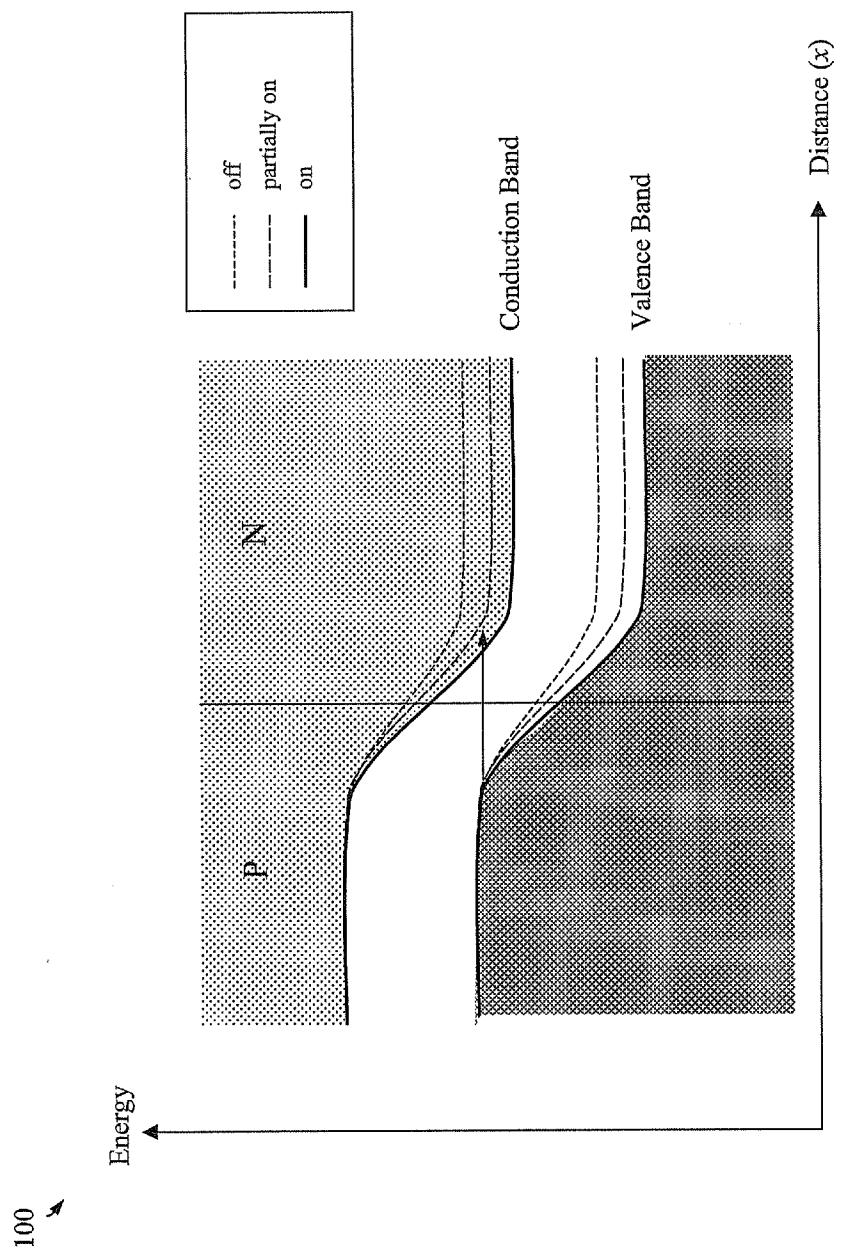


Fig. 1

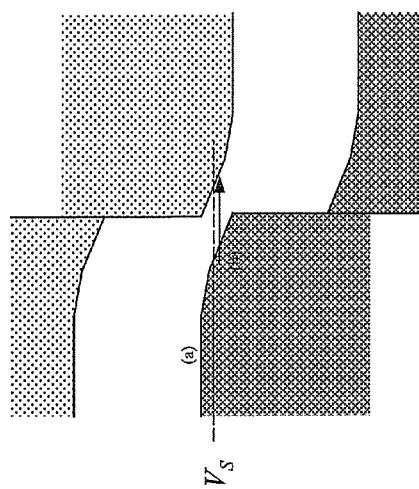


Fig. 2

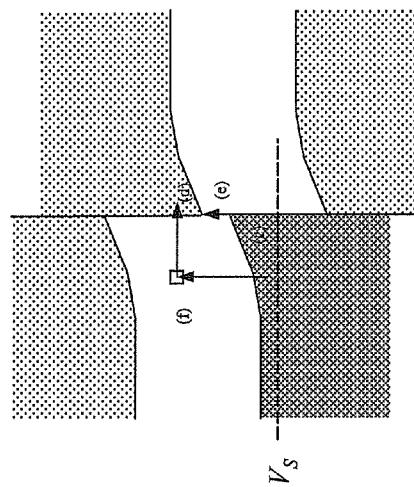


Fig. 3

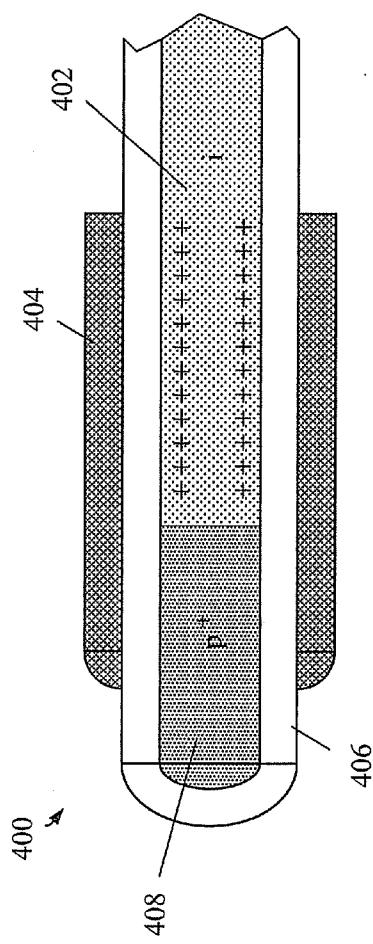
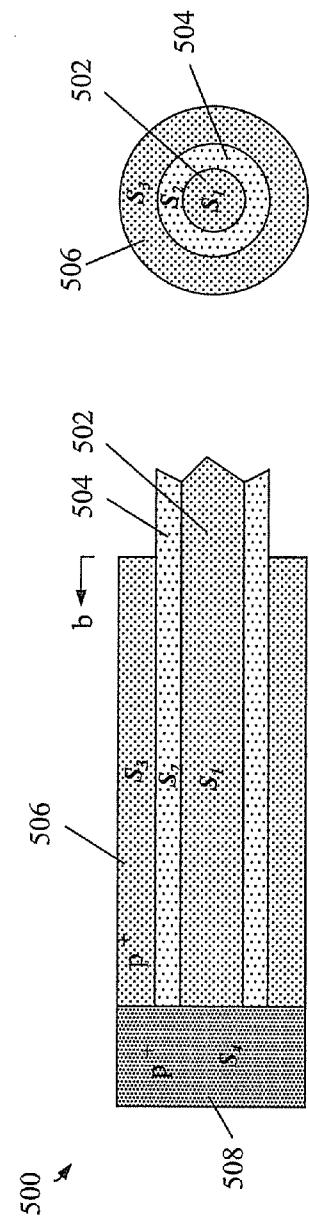



Fig. 4

Fig. 5(a) b →
Fig. 5(b)

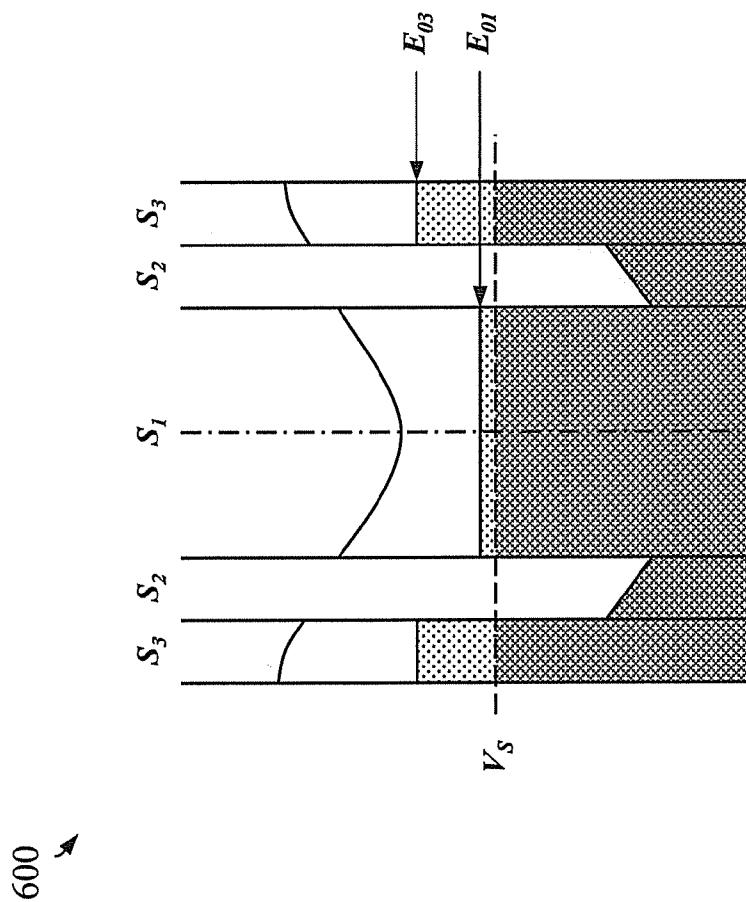


Fig. 6

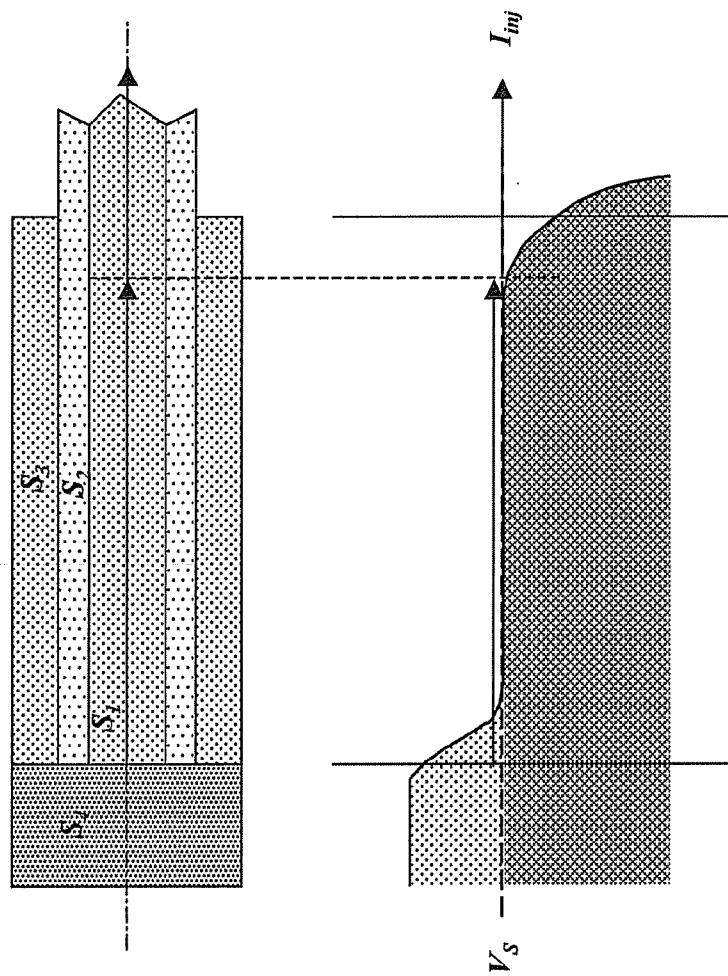


Fig. 7(a)

Fig. 7(b)

800

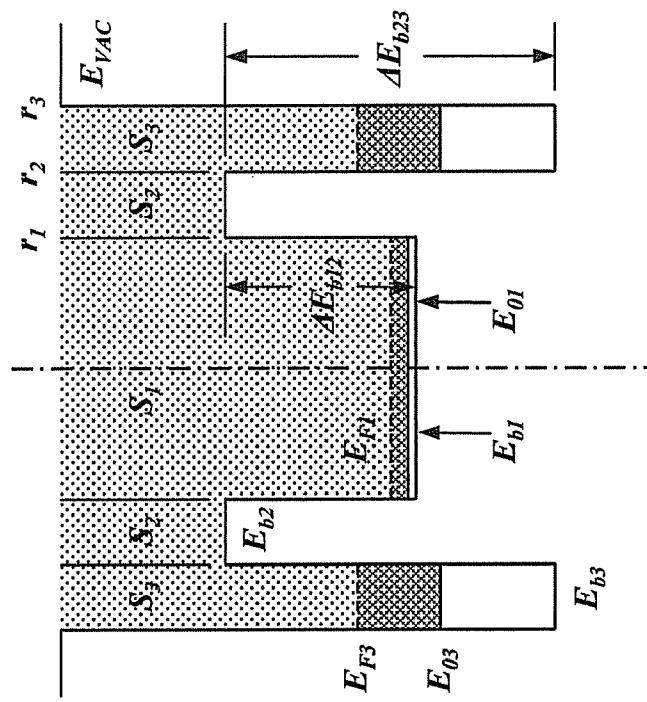


Fig. 8

INTERNATIONAL SEARCH REPORT

International application No
PCT/IB2010/053884

A. CLASSIFICATION OF SUBJECT MATTER
INV. H01L29/739 H01L29/06
ADD.

According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols)
H01L

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

Electronic data base consulted during the international search (name of data base and, where practical, search terms used)

EPO-Internal, INSPEC

C. DOCUMENTS CONSIDERED TO BE RELEVANT

Category*	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.
A	EP 1 901 355 A1 (IMEC INTER UNI MICRO ELECTR [BE]; LEUVEN K U RES & DEV [BE]) 19 March 2008 (2008-03-19) the whole document ----- A US 2007/052012 A1 (FORBES LEONARD [US]) 8 March 2007 (2007-03-08) * abstract; figure 3 -----	1-28
		1-28

Further documents are listed in the continuation of Box C.

See patent family annex.

* Special categories of cited documents :

- "A" document defining the general state of the art which is not considered to be of particular relevance
- "E" earlier document but published on or after the international filing date
- "L" document which may throw doubts on priority, claim(s) or which is cited to establish the publication date of another citation or other special reason (as specified)
- "O" document referring to an oral disclosure, use, exhibition or other means
- "P" document published prior to the international filing date but later than the priority date claimed

"T" later document published after the International filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the invention

"X" document of particular relevance; the claimed invention cannot be considered novel or cannot be considered to involve an inventive step when the document is taken alone

"Y" document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such documents, such combination being obvious to a person skilled in the art.

"&" document member of the same patent family

Date of the actual completion of the international search 2 December 2010	Date of mailing of the international search report 09/12/2010
Name and mailing address of the ISA/ European Patent Office, P.B. 5818 Patentlaan 2 NL - 2280 HV Rijswijk Tel. (+31-70) 340-2040, Fax: (+31-70) 340-3016	Authorized officer Baillet, Bernard

INTERNATIONAL SEARCH REPORT

Information on patent family members

International application No

PCT/IB2010/053884

Patent document cited in search report	Publication date	Patent family member(s)	Publication date
EP 1901355	A1 19-03-2008	NONE	
US 2007052012	A1 08-03-2007	NONE	